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Abstract Let G be a complex semisimple Lie group and H a complex closed connected subgroup. Let g
and b be their Lie algebras. We prove that the regular representation of G in L?(G/H) is tempered if
and only if the orthogonal of § in g contains regular elements by showing simultaneously the equivalence
to other striking conditions, such as h has a solvable limit algebra.
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1. Introduction

Let X = G/H be a homogeneous space of a Lie group G. This article is the fourth one in
our series of papers [1, 2, 3] dealing with the harmonic analysis on the homogeneous spaces
X and more precisely with the regular representation of G in L?(X). This representation
is often denoted as Indg(l) and called ‘the induced representation of the trivial character
of H’. The aim of this series of papers is to find various necessary and sufficient conditions
for this representation to be G-tempered, for example, to be weakly contained in the
regular representation in L?(G). We proved in [1, 2] a criterion (1.1) below by an analytic
and dynamical approach when G is real reductive and accomplished in [3] a classification
of all the pairs (G,H) of real reductive Lie groups for which L?(X) is nontempered. We
refer to the introduction of both [1] and [2] for some motivations and perspectives on this
question.

In this article, we find a striking relationship of this question with other disciplines, such
as a topological condition concerning the ‘limit subalgebras’ and a geometric condition
concerning coadjoint orbits. The relationship is perfect when G is complex reductive
(Theorem 1.6). For the proof, we explore the temperedness of L?(X) beyond reductive
setting (Theorem 1.1).
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2 Y. Benoist and T. Kobayashi

1.1. Real homogeneous spaces

We extend the criterion in [1, 2] for the temperedness of L?(X) to the general setting
where X is a homogeneous of a real Lie group, which is not necessarily reductive.

In the first two papers [1] and [2], we first noticed that the property of L?(G/H) being
tempered depends only on the pair (g,h) of Lie algebras and introduced for an f-module
V and Y € b, the quantity:

pv (Y) :=half the sum of the absolute values of the

real part of the eigenvalues of Y in V.

We found the following temperedness criterion when G is a connected semisimple Lie
group with finite center, and H is a connected closed subgroup:

L*(G/H)is tempered <= Py < pgsp on b. (1.1)

This criterion (1.1) was proven in [1], when b is assumed to be semisimple by a dynamical
approach and was extended in [2] to arbitrary h by an idea of ‘domination of G-
spaces’. Developing the techniques in a more general setting, we extend (1.1) without
any reductivity assumptions of g and bh:

Theorem 1.1 (see Theorem 3.1). Let G be a real algebraic Lie group and H an algebraic
subgroup. We fix mazximal reductive subgroups Gy and Hy of G and H, respectively, such
that Hs C Gs. Then one has the equivalence:

L*(G/H) is Gs-tempered < pg. < 2pg/p O bs.

By Gs-tempered, we mean tempered as a representation of Gy, or, equivalently,
tempered as a representation of the semisimple Lie group [G4,Gg]. When G is not
semisimple, this notion happens to be much more useful than the temperedness as a
representation of G.

Theorem 1.1 (and its further generalisation to the Hilbert bundle valued case) serves
as a ‘tool’ in proving the relationship with other disciplines, which is formulated in
Theorem 1.6 below.

1.2. Temperedness condition and the orbit philosophy

We discuss what the orbit philosophy suggests about the geometry
of coadjoint orbits ‘corresponding to’ the temperedness condition of
L*(G/H).

Let g be a Lie algebra and g* be its dual. Let G be a connected Lie group with Lie
algebra g. We denote by G the unitary dual of G, for example, the set of equivalence classes
of irreducible unitary representations of G. The orbit philosophy due to Kirillov-Kostant-
Duflo expects an intimate connection of the unitary dual G with the set of coadjoint
orbits g*/Ad*(G). This works perfectly for simply connected nilpotent groups but does
not exactly for semisimple Lie groups. Nevertheless, g*/ Ad*(G) may be considered to be
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a fairly good approximation as a parameter set of G. As an expected functionality, the
orbit philosophy also suggests that the disintegration of L?(G/H) would be supported on
the subset of G ‘corresponding to’ the closure of Ad*(G)h*/Ad*(G), where:

hT = Ker(g* — b").

On the other hand, for a connected semisimple Lie group G, loosely speaking, irreducible
tempered representations of G are supposed to be obtained as ‘geometric quantisation’
of semisimple coadjoint orbits having amenable isotropy subgroups. Thus, one expects
that the temperedness of the unitary representation L?(G/H) may be characterised by
its ‘classical limit’ in the geometry of coadjoint orbits via the orbit philosophy. When G
is a complex Lie group, we formulate a precise criterion below from this viewpoint.

1.3. Complex homogeneous spaces

In the third paper [3], and in this one, we extend and deepen the theory
of tempered homogeneous spaces with a focus on the complex setting.

Suppose @ is a semisimple Lie algebra. Via the Killing form:
K(X)Y) :=tr(adX adY),

we identify g* with g and f)l with the orthogonal subspace of h) in g with respect to K.
An element X € g is called regular if its centraliser 3 g(X ) in @ has minimal dimension,
for example, dimgg(X) =rankg. We denote by g,,, the set of regular elements X of g
and set:

1L 1L

hreg = h r_]Qreg'
In the third paper [3], we found yet another but more geometric tempered criterion for
L?(G/H) when both g and b are assumed to be complex semisimple Lie algebras. As we

see in Proposition 2.10, this geometric criterion can be reformulated as f)rtg # (. In the
present paper, we extend this criterion to all complex Lie subalgebras b of g.

Theorem 1.2. Let g be a complex semisimple Lie algebra and §) be a complex Lie
subalgebra. Then one has the equivalence:

L*(G/H) s tempered <= b, #0. (1.2)

€1
reg

Since the set b, is Zariski open in f)J', one always has the equivalence:

[)rtg £) — h:g is dense in f)l, (1.3)

and, thus, Theorem 1.2 fits well into the aforementioned orbit philosophy.
One sees from [2, Corollary 5.6] that Theorem 1.2 for complex Lie groups yields the
sufficiency of the temperedness in the real setting as well:

Corollary 1.3. Let G be a real semisimple algebraic Lie group and H an algebraic
subgroup. If [jj;g #10, then L*(G/H) is tempered.
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Remark 1.4.

(1) The implications = in (1.2) and (1.5) are not always true for a real semisimple

Lie group G. For instance, when G is not R-split and H is a maximal compact
1

reg

subgroup, the representation L?(G/H) is tempered, but h._ is empty. Another
example is given by G/H = SL(3,H)/SL(2,H).

(2) Let game denote the set of elements in g with amenable stabiliser for the adjoint
action of G. For reductive H, by [3, Theorem 1.5] and Lemma 2.14 below, one has
the implication:

L*(G/H) is tempered = f)L NG me 1s dense in f)L. (1.4)

The converse implication (1.4) does not always hold, even for semisimple symmetric
spaces ([3, Section 8.5]).

By (1.1), our main task for Theorem 1.2 will be to prove the following.

Proposition 1.5. Let g be a complex semisimple Lie algebra and §) a complex Lie
subalgebra. Then one has the equivalence:

2pp<pg = Doy #0. (1.5)

1.4. The equivalent conditions

We now introduce two other conditions that we will prove to be
equivalent to (1.5).

We suppose that @ is a complex semisimple Lie algebra and [ is a complex Lie
subalgebra. Let us think of fj as a point in the variety £ of all Lie subalgebras of g. One
surprising feature of the equivalence (1.5) is that the left-hand side is a closed condition on
b, while the right-hand side is an open condition on fj. Since both conditions are invariant
by conjugation by G, this remark suggests to work with the adjoint orbit closure of f. As
we will see, this new point of view will be very fruitful, first by suggesting new striking
conditions equivalent to (1.5), and eventually by leading to a proof of (1.5).

Let AdG be the adjoint group, let AdGH be the AdG-orbit of f) in £ and AdGh
be the closure of this orbit. We introduce also the following two G-invariant algebraic
subvarieties of L:

Lsor :={t € L |1 is solvable},
Lomun :={N € L | N is maximal unipotent in g}.
We recall that a Lie subalgebra is said to be unipotent if all its elements are nilpotent.
As we mentioned, we will prove the equivalence (1.5) by showing simultaneously the

equivalence to other striking conditions that we introduce now. Let H be the closure of
the connected subgroup of G with Lie subalgebra .

- Tem(g,H): L*(G/H) is tempered,
- Rho(gvb) : pb Spg/ha
- Sla(g,h) : AAGhNLeo #0,
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- Tmu(g,h) : there exists N € L,,un, such that hNn = {0},
1

- OTb(g,h) : breg #0

To refer to these conditions, we might say informally that:

- b is a tempered Lie subalgebra,
- b satisfies the p-inequality,
- b admits a solvable limit algebra,

- b has a transversal maximal unipotent,

- " meets a regular orbit.

Theorem 1.6. Let § be a complex semisimple Lie algebra and by a complex Lie subalgebra.
Then the following five conditions are equivalent:

Tem(g,h) <= Rho(g,h) <= Sla(g,h) <= Tmu(g,h) <= Orb(g.h).
The proof of Theorem 1.6 will last up to Section 5.5.

Corollary 1.7. Let g be a complex semisimple Lie algebra. The set Lq, of Lie subalgebras
h C g satisfying Sla(g,h) is both closed and open in L.

Proof. Corollary 1.7 follows from the following two remarks: the condition Rho(g,h) is
closed, while the condition Orb(g,) is open. O

Corollary 1.8. Let g be a complex semisimple Lie algebra and §) a complex Lie
subalgebra. Choose [)/ € AdGH. Then one has the equivalence:

Sla(g,h) < Sla(g,h"). (1.6)

Proof. Corollary 1.8 is a consequence of Corollary 1.7. O

The equivalence (1.6) can be reformulated as follows:

If the orbit closure AdG b contains at least one solvable h”,

then all h’ in AdGh with a closed orbit AdGh’ are solvable. (1.7)

Although the statement (1.6) is purely a structure theorem of Lie subalgebras, our
proof of (1.6) relies on the theory of unitary representations via Theorem 1.6. We would
like to point out that we are not aware of a more direct proof of (1.6).

Remark 1.9. We will explain in Theorem 5.1, how to extend the definitions and the
equivalences Tem(g,h) <= Rho(g,h) <= Sla(g,h) to complex algebraic nonsemisimple
Lie algebras g. In particular, we will see in Corollary 5.2 that the equivalence (1.6) is true
for any pair g D b of complex Lie algebras.
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1.5. Strategy of proof and organisation

We now explain the strategy of the proof of Theorem 1.6. Since we already know from
(1.1) the equivalence:

Tem(g.h) <= Rho(g.h), (1.8)
it remains to prove the equivalences:
Rho(g,h) <= Sla(g,h) < Tmu(g,h) < Ord(g,h). (1.9)

All these statements are purely algebraic, and we will prove these implications by algebraic
methods in Chapter 2 except for the implication:

Sla(g,h) = Rho(g,h). (1.10)

The proof of this implication (1.10) is more delicate and will be given in Chapter 5.

It will use an induction argument that reduces to the case where ) is semisimple. The
induction argument will involve unitary representation theory and a parabolic subgroup
Gy of G containing H. This will force us to deal with algebraic groups G, which are not
semisimple.

The proof will also use the analytic interpretation of Rho(g,h) as a temperedness
criterion and the disintegration of the unitary representation L?(Go/H). Indeed, we will
spend Chapters 3 and 4 proving the extension of the temperedness criterion (1.1) that we
need. This extension (Theorem 1.1) is valid for any real algebraic Lie group G and any
real algebraic subgroup H. The proof of this extension will rely on the Hertz majoration
principle for unitary representations.

In this paper, the expressions ‘Zariski open’, ‘Zariski closed’ and ‘Zariski dense’ will
refer to the Zariski topology, while ‘open’, ‘closed” and ‘dense’ will refer to the Lie group
topology.

2. Sla, Tmu and Orb

In this chapter, we focus on the proof of the implications in (1.9) that uses only algebraic
tools. That is all of them except for the implication (1.10).

2.1. Sla and Tmu

We begin with the easiest of all these equivalences.

Proposition 2.1. Let g be a complex semisimple Lie algebra and ) C @ be a complex
Lie subalgebra. Then, one has the equivalence:

Sla(g,h) <= Tmu(g,h). (2.1)

Proof. Proof of the direct implication. Since we assume Sla(g,h), there exists a sequence
(gn)n>1 in G, such that the limit:

t= lim Adg,b
n—oo
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exists and is a solvable Lie subalgebra of g. Since t is solvable, there exists a Borel
subalgebra b~ of g containing t. Let N be a maximal unipotent subalgebra of g, which
is opposite to b, so that one has b~ @n = g. In particular, one has tNn = {0} and, for
n large, Adg, hNn = {0}. This proves Tmu(g,h).

Proof of the converse implication. Since we assume T'mu(g,0), there exists a maximal
unipotent subalgebra n of @, such that hn = {0}. Let b be the Borel subalgebra
containing N, let j be a Cartan subalgebra of b, so that b =)@ n and let n~ be the
maximal unipotent subalgebra of @, which is opposite to b and normalised by j. Let
A = A(g,j) be the root system of j in g. We write A = ATUA™, where AT and A~ are,
respectively, the roots of j in n and n~. Choose an element X € j in the positive Weyl
chamber, this means that for all & € AT, one has Re(a(X)) > 0. Since hnn = {0}, the
limit:

t:= lim Ade_"Xf)

n—oo

exists and is a subalgebra of b~ . In particular, this Lie algebra t is solvable. This proves

Sla(g,h). O

Corollary 2.2. Let g be a complex semisimple Lie algebra. Then, the set of subalgebras
b satisfying Sla(g,b) is open in L.

Proof. The condition Tmu(g,H) is clearly an open condition. O

2.2. Related Lie subalgebras

We now explain why we can often assume that b = [b,h].

Lemma 2.3. Let g be a complex semisimple Lie algebra and by C g be a complex Lie
subalgebra. Let G be a Lie group with Lie algebra § and Hy = H be the smallest closed
subgroup of G, whose Lie algebra contains §). Set b, =[h,H] and b, := Lie(H).

Then, one has the equivalences:

(i) Sla(gh) <= Sla(g,hy). (2.2)
(ii) Sla(g,h) < Sla(g,h,). (2.3)
Proof. Proof of the direct implication in (i). This follows from the inclusion b, C b.

Proof of the converse implication in (7). Since we assume Sla(g,h,), there exists a
sequence (g, )n>1 in G, such that the limit to = lim Adg, ), exists and is a solvable Lie
- n— oo

subalgebra of g. Then, after extraction, the limit t:= lim Adg, b exists and satisfies:
n—oo

[t,t] C ILm [Adg, b,Adg, b] = 0.

In particular, the limit ¢ is a solvable Lie subalgebra of g. This proves Sla(g,b).
(ii), this follows from (i) and the inclusions [h;,b,] C h C b;. O

2.3. Sla and Orb

The proof of the following equivalence is still purely algebraic but slightly
more tricky.
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Proposition 2.4. Let g be a complex semisimple Lie algebra and b C g be a complex
Lie subalgebra. Then, one has the equivalence:

Sla(g,h) <= Orb(g,h). (2.4)

Proof. For the direct implication =. Since we assume Sla(g,h), there exists a sequence
(gn)n>1 in G, such that the limit t = lim Adg, ) exists and is a solvable Lie subalgebra
- n—oo

of g. Since t is solvable, there exists a Borel subalgebra b of g containing t. Since the
orthogonal of b is the maximal unipotent subalgebra:

b =n:=[b,b],

the orthogonal t+ also contains n. By a result of Dynkin (see [6, Theorem 4.1.6]), the Lie
algebra N always contains regular elements of g, the orthogonal t also contains regular
elements of g. Since the set @, is open, for n large, the orthogonal Adg, f)L contains

regular elements and f]L too. This proves Orb(g,h). O

The proof of the converse implication will rely on the following two lemmas.

Lemma 2.5. Let g be a complex semisimple Lie algebra and q =& U be a parabolic
subalgebra, where [ is a reductive Lie subalgebra and W is the unipotent radical of q.

Let X = X[+ Xy be an element of q with Xy € | and Xy € w. If X is regular in g, then
X\ is reqular in [.

Let r be the rank of g. We recall that the set g,  of regular elements of g is the set of
elements X € g whose centraliser in g has dimension dim34(X) = r. Similarly, the set lreg
of regular element of [ is the set of elements X € [ whose centraliser in [ has dimension
dim3((X) = r. This set may not be equal to [ﬂgreg. For instance, when ¢ is a Borel
subalgebra, then [ is a Cartan subalgebra of g and one has [,., = [.

Proof. To prove Lemma 2.5, one computes:

dimg—r =dimAdG X
<dimG/Q+dimAdQ X
<2dimu+dim(AdQ X +u)/u
=2dimu+dimAdL X|.

This proves dimAdL X[ > dim[—r, and, hence, X| is regular in [. O

Lemma 2.6. Let g be a complex semisimple Lie algebra, B a complex Lie subalgebra and
—_— i
Xe f)J_. Then there exists ' € AdGH, such that X € b’ and [X,b'1 B’

As in Section 1.2, we denote by G a connected Lie group with Lie algebra g. Such a
Lie group has a unique structure of complex algebraic Lie group.

Proof. To prove Lemma 2.6, we introduce the Zariski closure A C G of the one-parameter
subgroup {e*X |t € C}. This group A is Abelian.
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Note that, for all a in A, the Lie subalgebra Adal is orthogonal to X. Therefore, all Lie
subalgebra f]/ in the orbit closure AdAl are orthogonal to X. This orbit closure AdAb
is an A-invariant subvariety of the projective algebraic variety £. By Borel fixed point
theorem [4, Theorem 10.6], the solvable group A has a fixed point in this subvariety. This

means that there exists h’ in AdAB, such that AdAH =, In particular, [X,h']ch’. O

Proof. For the converse implication <= in Proposition 2.4, we argue by induction on
the dimension of g. We assume that f]L contains a regular element X, and we want to
prove Sla(g,h). By Corollary 2.2 and Lemma 2.6, we can also assume that X normalises
b, for example, that [X,H] C . In particular, the sum ) := CX @ is a Lie subalgebra of
g. By Lemma 2.3 (i), we may and do assume that:

b: [h’h]

Let g be a parabolic subalgebra of g of minimal dimension containing 6 and U the

unipotent radical of ¢. By minimality of ¢, the image of fj in q/u is reductive. Therefore,
we can write ) = § ® 0, where § is a semisimple Lie subalgebra and v := hNu is the
unipotent radical of . We can then write q = [ u, where [ is a reductive Lie subalgebra
containing §. We sum up this discussion by the inclusions:

h=sov Cc q=Ilou C g.

Since X is in H C q, we can decompose X as X = X[+ Xy, with X € [ and X € u. By
Lemma 2.5, the element X| is regular in [. Since u is the orthogonal of q with respect to
the Killing form K, one has:

K(X8)=K(X{+Xuw5®&0)=K(X,h)=0.

This proves that X is orthogonal to §.
We now claim that ¢ # @. Indeed, if ¢ = @, one has the equalities h = ) = §, and this
Lie algebra is semisimple by the assumption that fj = [h,§]. Therefore, the Killing form

restricted to b is nondegenerate. This contradicts the assumption X € f)J‘.
Therefore, one has ¢ # g. The normaliser L := Ng([) of [ in G has Lie algebra [. We
have seen that the intersection §+ N [,¢4 is nonempty. Therefore, by induction hypothesis,

the orbit closure AdL$§ contains a solvable Lie algebra and the orbit closure AdL also
contains a solvable Lie algebra. This proves Sla(g,bh). O

2.4. Rho and Sla

In this section, we will prove the following implication, which is still
purely algebraic. The proof of the converse will be much more delicate.

We will in fact prove a stronger statement.

Proposition 2.7. Let g be a complex semisimple Lie algebra and h) C g be a complex
Lie subalgebra. Then, one has the implication:

Rho(g,H) = Sla(g,bh). (2.5)
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More precisely, if ) satisfies Rho(g,h), then every Lie algebra f)/ in AAGH satisfies

Sla(g.h).
It will be useful to introduce the following two G-invariant subsets of L.
Lno:={heL] Py = Pg/b}7 (2.6)
Lo :=1{b e L|AdGH is closed in L}. (2.7)

Remark 2.8. We have the following nice characterisation of closed orbits in L.
b € Lcio < the normaliser Ng(h) is a parabolic subalgebra of g, (2.8)

<= B is normalised by a Borel subalgebra of g. (2.9)

Proof. Proposition 2.7 follows from Lemma 2.9 below and from the fact that the orbit
closure always contains a closed G-orbit. O

Lemma 2.9. Let g be a complex semisimple Lie algebra. Then,

(i) Lyho is closed in L.
(ii) Let b C @ be a complex Lie subalgebra with AAGY closed. Then,

b is solvable <= Rho(g,h).

Proof. (i) The map (h,Y) — pp(Y) is continuous on the set {h,Y)|heLl,Y eh}
Let b,, € L1, be a sequence that converges to a Lie algebra bj__. We want to prove that
[)OO € Lrpo. Let Yo € f]oo. We can find a sequence Y,, € f)n converging to Y,,. Therefore,
one has:

pg(Yoo) =2pp (Yoo) = lim pg(Yy) —2pp (¥V5) > 0.

n—oo

This proves that [’Joo isin Lypo-

(i) Proof of the direct implication in (ii). Since by is solvable, it is included in a Borel Lie
subalgebra b. Note that b satisfies the p-inequality, more precisely, one has the equality
pp(Y) = pgsp(Y), for all ¥ in b. Therefore, b also satisfies Rho(g,b).

(ii) Proof of the converse implication in (). Let f be a Lie subalgebra with AdG b
closed and which satisfies Rho(g,0). We want to prove that b is solvable. By replacing b
a few times with its derived subalgebra [, ] if necessary, we may assume that f = [h,h].
Let ¢ be the normaliser of fj and U be the unipotent radical of (. By assumption, ( is
a parabolic Lie subalgebra. The projection of b in the reductive Lie algebra q/u is an
ideal, and, hence, is a semisimple Lie algebra. Therefore, we can write [) = § ® 0, where
§ is a semisimple Lie subalgebra and v := fjNu is the unipotent radical of ). We then
write = [@u, where [ is a reductive Lie subalgebra containing §. Let U™ be the opposite
unipotent subalgebra, which is opposite to ¢ and normalised by [, so that g=u~ @ [ u.
Fix Y in §. Since  normalises [), one has:

pp(¥) = p(Y) + pu(Y). (2.10)
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Since U~ is dual to U as an [-module, one has:
pg(Y)=p(Y)+2pu(Y). (2.11)
Combining (2.10) and (2.11), and using the p-inequality, one gets:
ps(Y) < p(Y) =2pp(Y)—pg(Y) < 0.

Since this is true for all Y in the semisimple Lie algebra §, one must have § = 0. This
proves that b is solvable. O

2.5. Reductive homogeneous spaces
In this section, we check Theorem 1.6 for ) reductive by relying on the
previous papers of this series. We will prove:

Proposition 2.10. Let g be a complex semisimple Lie algebra and ) C g a complex
reductive Lie subalgebra. The following conditions are equivalent:

Tem(g,h) < Rho(g,h) < Sla(g,h) <= Tmu(g,h) < Orb(g,h).

Remark 2.11. Since g is semisimple and [ is reductive, one has a decomposition g =

bho f]L with respect to the Killing form, and the orthogonal complement f)l is isomorphic
to the quotient g/b as an h-module.

The proof uses the condition Ags(g,h) that we introduced in [3] and proven to be
equivalent to Rho(g,h). It is defined by:

Ags(g,h) : the set {X € f]L | 35(X) is abelian} is dense in f)J'.

According to our conventions, ‘dense’ means ‘dense for the vector space topology’, but
we could also have used the Zariski topology in this definition.

Proof. For Proposition 2.10.
x The equivalence Tem(g,H) <= Rho(g,h) is proven in [1, Theorem 4.1] for all real
semisimple Lie algebra g and all real reductive Lie subalgebra .

x The equivalence Sla(g,h) <= Tmu(g,h) < Orb(g,h) has been proven in the
previous sections for all complex Lie subalgebra b.

x The equivalence Rho(g,H) <= Ags(g,b) is proven in [3, Theorem 1.6] for all complex
semisimple Lie algebra g and all complex reductive Lie subalgebra .

* The equivalence Ags(g,H) <= Orb(g,) is proven in Proposition 2.12 below. m

Proposition 2.12. Let g be a complex semisimple Lie algebra and ) C g be a complex
reductive Lie subalgebra. Then, one has the equivalence:

Ags(g,h) < Orb(g.,h). (2.12)

We will need the following lemma which relates the centraliser in g and the centraliser

in b.

https://doi.org/10.1017/51474748022000287 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000287

12 Y. Benoist and T. Kobayashi

Lemma 2.13. Let g be a real semisimple Lie algebra, §) a real reductive Lie subalgebra
and regard f)l C g via the Killing form as before. Let:

f)j;lin ={X¢€ f)L | dim34(X) =rgp} where ryp:= ;niéi dim4(X).
€

Then, for every X in f)iﬁn, one has [34(X0),34(Xo)] C 35(Xo).

Note that Lemma 2.13 applied to h = {0} implies that 3g(X0) is Abelian if Xo € g,,-
Indeed, when h = {0}, one has rah = rankg and b

min — greg'
This lemma is a special case of the following general lemma for coadjoint orbits of real
Lie algebras which is well known when b = {0}.

Lemma 2.14. Let ¢ be a real Lie algebra and §) C @ be a real Lie subalgebra. Let g*be
the dual of g and hl ={feg*| f(h)={0}}. We set:

b ={febh™| dimg; =rgp}, where rqp:= fm%ri dimg.
€

Then, for every fo in hiin? one has [gfo,gfo] C hfo .

Here, g;:={Y € g | Y f =0} denotes the stabiliser of f in g and b, :=g,Nbh, its
stabiliser in f.

Proof. To prove Lemma 2.14, we fix fy € hiﬁn and two elements Yy and Zo in g . We
want to prove that Yy, Zo] € . We write:
g=g; om,

where M is a complementary vector subspace.
For all f € f)L, for ¢t € R small enough, the element f; := fy+¢f is also in the open set
[jj' Choose a linear projection mp: g* — g fo. By the local inversion theorem, the map:

P: (Y0+m) XR%ng xR
(Y,t) = (mo(Y f2),t)
is a local diffeomorphism near (Y5,0). Let ¢t — Y; be the differentiable curve near 0 starting
from Yy given by ®(Y;,t) = (0,¢). Since for ¢ small the linear map mo: gf; — gfo is an
isomorphism, it satisfies:
Y;eYp+m and Yif, =0.
For the same reason, there exists a differentiable curve ¢t — Z; near 0 starting from Zj,

such that:
Zi € Zyp+m and tht =0.

They satisfy the equality f:([Y:,Z¢]) = 0 whose derivative at t =0 gives:
F([Yo, Zo]) + fo([¥5, Zo]) + fo([Yo, Zo]) = 0.
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Since both Yy and Zj stabilise fy, the last two terms are zero. One deduces:
F([Yo,Zo]) =0 for all fin b .
This proves that [Yp,Zp] is in b as required. O

The following lemma will also be useful.

Lemma 2.15. Let § be a compler semisimple Lie algebra and b C g be a complex
reductive Lie subalgebra. Then the set:

f)SLS ={X¢e f)L | X is semisimple}
is Zariski dense in b

Proof. There exists a compact real form g of g, such that b is defined over R. Since

g = be @bz, the vector space by is Zariski dense in b, Since all elements of gy are
semisimple, this proves Lemma 2.15. O

Proof. We can now give the proof of Proposition 2.12.
Proof of the converse implication. Since the Zariski open set g,., meets the orthogonal

h™ for the Killing form, the intersection hi‘eg is dense in . By Lemma 2.13 applied with
the zero subalgebra, every X in g, has an Abelian centraliser in g. In particular, every
Xo in g,., has an Aabelian centraliser in b. This proves Ags(g,h).

Proof of the direct implication. Let 7’ := min{dim3g(X) | X € f)L} The set:

1 il .
hgen = {X € bmin | dlméh(X) = 7'/}
is nonempty and Zariski open in f)L. By assumption, the set:

Babe == {X € Bey, | 35(X) is abelian}

abe

1

gen- Since it is also closed in B..,, one has f)albc =h
2.15, the set f)l

abe CoOntains a semisimple element X,. The centraliser 3 g(Xo) is then
a reductive Lie algebra. By Lemma 2.13, the Lie algebra [34(X0),34(Xo0)] is included
in 3p(Xo), which is an Abelian Lie algebra. Therefore, the Lie algebra 34(Xo) itself is
Abelian. Since X is semisimple, this centraliser is a Cartan subalgebra and X is regular
in g. This proves Orb(g,h). O

1
gen’

1

gen- Lherefore, by Lemma

is dense in b

3. Real algebraic homogeneous spaces

The proof of the last remaining implication (1.10) will last up to the end of this paper.
Because of the induction method which involves parabolic subgroups, we need to extend
the temperedness criterion of [2] to nonsemisimple groups G. This extension will be valid
for all real algebraic groups.
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3.1. Notations

Let G be a real algebraic Lie group and H be an algebraic Lie subgroup. We write G = LU
and H = SV, where S C L are reductive subgroups and where V and U are the unipotent
radicals of H and G. Note that, in general, one does not have the inclusion V. C U. We
denote by @, b, [, u, etc. the corresponding Lie algebras.

We consider the following conditions:

Tem(g,h): L*(G/H) is L-tempered.
Rho(g,h) : p; < 2pgp as functions on §.

Sla(g,h) : AAGH contains a solvable Lie algebra.

We recall that L-tempered means tempered as a representation of L or equivalently as
a representation of the semisimple Lie group [L,L].

Note that, when G itself is semisimple, these conditions are exactly those given in
Section 1.4.

Theorem 3.1. Let G be a real algebraic Lie group and H be an algebraic Lie subgroup.
One has the equivalence,

Tem(g,h) < Rho(g,h).

Remark 3.2. For real algebraic groups, the last condition Sla(g,h) is not always
equivalent to the first two, but it is often the case. For instance, we will see in Theorem
5.1, that this is true for complex algebraic Lie groups.

In the induction process, we will have to work with slightly more general representations
than the regular representation L?(G/H). Let W be a finite-dimensional algebraic
representation of H. We will have to deal with the (L2-)induced representation:

Ind$ (L2 (W) ~ L3 (G x g W),

where G x g W is the G-equivariant bundle over G/H with fibre W, see [2, Section 2.1]
for a more precise definition. This is why we also introduce the following two conditions.

Tem(g,h,W) : Ind$ (L?(W)) is L-tempered.
Rho(g,b,W) : py < 2pg/pt2pw as a functions on §.

The following theorem is a generalisation of our Theorem 3.6 in [2], where we assumed
that G is semisimple.

Theorem 3.3. Let G be a real algebraic Lie group, H be an algebraic Lie subgroup and
W a finite-dimensional algebraic representation of H. One has the equivalence,

Tem(g,h,W) <= Rho(g,h,W).

We have assumed here that G and H are algebraic only to avoid uninteresting
technicalities. It is not difficult to get rid of this assumption.

Proof. Theorem 3.1 is a special case of Theorem 3.3 with W = 0. O
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The proof of Theorem 3.3 follows the same line as in [2, Theorem 3.6].
In this Chapter 3, we will prove the direct implication =—.
In Chapter 4, we will prove the converse implication <.

3.2. The Herz majoration principle
We first recall a few lemmas on tempered representations and on induced
representations.

The first lemma is a variation on the Herz majoration principle.

Lemma 3.4. Let G be a real algebraic Lie group, L be a reductive algebraic Lie subgroup
of G and H be a closed subgroup of G. If the regular representation in L*(G/H) is L-
tempered, then the induced representation 11 = Indg () is also L-tempered for any unitary
representation w of H.

Proof. See for instance [2, Lemma 3.2]. O

The second lemma will prevent us from worrying about connected components of H
and will allow us to assume that H = [H,H|.

Lemma 3.5. Let G be a real algebraic Lie group, L be a reductive algebraic subgroup of
G and H' C H be two closed subgroups of G.
1) If L*(G/H) is L-tempered, then L*(G/H') is L-tempered.

2) The converse is true when H' is normal in H and H/H' is amenable (for instance,
finite, compact or Abelian).

Proof. See [2, Proposition 3.1]. O
The third lemma is good to keep in mind.

Lemma 3.6. Let Q = LU be a real algebraic Lie group which is a semidirect product of
a reductive subgroup L and its unipotent radical U. Let my be a unitary representation of
Q which is L-tempered and trivial on U. Then the representation mg is also Q-tempered.

Proof. See [2, Lemma 4.3]. O

This lemma is useful for a parabolic subgroup @ of a semisimple Lie group G. In this
case, the induced representation Indg(ﬂ'o> is also G-tempered.

3.3. Decay of matrix coeflicients

We now recall the control of the matrix coefficients of tempered
representations of a reductive Lie group.

In the sequel, it will be more comfortable to deal with a reductive group L than just
with a semisimple group even though, in the temperedness condition, the center Zy, of L
plays no role.

So, let L be a real reductive algebraic Lie group. We fix a maximal compact subgroup
K of L and denote by = the Harish-Chandra spherical function on L. By definition, =
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is the matrix coefficient of a normalised K-invariant vector vy of the spherical unitary
principal representation my = Indle(l p), where P is a minimal parabolic subgroup of L.
That is:

(1]

() = (mo(£)vo,vo) , for all £ in L. (3.1)
Since P is amenable, the representation 7y is L-tempered.

Proposition 3.7 ([7]). Let L be a real algebraic reductive Lie group and w be a unitary
representation of L. The following are equivalent:

(i) the representation 7 is tempered,

(ii) for every K-finite vector v in H, for every £ in L, one has:
[{m(0)v,0)| < E(0) [Jv]|* dim(Kv).

See [7, Theorems 1, 2 and Corollary]. See also [8] and [10] for other applications of
Proposition 3.7.
For the regular representation in an L-space, this proposition becomes:

Corollary 3.8. Let L be a real algebraic reductive Lie group and X be a locally compact
space endowed with a continuous action of L preserving a Radon measure vol. The reqular
representation of L in L*(X) is L-tempered if and only if, for any K-invariant compact
subset C' of X, one has:

vol({C'NC) <vol(C)E(), for all £in L. (3.2)

Recall that the notation £C denotes the set {C :={{x € X :x € C}.

3.4. The rho function

We now explain, following [2, Section 2.3] how to deal with the functions
py occurring in the temperedness criterion.

Let H be a real algebraic Lie group, b its Lie algebra and V be a real algebraic finite-
dimensional representation of H. For each element Y in b, we consider the eigenvalues
of Y in V and we denote by V; and V_ the largest vector subspaces of V' on which the
real part of all the eigenvalues of Y are respectively positive and negative, and we set:

pv(Y):= 5 Te(Y]y,) — 5 Te(Y]v.).

Let a = ay be a maximal split Abelian Lie subalgebra of h (i.e. the Lie subalgebra
of a maximal split torus A of H). The function py on b is completely determined by
its restriction to @. Let Py be the set of weights of @ in V and, for all a in Py, let
me, = dimV,, be the dimension of the corresponding weight space. Then one has the
equality:

pv(Y)=1 Z me|a(Y)| for all Y in a. (3.3)
a€Py
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For example, when [) is semisimple and V =l via the adjoint action, our function Py
is equal on each positive Weyl chamber a; of a to the sum of the corresponding positive
roots (i.e. to twice the usual ‘p’ linear form).

The functions py occur in the volume estimate of Corollary 3.8 through the following
Lemma.

Lemma 3.9. Let V =R?. Let a be an Abelian split Lie subalgebra of End(V) and C
be a compact neighborhood of 0 in V. Then there exist constants m, > 0, M, > 0,
such that

mee V) <em T2yl ONC) < M e V) for all Y € a.

Proof. This is [2, Lemma 2.8]. O

3.5. The direct implication

We first prove the direct implication in Theorem 3.3 which is:
Proposition 3.10. Let G be a real algebraic Lie group, H an algebraic Lie subgroup of
G and W an algebraic representation of H. Let L be a mazimal reductive subgroup of G

containing a maximal reductive subgroup S of H.
If T := nd$ (L2 (W)) is L-tempered, then one has py < 2pg/p+2pw on s.

Proof. This representation II is also the regular representation of the G-space X :=
G xg W. Let A be a maximal split torus of S and @ be the Lie algebra of A. We choose
an A-invariant decomposition g = h @ m and small closed balls By C m and By C W
centered at 0. We can see By as a subset of X and the map:

ByxBw —GxgW, (u,v) — exp(u)v

is a homeomorphism onto its image C. Since II is L-tempered, one has a bound as in
(3.2):

(II(&)1c,1¢) < Me 2(¢) for all £ in L. (3.4)

We will exploit this bound for elements ¢ =¥ with Y in @. In our coordinate system (3.4),
we can choose the measure vx to coincide with the Lebesgue measure on m@ W. Taking
into account the Radon—Nikodym derivative and the A-invariance of M, one computes as
in [2, Section 3.3],

I(e¥)1e, 1) >e” TrmY)/2=Trw(Y)/2 g6l (e¥ By N By) volyw (e¥ By N Byy),
and therefore, using Lemma 3.9, one deduces:
{(e¥)1o,1e) > my e PmPe=rw () for all ¥V in a. (3.5)

Combining (3.4) and (3.5) with known bounds for the spherical function E as in [9,
Proposition 7.15], one gets, for suitable positive constants d, My,

%e—ﬂmm—pwm <E(e¥) < My (1+][Y )% 1Y/2 for all Y in a.
C

Therefore, one has py < 2 pm+2pw as required. O

https://doi.org/10.1017/51474748022000287 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000287

18 Y. Benoist and T. Kobayashi

4. Proof of temperedness for real groups
In this chapter, we prove the converse implication in Theorem 3.3 which is:

Proposition 4.1. Let G be a real algebraic Lie group, H an algebraic Lie subgroup of
G and W an algebraic representation of H. Let L be a mazimal reductive subgroup of G
containing a maximal reductive subgroup S of H.

If pr<2pg/p+2py on s, then I := Ind$ (L2(W)) is L-tempered.

Recall that, when W =0, one has Il = L*(G/H).

4.1. Domination of G-spaces

The proof relies on the notion of domination of a G-action that we have
introduced in [2] without giving it a name.

Here is the definition. Let G be a locally compact group. Let X and X be two locally
compact spaces endowed with a continuous action of G and with a G-invariant class of
measures volx and volx,. Let m and 7y be the unitary regular representations of G in
the Hilbert spaces of square-integrable half-densities L?(X) and L?(Xj).

Definition 4.2 (Domination of a G-space). We say that X is G-dominated by X if
for every compactly supported bounded half-density v on X, there exists a compactly
supported bounded half-density vy on X, such that, for all g in G,

(7 (g)v,v)| < (m0(g)vo,v0)- (4.1)

Remark 4.3. When both measures volx and volx, are G-invariant, the bound (4.1)
means that, for every compact set C' C X, there exists a constant A\ > 0 and a compact
set Cy C Xy, such that, for all g in G,

vol(gCNC) < Avol(gCoNCy).

This definition is very much related to our temperedness question because of the
following lemma.

Lemma 4.4. Let G be a real algebraic reductive Lie group and P be a minimal parabolic
subgroup of G, and let X be a G-space. The regular representation of G in L*(X) is
G-tempered if and only if X is G-dominated by the flag variety Xo = G/P.

Proof. This lemma is a direct consequence of Corollary 3.8. O

The following proposition gives us a nice situation where an action is dominating
another one.

Proposition 4.5. Let F = SU be a real algebraic Lie group which is a semidirect product
of a reductive subgroup S and its unipotent radical U. Let H = SV be an algebraic subgroup
of F containing S, where V.=UNH. Let Z be the F-space Z=F/H =U/V. Let Zy:=Z
be endowed with another F-action, where the S-action is the same, but the U-action is
trivial.

Then Z is F-dominated by Zy.

https://doi.org/10.1017/51474748022000287 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000287

Tempered homogeneous spaces IV 19

Proof. This is [2, Corollary 4.6]. O

4.2. Inducing a dominated action
The following proposition tells us that the induction of actions preserves
the domination.

Proposition 4.6. Let G be a locally compact group and F a closed subgroup of G. Let
Z and Zy be two locally compact F-spaces with G-invariant class of measures. Let X :=
GxXpZ and Xo:= G X g Zy be the two induced G-spaces.

If 7 is F-dominated by Zy, then X is G-dominated by Xg.

Proof. The proof of Proposition 4.6 is an adaptation of [2, Proposition 4.9], where G
was an algebraic semisimple group. We assume to simplify that the measures on Z and
Zy are G-invariant. This avoids complicating the formulas with the square roots of a
Radon-Nikodym derivative. The projection:

G- X :=G/F
is a G-equivariant principal bundle with structure group F. We fix a Borel measurable
trivialisation of this principal bundle:
G~ X'xF, (4.2)
which sends relatively compact subsets to relatively compact subsets. The action of G by
left multiplication through this trivialisation can be read as:

g(@' f)= (g2 ,0r(g,2")f) forall ge Gz’ € X' and f € F,

where op: G x X' — F is a Borel measurable cocycle. This trivialisation (4.2) induces a
trivialisation of the associated bundles

X=GxpZ~X'x2Z,
XOZGXFZOQX/XZO.

We start with a compact set C' of X. Through the first trivialisation, this compact set is
included in a product of two compact sets C' C X’ and D C Z:

CcC'xD. (4.3)

Since Z is F-dominated by Z;, there exists A > 0 and a compact subset Dy C Zj, such
that, for all f in F,

VOlz(fDﬂD) < )\VOIZO (fDo ﬁDo).

We compute, for g in G,

volx (gCNC) < / VOlZ(UF(g,gflxl)DﬂD)dx’
gC'nC’

< )\/ volz, (or (9,9~ 2" ) Do N Dy) da’
gCc’'nCc’

< Avolx,(gCoNCy),
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where dz’ is a G-invariant measure on X’ and Cj is a compact subset of Xg ~ X' x Z,
which contains C’ x Dy. O

4.3. The converse implication

We conclude the proof of the converse implication in Theorem 3.3, by
reducing it to the case where G is reductive, which was proven in |2,
Theorem 3.6].

We will need the following lemma on the structure of nilpotent homogeneous spaces.
See [2, Lemma 4.7] for a similar statement. We recall that a unipotent Lie group is an
algebraic nilpotent Lie group with no torus factor.

Lemma 4.7. Let U be a real unipotent Lie group, V a unipotent subgroup and ® C U
their Lie algebra.

(1) There exists a real vector subspace M C U, such that U=m®Y and the exponential
map induces a polynomial bijection exp: m = U/V.

(2) Moreover, if ¥ is invariant by a reductive subgroup S C Aut(U), one can choose m
to be S-invariant.

Proof. We prove Lemma 4.7 by induction on dimU. Let Z be the center of U and j its
Lie algebra.

First case: 3N 0 # {0}. In this case, we apply the induction assumption to the Lie
algebra U :=u/(3N0) and its Lie subalgebra v’ := v/(3Nv). This gives us an S-invariant
subspace M’ of W, such that W =m' @ v’ and:

exp: ' = U /V' ~U/V

is a bijection. We denote by 7: 1t — U’ the projection and choose M to be any S-invariant
vector subspace of m~tm’, such that ma (3N0) =7~ 1m’.

Second case: 3N v = {0}. In this case, we apply the induction assumption to the Lie
algebra W' :=1/3 and its subalgebra v’ := (b ®3)/3. This gives us an S-invariant subspace
m’ of W, such that W' =m' @’ and:

exp: ' = UV’
is a bijection. We denote by m: U — U the projection and choose m := 7~ !m’. The

identifications M’ ~m/3 and U'/V’' ~U/V Z prove that the exponential map exp: m —
U/V is bijective. O

Proof. We distinguish two cases in the proof of Proposition 4.1.

First case: W = {0}. In this case, one has Il = L?(G/H). We denote by U and V the
unipotent radical of G and H, so that we have the equalities G = LU and H = SV. We
have the inclusion S C L, but the group V might not be included in U. We introduce the
unipotent group V' := VU N L and the algebraic groups F' := HU and F’ := FN L so that
we have the equality F = SV’ and the inclusions:

H=SVCcF=FUcCG=LU.
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Let:
Z:=F/H,

and let Zy be the F-space Z endowed with the same S-action but with a trivial VU-
action. One can easily describe Zj. Indeed, let U, v,...be the Lie algebras of U, V,... By
Lemma 4.7, Zy can be identified with the S-module W’ :=u/(unNv),, as is seen from the
following isomorphisms:

F/H~VU/U~U/(UNV)~u/(unv).

According to Proposition 4.5, the F-space Z is dominated by Zy. We introduce now the
two induced G-spaces:

X:=GxpZ=G/H and Xg:=GxprZp.
According to Proposition 4.6, the G-space X is dominated by X,. Hence:
the L-space X = G/H is dominated by the L-space Xo = L x p W".
By assumption one has:

PL=2Dg/p-
Since Pa/b = Pg/§t Ps/h = Py T Puy(unv) this can be rewritten as:

P[S 2p[/f/+2pw/.

Since L is reductive, we can apply [2, Theorem 3.6]. This tells us that the representation
L?(L xp W') is L-tempered.

Therefore, since the L-space X is L-dominated by X, the representation of L in
L?(G/H) is L-tempered, as required.

Second case: W # {0}. In this case, one has Il = L*(G xy W). For w in W, we
denote by H,, the stabiliser of w in H. We write H,, = S,,U,, with S, reductive and
U, the unipotent radical. Since the action of H on W is algebraic, there exists a Borel
measurable subset T'C W which meets each of these H-orbits in exactly one point. We
can assume that for each w in T, one has S,, C S. Let u be a probability measure on W
with positive density and v be the probability measure on T ~ S\W given as the image
of p. One has an integral decomposition of the regular representation:

L*(G x W)/@LQ(G/H )dv(w) (4.4)
H w w). .
T

Since the direct integral of tempered representations is tempered, we only need to prove
that, for v-almost all w in T,

L*(G/H,) is L-tempered. (4.5)

We can choose w in the Zariski open set, where dim H,, is minimal. According to [2,
Lemma 3.9], for such a w,

the action of H, on W/(hw) is trivial. (4.6)
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Our assumption implies that one has the inequality on §,,:
pr< 2/79/[] +2pw -

Thanks to (4.6), this can be rewritten as:

PL=2Pg 2000, = 2Pyl

Then the first case tells us that for such w, the representation of L in L?(G/H,) is
tempered. This proves (4.5) as required. O

4.4. Using parabolic subgroups
The aim of this section is to explain how, when dealing with a quotient
G/ H of real algebraic groups, one can, using parabolic subgroups, reduce
to the case where the unipotent radical V of H is included in the
unipotent radical U of G. This reduction method will be used in Chapter
5 for complex Lie groups.

Let G be a real algebraic Lie group and H a real algebraic subgroup of G. We write
G =LU and H =SV, where U and V are the unipotent radicals of G and H, and where
S and L are reductive algebraic subgroups. We can manage so that S C L, but we cannot
always assume that V is included in U. For instance, this is not possible when G is
reductive and H is not. We fix a parabolic subgroup G of G that contains H and which
is minimal with this property. We denote by Uy D U the unipotent radical of Gy.

Lemma 4.8. One has the inclusion V C Uy. Moreover, we can choose a reductive
subgroup Lo C Gy, such that Gy = LoUy and S C Ly.

Proof. The group Vy := UyN H is a unipotent normal subgroup of H. The quotient
S’ := H/Vj is an algebraic subgroup of the reductive group Go/Up, which is not contained
in any proper parabolic subgroup of G /Uy. Therefore, by [5, Section VIIL.10], this group
S’ is reductive and the group Vj is the unipotent radical V of H. This proves the inclusion

V c Uy.
Since maximal reductive subgroups Ly of Gy are Uy-conjugate, one can choose L
containing S. O

We introduce the Lo-module Wy :=uy/0. The following two lemmas will be useful in
our induction process.

Proposition 4.9. Keep this notation. The following are equivalent:
(i) L*(G/H) is L-tempered;
(ii) pr<2pgsp as a function on §;
(iii) L?(Go/H) is Lo-tempered;
(iv) py, < 2pg, /45 @ function on §;
(v) L?(Lo x5 Wy) is Lo-tempered.
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Proof. Proof of the equivalence between (i) and (i) and of the equivalence between (iii)
and (4v). This is Theorem 3.1.

Proof of the equivalence between (ii) and (iv). Write Uy = Uy & U, where uf, :=uy N1l
The equivalence follows from the equalities py = py +2py, and pg = pg, + pu;. Proof of
the equivalence between (iv) and (v). This follows from Theorem 3.3 and the equality

Py, /b = Ply/s + PWo- =
The following lemma will also be useful in this reduction process.

Lemma 4.10. Keep this notation. The following are equivalent:
(i) the orbit closure AAGH contains a solvable Lie algebra;

(ii) the orbit closure AdGol) contains a solvable Lie algebra.

Proof. Lemma 4.10 follows from the compactness of G/Gj. O

5. Complex algebraic homogeneous spaces

The aim of this chapter is to prove the last remaining implication in Theorem 1.6, which
is the converse of Proposition 2.7. We keep the notation of the previous Chapters 3 and 4.
We assume in this chapter that both G and H are complex algebraic Lie groups but do
not assume G to be semisimple.

5.1. The equivalence for G algebraic

We first state the extension of Theorem 1.6, which relates temperedness to the existence
of solvable limit algebras for a general algebraic group G. This extension will be useful
because of the induction process in the proof. We still use the notation in Section 3.1.

Theorem 5.1. Let G be a complex algebraic Lie group and H be a complex algebraic
subgroup. Then one has the equivalences,

Tem(g,h) <= Rho(g,h) < Sla(g,h).

Proof. The first equivalence in Theorem 5.1 follows from Theorem 3.1. We split the proof
of the second equivalence into Propositions 5.4 and 5.7. O

Corollary 5.2. Let G be a complez algebraic Lie group, H be a complex algebraic subgroup
and b’ € AdGB. Then one has the equivalence,

Sla(g,h) < Sla(g.h").

This equivalence says that if a Lie subalgebra admits one solvable limit, then all its
limit Lie algebras also admit a solvable limit.

Proof. More precisely, Corollary 5.2 is a corollary of Propositions 5.4 and 5.7. Indeed, if
b satisfies Sla(g,h), then by Proposition 5.7, it satisfies Rho(g,h). Then by Proposition
5.4, all limit subalgebras f)/ € AdG b also satisfy Sla(gﬁ/). O

Remark 5.3. The set of Lie subalgebras ) in @ satisfying Sla(g,h) is closed. Indeed,
this follows from the Rho-condition in Theorem 5.1.
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5.2. Rho and Sla
We extend Proposition 2.7 to general algebraic groups G.

Proposition 5.4. Let g be an algebraic complex Lie algebra and §) C g be a complex Lie
subalgebra. Then, one has the implication:

Rho(g,h) = Sla(g,h).

More precisely, if h satisfies Rho(@,h), then every Lie algebra f)/ in AAGH satisfies
Sla(g.h).

Remark 5.5. In Propositions 5.4 and 5.7, the assumption that g is algebraic, which
means that it is the Lie algebra of a complex algebraic Lie group, can easily be removed.
We will not need it.

Proof. Proposition 5.4 follows from Lemma 5.6 below and from the fact that the orbit
closure always contains a closed G-orbit. O

We denote again by L, the set of Lie subalgebras b of g that satisfy Rho(g,h).

Lemma 5.6. Let g be an algebraic complex Lie algebra. Then,

(i) Lyho is closed in L.
(ii) Let b C @ be a complex Lie subalgebra with AAGY closed. Then,

b is solvable <= Rho(g,h).

Proof. Lemma 5.6 is a straightforward extension of Lemma 2.9. We write g = [®u with
[ reductive and U the unipotent radical.

(1) Same as for Lemma 2.9.

(#4) Proof of the direct implication in (4i). Same as for Lemma 2.9, but note that for
b =b@u with b a Borel subalgebra of [, one has py=2p(/p = 2pg,-

(ii) Proof of the converse implication in (i) We may assume that b = [h,h]. Let q be
the normaliser of . By assumption, (] is a parabolic Lie subalgebra of g and [ is an ideal
of g. Let g, be a parabolic subalgebra of ¢ containing h and which is minimal with this
property. We can write g, = lp®Ug and ) = 5@ 0, where [y is a reductive Lie algebra,
where U is the unipotent radical of g,, where § := hNly is an ideal of [y and where
v := hNugy. By assumption, one has Rho(g,h). Then, by the equivalence (ii) < (iv) in
Proposition 4.9, one also has Rho(g,,h), for example,

pL, < 2p90/h as a function on §.

But since b is an ideal in g, the right-hand side is null, and this inequality can be
rewritten as pg < 0. This tells us that § is Abelian and j is solvable. O

5.3. Sla and Rho

We are now able to prove the last remaining implication (1.10) by proving the following
stronger Proposition 5.7, which is the converse to Proposition 5.4.

https://doi.org/10.1017/51474748022000287 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000287

Tempered homogeneous spaces IV 25

Proposition 5.7. Let g be a complex algebraic Lie algebra and ) C g be a complex Lie
subalgebra. Then, one has the implication:

Sla(g,h) = Rho(g,h).

Proof. Here is only the beginning of the proof of Proposition 5.7. This proof will be by
induction on the dimension of g, reducing to the case where both g and h are semisimple
that we discussed in Proposition 2.10. Using Lemma 3.5 and Theorem 3.1, we can replace
b by [h,h]. Iterating this process finitely many times, we can assume that:

b: [b»b]

This condition ensures that b is an algebraic Lie subalgebra of g, so that we will be
able to apply the strategy of Section 4.4. In Proposition 4.9 and Lemma 4.10, we have
introduced an intermediate algebraic complex Lie algebra f) C gy C @, such that the
unipotent radical v of fj is included in the unipotent radical U of gy, and for which we
have the equivalences:

Rho(g,h) <= Rho(gy.h) and Sla(g.h) <= Sla(gy.h).

The proof will go on for two more sections. U

5.4. Pushing down the Sla condition
We sum up the previous notation:

Notation. Let Gg = LoUy be an algebraic complex Lie group, where L is reductive and
Up is the unipotent radical of Gy. Let H = SV be a connected algebraic complex Lie
subgroup, where § is reductive and V is the unipotent radical of H. Assume that S C Lg
and V C Uy, and let Wy :=Up/V. For w in Wy, we denote by S,, the stabiliser of w in S.
Let g, b,..., 5, be the corresponding Lie algebras.

As we have seen, we could also add the assumption b = [h,§], but it will not be used
except at the very end of Section 5.5.

Lemma 5.8. Keep this notation. If § satisfies Sla(@,h), then there exists a nonempty
Zariski open set W5 C Wy, such that for all w in W}, §,, satisfies Sla(ly,$).

Proof. We first give the proof of Lemma 5.8. By Lemma 4.7, there exists an S-invariant
vector subspace M C U, such that g = Mm@ v and the map exp: M — Wy =Up/V is a
bijection.

By assumption, there exists a sequence g, € G, such that the limit:

b= nli_)rr;CAdgn b, (5.1)

exists and is a solvable Lie subalgebra of g,.
Since V normalises f), we can assume that:

Gn = lpe™" with ¢,, € Ly and X,, € m. (5.2)
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We denote by w, € Wy the image w,, := exp(X,,). The stabiliser §,, of w, in § is also
the centraliser of X,, in §. Therefore, one has the equality:

Ade™" 5, =S, . (5.3)

Therefore, after extraction, the limit §,, := lim Ad¢{, $,,, exists and is a Lie subalgebra
n—oo

of b . In particular, this limit §+ is solvable. Therefore, there exists a maximal unipotent
Lie algebra ng of [y, such that:

5. NNy = {0},
and, for n large, one also has Ad¢,$,,, N1y = {0}. We have found at least one point wq

in Wy whose stabiliser §,,, is transversal to a maximal unipotent subalgebra n of [y. For
such a subalgebra n, the set:

Wii={weWy|s,Nn={0}}
is a nonempty Zariski open subset of Wj.

By the equivalence of Sla and T'mu proven in Proposition 2.1, and since [y is reductive,
for all w in W, the stabiliser §,, satisfies Sla(ly,$,,). O

5.5. Pushing up the Rho condition

We now explain how a disintegration argument allows us to push the
Rho-condition from (ly,5,,) up to (gy,0). It is very surprising that we
need this analytic argument to relate these two algebraic conditions.

Proof. We can now end the proof of Proposition 5.7. We keep the notation of Sections
4.4 and 5.4, and we go on to the proof by induction on the dimension of G.

First case: Lo # G. We want to prove the condition Rho(g,h). We first check that
the regular representation of Lo in L?(Lo x g Wp) is tempered. We argue as in the second
case of Section 4.3. As in (4.4), we write the representation L?(Lg x 5 Wp) as an integral
of L?(Ly/S,) so that we only need to prove that, for Lebesgue almost all w in Wy, the
representation:

L*(Lo/Sy) is Lo-tempered. (5.4)

Note that the nonempty Zariski open set W} introduced in Lemma 5.8 has full Lebesgue
measure. We have seen in Lemma 5.8 that:

S, satisfies Sla(ly,5,,), for all w in W{.
Since dim Ly < dim G, our induction assumption implies that:

5, satisfies Rho(ly,$,,), for all w in W.
And, therefore, by Theorem 3.1,

5, satisfies Tem(lg,5,), for all w in W{.

This proves (5.4) and the representation of Lo in L?(Lg x g Wp) is tempered.
Finally, using Proposition 4.9, one deduces that L?(G/H) is Lo-tempered, or equiva-
lently b satisfies Rho(g,h).
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Second case: Ly = G. In this case, both G and H must be reductive. As we have
seen in Lemma 3.5, we can assume that b = [f,h]. We can also assume that g = [g,g].
Therefore, one is reduced to the case where both g and  are semisimple, which was
settled in Proposition 2.10. This ends the proof of Proposition 5.7. O

This also ends simultaneously the proofs of Theorems 1.2, 1.6 and 5.1.

5.6. Comments and perspectives

We conclude by a few remaining questions.

5.6.1. Openness of the Sla condition.

Question 5.9. Let g be a complex Lie algebra. Is the set of Lie subalgebras [ satisfying
Sla(g,h), an open set?

We have seen that this set is closed in Remark 5.3, and we have seen that this set is
open when g is semisimple in Corollary 1.7.

5.6.2. Regular finite-dimensional representation. Let g be a complex semisimple
Lie algebra and ) be a complex Lie subalgebra. We denote by Ir7(g),, the set of finite-
dimensional irreducible representations V of g whose highest weight is regular. We now
consider the condition:

Rep(g,h) : there exists V € Irr(g),eg, such that P(V)D 0.
Question 5.10. Does one have the equivalence Rep(g,h) < Orb(g,h)?

We know that the implication = is true.
We also know that the converse <= is true when b is reductive.

5.6.3. Parabolic induction of tempered representation. The strategy we followed
in this series of paper could be simplified if we knew the answer to the following.

Conjecture 5.11. Let G be a real algebraic semisimple group, Q@ = LU be a parabolic
subgroup and w be a unitary representation of Q. Does one have:

7 is L-tempered <= Indgﬂ is G-tempered.

We know that the implication <= is true.
We have seen the implication = when 7|y is trivial in Lemma 3.6.
We have checked the implication = when G = SL(n,R) and SL(n,C).
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