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Nondefinability of Rings of Integers in
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Abstract We show that the set of algebraic extensions F' of QQ in which Z or the
ring of integers @ F are definable is meager in the set of all algebraic extensions.

It is proved in Theorem 1.1 and Corollary 5.7 of Eisentraeger et al. [5] that the set
of subfields F of Q in which one of Z, Q\Z, O, F \ OF is existentially definable is
a meager subset of the space & of all subfields E of Q, in the topology induced from
22 In this short note, we explain how a stronger statement can be deduced from
known results from field arithmetic (which, in particular, studies certain properties
of algebraic extensions of Q) and model theory (which studies definable subsets in
structures with certain properties).

Recall that a field F is PAC if every geometrically irreducible F-variety has an
F-rational point, w-free if every finite embedding problem for the absolute Galois
group G is solvable, and Hilbertian if A'(F) is not thin; that is, for every finitely
many absolutely irreducible f1,..., f;, € F[X,Y] monic of degree at least 2 in ¥,
and 0 # g € F[X], there exists x € F such that g(x) # 0 and f;--- f,(x,Y) has
no zero in F (see Chapters 11, 27, and 12 and Section 13.5 of Fried and Jarden [7]).

Proposition 1 The set of subfields F of Q which are w-free and PAC is comeager
iné.

Proof  We claim that both the set P of PAC fields in & and the set # of Hilbertian
fields in & are dense Gg-sets and therefore comeager. Since the union of two meager
sets is meager, and Hilbertian PAC fields are w-free (see Jarden [9, Theorem 5.10.3]),
this then implies the claim.

The set P is dense in &, since for any finite extensions Q € K C L, Jarden’s
PAC Nullstellensatz (see [7, Theorem 18.6.1]) gives a PAC field K € F C @ with
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F N L = K. Moreover, & is the intersection of the countably many open sets

Ur={Fe€&:f¢F[XY]}U U {(Fe&:x,yeF)
x,y€Q, f(x,y)=0

for f € Q[X, Y] irreducible, and hence a Gs-set.

The set # is dense in &, since every number field is Hilbertian (this is Hilbert’s
irreducibility theorem; see Serre [ 14, Theorem 3.4.1] or [7, Theorem 13.3.5]). More-
over, J is the intersection of the countably many open sets

Vfl ----- fn,g:8\{F68:f15'~-5fn5g€F[X7Y]}
n
u U ) [ {(Feé:xeFy¢F}
x€Q,g(x)#01=1yeq, f; (x,y)=0
where n > 0, _fl, cesJn € @[X , Y] monic of degree at least 2 in Y and irreducible,
and 0 # g € Q[X]. O

Remark2 By [7, Theorem 11.2.3], it would suffice to take Uy with f € Q[X,Y].
The fact that the set of Hilbertian PAC fields F C @ is dense in & could also be
deduced directly by applying Jarden [8, Theorem 2.7] instead of the PAC Nullstel-
lensatz.

Proposition 3 In an w-free PAC field F, every definable subring R C F is a field.
Proof  An integral domain R is partially ordered by the relation
a<b << a=bv(a|bAb}ta).

If R is not a field, then the powers of a nonzero nonunit form an infinite chain with
respect to <, which shows that R has the strict order property (see Shelah [15, Def-
inition 2.1]; cf. the argument in Poizat [13, Chapter 1.2 Lemma 1]). The strict
order property implies the strong order property SOP (see [15, Definition 2.2, Claim
2.3(1)]), which in turn implies the 3-strong order property SOP3 (see [15, Defini-
tion 2.5, Claim 2.6]). However, w-free PAC fields do not have SOP3 by a result of
Chatzidakis (see Chatzidakis [2, Theorem 3.10]), and hence neither does any struc-
ture definable in them. O

Remark 4

1. The same conclusion holds if the PAC field F' is “bounded” (rather than w-
free), for example, if G is finitely generated, since then its theory is even
simple (see Chatzidakis and Pillay [3, Corollary 4.8]); in particular, it does
not have SOP3 (see [15, Claim 2.7]).

2. Moreover, a PAC field of characteristic zero also has no definable proper sub-
fields (see Junker and Koenigsmann [11, Lemma 6.1 and Proposition 4.1]).

3. Itis known that w-free PAC fields satisfy not even the weaker property SOP;
(rather than SOP3) (see Chernikov and Ramsey [4, Corollary 6.8] and Kaplan
and Ramsey [12, Section 9.3]).

Corollary 5 The set of subfields F of Q in which Z. or O are definable is meager
iné&.
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Remark 6 The same arguments go through for separable algebraic extensions of
F,(t) instead of Q. If one is interested only in Z not being existentially definable,
then one could apply the much more elementary Fehm [6, Theorem 2] and Anscombe
[1, Theorem 1], which work more generally for large fields, instead of Proposition 3.

Remark 7 By combining Proposition | and Remark 4(2), we also obtain the fol-
lowing strengthening of [5, Corollary 5.8]. For every number field K, the set of fields
F C Q containing K in which K is definable is meager in &.

Remark 8 Similarly, we obtain the following strengthening of [5, Corollary 5.14].
If & denotes the space & modulo isomorphism of fields, then the set of isomorphism
classes of fields F C @ in which Z, O, or some some fixed number field K are
definable is meager in 8. Indeed, as the sets & and J (notation from the proof of
Proposition 1) are dense Gg-sets invariant under isomorphism, and the quotient map
& — & is continuous and closed, also the images of & and J are dense Gg-sets,
and therefore comeager in &.

Remark 9 We sketch how a strengthening of [5, Theorem 5.11] can also be
obtained. The set of computable and decidable fields F € Q in which neither Z
nor Of are definable is dense in &. Indeed, given finite extensions Q € K C L,
let e be the minimal number of generators of the Galois group of the Galois closure
Lof L /K. By slightly adapting the proof of Jarden and Shlapentokh [10, Proposi-
tion 2.5], one finds a computable and decidable PAC field K € F C @ with absolute
Galois group free profinite on e generators and F' N L = K, and Remark 4(1) applies
to F.
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