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Path-independent (PI) quantum control has recently been proposed to integrate quantum error correction and
quantum control [W.-L. Ma, M. Zhang, Y. Wong, K. Noh, S. Rosenblum, P. Reinhold, R. J. Schoelkopf, and L.
Jiang, Phys. Rev. Lett. 125, 110503 (2020)], achieving fault-tolerant quantum gates against ancilla errors. Here
we reveal the underlying algebraic structure of PI quantum control. The PI Hamiltonians and propagators turn
out to lie in an algebra isomorphic to the ordinary matrix algebra, which we call the PI matrix algebra. The PI
matrix algebra, defined on the Hilbert space of a composite system (including an ancilla system and a central
system), is isomorphic to the matrix algebra defined on the Hilbert space of the ancilla system. By extending
the PI matrix algebra to the Hilbert-Schmidt space of the composite system, we provide an exact and unifying
condition for PI quantum control against ancilla noise.
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To build a powerful quantum computer, the constituting
quantum devices should have both good coherence and re-
liable universal control [1–3], which are often contradicting
requirements. To have good coherence, we can choose the
physical systems (called central system) well isolated from
their noisy environment, such as the superconducting cavities
[4–6] and nuclear spins [7–10]. The central system coherence
can be further improved by either passive or active protec-
tion, such as dynamical decoupling [11–13], decoherence-free
subspace (subsystem) [14,15], and quantum error correction
(QEC) [16–19]. However, as we try to realize a central system
with nearly perfect coherence, it also becomes more difficult
to process quantum information in the central system, since
reliable and fast control needs strong coupling with the out-
side world. One possible solution is to introduce an ancilla
system, such as transmon qubits [20–22] and electron spins
[8,9], which are relatively easily to control. However, since
the ancilla system typically suffers more decoherence than
the central system, the fidelity of the ancilla-assisted quantum
operations is seriously limited by the ancill noise. Therefore,
it is crucial to develop quantum control protocols that are
fault tolerant against ancilla errors, therefore boosting the
performance of ancilla-assisted quantum operations by largely
suppressing ancilla errors.

Recently, we have proposed a general class of fault-tolerant
quantum gates against ancilla errors, called path-independent
(PI) quantum gates [23]. The PI gates integrate quantum con-
trol and QEC, guiding the design of hardware-efficient robust
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quantum operations against ancilla errors. The main feature
of PI gates is that for given initial and final ancilla states,
the central system undergoes a unitary gate independent of
the specific ancilla path induced by control drives and an-
cilla error events. For specific final ancilla states, the desired
unitary gate is implemented; for all other final ancilla states,
the gate fails but the encoded information can be restored.
Hence, we can perform conditional operation until the gate
succeeds. A special class of PI gates are the previously pro-
posed error-transparent gates for QEC codes [24–26], with the
error syndromes corresponding to the ancilla states. Another
important example of PI gates is the photon-number selec-
tive arbitrary phase (SNAP) gates in superconducting circuits
[21,22], which has recently been experimentally demonstrated
with the gate fidelity significantly improved by the PI design
[27]. However, the general formalism in Ref. [23] depends
on a Dyson expansion of the Liouville superoperator, while
the underling mathematical structure of path-independence
criteria remains elusive.

In this paper, we provide deep insights on PI gates by
uncovering the underlying algebraic structure, which we call
the PI matrix algebra. The PI matrix algebra is defined on a
composite system containing the ancilla and central systems,
but isomorphic to the ordinary matrix algebra defined on the
ancilla system alone. The PI control Hamiltonians and prop-
agators found in Ref. [23] belong to the PI matrix algebra.
The path independence against ancilla error paths is connected
to the multiplication operation of the PI matrix algebra. We
also extend the PI matrix algebra to the Hilbert-Schmidt (HS)
space of the composite system, and find a general class of
PI superoperators. The path-independence criteria in [23] can
therefore be reformulated in an exact and unifying way.

I. DEFINITION OF PI MATRIX ALGEBRA

An algebra is a vector space together with a multiplication
operation. A typical example is the ordinary matrix algebra
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TABLE I. Different kinds of matrix algebras and their bases. MA, MAB, M̂A, and M̂AB are defined on the Hilbert space of the ancilla
system, the Hilbert space of the composite system, the HS space of the ancilla system, and the HS space of the composite system,
correspondingly. Note the isomorphism between MA andMAB, and between M̂A and M̂AB.

MA MAB M̂A M̂AB

Basis {|m〉A〈n|}dAm,n=1 {|m〉A〈n| ⊗Umn}dAm,n=1 {|mn〉〉A〈〈pq|}dAm,n,p,q=1 {|mn〉〉A〈〈pq| ⊗ (Ump ⊗U ∗
nq )}dAm,n,p,q=1

MA for a dA-level quantum system (ancilla system) with an
orthonormal basis {|m〉A}dAm=1. MA is a vector space over the
complex field C with the basis BA = {|m〉A〈n|}dAm,n=1 and the
multiplication operation

|a〉A〈b|c〉A〈d| = δbc|a〉A〈d|, (1)

with a, b, c, d ∈ [1, dA]. Any quantum operator for the ancilla
can be represented by a vector inMA, and the product of any
two operators can be obtained from the above multiplication
for base vectors.

Now we introduce another dB-dimensional system (central
system) with an orthonormal basis {| j〉B}dBj=1. For the compos-
ite system containing the ancilla and the central systems, we
can define a matrix algebra isomorphic to MA. The formal
definition is as follows.

Definition 1: PI matrix algebra. Consider a vector space
with the basis BAB = {|m〉A〈n| ⊗Umn}dAm,n=1 over the complex
field C. Here {Umn} is a discrete set of unitary operators on
the central system satisfying UmeUen = Umn with m, e, n ∈
[1, dA], from which we can deriveUmm = IB being the identity
operation on the central system andUmn = U †

nm with † denot-
ing the Hermitian conjugation. The multiplication operation
of the base vectors in BAB is

(|a〉A〈b| ⊗Uab) · (|c〉A〈d| ⊗Ucd ) = δbc|a〉A〈d| ⊗Uad , (2)

with a, b, c, d ∈ [1, dA]. Define this vector space with the
multiplication operation in Eq. (2) as the PI matrix algebra
MAB. A subspace of MAB that is closed under multiplication
is called the PI matrix subalgebra M′

AB.
One can see that MAB is isomorphic to MA (Table I),

since the multiplication operation is preserved by the map
between them (see Appendix A 1 for the explicit form of
the map). The bases of PI matrix algebras and subalgebras
are represented diagrammatically in Fig. 1. Note that the
set of ancilla projection operators {|m〉A〈m|}dAm=1 belong to
BA and {|m〉A〈m| ⊗ IB}dAm=1 belong to BAB. Moreover, the PI
matrix algebra is a self-adjoint algebra (closed under Her-
mitian conjugation) [Fig. 1(a)–1(c)], since |m〉A〈n| ⊗Umn =
(|n〉A〈m| ⊗Unm)†. The PI matrix subalgebras can be self-
adjoint [Figs. 1(d) and 1(e)] or non-self-adjoint [Fig. 1(f)],
but a non-self-adjoint PI matrix subalgebra can be directly
extended to become self-adjoint.

A remarkable feature of the matrix algebras is the
path-independence property for a sequential product of its
basis vectors. Consider the product of a sequence of el-
ements in BA, |r〉A〈a|a〉A〈b|b〉A〈c| · · · |e〉A〈i| = |r〉A〈i|, with
i, a, b, c, · · · , e, r ∈ [1, dA]. Such a product is determined
only by the bra A〈i| of the first element and the ket |r〉A of
the final element, but independent of any other intermediate
elements. Likewise, a corresponding product of elements in

BAB is

(|r〉A〈a| ⊗Ura) · (|a〉A〈b| ⊗Uab) · (|b〉A〈c| ⊗Ubc)

· · · (|e〉A〈i| ⊗Uei ) = |r〉A〈i| ⊗Uri. (3)

For the diagrams in Fig. 1, this means that any base vector
|r〉A〈i| ⊗Uri depends only on the initial ancilla state |i〉A and
final ancilla state |r〉A, but independent of the detailed paths
from |i〉A to |r〉A. Then suppose that we make a preselection
|i〉A and a postselection |r〉A of the ancilla states, the central
system undergoes a deterministic unitary evolution Uri inde-
pendent of any intermediate paths (corresponding to possible
ancilla errors). Such a path-independence property of matrix
algebras is the underlying principle for the PI gates.

II. PI OPERATORS AND PI PROPAGATORS

Due to the isomorphism between MA and MAB, for any
ancilla operator HA = ∑

m,n hmn|m〉A〈n|, we can define a cor-
responding PI operator in the composite system as

HAB =
∑
m,n

hmn|m〉A〈n| ⊗Umn. (4)

The eigenvalues and eigenvectors of HA and HAB are related
in the following way (see Appendix A 1 for the proof).

Lemma 1. Let {λi}dAi=1 be the set of eigenvalues of HA, the
eigenvalues of HAB are still {λi}dAi=1 but each with an algebraic
multiplicity dB. For each eigenvector |v〉A = ∑dA

m=1 cm|m〉A

FIG. 1. (a)–(c) Diagrams of the basis of PI matrix algebras for
dA = 2, 3, 4. (d)–(f) Diagrams of the basis of some PI matrix sub-
algebras for dA = 3. In the diagrams, the dA blue dots represent the
ancilla states {|m〉A}dAm=1 and the loop or line with arrow pointing from
|n〉A to |m〉A represents the base vector |m〉A〈n| ⊗Umn, satisfying
UmeUen = Umn for m, e, n ∈ [1, dA]. The number of base vectors is d2

A

for a PI matrix algebra and smaller than d2
A for a PI matrix subalgebra.
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of HA with eigenvalue λ, HAB has a corresponding dB-
dimensional degenerate eigenspace spanned by {|v j〉}dBj=1 with

|v j〉 = ∑dA
m=1 cm|m〉A ⊗Umk| j〉B with k being an arbitrary in-

teger within [1, dA].
The isomorphism between MA and MAB also facilitates

the solution of the propagator generated by a PI operator HAB,
which we call the PI propagator. Suppose that WA(t, 0) =
e−iHAt = ∑

m,n ξmn(t )|m〉A〈n|, then we have

WAB(t, 0) = e−iHABt =
∑
m,n

ξmn(t )|m〉A〈n| ⊗Umn. (5)

Note that the analog still holds for time-dependent operators
HA(t ) and HAB(t ). Moreover, we can easily prove the lemma
below (see Appendix A 2 for the proof).

Lemma 2. The propagator WAB(t, 0) is in the PI matrix
algebra MAB if and only if its generator HAB ∈ MAB.

The PI propagator has the special property

PrWAB(t, 0)Pi ∝ |r〉A〈i| ⊗Uri, (6)

where Pi = |i〉〈i| ⊗ IB is an ancilla projection operator. So, the
PI propagation of the composite system with a preselection
and postselection on the ancilla states results in a deterministic
unitary operation on the central system. This can also be
understood by the spectral properties of the PI operators in
Lemma 1.WAB make the composite system evolve in different
degenerate eigenspaces of HAB, in exactly the same way as
WA drives the ancilla system. The initial and final projections
induce the transition

|i〉A ⊗Uik|ψ〉B → |r〉A ⊗Urk|ψ〉B, (7)

with the accompanying unitary evolutionUrkU
†
ik = Uri on the

central system, where |ψ〉B is an arbitrary central system state.
Moreover, since this property holds true for any initial and
final ancilla states, we can perform conditional operation until
the gate succeeds.

Note thatWAB represents a general class of PI propagators.
Suppose that WAB(t, 0) is the propagator in the interaction
picture associated with an arbitrary diagonal Hamiltonian in
the ancilla basis H0(t ) = ∑dA

m=1 |m〉A〈m| ⊗ Hm(t ) [28], where
{Hm(t )} is a set of arbitrary time-dependent Hamiltonians
on the central system. In Schrödinger picture, the propa-
gator is W (S)

AB (t, 0) = ∑
m,n ξmn(t )|m〉A〈n| ⊗ Rm(t )Umn, where

Rm(t ) = T {e−i
∫ t
0 Hm (t ′ )dt ′ } with T being the time-ordering op-

erator. Then PrW
(S)
AB (t, 0)Pi ∝ |r〉A〈i| ⊗ Rr (t )Uri, so the central

system still undergoes a unitary evolution.

III. PI MATRIX ALGEBRA FOR THE HILBERT-SCHMIDT
SPACE

The PI matrix algebra can be directly extended to the
HS space. For the ancilla system, its HS space has an
orthonormal basis {|mn〉〉A}dAm,n=1, where |mn〉〉A = |m〉A〈n|,
while the operators in the HS space lie in the matrix al-
gebra M̂A spanned by the basis B̂A = {|mn〉〉A〈〈pq|}mn,pq
[29,30]. A general superoperator for the ancilla is HA =∑

mn,pq hmn,pq|m〉A〈p|(·)|q〉A〈n| with (·) denoting an arbitrary

ancilla operator, corresponding to the operator ĤA =∑
mn,pq hmn,pq|mn〉〉A〈〈pq| in the HS space. For exam-

ple, XA(·)YA ↔ ∑
mn,pq xmpyqn|mn〉〉A〈〈pq| = XA ⊗ Y T

A , where
XA,YA ∈ MA and ZT

A is the transpose of ZA.
For the composite system, we can formulate a general class

of superoperators by restricting the left and right multiplica-
tion operators to vectors in the PI matrix algebra MAB,

HAB =
∑
mn,pq

hmn,pq(|m〉A〈p| ⊗Ump)(·)(|q〉A〈n| ⊗U †
nq ),

�
ĤAB =

∑
mn,pq

hmn,pq|mn〉〉A〈〈pq| ⊗ (Ump ⊗U ∗
nq ), (8)

where (·) denotes an arbitrary operator of the composite
system and U ∗

nq is the complex conjugate of Unq. With
XAB,YAB ∈ MAB, XAB(·)YAB ↔ ∑

mn,pq xmpyqn|mn〉〉A〈〈pq| ⊗
(Ump ⊗U ∗

nq ). This motivates the following definition.
Definition 2: PI matrix algebra for HS space. Consider

a vector space with the basis B̂AB = {|mn〉〉A〈〈pq| ⊗ (Ump ⊗
U ∗
nq )}dAm,n,p,q=1 over C, where {Umn} is the same set of unitary

operators on the central system as that in Definition 1. Then a
multiplication operation can be defined as

[|mn〉〉A〈〈pq| ⊗ (Ump ⊗U ∗
nq )][|rs〉〉A〈〈tv| ⊗ (Urt ⊗U ∗

sv )]

= δprδqs|mn〉〉A〈〈tv| ⊗ (Umt ⊗U ∗
nv ), (9)

with m, n, p, q, r, s, t, v ∈ [1, dA]. Define this vector space
with the multiplication operation in Eq. (9) as the PI matrix
algebra M̂AB for the HS space.

Then any superoperator ĤAB [Eq. (8)] is a vector in a PI
matrix algebra M̂AB. The spectral properties of ĤAB can be
determined in analog to Lemma 1, except that the algebraic
multiplicity of eigenvalues becomes d2

B (see Appendix A 3).
Moreover, according to Lemma 2, the propagator ŴAB(t, 0) =
e−iĤABt is still in M̂AB. Such a propagator has the same PI
property as that in Eq. (6),

P̂rŴAB(t, 0)P̂i ∝ |rr〉〉A〈〈ii| ⊗ (Uri ⊗U ∗
ri ), (10)

where P̂i = |ii〉〉A〈〈ii| ⊗ ÎB is the superoperator for the ancilla
projection with ÎB being the identity operation in the HS space
of the central system. We term this condition the PI gate
condition. For the closed-system evolution of the composite
system driven by a single Hamiltonian, Eq. (10) is equivalent
to Eq. (6). However, the power of Eq. (10) shows up when
dealing the open-system evolution of the composite system,
where we can treat the Hamiltonian and the dissipation oper-
ators on the same footing.

IV. PATH-INDEPENDENCE FOR ANCILLA NOISE

Suppose the ancilla suffers from Markovian noise and the
dynamics of the composite system is described by

dρ

dt
= LAB(ρ) = i[ρ,HAB] +

∑
i

D[Ki]ρ, (11)

where D[K]ρ = KρK† − {K†K, ρ}/2 is the Lindbladian dis-
sipator. In the HS space, the Liouville superoperator LAB

becomes
L̂AB = −iĤAB = −i(HAB ⊗ IAB − IAB ⊗ H∗

AB)

+ 1

2

∑
i

[2Ki ⊗ K∗
i − K†

i Ki ⊗ IAB − IAB ⊗ (K†
i Ki )

∗]. (12)
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The criteria of PI gates in Ref. [23] relies on a Dyson
expansion of the propagator ŴAB(t, 0) = eL̂ABt generated by
the Liouville superoperator. With the PI matrix algebra for the
HS space, we can provide an exact and unifying criteria for PI
gates.

Theorem 1. The PI gate condition [Eq. (10)] is exactly
satisfied if HAB and Ki for all i are in the same PI matrix
algebra MAB or subalgebra M′

AB.
Proof. If HAB, Ki ∈ MAB, then K†

i ∈ MAB since MAB is
self-adjoint or closed under Hermitian conjugation, so K†

i Ki ∈
MAB. Then, from Eq. (8), we obtain L̂AB ∈ M̂AB. According
to Lemma 2, Ŵ (t, 0) ∈ M̂AB, so the PI gate condition is satis-
fied. If HAB, Ki ∈ M′

AB, we first check if M′
AB is self-adjoint

or not. If so, we are done; if not, we can extendM′
AB to make

it self-adjoint. Then a similar conclusion can be reached as in
the former case for MAB.

As a special case of of PI gates, error-transparent gates for
QEC codes have been theoretically proposed [24,25] and re-
cently experimentally demonstrated against a specific system
error [23]. The error transparency requires the physical Hamil-
tonian commutes with the errors when acting on the QEC code
subspace (or the commutators of the physical Hamiltonian
and errors are proportional to the errors). By relating the error
syndromes of a QEC code with the ancilla states in PI gates,
we show the error-transparency condition can be interpreted
as a special case of Theorem 1 (see Appendix C 1).

Theorem 1 also unifies the path-independence criteria for
the ancilla dephasing and relaxation errors [23] (see Ap-
pendix C 2), experimentally relevant to the PI SNAP gates
in superconducting circuits [27]. Since the ancilla dephas-
ing operator Ki ∝ ∑dA

m=1 �im|m〉A〈m| ⊗ IB is automatically in
any PI matrix algebra, so the PI gate condition is exactly
satisfied with a PI control Hamiltonian HAB. However, the
ancilla relaxation operator Kj ∝ |m〉A〈n| ⊗ IB requires addi-
tional conditions to lie in the same PI matrix algebra withHAB,
which has been analyzed in Ref. [23] ( also see Appendix C).
Moreover, if the condition of Theorem 1 is not exactly satis-
fied, it is still possible to have an approximate PI condition
up to the leading-order Dyson expansions of the Liouville
superoperator [23] (see Appendix B).

V. SUMMARY

With the discovery of PI matrix algebra, we reveal the
elegant mathematical structure of PI quantum control. We also
find that the PI matrix algebras cannot only be formed by
operators in the Hilbert space of a composite system but also
by the operators in the HS space of the same system. This
permits us to treat the open system dynamics of the composite
system in a rigorous way and provide an exact and unifying
criteria for PI gates. The PI matrix algebra is also interesting
fundamentally, since the PI operators have peculiar spectral
properties and degenerate eigenspaces (see Lemma 1). More-
over, PI operators are generally non-Hermitian, so it will be
interesting to study the rich non-Hermitian properties of PI
operators [31], such as pseduo-Hermiticity and exceptional
points, and explore their physical implications.
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APPENDIX A: PROOFS OF LEMMAS IN THE MAIN TEXT

1. Proof of Lemma 1

Due to the isomorphism between the ordinary matrix alge-
bra MA and the PI matrix algebra MAB, for any operator of
the ancilla in MA, we can define a corresponding operator of
both the ancilla and central systems inMAB as

HA =
∑
m,n

hmn|m〉A〈n|, (A1a)

�
HAB =

∑
m,n

hmn|m〉A〈n| ⊗Umn. (A1b)

We can explicitly construct the map as a unitary transforma-
tion

UAB(HA ⊗ IB)U
†
AB = HAB, (A2)

with

UAB =
dA∑

m=1

|m〉A〈m| ⊗Umk (A3)

being a unitary matrix implementing different unitary opera-
tions on the central systems dependent on the ancilla states
and k being an arbitrary integer within [1, dA].

The eigenvalues and eigenvectors of HA and HAB are
closely related in the following way.

Lemma 1. Let {λi}dAi=1 be the set of eigenvalues of HA; the
eigenvalues of HAB are still {λi}dAi=1 but each with an algebraic
multiplicity dB. For each eigenvector |v〉A = ∑dA

m=1 cm|m〉A
of HA with eigenvalue λ, HAB has a corresponding dB-
dimensional degenerate eigenspace spanned by {|v j〉}dBj=1 with

|v j〉 = ∑dA
m=1 cm|m〉A ⊗Umk| j〉B with k being an arbitrary in-

teger within [1, dA].
Proof. The eigenvalues of HAB can be obtained by two

different approaches. In the first approach, notice that HA ⊗
IB and HAB are related through a unitary transformation
[Eq. (A2)], so they must have the same set of eigenvalues.
For the ancilla system alone, denote the eigenvalues of HA as
{λi}dAi=1. For the composite system, the eigenvalues of HA ⊗ IB
are still {λi}dAi=1 but each with an algebraic multiplicity dB. So
is the case with HAB.

In the second approach, we try to calculate the determinant
associated with HAB. Since {λi}dAi=1 are the set of eigenvalues

023102-4



ALGEBRAIC STRUCTURE OF PATH-INDEPENDENT … PHYSICAL REVIEW RESEARCH 4, 023102 (2022)

of HA, then we have

det(HA − λIA) =
dA∏
i=1

(λ − λi ). (A4)

The determinant can be obtained by successively performing
the two-partition of a matrix. For a d × d matrix H , denote
α ⊂ {1, · · · , d} as an index set and αc ⊂ {1, · · · , d} \ α as the
index set complementary to α. For index sets α, β, denote by
H[α, β] the submatrix of entries that lie in rows of H indexed
by α and the columns indexed by β, and simplify H[α, α] as
H[α]. Then for a nonsingular H[α], we have

det(H ) = det(H[α])det(H[αc] − H[αc, α]H [α]−1H[α, αc]),
(A5)

where H[αc] − H[αc, α]H [α]−1H[α, αc] is the Schur com-
plement of H[α] [32]. To compute det(HA − λIA), we can
first perform the two-partition of HA with α = {1}, then
similarly perform the two-partition of the remaining Schur
complement. The process is repeated until the final Schur
complement is a single entry, so that the determinant can
be expressed as sequential product. To compute det(HAB −
λIAB), we can similarly perform the successive two-partition
with respect to the ancilla state index only. Since Umm = IB,
one can verify that

det(HAB − λIAB) = [det(HA − λIA)]
dB =

dA∏
i=1

(λ − λi )
dB .

(A6)

Therefore, HAB has the same set of eigenvalues as that of HA

but each with an algebraic multiplicity dB.
From Eq. (A2), the eigenvector of HAB can be obtained

directly from that of HA ⊗ IB as

|v j〉 = UAB|v〉A| j〉B =
dA∑
n=1

cn|n〉A ⊗Unk| j〉B. (A7)

We can easily verify that |v j〉 is an eigenvector of HAB. Since
HA|v〉A = λ|v〉A, we have

∑dA
m=1 hnmcm = λcn, then

HAB|v j〉 =
dA∑

m,n=1

hnmcm|n〉A ⊗UnmUmk| j〉B

= λ

dA∑
n=1

cn|n〉A ⊗Unk| j〉B

= λ|v j〉, (A8)

where we useUnmUmk = Unk .

2. Proof of Lemma 2

Lemma 2. The propagator WAB(t, 0) is in the PI matrix
algebra MAB if and only if its generator HAB ∈ MAB.

Proof. If HAB ∈ MAB, then Hn
AB ∈ MAB for any positive

integer n, thenWAB(t, 0) = e−iHABt = ∑∞
n=0

(−it )n

n! Hn
AB ∈ MAB

(the above series always converges for any matrix operator
HAB in a finite-dimensional vector space).

Conversely, if WAB(t, 0) ∈ MAB for any t ∈ [0,∞), then
dWAB (t,0)

dt ∈ MAB. So HAB = i dWAB (t,0)
dt |t=0 ∈ MAB. The proof

can be easily generalized to the case of a time-dependent
HAB(t ).

3. Eigenvalues and eigenvectors of PI operators in the HS space
of the composite system

For the HS space, there also exists the isomorphism
between M̂A and M̂AB, so we have the following correspon-
dence:

ĤA =
∑
mn,pq

hmn,pq|mn〉〉〈〈pq|, (A9a)

�
ĤAB =

∑
mn,pq

hmn,pq|mn〉〉〈〈pq| ⊗ (Ump ⊗U ∗
nq ). (A9b)

Then, from Lemma 1, we can directly deduce that the
eigenvalues and eigenvectors of ĤA and ĤAB are related in
the following way.

Lemma 3. Let {λi}d
2
A
i=1 be the set of eigenvalues of

ĤA, the eigenvalues of ĤAB are {λi}d
2
A
i=1 but each with

an algebraic multiplicity d2
B. For each eigenvector |v〉〉A =∑dA

m,n=1 cmn|mn〉〉A of ĤA with eigenvalue λ, ĤAB has a cor-
responding d2

B-dimensional degenerate eigenspace spanned
by {|v jk〉〉}dBj,k=1 with |v jk〉〉 = ∑dA

m,n=1 cmn|mn〉〉A ⊗ (Umg ⊗
U ∗
nl )| jk〉〉B with g, l being arbitrary integers within [1, dA].

APPENDIX B: APPROXIMATE PI GATE CONDITION

If a general superoperator ĤAB can be divided into two
parts as

ĤAB = Ĥeff + V̂, (B1)

where Ĥeff is the dominant part and V̂ is a perturbation, then
the open-system evolution driven by ĤAB can be represented
by a generalized Dyson expansion as

ŴAB(t, 0) = e−i(Ĥeff+V̂ )t =
∞∑
p=0

Ŵp(t, 0), (B2)

with

Ŵ0(t, 0) = e−iĤeff t , (B3)

Ŵp(t, 0) =
∫ t

0
dtp · · ·

∫ t3

0
dt2

∫ t2

0
dt1Ŵ0(t, tp)

× V̂ · · · V̂Ŵ0(t2, t1)V̂Ŵ0(t1, 0), p � 1,

(B4)

where Ŵ0(t2, t1) = e−iĤeff (t2−t1 ).
In cases where the exact PI gate condition [Eq. (10)] cannot

be satisfied, we can formulate the approximate PI gate condi-
tion as follows [23]. Suppose that

P̂r

[
k∑

p=0

Ŵp(t, 0)

]
P̂i ∝ |rr〉〉A〈〈ii| ⊗ (Uri ⊗U ∗

ri ), (B5)

applies for k � n but does not hold for k > n, then we say the
PI gate condition is satisfied up to the nth order from |i〉A to
|r〉A.
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Just as WAB(t, 0) [Eq. (5)] represents a general class of
PI propagators in the Hilbert space of the composite system,
ŴAB(t, 0) [Eq. (B2)] represents a general class of PI prop-
agators in the HS space of the composite system. Suppose
ŴAB(t, 0) is the propagator in the interaction picture asso-
ciated with a Hermitian Hamiltonian Ĥ0(t ) = H0(t ) ⊗ IAB +
IAB ⊗ H∗

0 (t ), where H0(t ) = ∑
m |m〉A〈m| ⊗ Hm(t ). Then, in

Schrödinger’s picture, the Hamiltonian and propagator in the
HS space are

Ĥ(S)
AB (t ) = R̂(t )ĤABR̂†(t ) + i

∂R̂(t )

∂t
R̂†(t ), (B6)

Ŵ (S)
AB (t, 0) = R̂(t )ŴAB(t, 0), (B7)

with

R̂(t ) =e−iĤ0t = R(t ) ⊗ R∗(t )

=
∑
m

|mm〉〉A〈〈mm| ⊗ [Rm(t ) ⊗ R∗
m(t )], (B8)

where Rm(t ) = T {e−i
∫ t
0 Hm (t ′ )dt ′ }. Then the exact PI gate con-

dition in Schrödinger’s picture is

P̂rŴ (S)
AB (t, 0)P̂i

∝ |rr〉〉A〈〈ii| ⊗ [Rr (t )Uri ⊗ R∗
r (t )U

∗
ri]. (B9)

Moreover, since we can have a generalized Dyson expansion
of Ŵ (S)

AB (t, 0) as

Ŵ (S)
AB (t, 0) =

∞∑
p=0

Ŵ (S)
p (t, 0) =

∞∑
p=0

R̂(t )Ŵp(t, 0), (B10)

the approximate PI gate condition in Schrödinger’s picture is

P̂r

[
k∑

p=0

Ŵ (S)
p (t, 0)

]
P̂i

∝ |rr〉〉A〈〈ii| ⊗ [Rr (t )Uri ⊗ R∗
r (t )U

∗
ri]. (B11)

With the exact PI gate condition satisfied, the central sys-
tem undergoes a unitary evolution irrespective of the initial
and final ancilla states (or the approximate gate condition is
satisfied up to infinite-order for any initial and final ancilla
states). But for approximate PI gates, the approximate PI
condition is often satisfied up to different orders depending
on the initial and final ancilla states. We will give examples
to illustrate this point in the next section (also see the Supple-
mentary Information of Ref. [23] for details).

The Liouville superoperator L̂AB [Eq. (12)] is often divided
into two parts as

L̂AB = −iĤAB = L̂eff + Ŝ, (B12)

with

L̂eff = −i(Heff ⊗ IAB − IAB ⊗ H∗
eff ), (B13)

Ŝ =
∑
i

Ki ⊗ K∗
i , (B14)

with Heff = HAB − i
∑

i K
†
i Ki/2. Here L̂eff generates the no-

jump evolution with the non-Hermitian Hamiltonian Heff ,
while Ŝ induces the quantum jumps during the no-jump evo-
lution. The approximate PI condition [Eq. (B5) or Eq. (B11)]

for such a division of the Liouville superoperator is just the
definition of path independence in Ref. [23].

APPENDIX C: EXAMPLES OF PI GATES

To illustrate how to use Theorem 1, we present two ex-
amples of PI gates, including error-transparent gates [24–26]
and PI SNAP gates [23,27]. In the first example, we show
that the error transparency condition can be reinterpreted as
a special use of Theorem 1. In the second example, we show
that the path independence criteria for ancilla dephasing and
relaxation errors in PI SNAP gates can be unified by Theorem
1. For both examples, we also briefly discuss how the approx-
imate gate condition can be applied.

1. Error-transparent gates

Below we present the model for error-transparent gates, by
relating the ancilla states in this paper and the error syndromes
of QEC codes. The Hilbert space of the central system with
the ancilla in state |1〉A can be regarded as the logical subspace
of a QEC code, while the Hilbert spaces of the central system
with the ancilla in states |2〉A, · · · , |dA〉A are the error sub-
spaces. The correctable errors are Ki = √

γi|i〉A〈1| ⊗ IB with
i ∈ [2, dA].

Consider the total Hamiltonian of the composite system as
H0(t ) = ∑dA

m=1 |m〉A〈m| ⊗ Hm(t ), which may include both the
static and control Hamiltonians. Such a Hamiltonian is error
transparent if

[Ki,H0(t )] = λ1iKi, (C1)

which is satisfied for any i ∈ [2, dA]. One can see that this con-
dition is equivalent to H1(t ) − Hi(t ) = λ1i ∈ R, or {|m〉A}dAm=1
all belong to a noiseless ancilla subspace (NAS) defined in
Ref. [23]. With this condition, an error during the central
(logical) system gate time is equivalent to an error after the
gate (apart from a trivial phase factor), so the central system
gate can be recovered by error correction of the ancilla system.
Note that the error transparency condition in Eq. (C1) is often
more stringent than that in Ref. [25] (which only requires that
Eq. (C1) only satisfies when acting on the logical subspace).

We now show that the error transparency condition is
equivalent to Theorem 1. We first move to the interaction
picture associated with H0(t ), so the Hamiltonian vanishes.
If Eq. (C1) is satisfied, the error operator becomes

Ki(t ) = √
γi|i〉A〈1| ⊗ R†

i (t )R1(t )

= √
γie

−iλ1it |i〉A〈1| ⊗ IB, (C2)

where Rm(t ) = T {e−i
∫ t
0 Hm (t ′ )dt ′ }. In this case, the set of error

operators {Ki(t )} definitely belong to a self-ajoint PI matrix
subalgebra with the basis

{|m〉A〈m| ⊗ IB}dAm=1 ∪ {|i〉A〈1| ⊗ IB, |1〉A〈i| ⊗ IB}dAi=2, (C3)

so the PI gate condition is exactly satisfied for any initial and
final ancilla states.

However, if some error operator Kj does not satisfy
Eq. (C1) [i.e., H1(t ) − Hj (t ) is a nontrivial operator], the PI
gate condition cannot be exactly satisfied for all initial and
final states, but we can still use the approximate PI gate con-
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FIG. 2. Diagrams of the bases of PI matrix subalgebras with
dA = 4 for (a) error-transparent gates and (b) PI SNAP gates. Here
the purple loops or lines represent the base vectors for the no-jump
evolution and the red (red-dashed) lines represent the ancilla relax-
ation errors that can (cannot) form a PI matrix subalgebra with the
no-jump evolution.

dition [Eq. (B5)]. For the diagram in Fig. 2(a), we conclude
that the PI gate condition is satisfied up to infinite-order (or
exactly satisfied) from |1〉A to |2〉A or |3〉A, but is satisfied only
up to the zeroth order from |1〉A to |4〉A.

2. PI SNAP gates

The SNAP gate on the cavity, S(�ϕ) = ∑∞
n=0 e

iϕn |n〉〈n|, im-
parts arbitrary phases �ϕ = {ϕn}∞n=0 to the different Fock states
of the cavity [21,22]. The SNAP gate, aided by dA-level an-
cilla, can be made fault tolerant against ancilla dephasing and
relaxation errors with the PI design [23,27], therefore termed
the PI SNAP gates. Below we present the model for PI SNAP
gates.

Consider a static Hamiltonian H0 = |1〉A〈1| ⊗ H1 +∑dA
m=2 |m〉A〈m| ⊗ H2, where H1, H2 are Hamiltonians

of the central system differing by some nontrivial

operator (the constant ancilla state energy terms are
neglected here). The control Hamiltonian is Hc(t ) =

(|1〉A〈dA| ⊗ R1(t )UR†

2(t ) + H.c.) with U = S(�ϕ) and
Rj (t ) = e−iHjt ( j = 1, 2). One can see that the ancilla states
{|m〉A}dAm=2 form a NAS. The ancilla errors include the
dephasing errors {√κm|m〉A〈m| ⊗ IB}dAm=1 and the relaxation
errors {√γm|m − 1〉A〈m| ⊗ IB}dAm=2.

To use Theorem 1, we first move to interaction pic-
ture associate with H0. The control Hamiltonian becomes
Hc = 
(|1〉A〈dA| ⊗U + H.c.). The ancilla dephasing er-
rors {√κm|m〉A〈m| ⊗ IB}dAm=1 and the ancilla relaxation er-
rors {√γm|m − 1〉A〈m| ⊗ IB}dAm=3 remain unchanged, but the
relaxation error

√
γ1|1〉A〈2| ⊗ IB becomes

√
γ1|1〉A〈2| ⊗

R†
1(t )R2(t ).
Obviously, the control Hamiltonian and the ancilla dephas-

ing errors are in the self-adjoint PI matrix subalgebra with the
basis

{|m〉A〈m| ⊗ IB}dAm=1 ∪ {|1〉A〈dA| ⊗U, |dA〉A〈1| ⊗U †}, (C4)

so if there are only ancilla dephasing errors, the PI gate con-
dition is exactly satisfied. If there are also ancilla relaxation
errors {√γm|m − 1〉A〈m| ⊗ IB}dAm=3, we can still form a larger
self-adjoint PI matrix subalgebra with the basis

{|m〉A〈m| ⊗ IB}dAm=1 ∪ {|1〉A〈dA| ⊗U, |dA〉A〈1| ⊗U †}
∪{|m − 1〉A〈m| ⊗ IB, |m〉A〈m − 1| ⊗ IB}dAm=3, (C5)

but the addition of the relaxation error
√

γ1|1〉A〈2| ⊗
R†
1(t )R2(t ) destroys such a PI matrix subalgebra. For the di-

agram in Fig. 2(b), the PI gate condition is satisfied up to the
second order from |1〉A to |4〉A, third order from |1〉A to |3〉A,
and fourth order from |1〉A to |2〉A [23].
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