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We show that entangled measurements provide an exponential advantage in sample complexity for Pauli chan-
nel estimation, which is both a fundamental problem and a practically important subroutine for benchmarking
near-term quantum devices. The specific task we consider is to simultaneously learn all the eigenvalues of an
n-qubit Pauli channel to ±ε precision. We give an estimation protocol with an n-qubit ancilla that succeeds with
high probability using only O(n/ε2) copies of the Pauli channel, while proving that any ancilla-free protocol
(possibly with adaptive control and channel concatenation) would need at least �(2n/3) rounds of measurement.
We further study the advantages provided by a small number of ancillas. For the case that a k-qubit ancilla (k � n)
is available, we obtain a sample complexity lower bound of �(2(n−k)/3) for any nonconcatenating protocol, and
a stronger lower bound of �(n2n−k ) for any nonadaptive, nonconcatenating protocol, which is shown to be tight.
We also show how to apply the ancilla-assisted estimation protocol to a practical quantum benchmarking task in a
noise-resilient and sample-efficient manner, given reasonable noise assumptions. Our results provide a practically
interesting example for quantum advantages in learning and also bring insights for quantum benchmarking.
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I. INTRODUCTION

One important challenge for the noisy intermediate-scale
quantum (NISQ) era [1] is to demonstrate quantum ad-
vantages on near-term devices. Recent works have made
groundbreaking progress towards demonstrating quantum
computational advantages [2–5], which means quantum com-
puters can efficiently solve certain computational problems
outside the reach of the most advanced classical computers.
However, computation is not the only aspect quantum com-
puters can achieve meaningful advantages. Learning is yet
another possibility, where the basic question is whether quan-
tum computers (with resources such as quantum memory and
entangled measurements) can help us learn certain properties
of a physical system more efficiently. These kinds of quantum
advantages have been explored by several recent works [6–10]
with positive examples including mixedness testing [6], uni-
tarity testing [7], Pauli expectation values estimation [8], etc.
However, all these quantum advantages proposals so far either
focus on artificial problems or have no noise-resilient imple-
mentation. It is thus highly desirable to identify a practically
interesting learning task that can be used to demonstrate a
robust quantum advantage in the NISQ era.

A particularly interesting type of learning task, known as
quantum benchmarking [11], aims at characterizing the noise
on a quantum device. This is yet another challenge for the
NISQ era, which is crucial to building better quantum hard-
ware. Pauli noise is one of the most important quantum noise
models: On the one hand, it can describe a wide range of
incoherent noise, including dephasing, depolarizing, bit-flip,
etc. On the other hand, the recently developed randomized
compiling technique [12,13] can tailor any noise model in a

universal gate set into Pauli noise. Many benchmarking proto-
cols also rely on twirling the noise into a Pauli channel before
extracting any information [14–17]. Because of the important
role played by Pauli channels, it is of great interest to study the
estimation of these objects in an efficient and practical way.
Despite a long line of research [18–26], the ultimate sample
complexity for Pauli channel estimation has not yet been fully
characterized.

In this work, we demonstrate an exponential quantum ad-
vantage for Pauli channel estimation. We show that, for the
task of estimating the eigenvalues of an n-qubit Pauli channel
(i.e., Pauli eigenvalues) to additive error ε in l∞ distance,
there exists a measurement protocol assisted with an n-qubit
ancilla that succeeds with high probability using O(n/ε2)
samples, while any ancilla-free protocol (possibly with adap-
tive control and channel concatenation) would require at
least �(2n/3) rounds of measurements. As a byproduct, this
provides a lower bound for randomized benchmarking (RB)-
based [15,27] Pauli noise estimation protocol, resolving an
open problem raised in Ref. [23].

We then study the sample efficiency advantages provided
by a restricted amount of ancilla. While an ancilla larger than
n qubits will not help further improve the efficiency, given
a k-qubit (0 � k � n) ancilla, we obtain a lower bound of
�(2(n−k)/3) for any nonconcatenating protocol, and a stronger
lower bound of �(n2n−k ) for nonadaptive and nonconcatenat-
ing protocols. The latter is shown to be tight by an explicitly
constructed protocol (see Algorithm 1).

Finally, we show how to apply the ancilla-assisted estima-
tion protocol in the practical task of benchmarking Pauli gates.
Inspired by RB-type methods [15,23,27], we design a protocol
that is both robust against state-preparation-and-measurement
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Algorithm 1. k-qubit-ancilla-assisted Pauli channel estimation

Input: (1) N copies of an n-qubit Pauli channel �. (2) A
stabilizer covering of Pn−k denoted as O.

Output: Estimates λ̂ for the Pauli eigenvalues of �.
1: λ̂a := 0, Na := 0 for all a ∈ Z2n

2 .
2: for S ∈ O do
3: for i = 1 to �N/|O|� do
4: Input |�0〉 ⊗ |φS

0 〉 to 1 ⊗ �.
5: Measure in basis {|�v〉 ⊗ |φS

e 〉} with outcomes v, e.
6: for u ∈ Z2k

2 , s ∈ S do
7: λ̂u⊕s += (−1)〈u,v〉+〈s,e〉, Nu⊕s += 1.
8: λ̂a := λ̂a/Na for all a ∈ Z2n

2 .
9 : return λ̂ := {̂λa}a.
(Note: ⊕ stands for string concatenation.)

(SPAM) errors and exponentially more sample efficient than
any ancilla-free scheme, under reasonable noise assumptions.
This protocol can be used to experimentally demonstrate a
robust and practical quantum advantage on NISQ devices.

II. PRELIMINARIES

A. Pauli group and Pauli channels

For an n-qubit Hilbert space, define Pn to be the Pauli
group modulo the nonphysical phase. Pn is an Abelian group
isomorphic to Z2n

2 , so we can use elements of Z2n
2 to uniquely

label elements of Pn. Specifically, we view every a ∈ Z2n
2 as a

2n-bit string a = ax,1az,1ax,2az,2 · · · ax,naz,n corresponding to
the Pauli operator

Pa = ⊗n
k=1i

ax,kaz,kX ax,k Zaz,k ,

where the phase is chosen to ensure Hermiticity. We also
define a symplectic inner product 〈·, ·〉 within Z2n

2 as

〈a, b〉 =
n∑

k=1

(ax,kbz,k + az,kbx,k ) mod 2.

One can verify that PaPb = (−1)〈a,b〉PbPa [28].
An n-qubit Pauli channel � is a quantum channel of the

following form:

�(·) =
∑
a∈Z2n

2

paPa(·)Pa, (1)

where p := {pa}a is called the Pauli error rates. An important
property of Pauli channels is that their eigenoperators are
exactly the 4n Pauli operators. Thus, an alternative expression
for � is

�(·) = 1

2n
∑
b∈Z2n

2

λbTr[Pb(·)]Pb, (2)

where λ := {λb}b is called the Pauli eigenvalues [23,25].
These two sets of parameters, p and λ, are related by the
Walsh-Hadamard transform

λb =
∑
a∈Z2n

2

pa(−1)〈a,b〉, pa = 1

4n
∑
b∈Z2n

2

λb(−1)〈a,b〉. (3)

Both p and λ are physically interesting parameters: The
Pauli error rates are directly related to the error thresholds
in fault-tolerant quantum computation [29,30] and have been
the quantities of interest for many quantum benchmarking
protocols [16,17,23–25]; The Pauli eigenvalues quantify how
well a Pauli observable is preserved through the noise channel
(hence also known as Pauli fidelities) and have applications in
quantum error mitigation (see, e.g., Ref. [31]). In this work,
we will focus on the estimation for λ.

B. Comparison of different measurement models

To study the advantages provided by different kinds of
quantum resources, we categorize measurement strategies
into ancilla-assisted vs. ancilla-free, concatenating vs. non-
concatenating, and adaptive vs. nonadaptive measurements.
See Fig. 1 and explanations in the captions. We remark that
recent works on quantum advantages in property learning
[7,8] have been focusing on the difference between the full-
fledged entangled measurement Fig. 1(a) and the unentangled
measurement Fig. 1(d). Here, we introduce two intermedi-
ate measurement models Figs. 1(b) and 1(c) to separately
study the role of ancilla and concatenation. There are also
practical reasons to care about those intermediate models.
As an example, the ancilla-free concatenating measurement
model Fig. 1(c) exactly describes most existing RB protocols
(see, e.g., Ref. [32]), including the RB-type Pauli channel
estimation protocol in Ref. [23]. Indeed, we show that it is
the ancilla that provides an exponential advantage in sample
complexity for Pauli channel estimation, while concatenation
does not help improve the sample efficiency. These results
further advances our understanding of quantum advantages in
property learning [6–9].

Regarding these measurement models, one further ques-
tion to ask is whether a restricted amount of ancilla can
provide any sample efficiency advantages. In this work, we
will characterize the advantages provided by a k-qubit ancilla
(0 � k � n) for the nonconcatenating measurement models.
This kind of quantitative tradeoff relation between quantum
resources and sample efficiency has not been explored in
previous works [6–9] and may potentially lead to a different
resource-theoretical interpretation of quantum entanglement
[33].

III. UPPER BOUNDS

Our goal is to estimate the Pauli eigenvalues λ of an n-qubit
Pauli channel � to ε precision in l∞ distance, i.e., estimating
each λa to ε additive error. When an n-qubit ancillary system
is available, a simple protocol is as follows: prepare n Bell
pairs, input one qubit from each pair to the Pauli channel,
and apply a Bell measurement on the output. Since the Pauli
channel can be viewed as randomly applying one of the 4n

Pauli operators Pa with probability pa, and each Pa is mapped
to a unique measurement outcome,1 we are effectively sam-
pling from the probability distribution p. The sample of p

1This can be viewed as a consequence of the well-known super-
dense coding protocol [46].
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FIG. 1. Different measurement models on N copies of an unknown channel �. The gray triangles denote state preparation and measure-
ment, and the gray boxes denote some known processing channels. (a) Fully entangled measurement: The most general way to measure a
quantum channel where arbitrarily large entanglement and quantum memory is allowed; (b) Ancilla-assisted nonconcatenating measurement:
For each sample of �, one input some entangled state and conduct an entangled measurement. The measurement must be completely
destructive, which means no quantum memory is allowed; (c) Ancilla-free concatenating measurement: One is allowed to sequentially
apply multiple copies of � and some processing channels before applying a single round of measurement, with no ancilla allowed. Here
N ′ denotes the number of measurement rounds which is no larger than the number of samples; (d) Unentangled measurement: Neither ancilla
nor concatenation is allowed. Additionally, measurement models (b)–(d) can be either adaptive or nonadaptive. If the measurement setting at
a certain round depends on previous measurement outcomes, it is an adaptive protocol. Otherwise, it is nonadaptive.

can then be used to construct an estimator for λ according
to the Walsh-Hadamard transform. As shown in Theorem 1,
this protocol has sample complexity O(n); on the other hand,
when no ancilla is allowed, there is no way to sample from p
and simultaneously estimate all elements of λ from a single
measurement setting. Intuitively, this is what makes the task
difficult.

In the following, we give a unified estimation protocol
using k ancilla qubits for 0 � k � n. Roughly speaking, we
divide the n qubits of the Pauli channel into two disjoint
subsystems containing k and n − k qubits, respectively, and
deal with them separately. For the first subsystem, we intro-
duce a k-qubit ancilla, input k Bell pairs to both systems, and
apply a Bell measurement; For the second subsystem, we will
use stabilizer states input and syndrome measurements to be
defined later. The measurement scheme is depicted in Fig. 2.

A rigorous description of the protocol is given in Algo-
rithm 1. Here, |�v〉 represents the Bell states on the 2k-qubit

FIG. 2. A single round of measurement for the k-qubit-assisted
Pauli channel estimation protocol in Algorithm 1. Here, a four-qubit
ancilla is used to estimate a seven-qubit Pauli channel.

subsystem defined as

|�v〉 = Pv ⊗ I |�+〉 , |�+〉 = 1

2k

2k−1∑
i=0

|i〉 |i〉 . (4)

A stabilizer groupS on the (n − k)-qubit subsystem is a group
of 2n−k commuting Pauli operators. Mathematically, S can be
viewed as an (n − k)-dimensional subspace of Z2(n−k)

2 . The
stabilizer states |φS

e 〉 are the simultaneous eigenstates of all
Pauli operators in S, which can be expressed as∣∣φS

e

〉〈
φS
e

∣∣ = 1

2n−k

∑
s∈S

(−1)〈s,e〉Ps, (5)

for e ∈ S⊥ := Z2(n−k)
2 /S known as the error syndrome. Note

that {|φS
e 〉}e forms an orthonormal basis for the (n − k)-qubit

subsystem. The stabilizer covering O is a set of stabilizer
groups {Si}i such that every Pauli operator belongs to at least
one Si [23].

Theorem 1. Algorithm 1 gives an estimate λ̂ for the Pauli
eigenvalues λ of any n-qubit Pauli channels that satisfies

|̂λa − λa| � ε, ∀a ∈ Z2n
2 (6)

with success probability at least 1 − δ, given the following
number of samples:

N = O(|O| × nε−2 log δ−1). (7)

Proof of Theorem 1. The probability distribution of mea-
surement outcomes at line 5 in Algorithm 1 can be calculated
as

p(v, e) = 1

2n+k

∑
u∈Z2k

2

∑
s∈S

λu⊕s(−1)〈u,v〉(−1)〈s,e〉. (8)

See Appendix A for more details. Therefore, p(v, e) and λu⊕s

are related by the Walsh-Hadamard transform. Taking the
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inverse transform, we get

λu⊕s =
∑

v∈Z2k
2

∑
e∈S⊥

p(v, e)(−1)〈u,v〉+〈s,e〉. (9)

Thus, (−1)〈u,v〉+〈s,e〉 is an unbiased estimator of λu⊕s. Accord-
ing to Hoeffding’s bound, N0 = O(ε−2 log δ−1

0 ) samples are
enough to estimate a single λu⊕s to additive precision ε with
success probability at least 1 − δ0. Since every λa is covered
by some stabilizer group S ∈ O, a total sample complexity
of N = O(|O| × nε−2 log δ−1) is enough to estimate all λa

to additive error ε simultaneously with success probability
at least 1 − δ, by setting δ0 := 4−nδ and applying the union
bound. �

Corollary 1. There exists a k-qubit-ancilla-assisted non-
adaptive nonconcatenating Pauli channel estimation protocol
achieving |̂λa − λa| � ε for all a ∈ Z2n

2 with probability 1 − δ

using N = O(n2n−kε−2 log δ−1) samples.
Proof. This follows from the existence of a stabilizer cov-

ering for Pn−k of size 2n−k + 1 [34], which in turn follows
from the existence of 2n−k + 1 mutually-unbiased bases for
(n − k)-qubit systems [35]. �

We remark that the choice of stabilizer covering in Corol-
lary 1 gives the optimal sample complexity for all nonadaptive
and nonconcatenating Pauli eigenvalues estimation protocols,
as proved in the next section. From a practical point of view,
it involves (n − k)-qubit stabilizer states that might be diffi-
cult to prepare. A more experimental friendly version is to
choose the stabilizer covering generated by all 3n−k possible
Pauli measurements, in which case only Pauli eigenstates
preparation and Pauli measurements are required [on the (n −
k)-qubit subsystem], at the expense of a suboptimal sample
complexity N = O(n3n−kε−2 log δ−1).

IV. LOWER BOUNDS

We have established a sample complexity upper bound of
O(n2n−k ) for nonadaptive nonconcatenating k-qubit-ancilla-
assisted Pauli eigenvalues estimation protocols, which implies
a O(n) upper bound for the n-qubit ancilla case and a O(n2n)
upper bound for the ancilla-free case. In the following Theo-
rem 2, we provide corresponding lower bounds to justify the
exponential advantage provided by ancilla in this task.

Theorem 2. For any estimation protocol that gives an es-
timate λ̂ for the Pauli eigenvalues λ of an arbitrary unknown
n-qubit Pauli channel � such that

|̂λa − λa| � 1/2, ∀a ∈ Z2n
2 (10)

holds with high probability, the number of samples of � must
satisfy (recall Fig. 1)

(i) N = �(n2n−k ), for nonadaptive nonconcatenating k-
qubit-ancilla measurements.

(ii) N = �(2(n−k)/3), for adaptive nonconcatenating k-
qubit-ancilla measurements.

(iii) N � N ′ = �(2n/3), for adaptive concatenating
ancilla-free measurements, where N ′ stands for the number of
measurement rounds.

(iv) N = �(n), for fully entangled measurements.
Indeed, Theorem 2 and Corollary 1 establish an ex-

ponential advantage of ancilla-assisted measurements over

ancilla-free measurements even with channel concatenation
(as in the RB-type Pauli channel estimation protocols in
Ref. [23]). Furthermore, for the nonconcatenating cases, we
see a roughly matching bounds for all ancilla size 0 � k � n,
which can be interpreted as that a small number of ancilla
[k = o(n)] would not help much in improving the sample
efficiency. We also see from (iv) that the sample complexity
of Algorithm 1 with n ancilla qubits is optimal among all
entangled strategies, thus we need not study protocols with
more than n ancilla qubits.

Sketch of the proof. Our proof generalizes the techniques
of Huang et al. [8] in proving lower bounds for learning Pauli
expectation values of quantum states. The key is to construct
the following set of Pauli channels:{

�(a,s)(·) = 1

2n
[ITr(·) + sPaTr(Pa(·))]

}
a,s

, (11)

for a ∈ {1, . . . , 4n − 1} and s = ±1. An estimation protocol
satisfying the assumption of Theorem 2 is able to identify an
arbitrary element of this set using N copies of the channel.
We can then use information-theoretical arguments to lower
bound N for (i); The bounds in (ii) and (iii) are proved by
reducing the learning problem to a channel discrimination
problem between the completely depolarizing channel and the
channels in Eq. (11); To prove the bound in (iv), we first
use teleportation stretching [36,37] to reduce any estimation
protocols on N copies of the Pauli channel into a POVM
measurement on N copies of their Choi states [38,39], and
then apply the Holevo’s theorem [40]. See Appendix B for a
full proof of Theorem 2.

V. APPLICATIONS IN QUANTUM BENCHMARKING

In the above, we have described an ancilla-assisted Pauli
channel estimation protocol, which provides exponential ad-
vantages over any ancilla-free protocols. Several issues need
to be addressed before applying these protocols to a practical
quantum noise characterization setting. First, in most cases,
we do not have a black-box access to the Pauli noise channels
of interest. Instead, they are often attached with some applied
quantum gates. We must consider the effect of such gates in
our protocol. Second, the state preparation and measurement
(SPAM) process would inevitably suffer from error. We would
like to minimize the effect of such errors.

A recent progress by Flammia and Wallman [23] provides
a way to address these issues using ideas from random-
ized benchmarking (see also Refs. [14,41]). Their task is to
benchmark the Pauli error rates of the Pauli gate set. By
concatenating m + 1 layers of random Pauli gates, they ef-
fectively obtain the mth power of the Pauli twirl for the noise
channel (plus a single Pauli correction gate at the end), under
a gate-independent, time-stationary, and Markovian (GTM)
noise assumption. They then describe a protocol to estimate
the quantity Aaλ

m
a for all a ∈ Z2n

2 , where λ := {λa}a is the
Pauli eigenvalues of the noise channel of interest, and Aa is a
SPAM-related constant that is independent of m. By repeating
this estimation procedure for different concatenating length
m and applying a single-exponential fitting of Aaλ

m
a for each

a ∈ Z2n
2 , one obtained an SPAM-robust estimation for λ.
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FIG. 3. A single round of measurement for the n-qubit ancilla-
assisted Pauli gate benchmarking protocol. Here �̃0 and {�̃v} stands
for the (noisy) Bell states or measurements. {P̃at }mt=0 stands for a
sequence of random (noisy) Pauli gates to be characterized.

Importantly, the protocol in Ref. [23] is ancilla free, which
means an exponential number of measurements is necessary
to approximate λ to small error in l∞ distance, according
to our Theorem 2 (iii). In this section, we explain how the
ancilla-assisted Pauli channel estimation protocol described
above can be extended to this Pauli gates benchmarking set-
ting, which is able to estimate λ exponentially more sample
efficiently as well as being SPAM robust. The new protocol
uses gate concatenation and single-exponential fitting, and can
be viewed as a generalization of the methods in Ref. [23].

Let us start by defining the task and specifying our assump-
tions. The task is to characterize the noise of the n-qubit Pauli
gate set. We assume the noise satisfies the GTM condition,
which means every noisy implementation of Pauli gates can
be written as

P̃a = Pa�G, a ∈ Z2n
2 , (12)

for an a-independent quantum channel �G. The calligraphic
Pa is the channel representation of the Pauli gate Pa, i.e.,
Pa(·) := Pa(·)Pa. Our specific goal is to estimate the Pauli
eigenvalues of the Pauli twirl of �G, which is defined as

� := 1

4n
∑
a∈Z2n

2

Pa�GPa. (13)

In addition, we assume there to be an n-qubit ancillary sys-
tems that can be entangled with the main system. The ancilla
will basically be used as a quantum memory, see Fig. 3. A
crucial assumption we need is that, the noise on the ancilla
is negligible except for the entangled state preparation and
measurement procedure. In other words, the noise channel
on the ancilla is independent of the concatenating length on
the main system. In practice, this requires (i) the crosstalk
between the ancilla and the main system is negligible when
applying gates only on the main system, and (ii) the coherence
time of the ancilla is much longer compared to the time of
applying gates on the main system. We expect that these
assumptions can be satisfied by, e.g., a near-term ion trap plat-
form (see Refs. [42,43]). Ion trap systems typically have very
long coherence time; besides, after preparing the entangled
state, one can shuttle the ions to separate the ancilla and the
main system during gate applications and shuttle them back
for the entangled measurement [43]. This step can minimize
the crosstalk, and the errors introduced there can be viewed
as SPAM error (independent of the concatenating length) so
our protocol will be naturally robust against them. Techniques
such as dynamical decoupling [44,45] can also make realistic
devices better satisfy these assumptions.

The benchmarking protocol is described in Algorithm 2. In
the following, we will show the correctness and give a rough

Algorithm 2. SPAM-robust-ancilla-assisted Pauli gate benchmarking

Input: (1) List of concatenating length M. (2) Number of
Repetitions R. (3) Noisy implementation of Pauli gates
P̃a = Pa�G.
Output: SPAM-robust estimates λ̂ for the Pauli eigenvalues of
� as defined in Eq. (13).

1: for m ∈ M do
2: for k = 1 toR do
3: Prepare the (noisy) Bell state |�̃+〉 between the

ancillary system and the main system.
4: Sequentially apply m + 1 random (noisy) n-qubit

Pauli gates {P̃at }mt=0 to the main system.
5: Apply the (noisy) Bell measurement {|�̃v〉}v with

outcome v.
6: F̂ (k)

a (m) := (−1)〈a,v〉+∑m
t=0 〈a,at 〉 for all a ∈ Z2n

2 .
7: for a ∈ Z2n

2 do
8: F̂a(m) := 1

R

∑R
k=1 F̂

(k)
a (m).

9: Fit F̂a(m) to the single-exponential decay model Âaλ̂
m
a .

10: return λ̂ := {̂λa}a.

analysis on the sample efficiency. A more rigorous analysis
on the sample complexity, optimization of the concatenating
length M, and the number of repetitions R, and other aspects
of the protocol are left for future research. We also remark
that, for simplicity, we focus on the case where k = n ancil-
lary qubits are available. For a restricted number of ancillary
qubits 0 < k < n, one can also design a similar benchmarking
protocol by hybridizing the k = n protocol here and the k = 0
protocol in Ref. [23]. We omit the details about this hybrid
protocol.

Theorem 3. Given the aforementioned two assumptions
about the noise model, the estimator given at line 6 in Al-
gorithm II satisfies

E
[
F̂ (k)
a (m)

] = Aaλ
m
a , ∀a ∈ Z2n

2 , (14)

where Aa, defined in Eq. (C1), is a noise-dependent constant
that is independent of m.

The proof is given in Appendix C. Theorem 3 guarantees
that, given sufficiently many concatenating length m and cir-
cuit samples R, Algorithm 2 can indeed converge to the true
Pauli eigenvalues λ, in a SPAM-error resilient manner. Since
F̂ (k)
a (m) takes value from {1,−1}, Hoeffding’s bound says

that a constant number of samples is enough to estimate its
expectation to constant additive error with 1 − o(1) success
probability, for any specific a and m. By the union bound,
O(n) samples are enough for this to hold for all a ∈ Z2n

2
simultaneously with high probability. If we further assume
that the noise is weak, so that both Aa and λa are lower
bounded by some constant, then a constant number of m and
the above-achieved constant additive precision is enough for a
small final estimation error for λ in l∞ distance, which implies
a total sample complexity of O(n). Therefore, Algorithm 2 is
indeed exponentially more sample efficient than any ancilla-
free protocol [23] for this task. A more rigorous analysis about
the sample complexity advantages under realistic SPAM noise
models is left for future study.
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VI. SUMMARY AND OUTLOOK

In this work, we show a provable quantum advantage pro-
vided by entangled measurements for a learning task [7,8] of
Pauli channel estimation, which is a practically useful tool
urgently needed to characterize large quantum systems. For
quantum benchmarking, our results provide fundamental ef-
ficiency limits for Pauli noise estimation, which partly solve
an open problem raised in Ref. [23]. We also describe how
the ancilla-assisted Pauli channel estimation protocol can be
applied to practical quantum benchmarking tasks in a noise-
resilient and sample-efficient manner. Our results provide a
promising tool for both characterizing near-term quantum de-
vices and demonstrating quantum advantages in those systems

Several interesting questions remain to be explored in the
future, including exploring the quantum advantages in learn-
ing other properties of Pauli channels (e.g., the Pauli error
rates),2 analyzing the sample complexity for learning Pauli
channels with more specific structures, and analyzing the ex-
perimental performance of our algorithms in comparison to
other ancilla-free protocols [13,16].
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APPENDIX A: DETAILS ABOUT THE PROOF
OF THEOREM 1

In this section, we provide details in the derivation of
Eq. (8), i.e., the distribution of measurement outcomes at line
5 in Algorithm 1. For clarity, denote the k-qubit Hilbert space
of the ancilla as A, and divide the n-qubit Hilbert space of
the main system into a k-qubit subspace B and an (n − k)-
qubit subspace C. The input state to the channel is |�0〉AB ⊗
|φS

0 〉C , and the measurement basis is {|�v〉AB ⊗ |φS
e 〉C}v,e.

Here, |�v〉AB are Bell states and can be expressed as

|�v〉〈�v| := (Pv ⊗ I )|�+〉〈�+|(Pv ⊗ I )

= 1

4k
∑
u∈Z2k

2

PvPuPv ⊗ PT
u

= 1

4k
∑
u∈Z2k

2

(−1)〈u,v〉Pu ⊗ PT
u , (A1)

2It is shown in Ref. [25] that the Pauli error rates for an n-qubit
Pauli channel can be estimated to small error in l∞ distance using
unentangled measurements with O(log n) samples, so there are no
large advantages for entangled strategies. Still, one could expect a
sample-efficiency advantage under other practically interesting met-
rics of estimation precision.

and the stabilizer state |φS
e 〉C is defined as∣∣φS

e

〉〈
φS
e

∣∣ := 1

2n−k

∑
s∈S

(−1)〈s,e〉Ps (A2)

for e ∈ S⊥ := Z2(n−k)
2 /S. We remark that the stabilizer state

is well defined for all e ∈ Z2(n−k)
2 , but |φS

a 〉 and |φS
b 〉 represent

the same state if a + b ∈ S (bitwise modulo 2 sum), so we
only need to consider the quotient space of Z2(n−k)

2 over S.
When calculating the symplectic inner product 〈s, e〉, one
should understand e as an arbitrary representative of the coset
it stands for.

Therefore, the measurement outcome distribution can be
calculated as

p(v, e) = Tr
((|�v〉〈�v|AB ⊗ ∣∣φS

e

〉〈
φS
e

∣∣
C

)
1A

⊗ �BC
(|�0〉〈�0|AB ⊗ ∣∣φS

0

〉〈
φS
0

∣∣
C

))
= 1

4n+k
Tr

( ∑
u,u′∈Z2k

2

∑
s,s′∈S

λu′⊕s′
(
(−1)〈u,v〉Pu ⊗ PT

u

⊗ (−1)〈s,e〉Ps
)
ABC

(
Pu′ ⊗ PT

u′ ⊗ Ps′
)
ABC

)

= 1

2n+k

∑
u∈Z2k

2

∑
s∈S

λu⊕s(−1)〈u,v〉(−1)〈s,e〉, (A3)

which is exactly Eq. (8) in the main text. It is then obvious that
p(v, e) and λu⊕s are related by theWalsh-Hadamard transform
(see Ref. [23], Lemma 4).

APPENDIX B: PROOF OF THE LOWER BOUNDS

1. Tight lower bound for nonadaptive
and nonconcatenating strategies

In this section, we prove a matching lower bound of
�(n2n−k ) for all nonadaptive and nonconcatenating k-qubit
ancilla-assisted Pauli channel estimation protocols, which
include the ancilla-free strategies (k = 0) and n-qubit ancilla-
assisted strategies (k = n) as two special cases. Recall that,
by a nonadaptive and nonconcatenating protocol we mean
that, for each sample of the Pauli channel �, we prepare
an n + k-qubits state, input it to � ⊗ 1, and apply a POVM
measurement on the joint output state. The input state and
measurement setting for the ith sample is not allowed to
depend on previous measurement outcomes, nor do we allow
concatenating multiple samples of � in a single round of
measurement (which is used in RB-type Pauli error estimation
protocols [23]).

Theorem 4. For any nonadaptive, nonconcatenating k-
qubit ancilla-assisted protocols that give an estimate λ̂ of the
Pauli eigenvalues λ of an arbitrary unknown n-qubit Pauli
channel such that

|̂λa − λa| < 1
2 , ∀a ∈ Z2n

2 (B1)

holds with high probability, the number of samples of �

required is at least �(n2n−k ).
Our proof techniques generalize the information-

theoretical arguments by Huang et al. [8], which in turn

032435-6



QUANTUM ADVANTAGES FOR PAULI CHANNEL ESTIMATION PHYSICAL REVIEW A 105, 032435 (2022)

stem from previous work on sample complexity lower bounds
for quantum tomography [47–49]. Consider a communication
protocol between Alice and Bob where their share the
following code book:

(a, s) ∈ {1, . . . , 4n − 1} × {±1} −→ �(a,s)(·)

= 1

2n
[ITr(·) + sPaTr(Pa(·))]. (B2)

Now, Alice picks at uniform random one out of the 2(4n − 1)
possible pairs of (a, s) and then send N copies of the chan-
nel �(a,s) to Bob. If there exists a Pauli channel estimation
protocol using N samples and satisfying the assumption of
Theorem 4, Bob can use that protocol to uniquely determine
Alice’s choice of (a, s) with high probability, since the Pauli
eigenvalues of any �(a,s) only take values from {−1, 0,+1}.
Suppose Bob’s input state and POVM outcome for the ith
sample is {ρi,Ei}. According to Fano’s inequality, the mutual
information between the random variable pair (a, s) and Bob’s
measurement results has the following lower bound

I ((a, s) : {ρ1,E1}, . . . , {ρN ,EN })
� �(ln(2(4n − 1))) = �(n). (B3)

We also know by assumption that the measurement outcomes
{ρi,Ei} are independent from each other, conditioned on
(a, s). The chain rule of mutual information then gives that

N∑
i=1

I ((a, s), {ρi,Ei})

= I ((a, s) : {ρ1,E1}, . . . , {ρN ,EN }) � �(n). (B4)

We will show that I ((a, s) : {ρi,Ei}) � O(2k−n) in the fol-
lowing Lemma. This would then give us the desired sample

complexity lower bound N � �(n2n−k ), which completes the
proof of Theorem 4.

Lemma 1. I ((a, s) : {ρi,Ei}) � 2k

2n − 1
.

Proof. First notice that it suffices to consider pure state
input and rank-1 POVM measurements. The latter comes
from the fact that every POVM measurement can be viewed
as a coarse graining of some rank-1 POVM measurement.
To see the former, consider the underlying distribution
p((a, s), {ρi,Ei}) = p(a, s)p({Ei, ρi}|a, s). The mutual infor-
mation I ((a, s) : {ρi,Ei}) is convex about p({Ei, ρi}|a, s)
when fixing p(a, s) (see, e.g., Ref. [50], Theorem 2.7.4), thus
using mixed state input can never provide a larger mutual
information.

Thanks to this observation, we can without loss of general-
ity let the input state be |A〉 and let the POVMmeasurement be
{w j2n+k|Bj〉〈Bj |} j , where |A〉 , |Bj〉 ∈ C2n×2k are unit vectors,
and

∑
j w j = 1 by normalization. We also abuse notations a

little bit to let A and Bj denote the 2n × 2k matrices that satisfy

|A〉 =
2n−1∑
p=0

2k−1∑
q=0

〈p|A|q〉 |p〉 |q〉 ,

|Bj〉 =
2n−1∑
p=0

2k−1∑
q=0

〈p|Bj |q〉 |p〉 |q〉 , (B5)

where {|p〉} and {|q〉} are computational basis states. The
normalization condition of |A〉 and |Bj〉 is equivalent to

Tr(A†A) = Tr(B†
jB j ) = 1. (B6)

We also define Cj := BjA†, which is a 2n × 2n matrix of rank
less or equal to 2k .

The mutual information between (a, s) and a single round
of measurement outcome j can be upper bounded as

I ((a, s) : j) = H ( j) − H ( j|a, s)

= −
∑
j

(
E
(a,s)

p( j|a, s)
)
ln

(
E
(a,s)

p( j|a, s)
)

+ E
(a,s)

∑
j

p( j|a, s) ln p( j|a, s)

�
∑
j

E(a,s)[p( j|a, s)2] − E(a,s)[p( j|a, s)]2
E(a,s)[p( j|a, s)] , (B7)

where the inequality follows from the fact that ln(x) � ln(y) + x−y
y in which we take x := p( j|a, s) and y := E(a,s)[p( j|a, s)].

The conditional probability p( j|a, s) can be calculated as

p( j|a, s) = w j2
n+k 〈Bj | �(a,s) ⊗ 1(|A〉〈A|) |Bj〉

= w j

4k∑
b=0

(〈Bj |I ⊗ Pb|Bj〉〈A|I ⊗ Pb|A〉 + s〈Bj |Pa ⊗ Pb|Bj〉〈A|Pa ⊗ Pb|A〉)

= w j

4k∑
b=0

(
Tr

(
B†

jB jP
T
b

)
Tr

(
A†APT

b

) + sTr
(
B†

jPaB jP
T
b

)
Tr

(
A†PaAP

T
b

))
= w j2

k (Tr(B†
jB jA

†A) + sTr(B†
jPaB jA

†PaA))

= w j2
k (Tr(C†

jCj ) + sTr(PaCjPaC
†
j )), (B8)
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where we expand the identity channel as 1(·) = 2−k
∑4k

b=0 PbTr(Pb(·)) in the second line, and use the fact 2−k
∑4k

b=0 Pb ⊗ Pb
equals to the swap operator in the fourth line.

The average value and second moment of p( j|a, s) according to the distribution of (a, s) are

E
(a,s)

[p( j|a, s)] = w j2
kTr(C†

jCj ),

E
(a,s)

[p( j|a, s)2] = w2
j4

k

(
Tr2(C†

jCj ) + 1

4n − 1

4n−1∑
a=1

Tr2(PaCjPaC
†
j )

)
. (B9)

Hence we have the following bound for the mutual information:

I ((a, s) : j) �
∑
j

w j2
kTr(C†

jCj )

(
1

4n − 1

4n−1∑
a=1

Tr(PaC
†
j PaCj )2

Tr(C†
jCj )2

)
. (B10)

Now we further calculate the right-hand side of the above inequality. Let M = PaC
†
j PaCj . Notice that

rank(M ) � rank(Cj ) � 2k, (B11)

which means there exists a rank-2k projector 
 such that Tr(M ) = Tr(M
). According to Cauchy-Schwarz inequality,

Tr(M )2 = Tr(M
)2 � Tr(MM†)Tr(
†
) = Tr(CjC
†
j PaCjC

†
j Pa) × 2k . (B12)

Substitute this into Eq. (B10),

I ((a, s) : j) �
∑
j

w j2
kTr(C†

jCj )

(
2k

4n − 1

4n−1∑
a=1

Tr(CjC
†
j PaCjC

†
j Pa)

Tr(C†
jCj )2

)

=
∑
j

w j2
kTr(C†

jCj )

(
2k

4n − 1
×

∑4n−1
a=0 Tr(CjC

†
j PaCjC

†
j Pa) − Tr(CjC

†
jCjC

†
j )

Tr(C†
jCj )2

)

=
∑
j

w j2
kTr(C†

jCj )

(
2k

4n − 1
× 2nTr(C†

jCj )2 − Tr(CjC
†
jCjC

†
j )

Tr(C†
jCj )2

)

�
∑
j

w j2
kTr(C†

jCj )
2k

2n − 1

= 2k

2n − 1
, (B13)

where the third line uses the following formula of Pauli
twirling,

1

4n

4n∑
a=0

PaXPa = 1

2n
Tr(X )I, (B14)

and the last line follows from the fact that∑
j

w j2
kTr(C†

jCj ) =
∑
j

E
(a,s)

[p( j|a, s)] = 1. (B15)

This completes the proof of Lemma 1. �

2. Lower bound for adaptive but nonconcatenating strategies

In this section, we prove a (perhaps loose) lower bound
of �(2(n−k)/3) for all adaptive and nonconcatenating k-qubit
ancilla-assisted Pauli channel estimation protocols, as stated
in the following theorem.

Theorem 5. For any adaptive, nonconcatenating k-qubit
ancilla-assisted protocols that give an estimate λ̂ of the Pauli
eigenvalues λ of an arbitrary unknown n-qubit Pauli channel

such that

|̂λa − λa| < 1
2 , ∀a ∈ Z2n

2 (B16)

holds with high probability, the number of samples of �

required is at least �(2(n−k)/3).
Our proof techniques generalize the methods of Huang

et al. [8] for proving adaptive sample complexity lower
bounds for Pauli expectation values estimation of unknown
quantum states. Consider the following 4n possible Pauli
channels

�dep(·) = 1

2n
ITr(·),

�a(·) = 1

2n
[ITr(·) + PaTr(Pa(·))], ∀a ∈ {1, . . . , 4n − 1}.

(B17)

Here �dep is known as the completely depolarizing channel. If
there exists an Pauli channel estimation protocol satisfying the
requirement of Theorem 5, one can unambiguously identify
each one of the 4n possible Pauli channels appearing above
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with high probability, given sufficient number of samples of
�. This in turn implies that one should be able to distinguish
the following two equal-probable hypotheses with high suc-
cess probability.

(i) Given N copies of � = �dep.
(ii) Given N copies of � = �a for a uniformly randomly

picked a ∈ {1, . . . , 4n − 1}.
For an adaptive but nonconcatenating protocol, one has

to choose an 2n × 2k dimensional input state and a POVM
measurement for the ith sample of �, where the choice may
depend on previous measurement outcomes. Denote the mea-
surement outcome of the ith round as oi. We explicitly write
the state and measurement at the ith round as ρo<i and {Eo<i

j } j
to emphasize their dependence on o<i := [o1, . . . , oi−1]. De-
note the measurement outcomes among all the N samples
as o1:N := [o1, . . . , oN ]. The probability distribution of o1:N
under the above two hypothesis can be expressed as

Hypothesis 1: p1(o1:N ) =
N∏
i=1

Tr
(
Eo<i
oi �dep ⊗ 1(ρo<i )

)
,

Hypothesis 2: p2(o1:N ) = E
a �=0

N∏
i=1

Tr
(
Eo<i
oi �a ⊗ 1(ρo<i )

)
.

(B18)

The ability to distinguish these two hypotheses is equivalent
to the ability to distinguish p1 from p2. The maximal success
probability of distinguishing two probability distributions is
given by 1

2 [1 + TV(p1, p2)] where TV stands for the total
variance distance defined as follows:

TV(p1, p2) :=
∑
o1:N s.t.

p1(o1:N )�p2(o1:N )

[p1(o1:N ) − p2(o1:N )]. (B19)

We will show in the following Lemma that TV(p1, p2) =
O(N2(k−n)/3), which immediately implies that one must have
N = �(2(n−k)/3) in order to obtain high success probability in

distinguishing p1 from p2. This then completes the proof of
Theorem 5.

Lemma 2. TV(p1, p2) � 2N ( 2k

2n−1 )
1/3.

Proof. First notice that it suffices to consider pure state
input and rank-1 POVM measurement. For the former, the
probability distribution obtained from mixed state input can
be viewed as a convex combination of distributions obtained
from pure state input. Thanks to the joint convexity, mixed
state input can not yield a larger total variance distance; For
the latter, every POVM measurement can be viewed as a
coarse graining of some rank-1 POVMmeasurement. Because
of the data-processing property, this coarse graining would not
yield a larger total variance distance.

In light of this observation, we can without loss of gen-
erality let the input state at the ith round be |Ao<i〉 and
let the POVM measurement be {wo<i

oi 2
n+k|Bo<i

oi 〉〈Bo<i
oi |}oi , con-

ditioned on previous measurement outcomes o<i, where
|Ao<i〉 , |Bo<i

oi 〉 ∈ C2n×2k are unit vectors, and
∑

oi
wo<i

oi = 1 by
normalization. We also introduce the two 2n × 2k matri-
ces Ao<i , Bo<i

oi defined similarly as in Eq. (B5), and define
Co<i
oi

:= Bo<i
oi A

o<i†, which is a 2n × 2n matrix of rank less or
equal to 2k . With the above definitions, one can verify that p1
and p2 can be expressed as follows:

p1(o1:N ) =
N∏
i=1

wo<i
oi 2

n+k
〈
Bo<i
oi

∣∣�dep ⊗ 1((|Ao<i〉〈Ao<i |) ∣∣Bo<i
oi

〉
,

=
N∏
i=1

wo<i
oi 2

kTr
(
Co<i†
oi Co<i

oi

)
p2(o1:N ) = E

a �=0

N∏
i=1

wo<i
oi 2

n+k
〈
Bo<i
oi

∣∣�a ⊗ 1((|Ao<i〉〈Ao<i |) ∣∣Bo<i
oi

〉
= E

a �=0

N∏
i=1

wo<i
oi 2

k
(
Tr

(
Co<i†
oi Co<i

oi

)+Tr
(
Co<i†
oi PaC

o<i
oi Pa

))
.

(B20)
The total variance between p1 and p2 can then be bounded as

TV(p1, p2) = E
a �=0

∑
o1:N s.t.

p1(o1:N )�p2(o1:N )

(
N∏
i=1

wo<i
oi 2

kTr
(
Co<i†
oi Co<i

oi

))(
1 −

N∏
i=1

(
1 + Tr

(
Co<i†
oi PaCo<i

oi Pa
)

Tr
(
Co<i†
oi Co<i

oi

) ))

= E
a �=0

∑
o1:N s.t.

p1(o1:N )�p2(o1:N )

p1(o1:N )

(
1 −

N∏
i=1

(
1 + Tr

(
Co<i†
oi PaCo<i

oi Pa
)

Tr
(
Co<i†
oi Co<i

oi

) ))
, (B21)

In order to bound the right-hand side, we make use of a technique from Huang et al. [8]. Let C denote an arbitrary 2n × 2n

complex matrix of rank no more than 2k , consider the following subset of n-qubit Pauli operators:

G :=
{
a ∈ {1, . . . , 4n − 1} :

∣∣∣∣Tr(C†PaCPa)

Tr(C†C)

∣∣∣∣ � (
2k

2n − 1

)1/3
}

. (B22)

We claim that the size of G satisfies

|G| �
(
1 −

(
2k

2n − 1

)1/3
)
(4n − 1), (B23)
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which can be shown by contradiction: Suppose this does not hold, we would have

4n−1∑
a=1

(
Tr(C†PaCPa)

Tr(C†C)

)2

�
(

2k

2n − 1

)2/3

× (4n − 1 − |G|) >

(
2k

2n − 1

)2/3

×
(

2k

2n − 1

)1/3

(4n − 1) = 2k (2n + 1). (B24)

However, the left-hand side of the above can be upper bounded as

4n−1∑
a=1

(
Tr(C†PaCPa)

Tr(C†C)

)2

�
4n−1∑
a=1

2kTr(CC†PaCC†Pa)

Tr2(C†C)
= 2k

2nTr2(C†C) − Tr(C†CC†C)

Tr2(C†C)
� 2k2n, (B25)

where the first inequality follows from Cauchy-Schwarz [see Eq. (B12)], and the first equality evaluates the Pauli twirling
[see Eq. (B13)]. This leads to contradiction, and hence proves the desired lower bound on |G|.

Now, we define another subset of n-qubit Pauli operators, conditioned on the measurement outcomes o1:N , as follows,

G(o1:N ) :=
{
a ∈ {1, . . . , 4n − 1} :

∣∣∣∣∣Tr
(
Co<i†
oi PaCo<i

oi Pa
)

Tr
(
Co<i†
oi Co<i

oi

) ∣∣∣∣∣ �
(

2k

2n − 1

)1/3

, ∀i = 1, . . . ,N

}
. (B26)

By applying a union bound on Eq. (B22), we immediately have the following lower bound on the size of G(o1:N ):

|G(o1:N )| �
(
1 − N

(
2k

2n − 1

)1/3
)
(4n − 1). (B27)

We are now ready to upper bound TV(p1, p2) from Eq. (B21). The strategy is to divide the sum over all Pauli operators into
G(o1:N ) and Pn\G(o1:N ). All terms within the former group are small thanks to the definition ofG(o1:N ); Terms within the latter group
could be large, but the total number of them are small. Combining these two gives a pretty good upper bound on TV(p1, p2). In
math,

TV(p1, p2) = 1

4n − 1

∑
o1:N s.t.

p1(o1:N )�p2(o1:N )

p1(o1:N )

⎛⎜⎜⎝ ∑
a∈G(o1:N )

+
∑

a∈Z2n
2 \G(o1:N ),
a �=0

⎞⎟⎟⎠
(
1 −

N∏
i=1

(
1 + Tr

(
Co<i†
oi PaCo<i

oi Pa
)

Tr
(
Co<i†
oi Co<i

oi

) ))

� 1

4n − 1

∑
o1:N s.t.

p1(o1:N )�p2(o1:N )

p1(o1:N )

(
|G(o1:N )| ×

(
1 −

(
1 −

(
2k

2n − 1

)1/3
)N)

+ (4n − 1 − |G(o1:N )|)
)

�
∑
o1:N s.t.

p1(o1:N )�p2(o1:N )

p1(o1:N )

(
N

(
2k

2n − 1

)1/3

+ N

(
2k

2n − 1

)1/3
)

� 2N

(
2k

2n − 1

)1/3

. (B28)

The first inequality uses an additional fact that
|Tr(C†PaCPa)|/|Tr(C†C)| � 1 to bound the second sum,
which follows from the Cauchy-Schwarz inequality. The
second inequality uses the bounds |G(o1:N )| � 4n − 1 for
the first sum and Eq. (B27) for the second sum, as well as
the fact that 1 − (1 − x)N � Nx for all 0 � x � 1. (Note that
2k/(2n − 1) � 1 only if k � n − 1, but our targeted upper
bound trivially holds for k = n.) This completes the proof of
Lemma 2. �

3. Lower bound for the most general ancilla-free strategies

The lower bounds in the previous sections work for
nonconcatenating strategies, where one is not allowed to
concatenate (or, coherently access) multiple copies of the
unknown channel before doing a single measurement. The
concatenating strategies, as depicted in Fig. 1, are however

a natural apparatus for many randomized benchmarking pro-
tocols, where one effectively concatenate a varying number
of noise channels in order to measure a series of exponen-
tially decaying values, and then extract the parameters of
interest via fitting the decay rate. The original purpose of
such concatenation in these protocols is to eliminate the effect
of state-preparation-and-measurement (SPAM) error. Here,
we want to understand whether concatenating strategies also
provide a sample complexity advantage. The short answer
is no. We will present a sample complexity lower bound
of �(2n/3) for the most powerful (adaptive, concatenating)
ancilla-free (k = 0) Pauli channel estimation schemes. This
result justifies our claim that ancillary systems are indeed
indispensable to overcome the exponential barrier in sample
complexity.

To start with, we give a rigorous definition of the most
general ancilla-free strategies that we are going to study.

032435-10



QUANTUM ADVANTAGES FOR PAULI CHANNEL ESTIMATION PHYSICAL REVIEW A 105, 032435 (2022)

Definition 1. Let � be an unknown n-qubit Pauli channel.
An adaptive, concatenating, ancilla-free (k = 0) estimation
protocol is specified by the following parameters. Let N de-
note the total rounds of measurements. For the ith round,
let ρo<i denote the input state, {Eo<i

oi }oi denote the POVM
measurement, Mo<i denote the length of concatenation, and
{Co<i

k }Mo<i

k=1 denote a set of processing channels. The ith mea-
surement outcome is given by oi with probability

Pr(oi|o<i )

= Tr
[
Eo<i
oi �

(
Co<i
Mo<i−1

( · · · Co<i
2

(
�

(
Co<i
1 (�(ρo<i )))

) · · · ))].
(B29)

All the superscript o<i := [o1, · · · , oi−1] are used to empha-
size the dependence on previous measurement outcomes. The
protocol should produce an estimate of � via classical pro-
cessing on the measurement outcomes o1:N .

The problem we are interested in is still approximating
the Pauli eigenvalues λ to small error in l∞ distance. Note
that, the parameter N in the above definition is not exactly
the sample complexity but is the total number of measure-
ments conducted. Since one is allowed to concatenate multiple
copies of � in a single measurement, N is a lower bound for
the sample complexity of �. Our result is summarized in the
following theorem.

Theorem 6. For any adaptive, concatenating, ancilla-free
(k = 0) protocol that gives an estimate λ̂ of the Pauli eigen-
values λ of an arbitrary unknown n-qubit Pauli channel� such
that

|̂λa − λa| < 1
2 , ∀a ∈ Z2n

2 (B30)

holds with high probability, the rounds of measurements N
(and hence the number of samples of �) required is at least
�(2n/3).

Proof. The proof methods are similar to the proof of The-
orem 5. Define the following Pauli channels:

�dep(·) = 1

2n
ITr(·),

�a(·) = 1

2n
(ITr(·) + PaTr(Pa(·))), ∀a ∈ {1, . . . , 4n − 1}.

(B31)

We consider the problem of distinguishing the following two
equal-probable hypotheses

(i) Given N copies of � = �dep.
(ii) Given N copies of � = �a for a uniformly randomly

picked a ∈ {1, . . . , 4n − 1}.
An estimation protocol satisfying our assumptions should

be able to distinguish these two hypotheses with high prob-
ability. Let the probability distribution of the measurement
outcomes o1:N under these two hypotheses be p1 and p2,
respectively. The total variance distance TV(p1, p2) must be
at least �(1) for the distinguishing task to succeed with high
probability. We will show in the following that TV(p1, p2) =
O(N2−n/3), which then gives the claimed lower bound of
N = �(2n/3).

To start with, based on the same argument as in the proof
of Lemma 8, it suffices to consider pure state input and rank-
1 POVM measurements, so we replace ρo<i and {Eo<i

oi }oi in
Definition 1 with |Ao<i〉〈Ao<i | and {wo<i

oi 2
n|Bo<i〉〈Bo<i |}oi re-

spectively, where |Ao<i〉 , |Bo<i
oi 〉 ∈ C2n are unit vectors, and∑

oi
wo<i

oi = 1 by normalization.
Next, we calculate the distribution of o1:N under the two

different hypotheses. The expression for p1 can be easily ob-
tained, as �dep is simply the completely depolarizing channel.
We have

p1(o1:N ) =
N∏
i=1

wo<i
oi 2

n
〈
Bo<i
oi

∣∣ �dep
(
Co<i
Mo<i−1

( · · · Co<i
2

(
�dep

(
Co<i
1 (�dep(|Ao<i〉〈Ao<i |)))) · · · )) ∣∣Bo<i

oi

〉 =
N∏
i=1

wo<i
oi . (B32)

The expression for p2 is more complicated. We first define the following recursive expression

ξ o<i
a [m] :=

{
2−nTr

(
PaCm−1

(
I + Paξ o<i

a [m − 1]
))

, 2 � m � Mo<i ,

〈Ao<i |Pa |Ao<i〉 , m = 1.
(B33)

The expression for p2 can then be calculated as follows:

p2(o1:N ) = E
a �=0

N∏
i=1

wo<i
oi 2

n
〈
Bo<i
oi

∣∣�a
(
Co<i
Mo<i−1

( · · · Co<i
2

(
�a(Co<i

1

(
�a

(|Ao<i〉〈Ao<i |)))) · · · )) ∣∣Bo<i
oi

〉
= E

a �=0

N∏
i=1

wo<i
oi

〈
Bo<i
oi

∣∣ �a
(
Co<i
Mo<i−1

( · · · Co<i
2

(
�a

(
Co<i
1

(
I + Paξ

o<i
a [1]

))) · · · )) ∣∣Bo<i
oi

〉
= E

a �=0

N∏
i=1

wo<i
oi

〈
Bo<i
oi

∣∣ �a
(
Co<i
Mo<i−1

( · · · Co<i
2

(
I + 2−nPaTr

(
PaCo<i

1

(
I + Paξ

o<i
a [1]

)) · · · )) ∣∣Bo<i
oi

〉
= E

a �=0

N∏
i=1

wo<i
oi

〈
Bo<i
oi

∣∣ �a
(
Co<i
Mo<i−1

( · · · Co<i
2

(
I + Paξ

o<i
a [2]

) · · · )) ∣∣Bo<i
oi

〉
= · · ·
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= E
a �=0

N∏
i=1

wo<i
oi

〈
Bo<i
oi

∣∣ I + Paξ
o<i
a [Mo<i ]

∣∣Bo<i
oi

〉
= E

a �=0

N∏
i=1

wo<i
oi

(
1 + ξ o<i

a [Mo<i ]
〈
Bo<i
oi

∣∣Pa ∣∣Bo<i
oi

〉 )
. (B34)

The third line uses the fact that Co<i
k is trace preserving. The total variance distance between p1 and p2 is then

TV(p1, p2) = E
a �=0

∑
o1:N s.t.

p1(o1:N )�p2(o1:N )

(
N∏
i=1

wo<i
oi

)(
1 −

N∏
i=1

(
1 + ξ o<i

a [Mo<i ]
〈
Bo<i
oi

∣∣Pa ∣∣Bo<i
oi

〉))

= E
a �=0

∑
o1:N s.t.

p1(o1:N )�p2(o1:N )

p1(o1:N )

(
1 −

N∏
i=1

(
1 + ξ o<i

a [Mo<i ]
〈
Bo<i
oi

∣∣Pa ∣∣Bo<i
oi

〉))
. (B35)

We now need a bound of |ξ o<i
a [Mo<i ]| � 1, which can be shown by induction. We see |ξ o<i

a [1]| � 1 by definition. Suppose
|ξ o<i

a [m − 1]| � 1, we have∣∣ξ o<i
a [m]

∣∣ =
∣∣∣∣Tr(PaCo<i

m−1

(
I + Paξ o<i

a [m − 1]

2n

))∣∣∣∣ � ‖Pa‖∞Tr

∣∣∣∣Co<i
m−1

(
I + Paξ o<i

a [m − 1]

2n

)∣∣∣∣ = Tr

(
I + Paξ o<i

a [m − 1]

2n

)
= 1.

(B36)

The first line is by the defining recursive expression; The second line is by the tracial matrix Hölder inequality; The third
line uses the fact that Co<i

m−1 is a positive map, and that 2−n(I + Paξ o<i
a [m − 1]) is positive semidefinite thanks to the induction

hypothesis |ξ o<i
a [m − 1]| � 1. Thus we can remove the modulus within the trace, and also remove Co<i

m−1 as it is trace preserving.
By induction, we have shown |ξ o<i

a [Mo<i ]| � 1.
The remaining part of bounding TV(p1, p2) is basically the same as in the proof of Lemma 8. We repeat it here for

completeness. Let |B〉 be any n-qubit pure state. Consider the following subset of n-qubit Pauli operators

G :=
{
a ∈ {1, . . . , 4n − 1} : |〈B|Pa |B〉| �

(
1

2n + 1

)1/3}
. (B37)

We claim that the size of G satisfies

|G| �
(
1 −

(
1

2n + 1

)1/3)
(4n − 1), (B38)

which can be shown by contradiction: Suppose this does not hold, we would have

4n−1∑
a=1

〈B|Pa |B〉2 �
(

1

2n + 1

)2/3

× (4n − 1 − |G|) >

(
1

2n + 1

)2/3

×
(

1

2n + 1

)1/3

(4n − 1) = 2n − 1. (B39)

However, the left-hand side of the above can be calculated as

4n−1∑
a=1

〈B|Pa |B〉2 =
4n−1∑
a=0

〈B|Pa |B〉2 − 1 = 2n − 1. (B40)

This leads to contradiction, and hence proves the desired lower bound on |G|.
Now, we define another subset of n-qubit Pauli operators, conditioned on the measurement outcomes o1:N , as follows:

G(o1:N ) :=
{
a ∈ {1, . . . , 4n − 1} : ∣∣〈Bo<i

oi

∣∣Pa ∣∣Bo<i
oi

〉∣∣ � (
1

2n + 1

)1/3

, ∀i = 1, . . . ,N

}
. (B41)

By applying a union bound on Eq. (B37), we immediately have the following lower bound on the size of G(o1:N ):

|G(o1:N )| �
(
1 − N

(
1

2n + 1

)1/3)
(4n − 1). (B42)

We are now ready to upper bound TV(p1, p2) from Eq. (B35). The strategy is to divide the sum over all Pauli operators into
G(o1:N ) and Pn\G(o1:N ). All terms within the former group are small thanks to the definition ofG(o1:N ); Terms within the latter group
could be large, but the total number of them are small. Combining these two gives a pretty good upper bound on TV(p1, p2). In
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math,

TV(p1, p2) = 1

4n − 1

∑
o1:N s.t.

p1(o1:N )�p2(o1:N )

p1(o1:N )

⎛⎜⎜⎝ ∑
a∈G(o1:N )

+
∑

a∈Z2n
2 \G(o1:N ),
a �=0

⎞⎟⎟⎠
(
1 −

N∏
i=1

(
1 + ξ o<i

a [Mo<i ]
〈
Bo<i
oi

∣∣Pa |Bo<i
oi 〉))

� 1

4n − 1

∑
o1:N s.t.

p1(o1:N )�p2(o1:N )

p1(o1:N )

(
|G(o1:N )| ×

(
1 −

(
1 −

(
1

2n + 1

)1/3)N)
+ (4n − 1 − |G(o1:N )|)

)

�
∑
o1:N s.t.

p1(o1:N )�p2(o1:N )

p1(o1:N )

(
N

(
1

2n + 1

)1/3

+ N

(
1

2n + 1

)1/3)

� 2N

(
1

2n + 1

)1/3

. (B43)

The first inequality applies the bound |ξ o<i
a [Mo<i ]| � 1.

Besides, the first sum uses the bound from the defini-
tion of G(o1:N ), and the second sum is bounded using
| 〈Bo<i

oi |Pa |Bo<i
oi 〉 | � 1. The second inequality uses the bounds

|G(o1:N )| � 4n − 1 for the first sum and Eq. (B42) for the
second sum, as well as the fact that 1 − (1 − x)N � Nx for
all 0 � x � 1. Now we have obtained the claimed bound
TV(p1, p2) = O(N2−n/3), and hence complete the proof of
Theorem 6. �

4. Lower bound for the most general entangled strategies

In this section, we prove a lower bound of�(n) for the fully
entangled estimation strategies, which is the most general
measurement strategies one can do to learn an unknown chan-
nel even with the help of quantum computers, see Fig. 1(a).
Note that, since we assume there is an unlimited amount of
quantum memory, we can without loss of generality eliminate
any intermediate measurements, and only conduct one joint
measurement after sequentially processing all N samples of
the channel.

Theorem 7. For any fully entangled measurement proto-
cols that give an estimate λ̂ for the Pauli eigenvalues λ of an
arbitrary unknown n-qubit Pauli channel � such that

|̂λa − λa| < 1
2 , ∀a ∈ Z2n

2 (B44)

holds with high probability, the number of samples of �

required is at least �(n).
Proof. We first show that, by using a technique known as

teleportation stretching [36,37], any fully entangled measure-
ment protocols for N copies of an arbitrary Pauli channel �

can be simulated by a joint measurement on N copies of the
Choi state J�, which is defined as

J� := � ⊗ 1(|�+〉〈�+|)

= 1

4n
∑
a∈Z2n

2

λaPa ⊗ PT
a . (B45)

This follows from the existence of a quantum channel T such
that �(ρ) = T (ρ ⊗ J�) holds for all Pauli channels �. One
possible construction of T is shown in Fig. 4 (see Ref. [51]).

In word, one first applies a Bell measurement on the input
state ρ and half of the Choi state J�. Then, conditioned on the
Bell measurement outcome |�b〉, one applies a Pauli correc-
tion Pb on the other half of J�, which will then be equal to
�(ρ). Indeed, the postmeasurement state conditioned on Bell
measurement outcome b is

ρb ∝ 〈�b|AB ρA ⊗ JBC� |�b〉AB
∝

∑
a∈Z2n

2

λa 〈�b| ρ ⊗ Pa |�b〉 ⊗ PT
a

= 1

2n
∑
a∈Z2n

2

λa(−1)〈a,b〉Tr(ρPa)Pa. (B46)

After applying the Pauli correction, the state becomes

PbρbPb = 1

2n
∑
a∈Z2n

2

λaTr(ρPa)Pa = �(ρ), (B47)

which justify the relation �(ρ) = T (ρ ⊗ J�).
With the help of teleportation stretching, one can reduce

any measurement protocols for N copies of � to a single
POVM measurement on N copies of J�, as shown in Fig. 5.

FIG. 4. Construction of the teleportation simulation channel T .
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FIG. 5. Teleportation stretching [36,37]: simulation of an arbi-
trary entangled measurement on � by a single measurement on J�.
One just needs to simulate every application of �(·) by T ((·) ⊗ ρ ).
The whole measurement protocol then become a joint POVM mea-
surement on N copies of J� with no adaptivity.

Now, recall the communication task defined in Appendix
B 1, where Alice and Bob share the following code book:

(a, s) ∈ {1, . . . , 4n − 1} × {±1}

−→ �(a,s)(·) = 1

2n
[ITr(·) + sPaTr(Pa(·))], (B48)

and Alice randomly picks one possible (a, s) and send N
copies of�(a,s) to Bob. If there exists a fully entangled estima-
tion protocol using N samples and satisfying the assumption
of Theorem 7, Bob can determine Alice’s choice of (a, s) with
high probability. According to Fano’s inequality, the mutual
information between the random variable pair (a, s) and Bob’s
measurement result o has the following lower bound:

I ((a, s) : o) � �(ln 2(4n − 1)) = �(n). (B49)

One the other hand, since any measurement Bob conducts can
be simulated by a measurement onN copies of J�(a,s) , Holevo’s
theorem [40,52] can be apply to I[(a, s) : o]. We have

I ((a, s) : o) � S

(
E
(a,s)

J⊗N
�(a,s)

)
− E

(a,s)
S
(
J⊗N
�(a,s)

)
= S

(
E
(a,s)

J⊗N
�(a,s)

)
− N E

(a,s)
S
(
J�(a,s)

)
� 2nN − (2n − 1)N

= N. (B50)

In the third line, the first term is a trivial upper bound for the
von Neumann entropy on a 22nN -dimensional Hilbert space.
The second term uses the observation that

J�(a,s) = 1

4n
(
I ⊗ I + sPa ⊗ PT

a

)
(B51)

is a maximally mixed state on a 22n−1-dimensional Hilbert
space, thus S(J�(a,s) ) = 2n − 1. This yields the lower bound
N = �(n). �

APPENDIX C: SPAM-ROBUST ANCILLA-ASSISTED PAULI
GATE BENCHMARKING PROTOCOLS

In this section we present the proof of Theorem 3. To start
with, we introduce the Pauli-transfer-matrix (PTM) represen-
tation to simplify notations. A linear operator O acting on a
2n-dimensional Hilbert space can be viewed as a vector in a
4n-dimensional Hilbert space. We denote this vectorization of
O as |O〉〉 and the corresponding Hermitian conjugate as 〈〈O|.
The inner product within this space is the Hilbert-Schmidt
product defined as 〈〈A|B〉〉 := Tr(A†B). The normalized Pauli
operators {σa := Pa/

√
2n, a ∈ Z2n

2 } forms an orthonormal ba-
sis for this space. In the PTM representation, a superoperator
(i.e., quantum channel) becomes an operator acting on the 4n-
dimensional Hilbert space, sometimes called the Pauli transfer
operator. Explicitly, we have |�(ρ)〉〉 = �PTM|ρ〉〉 ≡ �|ρ〉〉,
where we use the same notation to denote a channel and its
Pauli transfer operator, which should be clear from the con-
text. Specifically, a general Pauli channel � has the following
Pauli transfer operator

� =
∑
a∈Z2n

2

λa|σa〉〉〈〈σa|,

where {λa}a are the Pauli eigenvalues. It is also obvious that
the mth power of � is

�m =
∑
a∈Z2n

2

λm
a |σa〉〉〈〈σa|.

Using the PTM representation, the constant Aa in Theorem
3 is defined as

Aa :=
∑

v∈Z2n
2

(−1)〈a,v〉〈〈�̃v|1 ⊗ (|σa〉〉〈〈σa|�G)|�̃+〉〉, (C1)

where |�̃+〉〉 is just the PTM representation for the density
matrix of the (noisy) Bell state �̃+. Same for |�̃b〉〉. One can
verify that Aa = 1 for the noiseless case (where there is no
SPAM error and �G = 1).

Proof of Theorem 3. The following proof is a general-
ization of Ref. [23], Proposition 5 and we borrow some of
their presentations. Consider the probability that a specific
sequence of Pauli gates {Pat }mt=0 is sampled (line 4, Algo-
rithm 2) and the Bell measurement outcome is v (line 5,
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Algorithm 2),

Pr(a0, . . . , am, v) = 1

4n(m+1)
〈〈�̃v|1 ⊗ (Pam�G · · ·Pa1�GPa0�G)|�̃+〉〉

= 1

4n(m+1)
〈〈�̃v|1 ⊗

(
0∏

t=m

Pat �G

)
|�̃+〉〉, (C2)

Here we use the assumption that the noise on the ancilla is negligible except for the state preparation and measurement part.
We can absorb the noise channel on the ancilla into the SPAM error that is independent of the concatenating length m. That is
why we can have an 1 on the ancillary system.

The distribution can be rewritten as

Pr(a0, . . . , am, v) = 1

4n(m+1)
〈〈�̃v|1 ⊗ Pa′

m

(
0∏

t=m−1

Pa′
t
�GPa′

t

)
�G|�̃+〉〉, (C3)

where we define a′
t :=

∑t
k=0 ak (bit-wise modulo 2 sum). Taking this change-of-variables and averaging over {a0, . . . , am−1},

we get

Pr(a′
m, v) = 1

4n
〈〈�̃v|1 ⊗ Pa′

m

(
0∏

t=m−1

E
a′
t∈Z2n

2

Pa′
t
�GPa′

t

)
�G|�̃+〉〉

= 1

4n
〈〈�̃v|1 ⊗ Pa′

m
�m�G|�̃+〉〉

= 1

4n
∑
a∈Z2n

2

λm
a 〈〈�̃v|1 ⊗ (Pa′

m
|σa〉〉〈〈σa|�G)|�̃+〉〉

= 1

4n
∑
a∈Z2n

2

(−1)〈a,a
′
m〉λm

a 〈〈�̃v|1 ⊗ (|σa〉〉〈〈σa|�G)|�̃+〉〉. (C4)

Define z := v + a′
m, the marginal distribution of z is

Pr(z) =
∑

v∈Z2n
2

Pr(v + z, v)

= 1

4n
∑
a∈Z2n

2

(−1)〈a,z〉λm
a

∑
v∈Z2n

2

(−1)〈a,v〉〈〈�̃v|1 ⊗ (|σa〉〉〈〈σa|�G)|�̃+〉〉

= 1

4n
∑
a∈Z2n

2

(−1)〈a,z〉λm
a Aa. (C5)

Apply the inverse Walsh-Hadamard transform, we obtain

Aaλ
m
a =

∑
z∈Z2n

2

(−1)〈a,z〉 Pr(z). (C6)

Therefore, (−1)〈a,z〉 = (−1)〈a,v〉+∑m
t=0 〈a,at 〉 is an unbiased estimator for Aaλ

m
a . In other words,

E
[
F̂ (k)
a (m)

] ≡ E[(−1)〈a,z〉] = Aaλ
m
a . (C7)

This is exactly the claim of Theorem 3. �
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