

Nondefinability of Rings of Integers in Most Algebraic Fields

Philip Dittmann and Arno Fehm

Abstract We show that the set of algebraic extensions F of \mathbb{Q} in which \mathbb{Z} or the ring of integers \mathcal{O}_F are definable is meager in the set of all algebraic extensions.

It is proved in Theorem 1.1 and Corollary 5.7 of Eisentraeger et al. [5] that the set of subfields F of $\overline{\mathbb{Q}}$ in which one of \mathbb{Z} , $\mathbb{Q} \setminus \mathbb{Z}$, \mathcal{O}_F , $F \setminus \mathcal{O}_F$ is existentially definable is a meager subset of the space \mathcal{E} of all subfields E of $\overline{\mathbb{Q}}$, in the topology induced from $2^{\overline{\mathbb{Q}}}$. In this short note, we explain how a stronger statement can be deduced from known results from field arithmetic (which, in particular, studies certain properties of algebraic extensions of \mathbb{Q}) and model theory (which studies definable subsets in structures with certain properties).

Recall that a field F is *PAC* if every geometrically irreducible F -variety has an F -rational point, ω -*free* if every finite embedding problem for the absolute Galois group G_F is solvable, and *Hilbertian* if $\mathbb{A}^1(F)$ is not thin; that is, for every finitely many absolutely irreducible $f_1, \dots, f_n \in F[X, Y]$ monic of degree at least 2 in Y , and $0 \neq g \in F[X]$, there exists $x \in F$ such that $g(x) \neq 0$ and $f_1 \cdots f_n(x, Y)$ has no zero in F (see Chapters 11, 27, and 12 and Section 13.5 of Fried and Jarden [7]).

Proposition 1 *The set of subfields F of $\overline{\mathbb{Q}}$ which are ω -free and PAC is comeager in \mathcal{E} .*

Proof We claim that both the set \mathcal{P} of PAC fields in \mathcal{E} and the set \mathcal{H} of Hilbertian fields in \mathcal{E} are dense G_δ -sets and therefore comeager. Since the union of two meager sets is meager, and Hilbertian PAC fields are ω -free (see Jarden [9, Theorem 5.10.3]), this then implies the claim.

The set \mathcal{P} is dense in \mathcal{E} , since for any finite extensions $\mathbb{Q} \subseteq K \subseteq L$, Jarden's PAC Nullstellensatz (see [7, Theorem 18.6.1]) gives a PAC field $K \subseteq F \subseteq \overline{\mathbb{Q}}$ with

Received December 30, 2020; accepted May 25, 2021

2020 Mathematics Subject Classification: Primary 11U09; Secondary 12L12

Keywords: definability, pseudo-algebraically closed fields

© 2021 by University of Notre Dame 10.1215/00294527-2021-0029

$F \cap L = K$. Moreover, \mathcal{P} is the intersection of the countably many open sets

$$U_f = \{F \in \mathcal{E} : f \notin F[X, Y]\} \cup \bigcup_{x, y \in \overline{\mathbb{Q}}, f(x, y)=0} \{F \in \mathcal{E} : x, y \in F\}$$

for $f \in \overline{\mathbb{Q}}[X, Y]$ irreducible, and hence a G_δ -set.

The set \mathcal{H} is dense in \mathcal{E} , since every number field is Hilbertian (this is Hilbert's irreducibility theorem; see Serre [14, Theorem 3.4.1] or [7, Theorem 13.3.5]). Moreover, \mathcal{H} is the intersection of the countably many open sets

$$V_{f_1, \dots, f_n, g} = \mathcal{E} \setminus \{F \in \mathcal{E} : f_1, \dots, f_n, g \in F[X, Y]\} \cup \bigcup_{x \in \overline{\mathbb{Q}}, g(x) \neq 0} \bigcap_{i=1}^n \bigcap_{y \in \overline{\mathbb{Q}}, f_i(x, y)=0} \{F \in \mathcal{E} : x \in F, y \notin F\},$$

where $n > 0$, $f_1, \dots, f_n \in \overline{\mathbb{Q}}[X, Y]$ monic of degree at least 2 in Y and irreducible, and $0 \neq g \in \overline{\mathbb{Q}}[X]$. \square

Remark 2 By [7, Theorem 11.2.3], it would suffice to take U_f with $f \in \mathbb{Q}[X, Y]$. The fact that the set of Hilbertian PAC fields $F \subseteq \overline{\mathbb{Q}}$ is dense in \mathcal{E} could also be deduced directly by applying Jarden [8, Theorem 2.7] instead of the PAC Nullstellensatz.

Proposition 3 *In an ω -free PAC field F , every definable subring $R \subseteq F$ is a field.*

Proof An integral domain R is partially ordered by the relation

$$a \preceq b \iff a = b \vee (a \mid b \wedge b \nmid a).$$

If R is not a field, then the powers of a nonzero nonunit form an infinite chain with respect to \preceq , which shows that R has the strict order property (see Shelah [15, Definition 2.1]; cf. the argument in Poizat [13, Chapter 1.2 Lemma 1]). The strict order property implies the strong order property SOP (see [15, Definition 2.2, Claim 2.3(1)]), which in turn implies the 3-strong order property SOP₃ (see [15, Definition 2.5, Claim 2.6]). However, ω -free PAC fields do not have SOP₃ by a result of Chatzidakis (see Chatzidakis [2, Theorem 3.10]), and hence neither does any structure definable in them. \square

Remark 4

1. The same conclusion holds if the PAC field F is “bounded” (rather than ω -free), for example, if G_F is finitely generated, since then its theory is even simple (see Chatzidakis and Pillay [3, Corollary 4.8]); in particular, it does not have SOP₃ (see [15, Claim 2.7]).
2. Moreover, a PAC field of characteristic zero also has no definable proper subfields (see Junker and Koenigsmann [11, Lemma 6.1 and Proposition 4.1]).
3. It is known that ω -free PAC fields satisfy not even the weaker property SOP₁ (rather than SOP₃) (see Chernikov and Ramsey [4, Corollary 6.8] and Kaplan and Ramsey [12, Section 9.3]).

Corollary 5 *The set of subfields F of $\overline{\mathbb{Q}}$ in which \mathbb{Z} or \mathcal{O}_F are definable is meager in \mathcal{E} .*

Remark 6 The same arguments go through for separable algebraic extensions of $\mathbb{F}_p(t)$ instead of \mathbb{Q} . If one is interested only in \mathbb{Z} not being *existentially* definable, then one could apply the much more elementary Fehm [6, Theorem 2] and Anscombe [1, Theorem 1], which work more generally for *large* fields, instead of Proposition 3.

Remark 7 By combining Proposition 1 and Remark 4(2), we also obtain the following strengthening of [5, Corollary 5.8]. For every number field K , the set of fields $F \subseteq \bar{\mathbb{Q}}$ containing K in which K is definable is meager in \mathcal{E} .

Remark 8 Similarly, we obtain the following strengthening of [5, Corollary 5.14]. If $\bar{\mathcal{E}}$ denotes the space \mathcal{E} modulo isomorphism of fields, then the set of isomorphism classes of fields $F \subseteq \bar{\mathbb{Q}}$ in which \mathbb{Z} , \mathcal{O}_F , or some some fixed number field K are definable is meager in $\bar{\mathcal{E}}$. Indeed, as the sets \mathcal{P} and \mathcal{H} (notation from the proof of Proposition 1) are dense G_δ -sets invariant under isomorphism, and the quotient map $\mathcal{E} \rightarrow \bar{\mathcal{E}}$ is continuous and closed, also the images of \mathcal{P} and \mathcal{H} are dense G_δ -sets, and therefore comeager in $\bar{\mathcal{E}}$.

Remark 9 We sketch how a strengthening of [5, Theorem 5.11] can also be obtained. The set of computable and decidable fields $F \subseteq \bar{\mathbb{Q}}$ in which neither \mathbb{Z} nor \mathcal{O}_F are definable is dense in \mathcal{E} . Indeed, given finite extensions $\mathbb{Q} \subseteq K \subseteq L$, let e be the minimal number of generators of the Galois group of the Galois closure \hat{L} of L/K . By slightly adapting the proof of Jarden and Shlapentokh [10, Proposition 2.5], one finds a computable and decidable PAC field $K \subseteq F \subseteq \bar{\mathbb{Q}}$ with absolute Galois group free profinite on e generators and $F \cap \hat{L} = K$, and Remark 4(1) applies to F .

References

- [1] Anscombe, S., “Existentially generated subfields of large fields,” *Journal of Algebra*, vol. 517 (2019), pp. 78–94. [Zbl 1431.12009](#). [MR 3869267](#). [DOI 10.1016/j.jalgebra.2018.09.021](#). [591](#)
- [2] Chatzidakis, Z., “Amalgamation of types in pseudo-algebraically closed fields and applications,” *Journal of Mathematical Logic* vol. 19 (2019), art. 1950006. [MR 4014886](#). [DOI 10.1142/S0219061319500065](#). [590](#)
- [3] Chatzidakis, Z., and A. Pillay, “Generic structures and simple theories,” *Annals of Pure and Applied Logic*, vol. 95 (1998), pp. 71–92, 1998. [Zbl 0929.03043](#). [MR 1650667](#). [DOI 10.1016/S0168-0072\(98\)00021-9](#). [590](#)
- [4] Chernikov, A., and N. Ramsey, “On model-theoretic tree properties,” *Journal of Mathematical Logic*, vol. 16 (2016), art. 1650009. [MR 3580894](#). [DOI 10.1142/S0219061316500094](#). [590](#)
- [5] Eisentraeger, K., R. Miller, C. Springer, and L. Westrick, “A topological approach to undefinability in algebraic extensions of \mathbb{Q} ,” preprint, [arXiv:2010.09551v1](#) [math.NT]. [589](#), [591](#)
- [6] Fehm, A., “Subfields of ample fields: Rational maps and definability,” *Journal of Algebra*, vol. 323 (2010), pp. 1738–44. [Zbl 1258.14028](#). [MR 2588135](#). [DOI 10.1016/j.jalgebra.2009.11.037](#). [591](#)
- [7] Fried, M. D., and M. Jarden, *Field Arithmetic*, 3rd ed., Springer, Berlin, 2008. [MR 2445111](#). [589](#), [590](#)
- [8] Jarden, M., “Large normal extension of Hilbertian fields,” *Mathematische Zeitschrift*, vol. 224 (1997), pp. 555–65. [Zbl 0873.12001](#). [MR 1452049](#). [DOI 10.1007/PL00004298](#). [590](#)

- [9] Jarden, M., *Algebraic Patching*, Springer, Heidelberg, 2011. [Zbl 1235.12002](#). [MR 2768285](#). DOI 10.1007/978-3-642-15128-6. 589
- [10] Jarden, M., and A. Shlapentokh, “Decidable algebraic fields,” *Journal of Symbolic Logic*, vol. 82 (2017), 474–88. [Zbl 1387.12008](#). [MR 3663413](#). DOI 10.1017/jsl.2017.10. 591
- [11] Junker, M., and J. Koenigsmann, “Schlanke Körper (slim fields),” *Journal of Symbolic Logic*, vol. 75 (2010), pp. 481–500. [Zbl 1218.03027](#). [MR 2648152](#). DOI 10.2178/jsl/1268917491. 590
- [12] Kaplan, I., and N. Ramsey, “On Kim-independence,” *Journal of the European Mathematical Society*, vol. 22 (2020), pp. 1423–74. [MR 4081726](#). DOI 10.4171/jems/948. 590
- [13] Poizat, B., *Stable Groups*, American Mathematical Society, Providence, 2001. [MR 1827833](#). DOI 10.1090/surv/087. 590
- [14] Serre, J.-P., *Topics in Galois Theory*, Jones and Bartlett, Boston, 1992. [MR 1162313](#). 590
- [15] Shelah, S., “Toward classifying unstable theories,” *Annals of Pure and Applied Logic*, vol. 80 (1996), pp. 229–55. [Zbl 0874.03043](#). [MR 1402297](#). DOI 10.1016/0168-0072(95)00066-6. 590

Acknowledgments

The authors would like to thank Itay Kaplan and Yatir Halevi for help with references. Special thanks go to [forkinganddividing.com](#). This work was done while P.D. was a postdoctoral fellow of the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2020 semester, and as such supported by the U.S. National Science Foundation under grant DMS-1928930. A.F. was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant 404427454.

Dittmann

Fakultät Mathematik, Institut für Algebra, Technische Universität Dresden, Dresden, Germany; philip.dittmann@tu-dresden.de

Fehm

Fakultät Mathematik, Institut für Algebra, Technische Universität Dresden, Dresden, Germany; arno.fehm@tu-dresden.de