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We investigate the quantum metrological power of typical continuous-variable (CV) quantum networks.
Particularly, we show that most CV quantum networks provide an entanglement to quantum states in
distant nodes that enables one to achieve the Heisenberg scaling in the number of modes for distributed
quantum displacement sensing, which cannot be attained using an unentangled probe state. Notably, our
scheme only requires local operations and measurements after generating an entangled probe using the
quantum network. In addition, we find a tolerable photon-loss rate that maintains the quantum
enhancement. Finally, we numerically demonstrate that even when CV quantum networks are composed
of local beam splitters, the quantum enhancement can be attained when the depth is sufficiently large.
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Quantummetrology is a study on advantages of quantum
resources for parameter estimation [1–6]. In many years,
nonclassical features of quantum probes have been shown
to achieve a better sensitivity than any classical means.
Especially in continuous-variable (CV) systems, a
squeezed state, one of the most representative nonclassical
states, elevates the sensitivity of optical interferometers
[7,8] including gravitational wave detectors [9–11]. In
addition, enhanced phase estimation using a squeezed state
has been implemented in many experiments [12–14].
More recently, besides quantum enhancement from a

local system, much attention has been paid to employ a
metrological advantage from entanglement between distant
sites. Particularly, distributed quantum sensing has been
proposed and extensively studied to enhance the sensitivity
by exploiting quantum entanglement constituted by a
quantum network for estimating parameters in distant
nodes [15–25]. For example, a single-mode squeezed
vacuum state distributed by a balanced beam splitter
network (BSN) was shown to enable estimating the
quadrature displacement with a precision up to the
Heisenberg scaling in the number of modes, which cannot
be achieved without entanglement [18]. Such an enhance-
ment has also been found in distributed quantum phase
sensing [17,19,21,25]. Furthermore, the enhancement from
entanglement between nodes has been experimentally
demonstrated in various tasks [19,20,22,26].
While particular CV quantum networks provide an

enhancement for distributed sensing, it is unclear whether
general quantum networks are beneficial. Since quantum
entanglement between distant nodes is the key to improv-
ing the sensitivity in many cases, investigating what kinds
of quantum networks are advantageous for distributed
sensing is crucial fundamentally and practically. To answer

similar questions such as the usefulness of general quantum
states, Ref. [27] has initiated a study for quantum enhance-
ment from typical quantum states by considering the role of
interparticle entanglement for quantum phase estimation
and shown advantages of typical bosonic random states for
quantum phase estimation.
In this Letter, motivated by Ref. [27], we study global

random CV networks and show that typical CV quantum
networks provide quantum metrological enhancement.
More specifically, we prove that most CV quantum net-
works except for an exponentially small fraction in the
number of modes enable us to achieve the Heisenberg
scaling in the number of modes for a distributed quantum
displacement sensing scheme. Since we focus on the
Heisenberg scaling in the number of sensor nodes, the
intermode entanglement is the key resource. On the other
hand, Ref. [27] investigates the Heisenberg scaling in the
number of particles for quantum phase estimation with
interparticle entanglement. In addition, we show that local
operations after an input quantum state undergoes a CV
quantum network are essential for the enhancement
because the Heisenberg scaling cannot be attained without
them with a high probability. We then study the effect of
photon loss and find the tolerable loss amount that
maintains the Heisenberg scaling. Furthermore, we numeri-
cally demonstrate that quantum networks composed of
local-random beam splitters also render the Heisenberg
scaling for distributed displacement sensing on average
within a depth proportional toM2 withM being the number
of modes.
Distributed quantum displacement sensing.—For dis-

tributed displacement sensing (see Fig. 1), we first prepare
a product state with a total mean photon number N̄. The
state is then injected into a BSN Û to generate an entangled
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probe between M modes. Here, a BSN is described by an
M ×M unitary matrix U, which transforms input annihi-
lation operators fâigMi¼1 as âi → Û†âiÛ ¼ P

M
j¼1Uijâj.

After the BSN, we perform local phase shift operations,

R̂ðϕÞ≡ ⊗M
j¼1 R̂jðϕjÞ with R̂jðϕjÞ≡ eiϕjâ

†
j âj being a phase-

shift operator on the jth mode for ϕj. Thus, for a given
BSN, a local-phase optimization is implemented by
manipulating ϕj’s. The entangled probe then encodes a
displacement parameter x of interest. We assume that the
same displacement occurs in all M modes, the operator of
which is written as⊗M

j¼1 D̂jðxÞwith D̂jðxÞ≡ e−ip̂jx being a
displacement operator for the jth mode along the x
direction. Here, quadrature operators of the jth mode are
defined as x̂j ≡ ðâj þ â†jÞ=

ffiffiffi
2

p
, p̂j ≡ ðâj − â†jÞ=

ffiffiffi
2

p
i for the

x and p directions in phase space, respectively. Finally, we
locally measure the output state on each site using
homodyne detection and estimate the parameter x using
the measurement outcomes. We emphasize that our scheme
has tensor product inputs and local measurements, while
only the BSN can generate entanglement. Note that the
proposed scheme is similar to the one in Ref. [18] except that
we employ an arbitrary BSN instead of a balanced one. Also,
such a distributed sensing scheme can offer advantages for
many quantum metrological applications [18,28–30].

Meanwhile, when we estimate a parameter θ of interest
using a quantum state probe ρ̂, the estimation error of any
unbiased estimator Δ2θ is bounded by the quantum
Cramér-Rao lower bound as Δ2θ ≥ 1=H, where H is the
quantum Fisher information (QFI) for a given system and a
probe state ρ̂ [31,32]. Therefore, QFI quantifies the ultimate
achievable estimation error using a given quantum state.
Especially for a pure state probe jψi and a unitary dynamics
with a Hamiltonian operator ĥ, the QFI can be simplified
as H ¼ 4ðΔ2ĥÞψ .
For a distributed displacement sensing, the attainable

QFI without an entangled probe scales at most linear in N̄
andM (e.g., a product of identical states forM modes such
as squeezed states) [18,33]. Remarkably, if one employs the
optimal entangled scheme [see Eq. (2)], the corresponding

QFI scales as N̄M [18,33]. Therefore, an entanglement
provides an advantage for distributed quantum displace-
ment sensing if one prepares a suitable CV quantum
network, and the advantage is apparent from the scaling
of N̄M. For the purpose of the Letter that is to study the
scaling of QFI in terms of the number of sensor nodes, we
inspect the behavior of QFI as the number of modes M
grows with fixing the mean photon number per mode
n̄≡ N̄=M. It is worth emphasizing that since random
quantum networks do not evenly allocate the input energy,
the number of photons occupying a single mode fluctuates
and can be much larger than n̄.
Results.—We first derive the QFI for distributed dis-

placement sensing for a given CV quantum network,
characterized by an M ×M unitary matrix U, with a
squeezed state input. After a BSN and phase shifters,
the probe state can be written as jψi ¼ R̂ðϕÞÛjψ ini, where
jψ ini is a product state of a squeezed state in the first mode
and (M − 1) vacua in other modes. Since the Hamiltonian
operator is ĥ ¼ P

M
j¼1 p̂j, the QFI for distributed displace-

ment estimation can be obtained as

HLOðUÞ ¼ max
ϕ

4ðΔ2ĥÞψ ¼ 2M þ 4

�XM
a¼1

jUa1j
�

2

fþðn̄MÞ;

ð1Þ

where we have defined fþðn̄MÞ≡ n̄M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄2M2 þ n̄M

p
.

Here, the optimality condition of local phases for a given U
is written as e−iϕ

�
a ¼ Ua1=jUa1j, which depends only on the

first column of U. It is worth emphasizing that the
optimality condition is immediately obtained from U.
The derivation of the QFI and the optimality condition
is provided in Ref. [33].
Since the factor fþðn̄MÞ in Eq. (1) is order ofM for fixed

n̄, whether the Heisenberg scaling can be achieved, i.e.,
HLOðUÞ ∝ M2, is determined by the property of BSN U.
Particularly, for a trivial BSN, U ¼ 1M, we do not attain
any entanglement and the QFI is linear in M. Thus, it fails
to achieve the Heisenberg scaling without entanglement.
Meanwhile, one may easily show that the QFI is maximized
by a balanced BSN, i.e., jUa1j ¼ 1=

ffiffiffiffiffi
M

p
for all a’s, which

leads to the QFI as

Hmax ≡max
U

HLOðUÞ ¼ 2M þ 4Mfþðn̄MÞ: ð2Þ

It clearly shows the quantum enhancement from an optimal
CV quantum network and the entanglement generated from
it. One can also prove that Hmax is the maximum QFI not
only in our scheme but also over any quantum states [33].
Since our goal is to show a quantum metrological

enhancement of typical CV quantum networks, we now
compute the average QFI over random CV quantum
networks using Eq. (1), i.e., random unitary matrices drawn

FIG. 1. Schematic diagram of distributed quantum displace-
ment sensing (see the main text).
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from the Haar measure μ on theUðMÞ group, and prove the
following lemma (See the Supplemental Material [33] for
a proof):
Lemma 1.—The average QFI over random U for dis-

tributed quantum displacement sensing using a single-
mode squeezed state is

E
U∼μ

½HLOðUÞ� ¼ 2M þ 4

�
π

4
ðM − 1Þ þ 1

�
fþðn̄MÞ: ð3Þ

First of all, Lemma 1 shows that the average QFI over
random CV quantum networks follows the Heisenberg
scaling. Also, note that for largeM, the ratio of the average
QFI to the maximum QFI Hmax approaches to π=4.
Therefore, one may expect that typical CV quantum net-
works render a quantum metrological advantage. We prove
that indeed, most CV quantum networks offer a quantum
enhancement for estimating displacement.
Theorem 1.—For an M-mode CV quantum network,

characterized by an M ×M unitary matrix drawn from the
Haar measure μ on the M ×M unitary matrix group, the
Heisenberg scaling of QFI can be achieved with a fraction
of BSNs such that

Pr
U∼μ

½HLOðUÞ ¼ ΘðM2Þ� ≥ 1 − exp ½−ΘðMÞ�: ð4Þ

Proof sketch.—(See Ref. [33] for a formal proof.) From
the concentration of measure inequality [27,42], we have

Pr
U∼μ

½jfðUÞ − E
U∼μ

½fðUÞ�j ≥ ε� ≤ 2 exp

�
−
Mε2

4L2

�
; ð5Þ

where f∶U ↦ R is a real function and L is its Lipschitz
constant. If we let fðUÞ≡HLOðUÞ, the average HLOðUÞ
is given by Lemma 1. We then show that L is upper
bounded by 8Mfþðn̄MÞ. Finally, setting ε ¼ ΘðM2Þ leads
to Eq. (4) [43].
Since a product state renders QFI at most linear in M,

Theorem 1 indicates that typical CV quantum networks
with a squeezed vacuum state are beneficial for quantum
metrology. In other words, for a randomly chosen CV
quantum network except for an exponentially small frac-
tion, the proposed scheme achieves the Heisenberg scaling
of QFI for the distributed displacement estimation. It also
implies that most CV quantum networks enable one to
construct an entanglement using a single-mode squeezed
vacuum state since the Heisenberg scaling can only be
achieved using entanglement in our scheme. Moreover, we
prove that the QFIs can always be attained by performing
homodyne detection along the x axis without an additional
network [33]. Since the input state is product and additional
operations, such as local optimization and measurement,
are local, the entanglement is constituted only from CV
quantum networks.

While our scheme with a squeezed vacuum state at a
fixed mode is sufficient for our goal, the input state can be
further optimized in principle. For example, one may use an
optimal input mode for a squeezed vacuum state for a given
BSN or a product of squeezed vacuum states as an input.
Furthermore, since we can achieve the Heisenberg

scaling using the optimal local phase shifts ϕ�, Theorem
1 can be interpreted from a different aspect. From the
perspective of active transformation, the local phase shift
for the ith mode R̂iðϕ�

i Þ transforms the quadrature operator
p̂i into R̂†

i ðϕ�
i Þp̂iR̂iðϕ�

i Þ ¼ x̂i sinϕ�
i þ p̂i cosϕ�

i . Thus, if
we absorb the local phase shifters into displacement
operators by the above transformation, Theorem 1 implies
that the QFI of the state right after a BSN mostly follows
the Heisenberg scaling with respect to a parameter x
generated by operators

P
M
i¼1ðx̂i sinϕ�

i þ p̂i cosϕ�
i Þ.

Consequently, we obtain the following corollary:
Corollary 1.—When a single-mode squeezed vacuum

state undergoes a random BSN, most of the output states
are beneficial for distributed quantum displacement sensing
with a specific direction of displacement.
Therefore, most CV quantum networks render an entan-

glement that enables one to attain the Heisenberg scaling
for particular metrological tasks. Nevertheless, if we fix the
direction of displacement of interest, we find that local
optimization is essential for our protocol. In fact, without
local operation, i.e., ϕa ¼ 0 for all a’s, we cannot attain the
Heisenberg scaling even if the input state is chosen to be the
optimal state that maximizes QFI for a given U.
Theorem 2.—Without local operation, the fraction of

random BSNs for which QFI attains Heisenberg scaling is
almost zero even if we choose the optimal input state for a
given U,

Pr
U∼μ

½HðUÞ ¼ ΘðM2Þ� ≤ exp ½−ΘðMÞ�: ð6Þ

where HðUÞ is the QFI of the optimal state.
Proof sketch.—First, we find an upper bound of the QFI

of the optimal state for a given U without local optimiza-
tion. We then show that the upper bound scales asM except
for an exponential small fraction of U’s in M, which
implies that the QFI scales at most linearly inM except for
an exponentially small fraction ofU’s. The detailed proof is
provided in Ref. [33].
We now numerically demonstrate our results. We sample

random unitary matrices by following the standard method
that first generates Gaussian random matrix and ortho-
gonalizes its column vectors [33,42]. Figure 2 exhibits
average QFIs over different Haar-random BSNs with a
squeezed vacuum state input. As implied by Theorems 1
and 2, it clearly shows that when we optimize the local
phase shifts, we obtain QFIs following the Heisenberg
scaling as the number of modes M grows, while if we do
not control the local phases, the Heisenberg scaling cannot
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be achieved [44]. Here, the QFI for a single-mode
squeezed state input injected into an optimal input mode
without local optimization is given by [33]

HMO ≡ max
1≤b≤M

�
2M þ 4

����
XM
a¼1

Uab

����
2

fþðn̄MÞ
�
: ð7Þ

Although we have used a single-mode squeezed state
instead of the optimal input state, the overall scalings of
HMO and H are equal when M is large [33]. Furthermore,
the standard deviation of QFIs are small for both cases,
indicating that most BSNs with local-phase optimization
allow the Heisenberg scaling using our scheme, while
those without local-phase optimization does not.
Effect of loss.—We analyze the effect of photon loss on

the Heisenberg scaling with typical BSNs and find a
tolerable loss rate that maintains the Heisenberg scaling.
Photon loss can be modeled by a beam splitter with its
transmittivity η, which transforms an annihilation operator
as âj →

ffiffiffi
η

p
âj þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
êj, where êj is an annihilation

operator for environment mode for all j’s [45]; thus, we
assume that a photon-loss rate is constant over all modes.
Since a photon-loss channel of the uniform loss rate
commutes with beam splitters, our analysis includes
photon loss occurring either before or after a BSN. One
can easily find that in the presence of photon loss, the
corresponding QFI and its expectation value over random
U are degraded and their analytical expression can be
written by merely replacing fþðn̄MÞ in Eqs. (1) and (3) by
ηfþðn̄MÞ=½2ð1 − ηÞfþðn̄MÞ þ 1�, which are shown in
Ref. [33]. Using these results we can show that Theorem
1 is still valid as long as a loss rate 1 − η is smaller than a
threshold β ¼ Θð1=n̄MÞ [33], i.e., as M increases, a
threshold of the loss rate has to decrease at least as
1=n̄M to maintain the Heisenberg scaling. We note that
CV error correction scheme [46,47] and quantum repeater
[48] can be considered to alleviate the effect of loss.

Local beam splitter network.—While a global random
BSN is suitable to model a sufficiently complex CV
network, it is also crucial to investigate how complicated
the network has to be to attain a metrological enhancement
from a practical perspective. To do that, we study a CV
quantum network composed of local Haar-random beam
splitters instead of a global random BSN [see Fig. 3(a)]
[49–52]. We numerically show that the Heisenberg scaling
can also be achieved by using CV quantum networks
consisting of local beam splitters. Figure 3(b) shows the
averaged local-phase-optimized QFIs with and without
optimizing the input mode for a squeezed vacuum state.
The QFI of the latter is given by [33]

HMLO ≡ max
1≤b≤M

�
2M þ 4

�XM
a¼1

jUabj
�2

fþðn̄MÞ
�
; ð8Þ

which is obviously equal or greater than HLOðUÞ. Most
importantly, the QFI divided byM2 is almost constant for a
given D=M2 and different M’s. It implies that the
Heisenberg-scaling can be achieved on average with a

FIG. 2. QFI averaged over 20 000 different Haar-random BSNs
with a squeezed state input (inset: log-log scale). The error bars
represent 3 times of the standard deviation of QFIs.

(a)

(b)

FIG. 3. (a) CV quantum network composed of depth D local
beam splitters with a squeezed vacuum input. (b) Average QFIs
over 1000 different local Haar-random beam splitters with
(HMLO) and without (HLO) optimizing the input mode. The error
bars represent the standard deviation of QFIs over samples. Black
dashed (solid) line represents the asymptotic average (maximum)
QFI divided byM2, obtained by a random (balanced) BSN, which
is equal to 2πn̄ (8n̄).
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depth proportional to M2, independent of input-mode
optimization, which is consistent with the result in
Ref. [50]. Nevertheless, by optimizing the input mode,
the Heisenberg scaling is achieved much faster. Moreover,
the figure shows that the standard deviation of QFIs is very
small, indicating that most local BSNs are beneficial for
distributed displacement estimation, and that the standard
deviation decreases as M grows. Since they achieve the
Heisenberg scaling on average, the quantum networks of
local beam splitters constitute sufficient entanglement on
average as expected in Ref. [50]; namely, large entangle-
ment can be obtained for a depth D ∝ M2.
Discussion.—From a theoretical perspective, our results

imply that most CV quantum networks have the same
scaling of estimation error for distributed displacement
sensing as the optimal one, i.e., from a balanced BSN.
Thus, for quantum enhancement in practice, one may not
necessarily implement a very special structure such as a
balanced BSN because most CV networks provide the
same quantum enhancement when it comes to scaling.
Such an experimental generalization would be particularly
useful when one needs a large scale of networks. For
example, if we already have a CV quantum network for
various purposes, which is not necessarily balanced but
complex enough, we can immediately exploit the network
for quantum-enhanced displacement sensing. Furthermore,
although we have focused on distributed displacement
sensing, future research could continue to investigate if
similar results hold for different metrological tasks, such as
multiparameter displacement estimation [18,20] or phase
estimation [17,19,21]. It is also worth mentioning that since
our scheme only employs a squeezed state, beam splitters,
and homodyne detection, the current technology can
already benefit from our results.
We finally emphasize the major differences of our

study from Ref. [27]. While both consider random
bosonic states from the quantum metrological perspec-
tive, the two schemes benefit from different kinds of
entanglement. Reference [27] studies phase sensing that
exploits interparticle entanglement, while we study dis-
tributed displacement sensing which benefits from inter-
mode entanglement. The difference is apparent from the
following example. The random state R̂ðϕ�ÞÛjN; 0;…; 0i
has mode entanglement and typically brings quantum
enhancement for the distributed displacement sensing
task whereas it has no particle entanglement regardless of
BSN U, so it does not lead to an enhancement for phase
estimation [33]. Besides, our study considers a task where
a photon number fluctuates, which is unclear to interpret
by particle formalism, typically assuming a definite
photon number. It would be an interesting future work
to find a class of probes that is useful for both
sensing schemes and to identify the relation between
interparticle entanglement and intermode entanglement
more rigorously.
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