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Abstract. Although the nuclear fusion process has received a great deal of

attention in recent years, the amount of mathematical analysis that supports
the stability of the system seems to be relatively insufficient. This paper deals
with the mathematical analysis of the magnetic confinement of the plasma via
kinetic equations. We prove the global wellposedness of the Vlasov-Maxwell
system in a two-dimensional annulus when a huge (but finite-in-time) external
magnetic potential is imposed near the boundary. We assume that the solution
is axisymmetric. The authors hope that this work is a step towards a more
generalized work on the three-dimensional Tokamak structure. The highlight
of this work is the physical assumptions on the external magnetic potential well

which remains finite within a finite time interval and from that, we prove that
the plasma never touches the boundary. In addition, we provide a sufficient

condition on the magnitude of the external magnetic potential to guarantee
that the plasma is confined in an annulus of the desired thickness which is
slightly larger than the initial support. Our method uses the cylindrical coor-
dinate forms of the Vlasov-Maxwell system.
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1. Introduction.

1.1. Motivation. This paper studies the effect of a large external magnetic field on
the initial and boundary value problem for the two-dimensional relativistic Vlasov-

Maxwell system for initial data of unrestricted size.
The magnetic confinement of a collisionless plasma has received a great deal

of attention in both mathematical and numerical perspectives, as it is the main
principle of the nuclear fusion process and there is no doubt that nuclear fusion is
one possible future production of electrical energy [42]. The dynamics of a plasma
have been interpreted numerically and analytically via the magnetohydrodynamic
(MHD) fluid equation and the kinetic Vlasov-Maxwell system, though the compu-
tational challenges for the simulations of the tokamak process have been studied
in [13]. This paper deals with the kinetic approach to the magnetic confinement of
the plasma via a theoretical study of the relativistic Vlasov-Maxwell system.

Indeed, the Vlasov equation without the presence of an external magnetic field
has been extensively studied. Here we introduce a small number of results from
the literature on the Vlasov-Maxwell system by Degond [9], DiPerna-Lions [11],
Glassey-Strauss [25, 27], Glassey-Schaeffer [20–24] , Horst [35], Guo [30–33], Rein
[46], Bouchut-Golse-Pallard [2], Klainerman-Staffilani [4], and Strain [47]. Recent
results include the work on the Strichartz estimates [39] and continuation criteria
[27, 37, 38, 43]. Regarding the rigorous derivation of the Vlasov equations, see the
work of Dobrushin [12].

Regarding the situation where one applies a large external magnetic field to the
system, the general theory of confining devices such as tokamaks and stellarators
were studied in [18,50]. Regarding the magnetic confinement for the Vlasov-Poisson
system, we mention the work of [3–6, 34] and the numerical results of [10, 14, 15,
17]. Regarding the magnetic confinement problem for the Vlasov-Maxwell system
in the presence of the effect of the self-consistent magnetic field, we mention the
analytic proof by Nguyen-Nguyen-Strauss in a two-dimensional infinite strip with
a symmetry in x2-direction [40, 41]. Also, we introduce that Filbet and Rodrigues
in [16] generalized the work of [10] in the large magnetic field limit.

To the best of authors’ knowledge, there has been no result on the magnetic
confinement of the full Vlasov-Maxwell system by a finite external magnetic poten-
tial, with which the plasma never collides with the boundary. The authors believe
that, even though one can show that the plasma will eventually converge to some
confined steady states in time, the confinement will not be ideal if the plasma can
collide with the boundary during some initial time-interval. This is because just a
tiny amount of hot particles will destroy the nuclear fusion reactor in reality.

This paper is devoted to introducing an analytic proof for the magnetic confine-
ment for the two-dimensional Vlasov-Maxwell system in an annulus by a large but

finite-in-time external magnetic potential, which is the first step to the full three
dimensional analysis in a toroidal geometry for the actual tokamaks or stellarators.
We prove that the finite potential is large enough to confine the plasma for all time
in [0, T ] such that the plasma never touches the boundary. In addition, we provide
a sufficient condition on the magnitude of the external magnetic potential to guar-
antee that the plasma is confined to an annulus of the desired thickness which is
slightly larger than the initial support.

One of the difficulties that arises in the implementation of the magnetic con-
finement by imposing a finite external magnetic potential is the fact that the self-
consistent electromagnetic fields are also growing in time and that these fields indeed
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affect the behavior of the particle trajectory. In order to implement it, one first
needs to estimate the precise upper-bounds of the growth of the self-consistent
fields that are coupled to the Vlasov equation. In the geometry of an annulus,
another difficulty arises because the fields can be accelerating each other via the
Maxwell equations even under the symmetry in the angular direction. This can
be shown via estimating the fields as solutions to some wave-type equations by the
method of characteristics and via obtaining an energy identity that is related to the
Poynting theorem in cylindrical coordinates. Once we obtain the upper-bounds for
the growth of the self-consistent fields, then we solve the characteristic ODEs for the
displacement and the velocity of a particle trajectory to obtain the displacement
in terms of the velocity and the forcing effects from the fields. By writing the
forcing effects in terms of the potentials, we can derive the maximum displacement
for the trajectory in terms of the upper-bounds of the self-consistent fields and the
external magnetic potential. Then, we can carefully determine an assumption on
the magnitude of the external magnetic potential that we impose in the interior
so that it overcomes the repulsive effects of the growing self-consistent fields and
dominates the behavior of the particle trajectory so that the huge but finite-in-

time external magnetic potential guides the particle trajectory to the center of the
potential well. It was crucial to determine the magnitude of the external magnetic
potential so that it is large enough to control the particle trajectory but at the
same time it is not infinite. Once we obtain the bounds for the quantities that are
related to the particle trajectory, then we proceed and obtain the desired estimates
for the particle distribution and the coupled fields which we use to prove the global
wellposedness.

1.2. The relativistic Vlasov-Maxwell system. The two-dimensional relativis-

tic Vlasov equation under forcing fields E⃗ = (E1, E2) and B̄ reads as

∂tf + p̂ · ∇xf + (E1 + p̂2B̄, E2 − p̂1B̄) · ∇pf = 0, (1)

where f = f(t, x, p) is a non-negative distribution function of a single species of
charged particles at a certain time t ∈ [0, T ] for T > 0, at a particular location
x ∈ Ω ⊂ R

2, with the momentum p ∈ R
2. For mathematical simplicity, we have

already normalized all physical constants including the rest mass, the charge, and
the speed of light to be 1 without loss of generality. Here, the velocity p̂ is defined

as p̂
def
= p

p0 , where p0
def
=
√

1 + |p|2. Throughout the paper we assume that the

spatial/physical domain Ω is a two-dimensional annulus, which can be described as

Ω
def
= {x ∈ R

2 : r1 < |x| < r2},

for some given constants r1 and r2 satisfying 0 < r1 < r2. The magnetic field B̄ in
(1) consists of two components B(t, x) and Bext(t, x),

B̄ = B(t, x) +Bext(t, x),

where Bext is an external magnetic field that will be chosen to be increasing in time
and as x gets closer to the boundary. The self-consistent electric field (E1, E2) and
magnetic field B satisfy the following Maxwell equations:

∂x1
E1 + ∂x2

E2 = ρ,

∂tE1 = ∂x2
B − j1,

∂tE2 = −∂x1
B − j2,

∂tB = ∂x2
E1 − ∂x1

E2,

(2)
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where the macroscopic charge density ρ is defined as ρ
def
=
∫

R2 fdp, and the i-th

component of the current density is ji
def
=
∫

R2 p̂ifdp for i = 1, 2.
We are interested in considering the Vlasov-Maxwell system in the cylindrical-

coordinates as our physical domain is a two-dimensional annulus. Therefore, we
consider the change of coordinates (x, p) ∈ Ω× R

2 7→ (r, θ, pr, pθ) where

r
def
=
√

x21 + x22, θ
def
= arctan

(

x2

x1

)

,

pr
def
=
p1x1 + p2x2
√

x21 + x22
, and pθ

def
=
p2x1 − p1x2
√

x21 + x22
.

Note that the Jacobian determinant for the changes of variables x 7→ (r, θ) and

p 7→ (pr, pθ) are r−1 and 1, respectively. Note that |x| = r and |p| =
√

p2r + p2θ.

Then we obtain that the Vlasov equation (1) is now equal to

∂tf + p̂r∂rf + p̂θ
1

r
∂θf

+

(

Er + p̂θB̄ +
p0p̂2θ
r

)

∂pr
f +

(

Eθ − p̂rB̄ −
p0p̂rp̂θ

r

)

∂pθ
f = 0, (3)

where p0 =
√

1 + p2r + p2θ, p̂r
def
= pr

p0 , p̂θ
def
= pθ

p0 , and E1ê1 + E2ê2 = Er r̂ + Eθ θ̂ with

ê1
def
= (1, 0), ê2

def
= (0, 1), r̂

def
= (cos θ, sin θ), and θ̂

def
= (− sin θ, cos θ) such that

E1 = Er cos θ − Eθ sin θ and E2 = Er sin θ + Eθ cos θ. (4)

This change of coordinates is standard in the nonrelativistic case, see [48, 49] for
instance. Note that the non-relativistic Vlasov equation in the cylindrical coordi-

nates includes the additional acceleration terms
p2
θ

r (the centrifugal force) and prpθ

r

(the Coriolis force). For the relativistic case, we have one more contribution of p0

in the denominators of these additional terms, and we obtain the forces
p0p̂2

θ

r and
p0p̂r p̂θ

r as in (3). Under the same change of variables, Maxwell’s equations (2) now
become

1

r
∂r(rEr) +

1

r
∂θEθ = ρ,

∂tEr =
1

r
∂θB − jr,

∂tEθ = −∂rB − jθ,

∂tB =
1

r
∂θEr −

1

r
∂r(rEθ),

(5)

where jr and jθ are the macroscopic current densities defined as jr
def
=
∫

R2 p̂rfdprdpθ

and jθ
def
=
∫

R2 p̂θfdprdpθ, such that

j⃗
def
= (j1, j2) = jr r̂ + jθ θ̂.

In addition, we further assume that all of the f , Er, Eθ, and B are rotationally
symmetric around the center of the annulus, namely

f = f(t, r, pr, pθ) and (Er, Eθ, B) = (Er, Eθ, B)(t, r). (6)

We note that this symmetry is propagated by the Vlasov-Maxwell system [26].
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1.3. Initial and boundary conditions. We assume that (f,Er, Eθ, B) has the
following initial data of unrestricted size:

f(0, r, pr, pθ) = f0(r, pr, pθ) ≥ 0,

Eθ(0, r) = E0
θ (r),

B(0, r) = B0(r),

Er(0, r1) = λ ∈ R,

(7)

where E0
θ and B0 are given C1 functions. Indeed, all the initial values of Er(0, r) for

all r ∈ [r1, r2] can be uniquely determined by directly integrating Gauss’s law (5)1
and using the given initial conditions (7)1, (7)2, and (7)4. For the initial distribution
f0 of particles, we assume that f0 ∈ C1((r1, r2)×R

2) and f0 is compactly supported
in the r and p variables in the following sense:

supp(f0) ⊆
{

(x, p) ∈ Ω× R
2 : r ∈ I0 and |p| ≤M0

}

, (8)

where

I0
def
= [r1 + δ0, r2 − δ0], for some constant δ0 ∈

(

0,
r2 − r1

2

)

,

and M0 is the maximal radius of the initial momentum support as

M0
def
= sup{|p| : p ∈ R

2 and f0(x, p) ̸= 0 for some x ∈ R
2} <∞. (9)

In addition, we also assume the boundary conditions for the self-consistent fields
that

Eθ(t, r1) = Eb
θ(t, r1),

Eθ(t, r2) = Eb
θ(t, r2),

(10)

holds where Eb
θ is given axisymmetric C1 function defined on the boundary ∂Ω.

Then we claim that the boundary conditions (10) uniquely determine the boundary
values Bb of B(t, r) at r = r1 and r = r2 and the boundary values do not blow up
in a finite time. This will be shown in Lemma 2.4 and Remark 12.

Remark 1. We remark that if we further assume the boundary conditions for
both Eb

θ and Bb at both boundaries r = r1 and r = r2, then the system is over-
determined. One must assume only one condition on either Eb

θ or Bb for each r = r1
and r = r2. Our boundary condition (10) is one of the possible boundary conditions,
and this condition makes the calculations below the simplest due to the presence
of additional B on the right-hand side of (21). In general, we find that mixed-type
boundary conditions are also fine, but we believe one should consider estimating the
quantity ∥Eθ(t)∥L∞ + ∥B(t)∥L∞ at (41) in Proposition 2 in this case. We also note
that the only mixed-type boundary condition that we do not allow is the boundary

conditions for P+
def
= r(Eθ + B) for r = r2 as in (22) or P−

def
= r(Eθ − B) for

r = r1 as in (23). In these cases, the system is again over-determined and needs a
compatibility condition between the initial conditions and the boundary conditions
due to the characteristic trajectory (21).

1.4. A finite external magnetic potential on the boundary. In this section,
we introduce the external magnetic potential that we impose on the system, whose
role is crucial for the magnetic confinement of the plasma.

Before we introduce the finite time-dependent external magnetic potential ψext,
we first introduce an infinite potential ψbase which works as a prototype for the
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finite potential in the construction. The finite time-dependent external magnetic
potential ψext will be constructed via the truncation of a time-independent infinite
external potential ψbase, and this will be introduced in Section 3. The key idea
behind the construction of a time-dependent finite external potential is to establish
a time-dependent moving bar Lbar(t) as in Hypothesis 1.2. The moving bar is
growing in time and the role of it is to provide the minimal growth rate of the
external potential. As long as it is larger than the maximal kinetic energy that
each particle can have near the boundary, the particles are well-confined and the
external potential can be finite near the boundary. This will be introduced more in
detail in Section 3.2. We remark that the sufficient conditions that we require on
the time-independent infinite potential ψbase are as follows:

Hypothesis 1.1. We suppose that the time-independent magnetic potential ψbase

= ψbase(r) satisfies the following assumptions; for a given distance δ ∈ (0, δ0) from
the spatial boundary ∂Ω, we assume

1. ψbase ∈ C2((r1 + δ, r2 − δ)).
2. ψbase satisfies

lim
r→(r1+δ)+

|ψbase(r)| = lim
r→(r2−δ)−

|ψbase(r)| = ∞.

In the intervals [r1, r+ + δ) and (r2 − δ, r2], ψbase can take any arbitrary value. We
recall that the constant satisfies δ0 ∈

(

0, r2−r1
2

)

.

Remark 2. Setting |ψbase| = ∞ in these two sub-intervals [r1, r++δ) and (r2−δ, r2]
is consistent with the definition in (15) and Remark 10, but it is not required. One
may have a small complaint on which |ψbase| = ∞ in some open intervals is non-
physical because this creates an infinitely strong external magnetic force. However,
this accusation is also a fantasy, because the real/actual/physical external magnetic
field (that we use) is always the ψext defined in (13) instead of the ψbase, which is
just a “reference” potential.

Remark 3. Hypothesis 1.1 implies that, for any L > 0, the set

SL
def
= {x ∈ Ω; |ψbase(x)| ≤ L} (11)

is a compact, and hence it is a proper subset of the open set Ω
def
= {x ∈ R

2 : r1 <
|x| < r2}. This will be sufficient to guarantee a positive distance away from the
spatial boundary ∂Ω.

Remark 4. One of the explicit examples of ψbase is

ψbase(r)
def
= csc

(

π

r2 − r1
(r − r1)

)

− 1. (12)

Then we can construct a finite time-dependent external magnetic potential

ψext
def
= ψext(t, r) as follows:

Hypothesis 1.2 (Hypothesis on the external magnetic potential). Let us denote

the median radius as rm
def
= r1+r2

2 . Then we define the external magnetic potential
ψext = ψext(t, r), using the prototype potential ψbase in Hypothesis 1.1, as

ψext(t, r)
def
=











ψbase(r), if ψbase(r) ≤ Lbar(t)

Lbar(t) + 1, if ψbase(r) ≥ Lbar(t) + 1,

smooth, if Lbar(t) ≤ ψbase(r) ≤ Lbar(t) + 1,

(13)
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where the moving bar Lbar(t) is defined as

Lbar(t)
def
= max

x∈Uδ0
(t)

|ψbase(x)|, (14)

where Uδ0(t) is defined as

Uδ0(t)
def
=

{

x ∈ Ω; |ψbase(x)| ≤
r2

r1

(

max
r∈[r1+δ0,r2−δ0]

|ψbase(r)|

)

+
K

r1
eCt

}

. (15)

Here, the initial parameter δ0 is the same constant as the one used in the definition
of I0 at (8), C is defined as (43), and K is defined as (16).

Remark 5. We remark that

sup
r∈[r1,r1+δ0]∪[r2−δ0,r2]

|ψext(t, r)| → ∞ as t→ ∞.

However, |ψext(t, r)| is finite within any open interval r ∈ U ⊂ (r1 + δ0, r2 − δ0) for
all time t ≥ 0. Moreover, it remains finite within any finite time interval [0, T ] for
any T > 0.

Remark 6. For the general form of the external magnetic potential defined in
Hypothesis 1.1, we can easily observe that

Lbar(t) = max
x∈Uδ0

(t)
|ψbase(x)| ≤

r2

r1
max

r∈[r1+δ0,r2−δ0]
|ψbase(r)|+

K

r1
eCt,

by the definition of the set Uδ0(t) in (15). Here

K
def
=

C̃

2
(r2 + rm)(r2 − r1) + (2r2 − r1)

(

2C̃

C
+M0

)

+ r2M0 +
C̃rm

C
, (16)

where δ0 is the same constant as the one used in the definition of I0 at (8). The
constant K has been determined such that (54) holds in the arguments of using the
characteristic ODEs for the particle trajectories in the proof of Lemma 3.1. Here,
M0 is the maximal radius of the initial-momentum-support defined in (9), C > 0

and C̃ are defined in (42) and (43) and depend only on r1, r2, ∥B
0∥L∞([r1,r2]),

∥E0
θ∥L∞([r1,r2]), ∥E

b
θ∥L∞([0,t]×∂[r1,r2]), ∥p

0f0∥L1([r1,r2]×R2), and λ.

Remark 7. For the external potential ψbase which is explicitly defined in (12), we
define Lbar(t) as

Lbar(t)
def
= ψbase

(

r1 +

(

r2 − r1

π

)

arcsin(Ct)

)

= Ct − 1,

where Ct is defined as

Ct
def
= 1 +

r2

r1

∣

∣

∣

∣

csc

(

π

r2 − r1
(r2 − r1 − δ0)

)

− 1

∣

∣

∣

∣

+
K

r1
eCt,

and K is from (16).

We point out that Remark 7 is consistent with the definition (14). Note that the
absolute value of the explicit magnetic potential (12) gets larger if it is closer to the
boundary. So the maximum occurs at r = r2 − δ0 and we obtain Remark 7.
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Remark 8. We would like to provide more details on the size of the finite-in-time
external magnetic potential ψext with respect to the time variable t. Indeed, we
will compute the minimal growth rate of the external potential ψext with respect to
time that we need for the magnetic confinement in (55), where the right-hand side
of (55) determines the size of the moving bar Lbar(t) as in (14) and (15).

There are several crucial reasons why we can use a finite external magnetic poten-
tial ψext to confine the plasmas. The main observation is that the a priori estimates
for the self-consistent electro-magnetic fields Er, Eθ and B in Proposition 1 and
Proposition 2 are independent of the external magnetic field Bext (or equivalently,
the potential ψext). As a result, our choice of the finite barrier (i.e., ψext) will not
affect the velocity control (51) in Lemma 3.2, which is a direct consequence of the
estimates on Er, Eθ and B indeed. The crucial estimate (55) follows directly from
the velocity bound (51), and hence it is also independent of the choice of ψext. In
other words, having such an L∞ velocity control (51) that is independent of the
external magnetic potential ψext is the crucial reason why we are able to confine
the plasma by using a finite magnetic potential. Thus, it is crucial to note that
such a circular reasoning or a catch-22 situation where a stronger ψext may also
speed up the particles and hence a even stronger ψext would be needed to confine
the plasma does not appear in the analysis.

The observation in the physical side is also interesting. Physically, the external
magnetic field and its potential only affect the plasma uniformly, but will not affect
the self-interactions among particles. As a result, the external magnetic field can
be used to move the particles as in the process of confinement, but it cannot affect
the self-consistent electric and magnetic fields in general.

In Section 3, we will prove that both ψbase and ψext can be used as an external
magnetic potential of the system so that all the charged particles can be confined
globally in time. This will prove Theorem 1.4.

Remark 9. It turned out that the Vlasov-Maxwell equations in cylindrical coor-
dinates contains additional forcing terms in the equation which are purely formed
by the coordinate changes; indeed, those additional terms are related to centrifugal
and Coriolis forces, which only appear in the rotating frame. However, these addi-
tional terms create extra singularities when we implement the previously existing
argument. Due to the extra inhomogeneity from the magnetic field that appears
on the right hand side of (19) below, the fields and their derivatives have higher
growth and we needed to control the additional growth via considering a sufficiently
large but finite-in-time external magnetic potential well.

1.5. Main results. We now state our main theorems. The first theorem that
we state is on the global well-posedness on the Cauchy problem to the relativistic
Vlasov-Maxwell system in an annulus:

Theorem 1.3 (Global well-posedness of the Cauchy problem). Suppose that Hy-

pothesis 1.2 and the rotational symmetry (6) hold. Define the external magnetic

field Bext = Bext(t, r) as

Bext(t, r)
def
=

1

r

∂(rψext(t, r))

∂r
. (17)

For some constants δ0 ∈ (0, r2−r1
2 ) and M0 > 0, we assume that f0 ∈ C1((r1, r2)×

R
2) and f0 is compactly supported in the r and p variables in the sense of (8) and

(9). Suppose that E0
θ and B0 are C1((r1, r2)) functions. Then there exists a unique
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non-negative C1([0,∞)× (r1, r2)×R
2) solution f to the relativistic Vlasov-Maxwell

system (3) and (5) subject to the initial condition (7) and the boundary condition

(10).

Additionally, we introduce our main theorem on the confinement of the plasma
by a finite external magnetic field at the boundary:

Theorem 1.4 (Global confinement of the plasma). Let rm
def
= r1+r2

2 . Suppose that

the support condition (8) and (9) for the initial condition holds for some con-

stants δ0 ∈ (0, r2−r1
2 ) and M0 > 0. Suppose that Hypothesis 1.2 and the rota-

tional symmetry (6) hold for a given δ ∈ (0, δ0). Define the external magnetic field

Bext = Bext(t, r) as in (17). Then the unique C1 solution f(t, r, pr, pθ) obtained in

Theorem 1.3 satisfies

dist(suppx(f)(t), ∂Ω) > δ > 0,

for any t ∈ [0,∞), where suppx(f)(t) is defined as

suppx(f)(t)
def
= {x ∈ Ω | f(t, r, pr, pθ) ̸= 0, for some (pr, pθ) ∈ R

2, where r
def
= |x|}.

Remark 10. We remark that, by choosing ψbase and ψext appropriately as in
Hypotheses 1.1 and 1.2, we are indeed able to confine the plasma in a given compact
set

{x ∈ Ω | r1 + δ ≤ |x| ≤ r2 − δ},

for any given time t ∈ [0,∞) as we have

dist(Uδ0(t), ∂Ω) > δ > 0,

by Hypothesis 1.1 where Uδ0(t) is defined as in (15). This set contains the initial
spatial support.

Remark 11. In this paper, we implement the magnetic confinement in a compact
set using the full relativistic Vlasov-Maxwell system. We use a finite external po-
tential to confine the plasma and can control the size of the spatial support of the
plasma as we desire as long as it includes the initial spatial support.

There are many results on the Vlasov-Poisson system with given external mag-
netic field (both stationary and nonstationary, up to the full 3-dimensional) such
as [1, 3–6, 10, 14, 15, 34]. However, there are very few results regarding magnetic
confinement for the relativistic Vlasov-Maxwell system. Including ours, there are
only three results to the best of our knowledge. Others are [17, 41]. Though
the work [40, 41] considers the confinement in the 1.5-dimensional domain with
x1 ∈ [0, 1] and v ∈ R

2, their confinement is indeed in a 2-dimensional infinite strip
with the symmetry in x2 variable which is not compact.

The implementation of the magnetic confinement in a compact domain is relevant
to heating in tokamaks [7, 28], magnetic mirror-confined plasma [8, 36, 44, 45], and
electron cyclotron resonance heating [29].

1.6. Organization of the paper. In order to prove our main theorems, we first
need to obtain a priori L∞ estimates for the self-consistent fields and the particle
distribution to the system. We first obtain the estimates for the fields in Section 2
via applying the method of characteristics to the wave equations. Then, based on
the field-estimates, we start proving our main theorem on the magnetic confinement,
Theorem 1.4, in Section 3. In order to prove the global existence and the uniqueness
of a classical solution in Section 6, we make several estimates in Section 4 and
Section 5 on the electro-magnetic fields and the distribution. In Section 4, we
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also obtain the L∞-moment propagation of the solution, and the L∞ estimates for
the macroscopic mass density and the current density. Since we are interested in
constructing C1 solutions to the system, we also need to obtain the L∞ estimates
of the first-order derivatives of the fields and the distribution. This is done in
Section 5. Finally, we use the a priori estimates and the iteration argument to
prove the existence, the uniqueness, and the non-negativity of a global C1 solution
to the Vlasov-Maxwell system in Section 6.

2. A priori estimates for the self-consistent fields. In the forthcoming sec-
tions we will obtain some uniform a priori estimates for (f,Er, Eθ, B). Consider C1

solutions (f,Er, Eθ, B) to (3)-(10) on a finite time interval [0, T ]. We a priori let
the particles be confined as in Theorem 1.4 throughout this section.

2.1. Estimates of the field Er. We start with introducing the upper bound for
Er in this section. More precisely, we have the following proposition:

Proposition 1. We have

∥Er∥L∞([0,T ]×[r1,r2]) ≤ ∥f0∥L1([r1,r2]×R2) + λ.

Proof. By integrating the continuity equation

∂tρ+
1

r
∂r(rjr) = 0 (18)

with respect to r drdt and using that jr = 0 on the boundaries, we have the
conservation of total charge: for any t ∈ [0, T ],

∫ r2

r1

ρ(t, r)rdr =

∫ r2

r1

ρ(0, r)rdr = ∥f0∥L1([r1,r2]×R2).

On the other hand, it follows from Gauss’s law (5)1 that we also have

∂r(rEr) = rρ,

and hence, for any R ∈ [r1, r2],

REr(t, R)− r1Er(t, r1) =

∫ R

r1

rρ(t, r)dr.

It follows from Ampère’s circuital law (5)2 that ∂tEr = −jr, so we further have

Er(t, r1) = Er(0, r1)−

∫ t

0

jr|r=r1dτ = λ−

∫ t

0

jr(τ, r1)dτ = λ,

since jr|r=r1 ≡ 0. Therefore, we finally obtain

Er(t, R) =
1

R

∫ R

r1

rρdr +
r1

R
λ,

for all r1 ≤ R ≤ r2. This implies that

∥Er∥L∞([0,T ]×[r1,r2]) ≤ ∥ρ0∥L1([r1,r2]) + λ = ∥f0∥L1([r1,r2]×R2) + λ.

This completes the proof.
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2.2. Estimates of the fields Eθ and B. In this section, we use the method of
characteristics to estimate the fields Eθ and B. First of all, we consider the third
and the fourth equations of (5). We multiply the third and the fourth equations by
r and obtain

∂t(rEθ) + ∂r(rB) = B − rjθ, (19)

and

∂t(rB) + ∂r(rEθ) = 0. (20)

Hence, it follows from direct addition and subtraction that

∂t(rEθ ± rB)± ∂r(rEθ ± rB) = B − rjθ. (21)

Define P±
def
= rEθ ± rB and fix t ∈ (0, T ] and r ∈ [r1, r2]. We will use the fact

that the solutions of the transport equations (21) at (t, r) are affected only by the
values inside the characteristic cone. Therefore, we have

P+(t, r) = P+(t1(t, r), r − t+ t1(t, r)) +

∫ t

t1(t,r)

(B − rjθ)(τ, r − t+ τ)dτ, (22)

and

P−(t, r) = P−(t2(t, r), r + t− t2(t, r)) +

∫ t

t2(t,r)

(B − rjθ)(τ, r + t− τ)dτ, (23)

where we define t1 = t1(t, r)
def
= max{0, t − r + r1} and t2 = t2(t, r)

def
= max{0, t −

r2 + r}. Then, it follows from direct addition and subtraction that

(rEθ)(t, r) =
1

2
(P+(t1(t, r), r − t+ t1(t, r)) + P−(t2(t, r), r + t− t2(t, r)))

+
1

2

∫ t

t1(t,r)

(B − rjθ)(τ, r − t+ τ)dτ +
1

2

∫ t

t2(t,r)

[(B − rjθ)(τ, r + t− τ)] dτ, (24)

and

(rB)(t, r) =
1

2
(P+(t1(t, r), r − t+ t1(t, r))− P−(t2(t, r), r + t− t2(t, r)))

+
1

2

∫ t

t1(t,r)

(B − rjθ)(τ, r − t+ τ)dτ −
1

2

∫ t

t2(t,r)

[(B − rjθ)(τ, r + t− τ)] dτ. (25)

Therefore, we need to estimate the upper-bounds of the following two integrals:
∫ t

t1(t,r)

(rjθ)(τ, r − t+ τ)dτ and

∫ t

t2(t,r)

(rjθ)(τ, r + t− τ)dτ. (26)

We are now ready to state our main lemma of this section. The following lemma
is on the upper-bounds of the sum of the two integrals of our interest from the
argument above. We will use this upper-bound estimate to bound our fields Eθ and
B later in this section.

Lemma 2.1. Let t ∈ (0, T ]. Suppose that

lim
|p|→∞

f = 0.

Then if r < r1+r2
2 , we have

∫ t

t1(t,r)

(r|jθ|)(τ, r − t+ τ)dτ +

∫ t

t2(t,r)

(r|jθ|)(τ, r + t− τ)dτ
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≤

∫ r2

r1

r′e(t2(t, r), r
′)dr′ +

∫ t1(t,r)

t2(t,r)

r1(E
b
θB

b)(τ, r1)dτ, (27)

where

e(t, r)
def
=

1

2
(|E(t, r)|2 +B2(t, r)) +

∫

R2

p0f(t, r, pr, pθ)dprdpθ.

On the other hand, if r ≥ r1+r2
2 , then we instead have

∫ t

t1(t,r)

(r|jθ|)(τ, r − t+ τ)dτ +

∫ t

t2(t,r)

(r|jθ|)(τ, r + t− τ)dτ

≤

∫ r2

r1

r′e(t1(t, r), r
′)dr′ +

∫ t1(t,r)

t2(t,r)

r2(E
b
θB

b)(τ, r2)dτ. (28)

The proof for Lemma 2.1 heavily relies on the following identity. The identity
(29) that we will introduce in the following lemma is the energy identity and this
is related to Poynting’s theorem.

Lemma 2.2. Define

e(t, r)
def
=

1

2
(|E(t, r)|2 +B2(t, r)) +

∫

R2

p0f(t, r, pr, pθ)dprdpθ

and

m(t, r)
def
=

∫

R2

prf(t, r, pr, pθ)dprdpθ + (EθB)(t, r).

Suppose that

lim
|p|→∞

f = 0.

Then we have

∂te+
1

r
∂r(rm) = 0. (29)

Proof of Lemma 2.2. It follows from Maxwell’s equations (5) that

∂te =

∫

R2

p0(∂tf)dprdpθ −

∫

R2

(p̂r, p̂θ) · (Er, Eθ)fdprdpθ − Eθ(∂rB)−
B

r
∂r(rEθ),

and

1

r
∂r(rm) =

1

r

∫

R2

prfdprdpθ +

∫

R2

pr∂rfdprdpθ +
B

r
∂r(rEθ) + Eθ(∂rB).

Therefore, we have

∂te+
1

r
∂r(rm) =

∫

R2

p0(∂tf)dprdpθ +

∫

R2

pr∂rfdprdpθ

−

∫

R2

(p̂r, p̂θ) · (Er, Eθ)fdprdpθ +
1

r

∫

R2

prfdprdpθ. (30)

By (3), we further have

p0(∂tf + p̂r∂rf) = −p0
(

Er + p̂θB̄ +
p0p̂2θ
r

, Eθ − p̂rB̄ −
p0p̂rp̂θ

r

)

· (∂pr
f, ∂pθ

f).

(31)
Note that

−

∫

R2

p0(Er, Eθ) · (∂pr
f, ∂pθ

f)dprdpθ
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∫ t

t2(t,r)

(re+ rm)(τ, r + t− τ)dτ +

∫ t

t1(t,r)

(re− rm)(τ, r − t+ τ)dτ

=

∫ r2

r1

(r′e)(t2(t, r), r
′)dr′ +

∫ t1(t,r)

t2(t,r)

r1(E
bBb)(τ, r1)dτ, (32)

because m(τ, r1) = (EbBb)(τ, r1) by the boundary condition (10). It follows from
the definitions of e and m that

(re± rm)(t, r) =
r

2
[|E|2 +B2] + r

∫

R2

p0f(t, r, pr, pθ)dprdpθ ± (rEθB)(t, r)

± r

∫

R2

(prf)(t, r, pr, pθ)dprdpθ

=
r

2
[|Er|

2 + (Eθ ±B)2] + r

∫

R2

(p0 ± pr)f(t, r, pr, pθ)dprdpθ

≥ r

∫

R2

|pθ|

p0
f(t, r, pr, pθ)dprdpθ,

where the last inequality holds as f is non-negative and p0 ± pr ≥ |pθ|
p0 . Together

with (32), we finally obtain

∫ t

t1(t,r)

(r|jθ|)(τ, r − t+ τ)dτ +

∫ t

t2(t,r)

(r|jθ|)(τ, r + t− τ)dτ

≤

∫ r2

r1

r′e(t2(t, r), r
′)dr′ +

∫ t1(t,r)

t2(t,r)

r1(E
b
θB

b)(τ, r1)dτ. (33)

On the other hand, if r1+r2
2 ≤ r ≤ r2, then t1(t, r) ≤ t2(t, r). For any fixed

θ ∈ [0, 2π), we consider the two-dimensional space-time region ∆
def
= ∆1 ∪∆2 where

∆1
def
= {(τ, r′) : t2(t, r) ≤ τ ≤ t and |r′ − r| ≤ t− τ}

and

∆2
def
= {(τ, r′) : t1(t, r) ≤ τ ≤ t2(t, r) and r + t− τ ≤ r′ ≤ r2}.

Therefore, the counterclockwise line integral for the Green theorem is the same as
the case r ≤ r1+r2

2 except that now the line integral −
∫ r2
r1

(r′e)(t1(τ, r), r
′)dr is

along the line τ = t1 and the line integral
∫ t2(t,r)

t1(t,r)
(rm)(τ, r′)dτ is now along the line

r′ = r2, instead. Therefore we obtain

∫ t

t1(t,r)

(r|jθ|)(τ, r − t+ τ)dτ +

∫ t

t2(t,r)

(r|jθ|)(τ, r + t− τ)dτ

≤

∫ r2

r1

r′e(t1(t, r), r
′)dr′ +

∫ t1(t,r)

t2(t,r)

r2(E
b
θB

b)(τ, r2)dτ. (34)

We are now interested in deriving an upper-bound estimate for the energy
∫ r2

r1

r′e(min{t1(t, r), t2(t, r)}, r
′)dr′

that appeared in the proof of Lemma 2.1. Indeed, we have the following lemma on
the conservation of the energy.
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Lemma 2.3. Define e(t, r) as in Lemma 2.2. Then for any t ∈ [0, T ],
∫ r2

r1

r′e(t, r′)dr′

=

∫ r2

r1

r′e(0, r′)dr′ −

∫ t

0

[

(r2E
b
θB

b)(τ, r2)− (r1E
b
θB

b)(τ, r1)
]

dτ.

Proof of Lemma 2.3. We observe that

∂t

∫ r2

r1

r′e(t, r′)dr′ =

∫ r2

r1

∂t(r
′e)(t, r′)dr′ = −

∫ r2

r1

∂r′(r
′m)(t, r′)dr′,

because of Identity (29). Then we further have
∫ r2

r1

∂r′(r
′m)(t, r′)dr′ = r2m(t, r2)− r1m(t, r1).

Since f vanishes at the boundaries r = r1, r2, the definition of m further implies
that

r2m(t, r2)− r1m(t, r1) =
[

(r2E
b
θB

b)(t, r2)− (r1E
b
θB

b)(t, r1)
]

.

Therefore, we obtain the lemma by integrating with respect to the time variable.

Finally, in the following lemma, we obtain the following identity for the boundary
values P+(t, r) at r = r1 and r = r2. We can obtain almost the same lemma for P−

and we omit it.

Lemma 2.4. Define M
def
=
⌊

t
r2−r1

⌋

≥ 0. For any t ∈ [0, T ], we have, for even M ,

P+(t, r1) = −P−(0, t−M(r2 − r1) + r1)

−

∫ t−M(r2−r1)

0

(B − r1jθ)(τ, r1 + t−M(r2 − r1)− τ)dτ

+ 2r1

M/2
∑

k=0

Eb
θ(t− 2k(r2 − r1), r1)

− 2r21M≥2

M/2−1
∑

k=0

Eb
θ(t− (2k + 1)(r2 − r1), r2)

+ 1M≥2

M/2
∑

k=1

∫ t−(2k−1)(r2−r1)

t−2k(r2−r1)

(B − r2jθ)(τ, r2 − t+ (2k − 1)(r2 − r1) + τ)dτ

− 1M≥2

M/2−1
∑

k=0

∫ t−2k(r2−r1)

t−(2k+1)(r2−r1)

(B − r1jθ)(τ, r1 + t− 2k(r2 − r1)− τ)dτ,

and for odd M ,

P+(t, r1) = P+(0, r2 − t+M(r2 − r1))

+

∫ t−M(r2−r1)

0

(B − r2jθ)(τ, r2 − t+M(r2 − r1) + τ)dτ

+ 2r1

M−1

2
∑

k=0

Eb
θ(t− 2k(r2 − r1), r1)
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− 2r2

M−1

2
∑

k=0

Eb
θ(t− (2k + 1)(r2 − r1), r2)

+ 1M≥3

M−1

2
∑

k=1

∫ t−(2k−1)(r2−r1)

t−2k(r2−r1)

(B − r2jθ)(τ, r2 − t+ (2k − 1)(r2 − r1) + τ)dτ

−

M−1

2
∑

k=0

∫ t−2k(r2−r1)

t−(2k+1)(r2−r1)

(B − r1jθ)(τ, r1 + t− 2k(r2 − r1)− τ)dτ.

Also, we will obtain similar representations for P+(t, r2) by using

P+(t, r2) = P+(t− (r2 − r1), r1) +

∫ t

t−(r2−r1)

(B − r2jθ)(τ, r2 − t+ τ)dτ,

if t ≥ r2 − r1 and

P+(t, r2) = P+(0, r2 − t) +

∫ t

0

(B − r2jθ)(τ, r2 − t+ τ)dτ,

if 0 ≤ t < r2 − r1.

Proof. We first observe that

P+(t, r1) = −P−(t, r1) + 2r1E
b
θ(t, r1).

Then by (23) we have

P+(t, r1) = −P−(t− (r2 − r1), r2)

−

∫ t

t−(r2−r1)

(B − r1jθ)(τ, r1 + t− τ)dτ + 2r1E
b
θ(t, r1).

Then using

P−(t− (r2 − r1), r2) = −P+(t− (r2 − r1), r2) + 2r2E
b
θ(t− (r2 − r1), r2)

and using (22), we have

P+(t, r1) = −P−(t− (r2 − r1), r2)

−

∫ t

t−(r2−r1)

(B − r1jθ)(τ, r1 + t− τ)dτ + 2r1E
b
θ(t, r1)

= P+(t− (r2 − r1), r2)− 2r2E
b
θ(t− (r2 − r1), r2)

−

∫ t

t−(r2−r1)

(B − r1jθ)(τ, r1 + t− τ)dτ + 2r1E
b
θ(t, r1),

and so

P+(t, r1) = P+(t−2(r2−r1), r1)+

∫ t−(r2−r1)

t−2(r2−r1)

(B−r2jθ)(τ, r2−t+(r2−r1)+τ)dτ

− 2r2E
b
θ(t− (r2 − r1), r2)

−

∫ t

t−(r2−r1)

(B − r1jθ)(τ, r1 + t− τ)dτ + 2r1E
b
θ(t, r1)

= −P−(t− 2(r2 − r1), r1) + 2r1E
b
θ(t− 2(r2 − r1), r1)
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+

∫ t−(r2−r1)

t−2(r2−r1)

(B − r2jθ)(τ, r2 − t+ (r2 − r1) + τ)dτ

− 2r2E
b
θ(t− (r2 − r1), r2)

−

∫ t

t−(r2−r1)

(B − r1jθ)(τ, r1 + t− τ)dτ + 2r1E
b
θ(t, r1).

Repeating this procedure of reducing the time variableM−2 more times, we obtain
for even M

P+(t, r1) = −P−(t−M(r2 − r1), r1) + 2r1

M/2
∑

k=0

Eb
θ(t− 2k(r2 − r1), r1)

− 2r2

M/2−1
∑

k=0

Eb
θ(t− (2k + 1)(r2 − r1), r2)

+

M/2
∑

k=1

∫ t−(2k−1)(r2−r1)

t−2k(r2−r1)

(B − r2jθ)(τ, r2 − t+ (2k − 1)(r2 − r1) + τ)dτ

−

M/2−1
∑

k=0

∫ t−2k(r2−r1)

t−(2k+1)(r2−r1)

(B − r1jθ)(τ, r1 + t− 2k(r2 − r1)− τ)dτ,

and for odd M

P+(t, r1) = P+(t−M(r2 − r1), r2) + 2r1

M−1

2
∑

k=0

Eb
θ(t− 2k(r2 − r1), r1)

− 2r2

M−1

2
∑

k=0

Eb
θ(t− (2k + 1)(r2 − r1), r2)

+ 1M≥3

M−1

2
∑

k=1

∫ t−(2k−1)(r2−r1)

t−2k(r2−r1)

(B − r2jθ)(τ, r2 − t+ (2k − 1)(r2 − r1) + τ)dτ

−

M−1

2
∑

k=0

∫ t−2k(r2−r1)

t−(2k+1)(r2−r1)

(B − r1jθ)(τ, r1 + t− 2k(r2 − r1)− τ)dτ.

Finally, using (22) and (23) we can write P−(t−M(r2− r1), r1) and P+(t−M(r2−
r1), r2) in each case in terms of the initial data and the integrals as

P−(t−M(r2 − r1), r1) = P−(0, t−M(r2 − r1) + r1)

+

∫ t−M(r2−r1)

0

(B − r1jθ)(τ, r1 + t−M(r2 − r1)− τ)dτ,

and

P+(t−M(r2 − r1), r2) = P+(0, r2 − t+M(r2 − r1))

+

∫ t−M(r2−r1)

0

(B − r2jθ)(τ, r2 − t+M(r2 − r1) + τ)dτ.
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Therefore, we obtain the lemma for P+(t, r1). Also, note that by (22)

P+(t, r2) = P+(t− (r2 − r1), r1) +

∫ t

t−(r2−r1)

(B − r2jθ)(τ, r2 − t+ τ)dτ,

if t ≥ r2 − r1 and

P+(t, r2) = P+(0, r2 − t) +

∫ t

0

(B − r2jθ)(τ, r2 − t+ τ)dτ,

if 0 ≤ t < r2 − r1, since t1(t, r2) = max{0, t− r2 + r1}. Thus we obtain the lemma
for P+(t, r2). This completes the proof.

Remark 12. Lemma 2.4 allows us to represent the “unknown” boundary values
Bb(t, r1) and B

b(t, r2) in terms of only the given initial data (7), the boundary data
(10), and the integrals of B and jθ. This is because we have

Bb(t, r1) =
P+(t, r1)

r1
− Eb

θ(t, r1),

and

Bb(t, r2) =
P+(t, r2)

r2
− Eb

θ(t, r2).

Finally the previous lemmas imply the following uniform a priori L∞ bounds for
the fields Eθ and B.

Proposition 2. We have

∥Eθ∥L∞([0,t]×[r1,r2]) ≤ C̃eCt,

∥B∥L∞([0,t]×[r1,r2]) ≤ C̃eCt,

where C̃ and C are defined as (42) and (43) and depend only on r1, r2, ∥B
0∥L∞([r1,r2]),

∥E0
θ∥L∞([r1,r2]), ∥E

b
θ∥L∞([0,t]×∂[r1,r2]), ∥p

0f0∥L1([r1,r2]×R2), λ, and t.

Remark 13. It is worthwhile to mention that the L∞-bounds of the fields Eθ and
B are exponentially growing in time by Proposition 2. This exponential growth of
the fields is the outcome of the appearance of the inhomogeneous source term in
the wave equations for Eθ and B and the Grönwall inequality in the mathematical
viewpoint, but this exponential growth is indeed physically relevant in the geometry
of the annulus (or the disk) in the physical viewpoint. The reasoning behind this is
on the relationship between the fields Eθ and B via Ampère’s law (5)2-(5)3; i.e., the
curl of each can determine the other. Therefore, the symmetry in the x2-direction
assumed in [41] is very strong as all of the fields must be constant in the x2-direction,
while the fields interact via the curl of each other. Therefore, if we just assume the
symmetry in the θ-direction as in this paper, the fields can accelerate each other
and we have less restrictions than the x2-symmetric situation in the case of the
magnetic confinement in an infinite strip [41, Corollary 2.4], where the fields grow
linearly in time. Of course, our proposition does not guarantee the minimal growth
rates on the fields.

Proof of Proposition 2. First of all, it follows from Formula (25) and P±
def
= rEθ±rB

that

(rB)(t, r) =
1

2

(

P+(t1(t, r), r − t+ t1(t, r)) + P+(t2(t, r), r + t− t2(t, r))
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− 2(r + t− t2(t, r))Eθ(t2(t, r), r + t− t2(t, r))

)

+
1

2

∫ t

t1(t,r)

(B − rjθ)(τ, r − t+ τ)dτ −
1

2

∫ t

t2(t,r)

[(B − rjθ)(τ, r + t− τ)] dτ,

where t1(t, r) = max{0, t− r + r1} and t2(t, r) = max{0, t− r2 + r}, since

− P−(t2(t, r), r + t− t2(t, r))

= P+(t2(t, r), r + t− t2(t, r))− 2(r + t− t2(t, r))Eθ(t2(t, r), r + t− t2(t, r)).

Then using r + t− t2(t, r) ≤ r2, we have

|B(t, r)| ≤
1

2r1

(

|P+(t1(t, r), r − t+ t1(t, r)) + P+(t2(t, r), r + t− t2(t, r))|

+ 2r2|Eθ(t2(t, r), r + t− t2(t, r))|

+

∫ t

t1(t,r)

|B(τ, r − t+ τ)|dτ +

∫ t

t1(t,r)

(r|jθ|)(τ, r − t+ τ)dτ

∫ t

t2(t,r)

|B(τ, r + t− τ)|dτ +

∫ t

t2(t,r)

(r|jθ|)(τ, r + t− τ)dτ

)

. (35)

Here we note that both tuples (t1(t, r), r − t+ t1(t, r)) and (t2(t, r), r − t+ t2(t, r))
are either on the initial line t = 0 or on the boundaries r = r1 or r = r2. Thus, note
that |Eθ(t2(t, r), r+ t− t2(t, r))| is given by either E0

θ of (7) or Eb
θ of (10). We can

also express P+ using Lemma 2.4. Now define

M1
def
=

⌊

t1(t, r)

r2 − r1

⌋

and M2
def
=

⌊

t2(t, r)

r2 − r1

⌋

.

By Lemma 2.4, we have, for even M1,

|P+(t1(t, r), r − t+ t1(t, r))|

≤ r2

(

∥E0
θ∥L∞([r1,r2]) + ∥B0∥L∞([r1,r2])

)

+ 4r2(M1 + 1)∥Eb
θ∥L∞([0,t1(t,r)]×∂[r1,r2])

+

∫ t1(t,r)−M1(r2−r1)

0

(|B|+ r1|jθ|)(τ, r1 + t1(t, r)−M1(r2 − r1)− τ)dτ

+1M1≥2

M1/2
∑

k=1

∫ t1(t,r)−(2k−1)(r2−r1)

t1(t,r)−2k(r2−r1)

(|B|+r2|jθ|)(τ, r2−t1(t, r)+(2k−1)(r2−r1)+τ)dτ

+1M1≥2

M1/2−1
∑

k=0

∫ t1(t,r)−2k(r2−r1)

t1(t,r)−(2k+1)(r2−r1)

(|B|+r1|jθ|)(τ, r1+t1(t, r)−2k(r2−r1)−τ)dτ,

(36)

and for odd M1,

|P+(t1(t, r), r − t+ t1(t, r))|

≤ r2

(

∥E0
θ∥L∞([r1,r2]) + ∥B0∥L∞([r1,r2])

)

+ 4r2(M1 + 1)∥Eb
θ∥L∞([0,t1(t,r)]×∂[r1,r2])

+

∫ t1(t,r)−M1(r2−r1)

0

(|B|+ r2|jθ|)(τ, r2 − t1(t, r) +M1(r2 − r1) + τ)dτ
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+1M1≥3

M1−1

2
∑

k=1

∫ t1(t,r)−(2k−1)(r2−r1)

t1(t,r)−2k(r2−r1)

(|B|+ r2|jθ|)(τ, r2 − t1(t, r)+ (2k− 1)(r2 − r1)+ τ)dτ

+

M1−1

2
∑

k=0

∫ t1(t,r)−2k(r2−r1)

t1(t,r)−(2k+1)(r2−r1)

(|B|+ r1|jθ|)(τ, r1 + t1(t, r)− 2k(r2 − r1)− τ)dτ. (37)

Similarly, by Lemma 2.4, we have, for even M2,

|P+(t2(t, r), r + t− t2(t, r))|

≤ r2

(

∥E0
θ∥L∞([r1,r2]) + ∥B0∥L∞([r1,r2])

)

+ 4r2(M2 + 1)∥Eb
θ∥L∞([0,t2(t,r)]×∂[r1,r2])

+ 1M2≥2

∫ t2(t,r)

t2(t,r)−(r2−r1)

(|B|+ r2|jθ|)(τ, r2 − t2(t, r) + τ)dτ

+

∫ t2(t,r)−M2(r2−r1)

0

(|B|+ r2|jθ|)(τ, r2 − t2(t, r) +M2(r2 − r1) + τ)dτ

+1M2≥4

M2−2

2
∑

k=1

∫ t2(t,r)−(2k−1)(r2−r1)

t2(t,r)−2k(r2−r1)

(|B|+ r2|jθ|)(τ, r2 − t2(t, r)+ (2k− 1)(r2 − r1)+ τ)dτ

+ 1M2≥2

M2−2

2
∑

k=0

∫ t2(t,r)−2k(r2−r1)

t2(t,r)−(2k+1)(r2−r1)

(|B|+ r1|jθ|)(τ, r1 + t2(t, r)− 2k(r2 − r1)− τ)dτ,

(38)

and for odd M2,

|P+(t2(t, r), r + t− t2(t, r))|

≤ r2

(

∥E0
θ∥L∞([r1,r2]) + ∥B0∥L∞([r1,r2])

)

+ 4r2(M2 + 1)∥Eb
θ∥L∞([0,t2(t,r)]×∂[r1,r2])

+

∫ t2(t,r)

t2(t,r)−(r2−r1)

(|B|+ r2|jθ|)(τ, r2 − t2(t, r) + τ)dτ

+

∫ t2(t,r)−M2(r2−r1)

0

(|B|+ r1|jθ|)(τ, r1 + t2(t, r)−M2(r2 − r1)− τ)dτ

+1M2≥3

M2−1

2
∑

k=1

∫ t2(t,r)−(2k−1)(r2−r1)

t2(t,r)−2k(r2−r1)

(|B|+ r2|jθ|)(τ, r2 − t2(t, r)+ (2k− 1)(r2 − r1)+ τ)dτ

+ 1M2≥3

M2−3

2
∑

k=0

∫ t2(t,r)−2k(r2−r1)

t2(t,r)−(2k+1)(r2−r1)

(|B|+ r1|jθ|)(τ, r1 + t2(t, r)− 2k(r2 − r1)− τ)dτ.

(39)

Then we plug (36)-(39) into (35) and apply Lemma 2.1 with Lemma 2.3 and
Proposition 1 to obtain

∥B(t)∥L∞([r1,r2]) ≤
r2
2r1

(

4∥E0
θ∥L∞([r1,r2]) + 2∥B0∥L∞([r1,r2])

+
(

8
⌈

t
r2−r1

⌉

+ 2
)

∥Eb
θ∥L∞([0,t]×∂[r1,r2])

)

+ 1
2r1

(

2
∫ t

0
∥B(τ)∥L∞([r1,r2])dτ

+2r22

⌈

t
r2−r1

⌉

(

(∥f0∥L1([r1,r2]×R2) + λ)2 + ∥E0
θ∥

2
L∞ + ∥B0∥2L∞

)



MAGNETIC CONFINEMENT FOR THE VLASOV-MAXWELL SYSTEM 589

+2
⌈

t
r2−r1

⌉

∥rp0f0∥L1([r1,r2]×R2)

+4r2

⌈

t
r2−r1

⌉

∫ t

0

(

|(Eb
θB

b)(τ, r2)|+ |(Eb
θB

b)(τ, r1)|
)

dτ

)

. (40)

For further explanations on how we obtain (40), see Remark 14 below. Hence, by
(40) we obtain

∥B(t)∥L∞([r1,r2])

≤
r2

r1

(

2∥E0
θ∥L∞([r1,r2])+∥B0∥L∞([r1,r2])+

(

4

⌈

t

r2 − r1

⌉

+ 2

)

∥Eb
θ∥L∞([0,t]×∂[r1,r2])

)

+
1

2r1

(

2r22

⌈

t

r2 − r1

⌉

(

(∥f0∥L1([r1,r2]×R2) + λ)2 + ∥E0
θ∥

2
L∞ + ∥B0∥2L∞

)

+ 2

⌈

t

r2 − r1

⌉

∥rp0f0∥L1([r1,r2]×R2)

)

+
1

r1

(

1 + 4r2

⌈

t

r2 − r1

⌉

∥Eb
θ∥L∞([0,t]×∂[r1,r2])

)
∫ t

0

∥B(τ)∥L∞([r1,r2])dτ

def
= C̃ + C

∫ t

0

∥B(τ)∥L∞([r1,r2])dτ, (41)

where C̃ and C are defined as

C̃
def
=
r2

r1

(

2∥E0
θ∥L∞([r1,r2]) + ∥B0∥L∞([r1,r2])

+

(

4

⌈

t

r2 − r1

⌉

+ 2

)

∥Eb
θ∥L∞([0,t]×∂[r1,r2])

)

+
1

2r1

(

2r22

⌈

t

r2 − r1

⌉

(

(∥f0∥L1([r1,r2]×R2) + λ)2 + ∥E0
θ∥

2
L∞ + ∥B0∥2L∞

)

+ 2

⌈

t

r2 − r1

⌉

∥rp0f0∥L1([r1,r2]×R2)

)

, (42)

and

C
def
=

1

r1

(

1 + 4r2

⌈

t

r2 − r1

⌉

∥Eb
θ∥L∞([0,t]×∂[r1,r2])

)

. (43)

Note that C̃ and C are functions depending only on r1, r2, and given data
∥B0∥L∞([r1,r2]), ∥E

0
θ∥L∞([r1,r2]), ∥E

b
θ∥L∞([0,t]×∂[r1,r2]), ∥rp

0f0∥L1([r1,r2]×R2), λ, and
t. Then by the Grönwall lemma, we obtain

∥B(t)∥L∞([r1,r2]) ≤ C̃eCt. (44)

For the estimate on Eθ, we can directly apply the same argument as in the
estimation on B, since the right-hand sides of (24) and (25) are essentially the
same except for changes of some positive and negative signs. Thus, by using the
estimate (44), we also have

∥Eθ(t)∥L∞([r1,r2]) ≤ C̃ + C

∫ t

0

∥B(τ)∥L∞([r1,r2])dτ

≤ C̃ + C̃(eCt − 1) = C̃eCt. (45)

This completes the proof of Proposition 2.
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Remark 14. In this remark, we briefly explain how we obtain the first bound on
B(t) in (40). We briefly explain how we get the exact constants for the upper-
bound of ∥B(t)∥L∞([r1,r2]). By (35), the contributions on the upper-bound for

∥B(t)∥L∞([r1,r2]) are the followings: the bounds for |P+(ti, ·)|, |Eθ|,
∫ t

t1
(B+r|jθ|)dτ ,

and
∫ t

t2
(B+ r|jθ|)dτ . We note that M1 and M2 can be either even or odd, and here

we just introduce the case that both are even. Other cases are similar.
For the contributions on P+(t1, ·) and P+(t2, ·) we use (36) and (38) since M1

and M2 are even. Here we note that there appear in the upper-bound r2 copies of
∥E0

θ∥L∞ and ∥B0
θ∥L∞ and 4r2(M1+1) copies of ∥Eb

θ∥L∞ in the upper-bound. Then
together with the 2r2 copies of Eθ in (35) which is either E0

θ or Eb
θ, we obtain the

upper bounds of

r2

2r1

(

4∥E0
θ∥L∞([r1,r2]) + 2∥B0∥L∞([r1,r2])

+

(

8

⌈

t

r2 − r1

⌉

+ 2

)

∥Eb
θ∥L∞([0,t]×∂[r1,r2])

)

in (40). The leftovers in the contributions of |P+(t1, ·)| and |P+(t2, ·)| via (36)
and (38) are the integrals on B and r|jθ| in the different time intervals. If we
consider ∥B∥L∞([r1,r2]) in the integral, then we can patch all the time intervals
{[0, t1−M1(r2−r1)], [t1−M1(r2−r1), t1−(M1−1)(r2−r1)], ..., and [t1−(r2−r1), t1]}
and also {[0, t2 −M2(r2 − r1)], [t2 −M2(r2 − r1), t2 − (M2 − 1)(r2 − r1)], ..., and

[t2− (r2− r1), t2]} and obtain
∫ t1
0

∥B∥L∞dτ and
∫ t2
0

∥B∥L∞dτ . Then together with

the upper-bounds of
∫ t

t1
|B(τ, r − t+ τ)|dτ and

∫ t

t2
|B(τ, r + t− τ)|dτ appearing in

(35), we obtain exactly two copies of
∫ t

0
∥B∥L∞dτ in the final upper-bound. So the

only thing left in the upper-bound estimate for B(t) is the upper-bounds for
∫ t1−(2k−1)(r2−r1)

t1−2k(r2−r1)

r2|jθ|(τ, r2 − t1 + (2k − 1)(r2 − r1) + τ)dτ,

∫ t1−2k(r2−r1)

t1−(2k+1)(r2−r1)

r1|jθ|(τ, r1 + t1 − 2k(r2 − r1)− τ)dτ,

∫ t2−(2k−1)(r2−r1)

t2−2k(r2−r1)

r2|jθ|(τ, r2 − t2 + (2k − 1)(r2 − r1) + τ)dτ, and

∫ t2−2k(r2−r1)

t2−(2k+1)(r2−r1)

r1|jθ|(τ, r2 − t1 − 2k(r2 − r1)− τ)dτ

from (36) and (38). For each of the integral, we use the estimate either (27) or (28) in
Lemma 2.1 with different t′s and r′s; for instance, we choose t = t1−(2k−1)(r2−r1)

and r = r2 for the estimate of
∫ t1−(2k−1)(r2−r1)

t1−2k(r2−r1)
r2|jθ|(τ, r2− t1+(2k− 1)(r2− r1)+

τ)dτ such that t1(t, r) = t1 − 2k(r2 − r1) in (28) of Lemma 2.1. Then for each
piece of the temporal integral, we will have one copy of

∫

r′e(·, ·)dr′ bound and
∫

r2|E
b
θB

b|(τ, ·)dτ in the upper-bound by Lemma 2.1, which will further be bounded
from above by Lemma 2.3. This corresponds to the rest of the upper-bound

1

2r1

(

2r22

⌈

t

r2 − r1

⌉

(

(∥f0∥L1([r1,r2]×R2) + λ)2 + ∥E0
θ∥

2
L∞ + ∥B0∥2L∞

)

+ 2

⌈

t

r2 − r1

⌉

∥rp0f0∥L1([r1,r2]×R2)
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+ 4r2

⌈

t

r2 − r1

⌉
∫ t

0

(

|(Eb
θB

b)(τ, r2)|+ |(Eb
θB

b)(τ, r1)|
)

dτ

)

in (40).

3. Confinement of the plasma for all time. This section is devoted to prov-
ing the magnetic confinement of the plasma in the spatial domain. For any ini-
tial point (r, pr, pθ) ∈ [r1 + δ0, r2 − δ0] × R

2, we first define the characteristics
R(s) = R(s; 0, r, pr, pθ), which initially started in a compactly supported set, will
never reach the boundary. Fixing (r, pr, pθ) ∈ [r1 + δ0, r2 − δ0]× R

2, we define the
characteristics for the system (3) corresponding to the initial point (r, pr, pθ) as the
solution

s 7→ (R(s), Pr(s), Pθ(s)) = (R(s; 0, r, pr, pθ), Pr(s; 0, r, pr, pθ), Pθ(s; 0, r, pr, pθ))

that solves

dR

ds
= P̂r,

dPr

ds
= Er + P̂θB̄ +

P 2
θ

RP 0
,

dPθ

ds
= Eθ − P̂rB̄ −

PrPθ

RP 0
,

R(0; 0, r, pr, pθ) = r, Pr(0; 0, r, pr, pθ) = pr, Pθ(0; 0, r, pr, pθ) = pθ,

(46)

where P 0 def
=
√

1 + P 2
r + P 2

θ , P̂r
def
= Pr

P 0 and P̂θ
def
= Pθ

P 0 . Furthermore, the functions

Er, Eθ and B̄ in (46) are all evaluated at the point (s,R(s)). We can write the
self-consistent magnetic field B in terms of its potential ψ; more precisely, we have

B(t, r) =
1

r

(

∂(rψ(t, r))

∂r

)

. (47)

Without loss of generality, we additionally suppose that ψ satisfies

ψ(t, rm) = 0 (48)

for all t ∈ [0, T ], where rm
def
= r1+r2

2 is the median radius. Otherwise, we can

consider our potential ψ̃ as ψ̃(t, r) = ψ(t, r)− rm
r ψ(t, rm).

Furthermore, if Er, Eθ, B ∈ C1([0, T ] × [r1, r2]), then the C1 solutions to the
system (46) exist for a finite time and can be extended to the whole time interval
[0, T ] if R(s) does not hit the spatial boundary R(s) = r1 or R(s) = r2 for any
s ∈ [0, T ]. Via Lemma 3.1 below, we will prove that the characteristic R(s) never
reach the spatial boundary ∂Ω, provided that the external magnetic field Bext is
well-chosen. Throughout this section, we will omit the dependency on θ, since we
assume that all the functions f , Er, Eθ, and B are rotationally symmetric, namely
they are independent of θ.

3.1. Construction of the external magnetic potential. In this section, we first
construct an infinite time-independent external magnetic potential ψbase = ψbase(r)
that confines the charged particles. Later, in Section 3.2, by defining a moving bar

that increases in time, we will be able to truncate the infinite potential ψbase and
construct a finite time-dependent external magnetic potential that also confines the
charged particles.

As mentioned in Remark 8, our truncation method in this section makes sense
and works because we can prove that the a priori estimates on the self-consistent
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electromagnetic fields Er, Eθ, and B are independent of the external magnetic
potential ψext. Hence, we can also obtain the velocity bound (51) independent of
the external magnetic potential as in Lemma 3.2 and this allows us to choose a finite
barrier independent of the external potential, which will be used for the truncation.

To begin with, as we introduced in Hypothesis 1.1, the minimal sufficient condi-
tions for the magnetic confinement that we require on the time-independent infinite
potential ψbase are as follows; for a given distance δ ∈ (0, δ0) from the spatial
boundary ∂Ω, we assume

1. ψbase ∈ C2((r1 + δ, r2 − δ)).
2. ψbase satisfies

lim
r→(r1+δ)+

|ψbase(r)| = lim
r→(r2−δ)−

|ψbase(r)| = ∞.

We first show that the infinite external potential ψbase can be used to confine all
the charged particles in the interior as in the following lemma:

Lemma 3.1. Assume Er, Eθ, B ∈ C1([0, T ]× [r1, r2]) satisfy Maxwell’s equations

(5). Suppose

|E⃗(t, r)|, |B(t, r)| ≤ C̃eCt, (49)

for any (t, r) ∈ [0, T ] × (r1, r2) where C and C̃ > 0 are the same functions defined

as (42) and (43) in Proposition 2. Fix any (r, pr, pθ) ∈ [r1 + δ0, r2 − δ0] × {p ∈
R

2 : |p| ≤ M0} for some δ0 ∈
(

0, r2−r1
2

)

and M0 > 0. Consider the characteris-

tics (s,R(s), Pr(s), Pθ(s))
def
= (s,R(s; 0, r, pr, pθ), Pr(s; 0, r, pr, pθ), Pθ(s; 0, r, pr, pθ))

of the system (3) corresponding to the point (0, r, pr, pθ) as the solutions of the sys-

tem of ODEs (46). Suppose that the external magnetic field Bext is defined via a

given time-independent potential ψbase(r) in Hypothesis 1.1 as

Bext = Bbase(r)
def
=

1

r

∂(rψbase(r))

∂r
,

where ψbase is defined as in Hypothesis 1.1. Then we have for any θ ∈ [−π, π),

dist(R(s)r̂ + θθ̂, ∂Ω) ≥ dist(Uδ0(s), ∂Ω) > δ > 0.

for any s ∈ [0, T ], where Uδ0(s) is defined as in (15).
Furthermore, if we define ψbase as (12), then we have for any θ ∈ [−π, π),

dist(R(s)r̂ + θθ̂, ∂Ω) ≥

(

r2 − r1

π

)

arcsin(Cs) > δ > 0, (50)

for any s ∈ [0, T ] where Cs is a positive constant for each fixed s ∈ [0, T ] which also

depends on δ0, r1, r2, C, C̃(s), and M0.

Remark 15. We remark that (49) is not an actual assumption. Indeed, (49) is
just a direct consequence of Proposition 1 and Proposition 2.

Before we prove Lemma 3.1, we first introduce an estimate on the bound of the
speed of propagation:

Lemma 3.2. Assume (49). Denote P (0) as P (0) = p. Then we have

sup
τ∈[0,s]

|P (τ)| ≤ 2C̃(s)
|eCs − 1|

C
+ |p|, (51)

where C and C̃(s) are the same functions defined as (42) and (43) in Proposition

2.
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Proof. A direct computation yields

d

ds
|P |2 = 2

(

PrEr + PrP̂θB̄ +
PrP

2
θ

RP 0
+ PθEθ − PθP̂rB̄ −

PrP
2
θ

RP 0

)

= 2(PrEr + PθEθ).

Then the bounds (49) further imply that

|P (s)|2 ≤ |p|2 + 2C̃(s)

∣

∣

∣

∣

∫ s

0

|P (τ)|eCτdτ

∣

∣

∣

∣

≤ |p|2 + 2C̃(s) sup
τ∈[0,s]

|P (τ)|
|eCs − 1|

C
.

Therefore, we obtain the lemma.

Proof of Lemma 3.1. Recall that we denote P = (Pr, Pθ) and p = (pr, pθ). Without

loss of generality, suppose r ≥ rm
def
= r1+r2

2 ; the case for r < rm
def
= r1+r2

2 will be
similar, and left for the interested readers. By (46) and (47), we observe that

dPθ

ds
= Eθ − P̂rB̄ −

PrPθ

RP 0
= Eθ −

P̂r

R

∂(R(ψ + ψbase))

∂R
−
PrPθ

RP 0

= Eθ + ∂tψ −
1

R

d(R(ψ + ψbase))

ds
−
PrPθ

RP 0
.

Therefore, we have

d

ds
(RPθ +R(ψ + ψbase)) = R∂tψ + ṘPθ + REθ −

PrPθ

P 0
= R∂tψ + REθ.

Integrating with respect to s over the time interval [0, s], we have

RPθ +R(ψ(s,R) + ψbase(R)) = rpθ + r(ψ(0, r) + ψbase(r))

+

∫ s

0

(R(τ)∂tψ(τ,R(τ)) +R(τ)Eθ(τ,R(τ))) dτ. (52)

Also recall (48) that we have assumed that ψ(t, rm) = 0 for all t ∈ [0, T ] and hence
we have ∂tψ(t, rm) = 0. Since

R(τ)∂t(ψ(τ,R(τ))) =

∫ R(τ)

rm

r′∂tB(τ, r′)dr′ =

∫ R(τ)

rm

−∂r′(r
′Eθ(τ, r

′))dr′

= rmEθ(τ, rm)−R(τ)Eθ(τ,R(τ)),

we have

RPθ +R(ψ(s,R) + ψbase(R)) = rpθ + r(ψ(0, r) + ψbase(r))

+

∫ s

0

(rmEθ) (τ, rm)dτ. (53)

Indeed, we can easily control the terms rψ(0, r) and Rψ(s,R) by integrating (47)

and using the hypothesis ∥B(τ)∥L∞([r1,r2]) ≤ C̃(τ)eCτ as follows:

|R(τ)ψ(τ,R(τ))| ≤

∣

∣

∣

∣

∣

∫ R(τ)

rm

yB(τ, y)dy

∣

∣

∣

∣

∣

≤ eCτ C̃(τ)
|R(τ)2 − r2m|

2
≤ eCτ C̃(τ)

(r2 + rm)(r2 − r1)

4
,

for both τ = 0 and τ = s as we have

|R(τ)2 − r2m| = |R(τ) + rm| · |R(τ)− rm| ≤ (r2 + rm) ·min

{

|r − rm|+ τ,
r2 − r1

2

}

,
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since |R(τ)− rm| ≤
{

|r − rm|+ τ, r2−r1
2

}

. Using (51) and |Pθ − pθ| ≤ |P |+ |p|, we
also have

|R− r||Pθ|+ r|Pθ − pθ| ≤ (r2 − r1)|Pθ|+ r2(|P |+ |p|)

≤ (2r2 − r1)

(

2C̃(s)

C
(eCs − 1) + |p|

)

+ r2|p|.

Also, we observe that
∣

∣

∣

∣

∫ s

0

(rmEθ) (τ, rm)dτ

∣

∣

∣

∣

≤
C̃(s)rm
C

(

eCs − 1
)

.

Thus, we use (53) and obtain

|R(s)ψbase(R(s))| ≤ |rψbase(r)|+ eCsC̃(s)
(r2 + rm)(r2 − r1)

2

+ (2r2 − r1)

(

2C̃(s)

C
(eCs − 1) + |p|

)

+ r2|p|+
C̃(s)rm
C

(eCs − 1)

≤ |rψbase(r)|+KeCs, (54)

for any s ∈ [0, T ] for some constant K = K(C, C̃(s), r1, r2,M0) > 0 that is defined
as

K(C, C̃(s), r1, r2,M0)

def
=
C̃(s)

2
(r2 + rm)(r2 − r1) + (2r2 − r1)

(

2C̃(s)

C
+M0

)

+ r2M0 +
C̃(s)rm
C

,

since |p| ≤M0. Therefore, for any s ∈ [0, T ],

|R(s)ψbase(R(s))| ≤ |rψbase(r)|+KeCs ≤ r2 max
r∈[r1+δ0,r2−δ0]

|ψbase(r)|+KeCs,

and hence,

|ψbase(R(s))| ≤
r2

r1

(

max
r∈[r1+δ0,r2−δ0]

|ψbase(r)|

)

+
K

r1
eCs. (55)

It follows from Hypothesis 1.1 that the set

Uδ0(s)
def
=

{

x ∈ Ω; |ψbase(x)| ≤
r2

r1

(

max
r∈[r1+δ0,r2−δ0]

|ψbase(r)|

)

+
K

r1
eCs

}

is a compact and proper subset of the open domain Ω; in addition, we have
dist(Uδ0(s), ∂Ω) > δ by Hypothesis 1.1. Thus, the inequality (55) implies that
for any θ ∈ [−π, π),

dist(R(s)r̂ + θθ̂, ∂Ω) ≥ dist(Uδ0(s), ∂Ω) > δ > 0.

In addition, if we assume that ψbase is in the explicit form of (12), then we further
have that

csc

(

π

r2 − r1
(R(s)− r1)

)

≤ 1 +
r

r1

∣

∣

∣

∣

csc

(

π

r2 − r1
(r − r1)

)

− 1

∣

∣

∣

∣

+
K

r1
eCs

≤ 1 +
r2

r1

∣

∣

∣

∣

csc

(

π

r2 − r1
(r2 − r1 − δ0)

)

− 1

∣

∣

∣

∣

+
K

r1
eCs =: Cs, (56)
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by (12) and that the initial distribution is supported only on [r1+ δ0, r2− δ0]. Thus
we have

r1 +

(

r2 − r1

π

)

arcsin(Cs) ≤ R(s) ≤ r2 −

(

r2 − r1

π

)

arcsin(Cs),

for all s ∈ [0, T ]. This completes the proof for this lemma.

Using this lemma, we will construct a moving bar Lbar(s) that will be used for
the truncation of the infinite potential in the next section.

3.2. Truncated time-dependent external potential. Equipped with the mag-
netic confinement via the time-independent external magnetic potential ψbase =
ψbase(r) that is infinite at the boundary r = r1 and r = r2, we can now define a
moving bar Lbar(s) that is an increasing function Lbar : [0, T ] → [0,∞). The mov-
ing bar Lbar(s) physically stands for the maximum level of the external potential
that we need to impose so that we can confine all the particle trajectory R(s) in the
interior domain whose initial state (R(0), P (0)) is in the support of f0. We will use
this to truncate the infinite potential ψbase and construct a finite time-dependent
external magnetic field that also confines the particles in the interior. The key
strategy is to find a moving bar which increases fast enough with respect to time
s ∈ [0, T ], so that the truncated potential will still confine all the particles.

For the general form of the external potential ψbase from Hypothesis 1.1, we
define Lbar(s) as

Lbar(s)
def
= max

x∈Uδ0
(s)

|ψbase(x)|, (57)

where Uδ0(s) is defined as in (15). Then we define the finite time-dependent exter-
nal magnetic potential ψext = ψext(s, r) for s ∈ [0, T ] as in (13). Note that as long
as ψbase(r) ≤ Lbar(s), ψext(s, r) is equal to ψbase(r), which is time-independent.
Therefore, if we consider a particle whose initial state (R(0), P (0)) is in the sup-
port of f0, then we always have ψbase(R(s)) ≤ Lbar(s) for all s ≥ 0, due to
the construction of Lbar. Therefore, as long as the particle trajectory starts at
(R(0), P (0)) in the support of f0, we always control the trajectory (R(s), P (s)) of
the particle via the time-independent potential ψext(s,R(s)) = ψbase(R(s)). There-
fore, we can replace ψbase(R(s)) by ψext(s,R(s)) in the proof of Lemma 3.1, since
ψext(s,R(s)) = ψbase(R(s)) always hold throughout the whole proof. This com-
pletes the proof for Theorem 1.4.

The external potential ψbase can be chosen explicitly, such as the form in (12);
see Remark 7 for more details.

3.3. A unique global trajectory. Lemma 3.1 further implies that any particles
which are initially away from the boundary can never reach the spatial boundary.
Therefore, we obtain the following corollary on the unique trajectory:

Corollary 1. Assume Er, Eθ, B ∈ C1([0, T ] × [r1, r2]) satisfy Maxwell’s equa-

tions (5). Suppose

|E⃗(t, r)|, |B(t, r)| ≤ C̃eCt,

for all (t, r) ∈ [0, T ] × (r1, r2) where the functions C and C̃ > 0 are defined as

(42) and (43). Then for any fixed (r, p) ∈ [r1 + δ0, r2 − δ0] × {|p| ≤ M0} for some

δ0 ∈
(

0, r2−r1
2

)

and M0 > 0, the characteristic ODEs (46) admits a unique C1

solution (R(s), P (s)) in [0, T ] with R(s) ∈ (r1, r2) for all s ∈ [0, T ].
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4. Propagation of the L∞ moment and the bounds for the momentum

support. This section is devoted to proving the propagation of the L∞ moment of
the distribution function f and proving that the particle distribution has a compact
support in p variable within any finite time interval. In order to prove the global
existence and the uniqueness of a classical solution, we need to prove the a priori
L∞ estimate for the distribution solution f and the derivatives of the fields E and
B and the distribution f . The L∞ estimate on f will be given in this section, and
the estimates on the derivatives will be given in Section 5. This can be shown as a
consequence of the magnetic confinement and the uniqueness of the characteristic
trajectory.

We first suppose (f,Er, Eθ, B) is a C1 solution to (3). Then another direct
consequence of Corollary 1 is that the solution f to (3) is constant along the unique
characteristic trajectory. Therefore, we obtain

∥f∥L∞([0,T ]×[r1,r2]×R2) = ∥f0∥L∞([r1,r2]×R2). (58)

In addition, we can also prove that the solution f(t, r, pr, pθ) to the system (3) has
a compact support in the p variables within any finite time interval. Define M(t)
as follows:

Definition 4.1. Let (f,Er, Eθ, B) be a C1 solution to (3). For each t ∈ [0, T ],
define the maximum radius of the momentum support M(t) as

M(t) = max
p∈suppp(f)(t)

|p|,

where

suppp(f)(t)
def
= {p ∈ R

2 | f(t, r, pr, pθ) ̸= 0, for some r ∈ [r1, r2]}.

Then we have the following estimate:

Lemma 4.2. Suppose that supp(f0) ∈ [r1 + δ0, r2 − δ0] × {|p| ≤ M0} for some

δ0 ∈
(

0, r2−r1
2

)

and M0 > 0. Then we have

M(t) ≤M0 + 4C̃
eCt

C
,

where C and C̃ are the same functions defined as (42) and (43) obtained in Propo-

sition 2.

Proof. By Lemma 3.2, it follows from a direct computation that

d

ds
|P (s)|2 = 2(PrEr + PθEθ),

so using Proposition 1, Proposition 2 and (51), we have

|P (t)|2 ≤ |P (0)|2 + 2C̃

∫ t

0

|P (τ)|eCτdτ ≤ |P (0)|2 + 2C̃(2C̃
eCt

C
+ |p|)

eCt

C
.

Thus,

|P (t)| ≤ |P (0)|+ 4C̃
eCt

C
.

Since we have assumed that supp(f0) ∈ [r1 + δ0, r2 − δ0] × {|p| ≤ M0} for some
δ0,M0 > 0, we have

M(t) ≤M0 + 4C̃
eCt

C
.

This completes the proof.
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4.1. L∞ bounds for the density and the flow. Finally, it is worthwhile to
mention that the finite momentum support of the particle distribution implies the
following L∞ bounds on the charge and current densities as well:

Corollary 2. We have

∥ρ∥L∞([0,T ]×[r1,r2]), ∥j∥L∞([0,T ]×[r1,r2])

≤ π∥f0∥L∞([r1,r2]×R2)

(

M0 + 4C̃
eCt

C

)2

.

Proof. Note that

ρ(t, x) =

∫

R2

f(t, x, p)dp =

∫

|p|≤M0+4C̃ eCt

C

f(t, x, p)dp

≤ π∥f0∥L∞([r1,r2]×R2)

(

M0 + 4C̃
eCt

C

)2

.

Similarly, we have

|j(t, x)| ≤

∫

R2

|p̂f(t, x, p)|dp ≤

∫

|p|≤M0+4C̃ eCt

C

|f(t, x, p)|dp

≤ π∥f0∥L∞([r1,r2]×R2)

(

M0 + 4C̃
eCt

C

)2

.

This completes the proof.

5. Estimates for the derivatives. This section is devoted to a priori L∞ esti-
mates on the derivatives of the fields (Er, Eθ, B) and the distribution f .

5.1. Derivatives of E and B. We begin with the field Er. Since 1
r∂r(rEr) = ρ,

we have

∥∂r(rEr)∥L∞([0,T ]×[r1,r2]) ≤ πr2∥f
0∥L∞([r1,r2]×R2)

(

M0 + 4C̃
eCt

C

)2

,

by Corollary 2.
Now recall that in Section 2.2 we have defined P± = rEθ ± rB. The rest of

this section is devoted to showing the estimates on the derivatives. Recall that,
by Lemma 4.2, f has a compact support in p if f0 does. Then, for the confined
solutions, we have the following lemma:

Lemma 5.1. Suppose that f0 is supported in [r1 + δ0, r2 − δ0] × {|p| ≤ M0} for

some δ0 > 0 and M0 > 0. Then for the confined solution, we have

∥∂r(rEθ)∥L∞([0,T ]×[r1,r2]), ∥∂r(rB)∥L∞([0,T ]×[r1,r2]) ≤ CT ,

for some constant CT > 0 which depends only on M0, T , λ, ∥f
0∥L∞ , the C1 norm

of E0
θ , B

0 on [r1, r2], and the C1 norm of Eb
θ, B

b on [0, T ].

Proof. By (22), (23), and the Leibniz rule, the derivative ∂rP+ is now equal to

∂rP+(t, r) = Q(t, r) +

∫ t

t1(t,r)

∂rB(τ, r − t+ τ)dτ

−

∫ t

t1(t,r)

∫

R2

p̂θf(τ, r − t+ τ, pr, pθ)dprdpθdτ
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−

∫ t

t1(t,r)

r

∫

R2

p̂θ∂rf(τ, r − t+ τ, pr, pθ)dprdpθdτ, (59)

where

Q(t, r)
def
= ∂r(P+(t1(t, r), r − t+ t1(t, r))) + 1r<t+r1(B − rjθ)(t− r + r1, r1)

= −1r<t+r1

(

r1∂tE
b
θ(t− r + r1, r1) + r1∂tB

b(t− r + r1, r1)−Bb(t− r + r1, r1)
)

+ 1r≥t+r1

(

(E0
θ +B0)(r − t) + (r − t)∂r(E

0
θ +B0)(r − t)

)

and we recall that j = 0 at the boundary due to the confinement. Then we have

∥Q∥L∞([0,T ]×[r1,r2]) ≤ CT , (60)

where CT is a constant depending on M0, T , λ, ∥f
0∥L∞ , the C1 norm of E0

θ , B
0

on [r1, r2], and the C1 norm of Eb
θ, B

b on [0, T ].
By treating the radial derivative of B on the right-hand side of (59) via consid-

ering Ampère’s circuital law (5)3, we obtain

∂rP+(t, r) = Q(t, r)−

∫ t

t1(t,r)

∂tEθ(τ, r − t+ τ)dτ

− 2

∫ t

t1(t,r)

∫

R2

p̂θf(τ, r − t+ τ, pr, pθ)dprdpθdτ

−

∫ t

t1(t,r)

r

∫

R2

p̂θ∂rf(τ, r − t+ τ, pr, pθ)dprdpθdτ.

Now we are going to use the following splitting of the operator ∂r motivated by [20]:

∂r =
T+ − S

1− p̂r
, (61)

where
T+

def
= ∂t + ∂r and S

def
= ∂t + p̂r∂r.

Then we further have

∂rP+(t, r) = Q(t, r)−

∫ t

t1(t,r)

∂tEθ(τ, r − t+ τ)dτ

− 2

∫ t

t1(t,r)

∫

R2

p̂θf(τ, r − t+ τ, pr, pθ)dprdpθdτ

−

∫ t

t1(t,r)

∫

R2

d

dτ

rp̂θ

1− p̂r
f(τ, r − t+ τ, pr, pθ)dprdpθdτ

+

∫ t

t1(t,r)

∫

R2

rp̂θ

1− p̂r
Sf(τ, r − t+ τ, pr, pθ)dprdpθdτ.

Now we implement the temporal integration and use the Vlasov equation

Sf +

(

Er + p̂θB̄ +
p2θ
rp0

)

∂pr
f +

(

Eθ − p̂rB̄ −
prpθ

rp0

)

∂pθ
f = 0

to obtain that

∂rP+(t, r) = Q(t, r)− Eθ(t, r) + Eθ(t1, r − t+ t1)

− 2

∫ t

t1(t,r)

∫

R2

p̂θf(τ, r − t+ τ, pr, pθ)dprdpθdτ
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−

∫

R2

rp̂θ

1− p̂r
f(t, r, pr, pθ)dprdpθ +

∫

R2

rp̂θ

1− p̂r
f(t1, r − t+ t1, pr, pθ)dprdpθ

−

∫ t

t1(t,r)

∫

R2

rp̂θ

1− p̂r

((

Er + p̂θB̄ +
p2θ
rp0

)

∂pr
f

+

(

Eθ − p̂rB̄ −
prpθ

rp0

)

∂pθ
f

)

(τ, r − t+ τ, pr, pθ)dprdpθdτ.

Thus we have

∂rP+(t, r) = Q(t, r)− Eθ(t, r) + Eθ(t1(t, r), r − t+ t1(t, r))

− 2

∫ t

t1(t,r)

∫

R2

p̂θf(τ, r − t+ τ, pr, pθ)dprdpθdτ

−

∫

R2

rp̂θ

1− p̂r
f(t, r, pr, pθ)dprdpθ +

∫

R2

rp̂θ

1− p̂r
f(t1, r − t+ t1, pr, pθ)dprdpθ

+

∫ t

t1(t,r)

∫

R2

[

∂pr

((

rp̂θ

1− p̂r

)(

Er + p̂θB̄ +
p2θ
rp0

))

f

+ ∂pθ

((

rp̂θ

1− p̂r

)(

Eθ − p̂rB̄ −
prpθ

rp0

))

f

]

(τ, r − t+ τ, pr, pθ)dprdpθdτ,

by an integration by parts. Here we note that the denominators 1− p̂r are bounded
below as due to the compact momentum support by Lemma 4.2 as 1 − p̂r >

c(T,M0, C, C̃) > 0. Therefore, we use Proposition 2, Lemma 4.2, (60), and (58)
to obtain that

∥∂rP+∥L∞([0,T ]×[r1,r2]) ≤ CT ,

for some CT > 0 which depends on M0, T , λ, ∥B
0∥L∞ , ∥E0

θ∥L∞ , ∥Bb∥L∞ , ∥Eb
θ∥L∞ ,

and ∥(1 + p0)f0∥L1 .
Similarly, we can also obtain ∥∂rP−∥L∞([0,T ]×[r1,r2]) ≤ CT , by using

∂r =
S − T−

1 + p̂r
,

where T−
def
= ∂t − ∂r and S

def
= ∂t + p̂r∂r, in place of (61). This completes the

proof.

5.2. Derivatives of f . Finally, we are ready to obtain an estimate for the deriva-
tives of the solution f .

Lemma 5.2. Suppose f ∈ C2([0, T ]× [r1, r2]× R
2). Then we have

∥f∥C1([0,T ]×[r1,r2]×R2) ≤ CT ,

for some constant CT > 0 which depends only on M0, T , λ, ∥f
0∥L∞ , the C1 norm

of f0, E0
θ , B

0 on [r1, r2], and the C1 norm of Eb
θ, B

b on [0, T ].

Proof. We start with differentiating the Vlasov equation in cylindrical-coordinates
(3) with respect to r variables. Then we observe that

(

∂t + p̂r∂r +

(

Er + p̂θB̄ +
p2θ
rp0

)

∂pr
+

(

Eθ − p̂rB̄ −
prpθ

rp0

)

∂pθ

)

∂rf

= −∂r

(

Er + p̂θB̄ +
p2θ
rp0

)

∂pr
f − ∂r

(

Eθ − p̂rB̄ −
prpθ

rp0

)

∂pθ
f.
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Recall Lemma 3.1 and Lemma 4.2 and define

M̄(t)
def
= M0 + 4C̃

eCt

C
. (62)

Then we integrate this identity along the characteristics and obtain

∥∂rf(t)∥L∞((r1,r2)×{|p|≤M̄(t)}) ≤ ∥∂rf
0∥L∞([r1+δ0,r2−δ0]×{|p|≤M̄(t)})

+

∫ t

0

∥

∥

∥

∥

−∂r

(

Er + p̂θB̄ +
p2θ
rp0

)

∂pr
f − ∂r

(

Eθ − p̂rB̄ −
prpθ

rp0

)

∂pθ
f

∥

∥

∥

∥

L∞

ds

≲ ∥∂rf
0∥L∞ +

∫ t

0

(

∥E∥C1 + ∥B∥C1 + M̄(t)
)

∥∇pf∥L∞ ds, (63)

as
∣

∣

∣

pr

p0

∣

∣

∣
and

∣

∣

∣

pθ

p0

∣

∣

∣
≤ 1. On the other hand, we differentiate (3) with respect to p

variables and obtain

∂t∇pf + p̂r∂r∇pf +

(

Er + p̂θB̄ +
p2θ
rp0

)

∂pr
∇pf +

(

Eθ − p̂rB̄ −
prpθ

rp0

)

∂pθ
∇pf

= −∇p(p̂r)∂rf −∇p

(

Er + p̂θB̄ +
p2θ
rp0

)

∂pr
f −∇p

(

Eθ − p̂rB̄ −
prpθ

rp0

)

∂pθ
f

= −∇p(p̂r)∂rf −∇p

(

p̂θB̄ +
p2θ
rp0

)

∂pr
f −∇p

(

−p̂rB̄ −
prpθ

rp0

)

∂pθ
f.

We similarly integrate this identity along the characteristics and obtain

∥∇pf(t)∥L∞((r1,r2)×{|p|≤M̄(t)}) ≤ ∥∇pf
0∥L∞([r1+δ0,r2−δ0]×{|p|≤M̄(t)})

+

∫ t

0

∥

∥

∥

∥

−∇p(p̂r)∂rf −∇p

(

p̂θB̄ +
p2θ
rp0

)

∂pr
f −∇p

(

−p̂rB̄ −
prpθ

rp0

)

∂pθ
f

∥

∥

∥

∥

L∞

ds

≲ ∥∇pf
0∥L∞ +

∫ t

0

(

∥∂rf∥L∞ +
(

∥B∥L∞ + |M̄(t)|
)

∥∇pf∥L∞

)

ds (64)

By adding (63) and (64) and noting that the support of f is in (r1, r2)×{|p| ≤ M̄(t)},
we finally have

D(f)(t) ≲ 1 +

∫ t

0

D(f)(s)ds,

where D(f)(s)
def
= ∥∂rf∥L∞ + ∥∇pf∥L∞ . This yields the bounds for ∥∂rf∥L∞ and

∥∇pf∥L∞ . Finally, we use the Vlasov equation

∂tf = −p̂r∂rf −

(

Er + p̂θB̄ +
p2θ
rp0

)

∂pr
f −

(

Eθ − p̂rB̄ −
prpθ

rp0

)

∂pθ
f

and further obtain the bound for ∥∂tf∥L∞ . This completes the proof.

6. Global wellposedness: Proof of Theorem 1.3. Together with all the esti-
mates on the functions f , E, B, and their derivatives from the previous sections,
we can obtain the global wellposedness of the problem (3), (5),(7), and (10), and
Hypothesis 1.2 as follows.

Existence. First of all, we obtain the existence of a global C1 solution via the
standard iteration argument which was introduced in the literature [19–23,41], etc.
We leave these standard details to the interested readers.
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Proof of Uniqueness. Fix any time interval [0, T ] for some T > 0. For the unique-
ness, we suppose that there are two global C1 solutions (f i, Ei, Bi) for i = 1, 2 to
the problem (3), (5), (7), and (10), and Hypothesis 1.2. Then we have

∂tf̃ + p̂r∂rf̃ + p̂θ
1

r
∂θf̃

+

(

E2
r + p̂θB̄

2 +
p2θ
rp0

)

∂pr
f̃ +

(

E2
θ − p̂rB̄

2 −
prpθ

rp0

)

∂pθ
f̃

= −
(

Ẽr + p̂θB̃
)

∂pr
f1 −

(

Ẽθ − p̂rB̃
)

∂pθ
f1, (65)

where B̄i = Bi +Bext and

f̃
def
= f1 − f2, Ẽ

def
= E1 − E2, and B̃

def
= B1 −B2.

Also, note that f̃(0, r, pr, pθ) = 0 for all (r, pr, pθ) ∈ (r1, r2) × R
2. By Section 3,

we obtain that the characteristic trajectories never touch the boundaries. Thus, we
integrate (65) along the characteristics and obtain that

∥f̃(t)∥L∞((r1,r2)×R2) ≤ ∥∇pf
1∥L∞([0,t]×(r1,r2)×R2)

×

∫ t

0

(

∥Ẽ(s)∥L∞((r1,r2)) + ∥B̃(s)∥L∞((r1,r2))

)

ds, (66)

for each t ∈ [0, T ]. We first estimate the upperbound for ∥Ẽr(s)∥L∞((r1,r2)). Since

∂r(rẼr) = rρ(f̃) where ρ(f̃) is defined as

ρ(f̃)(t, r) =

∫

R2

f̃(t, r, p)dp,

we observe that

∥Ẽr(s)∥L∞((r1,r2)) ≤
1

r1

∫ r2

r1

∫

|p|≤M̄(s)

rf̃(s, r, pr, pθ) dprdpθdr ≲T ∥f̃(s)∥L∞ ,

where M̄ is defined as (62). For the estimates on ∥Ẽθ(s)∥L∞((r1,r2)) and

∥B̃(s)∥L∞((r1,r2)), we observe that Ẽθ and B̃ satisfy

∂t(rẼθ) + ∂r(rB̃) = B̃ − rjθ(f̃),

and
∂t(rB̃) + ∂r(rẼθ) = 0.

Then since B̃0, B̃b, Ẽ0, and Ẽb are all zero in (35), we have

|B̃(t, r)| ≤
1

r1

(
∫ t

0

∥B(τ)∥L∞([r1,r2])dτ

+

∫ t

min{t1,t2}

∫

|p|≤M̄(τ)

r|p̂θ||f̃(τ, r − t+ τ, pr, pθ)|dprdpθdτ

)

, (67)

by the definition jθ
def
=
∫

R2 p̂θfdprdpθ. Then by taking the supremum in r variable
and taking |p̂θ| ≤ 1, we have

∥B̃(s)∥L∞((r1,r2)) ≲T sup
r∈(r1,r2)

∫ s

0

∫

|p|≤M̄(τ)

|f̃(τ, r, pr, pθ)|dprdpθdτ

≲T sup
τ∈[0,s]

∥f̃(τ)∥L∞ .
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Similarly we obtain ∥Ẽθ(s)∥L∞ ≲T supτ∈[0,s] ∥f̃(τ)∥L∞ . Now we go back to (66)
and observe that

ũ(t) ≲T

∫ t

0

ũ(s)ds,

where ũ(s)
def
= supτ∈[0,s] ∥f̃(τ)∥L∞ , as we have ∥∇pf

1∥L∞ ≤ CT for some CT > 0.

Since ũ(0) = 0, we obtain that ũ(s) = 0 for any s ∈ [0, T ], and hence, f̃(t) = Ẽ(t) =

B̃(t) = 0 for any t ∈ [0, T ]. This completes the proof for the uniqueness.

Proof of non-negativity. Suppose that f0 is initially non-negative. Then f is con-
stant along the characteristics defined in Section 3 and hence is non-negative.
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