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Abstract

The repeated evolution of multicellularity across the tree of life has pro-
foundly affected the ecology and evolution of nearly all life on Earth. Many
of these origins were in different groups of photosynthetic eukaryotes, or
algae. Here, we review the evolution and genetics of multicellularity in sev-
eral groups of green algae, which include the closest relatives of land plants.
These include millimeter-scale, motile spheroids of up to 50,000 cells in
the volvocine algae; decimeter-scale seaweeds in the genus Ulva (sea let-
tuce); and very plantlike, meter-scale freshwater algae in the genus Chara
(stoneworts). We also describe algae in the genus Caulerpa, which are giant,
multinucleate, morphologically complex single cells. In each case, we review
the life cycle, phylogeny, and genetics of traits relevant to the evolution of
multicellularity, and genetic and genomic resources available for the group
in question. Finally, we suggest routes toward developing these groups as
model organisms for the evolution of multicellularity.
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Major transitions:
pivotal events in
evolution that resulted
in shifts in the units of
reproduction and/or
the way information is
transmitted

Cellular
differentiation: the
ability of genetically
identical cells within a
multicellular organism
to differ in
morphology,
physiology, gene
expression, and
function, considered
by many authors to be
a requirement for true
multicellularity

Plasmodesmata:
cytoplasmic channels
between cells that
allow transport and
communication among
cells
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INTRODUCTION

Most life on Earth is unicellular, and this has probably always been so. Nevertheless, numerous
unicellular species have evolved multicellular bodies (or thalli, coenobia, grexes, fruiting bodies,
etc.), beginning at least 2.5 billion years ago (134). The evolution of multicellularity was a key
innovation that led to massive radiations in several groups, such as plants, animals, fungi, and sev-
eral algal clades. The ecological and evolutionary consequences of multicellularity can hardly be
overstated. Many of Earth’s biomes are defined by the dominant multicellular species, for example,
tropical, temperate, and boreal forests; kelp forests; and coral reefs. Each of these, of course, has
strongly influenced the evolution of numerous species adapted to living among the trees, kelps, and
corals, which in turn has affected the predators, prey, competitors, and mutualists of those species.
It has even been suggested that the evolution of multicellularity in cyanobacteria may have en-
hanced the Great Oxidation Event 2-2.4 billion years ago, ultimately affecting the ecology and
evolution of nearly everything on Earth (134).

Aside from its effects on the biotic and abiotic environments to which organisms adapt, the
evolution of multicellularity also affects subsequent evolutionary dynamics by changing what an
organism is. Each time a population transitions from unicellular to multicellular life, a change
occurs in the very units of evolution, from cells to multicellular organisms. For this reason, the
evolution of multicellularity is often grouped with other evolutionary changes that altered the
units of evolution, for example, the transitions from unitary (prokaryotic) to compound (eukary-
otic) cells and from solitary insects to caste-differentiated societies or superorganisms. Because of
an influential book by John Maynard Smith and Eérs Szathmadry (106), these and related events
are called major transitions in evolution.

As with the other major transitions, there are important gaps in our understanding of the evo-
lution of multicellularity. Unlike most others, though, for the evolution of multicellularity we have
a decent sample size on which to test our hypotheses. The most frequently cited estimate of the
number of independently evolving lineages that have evolved multicellularity is at least 25 (60).
In fact, as we show here, the actual number is likely to be much larger than 25.

Although it is diverse, multicellular life does share some commonalities, referred to as dynamic
patterning modules by Niklas and colleagues (11, 113). To be multicellular requires some form of
cell-cell adhesion, most often mediated by the cell wall or extracellular matrix in green algae. Al-
though aggregative multicellularity exists elsewhere (e.g., in cellular slime molds), in green algae
and most other taxa, multicellular individuals are built from mitotic descendants of a single cell
(either a zygote or a vegetative cell). Polarized and localized growth and cell division are also fre-
quently found in multicellular taxa, as well as different degrees of cellular differentiation and spe-
cialization, often initiated with asymmetric cell division. As organismal size increases, additional
structural and long-distance communication requirements may arise that can be met in various
ways, such as cytoplasmic streaming and polarized transport through intercellular connections
(e.g., plasmodesmata) or through chemical/hormonal signals. A newly emerging consideration
whose prevalence remains unknown is the interaction of evolving multicellular individuals with
not only their abiotic environment but also microbiota that can make essential contributions to
the form and function of a multicellular individual.

Open questions about the evolution of multicellularity include everything from its philosoph-
ical implications to evolutionary processes and dynamics to specific phenotypic and genotypic
changes. How, for example, does the unit of evolution shift from the single cell to the group of
cells that make up an organism? What selective pressures drove the transition to multicellularity,
or need the processes underlying this change have been adaptive at all> What is the relative impor-
tance of the particular selective pressures versus the nature of the unicells in determining whether
and how multicellularity evolves? How do trait heritability and fitness shift from the unicellular
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to the multicellular unit? What is the relative importance of novel traits versus the co-option of
existing traits, and what role did phenotypic plasticity play in determining this? What specific
genetic changes were involved?

We consider some of these questions, mostly those later in the list, in the context of the green
algae. Green algae are a diverse and ecologically important group of eukaryotes that include both
unicellular and a wide variety of multicellular forms (Figure 1). Along with the red and glauco-
phyte algae and land plants, green algae are archaeplastidans, that is, they are direct descendants of
a eukaryotic ancestor that engulfed (or otherwise came to contain) a cyanobacterium that evolved
into the original chloroplast. This event is known as the primary endosymbiosis, in contrast to
secondary and higher-order endosymbioses in which a eukaryotic alga was engulfed by another
eukaryote and evolved into a chloroplast. The green algae are paraphyletic with respect to land
plants, which together make up the Viridiplantae (Figure 1). Recent estimates of the number of
species of green algae range from ~11,000 to ~22,000 (61, 62).

The green algae are an ideal group for exploring the evolution of multicellularity simply be-
cause they have done it so many times. The green algal crown lineages of chlorophytes, ulvophytes,
and trebouxiophytes all include multicellular species descended from different unicellular ances-
tors (Figure 1), but that is only the tip of the iceberg. The number of suspected transitions to
multicellular life in the Chlorophyceae alone inspired David Kirk (90, p. 22) to call them “master
colony-formers,” and the other two classes likely include multiple independent origins of multicel-
lularity as well. In fact, Grosberg & Strathmann’s (60, p. 622) estimate of “at least 25” independent
origins of multicellularity might very well apply to the green algae alone.

Although multiple independent origins of multicellularity were already suspected from mor-
phological and ultrastructural comparisons, the extent of such convergence only became clear
from the increasing availability of taxon-rich phylogenetic reconstructions based on nucleic acid
and amino acid sequence data. Since the late twentieth century, the rapidly decreasing cost of se-
quencing has facilitated the construction of increasingly larger phylogenies, phylogenies based on
multiple unlinked genes, and, most recently, phylogenies based on very large numbers of genes, an
approach often referred to as phylogenomics or phylotranscriptomics. The increased phylogenetic
resolution allowed by such studies has often revealed complicated pictures of the evolution of mul-
ticellularity that were previously obscured by restricted taxonomic sampling (41, 95,96, 112, 133).

Reduced sequencing costs have also brought us to the genomic era, in which large numbers
of whole-genome sequences are available for most large taxonomic groups, including the green
algae. A recent review identified 132 green algal genome assemblies; given the accelerating pace of
sequencing, this number is sure to be outdated by the time this manuscript is published (71). Un-
fortunately, Hanschen & Starkenburg (71) also found that as the pace of sequencing new genomes
has increased, their quality has declined. Furthermore, the taxonomic distribution of these assem-
blies is far from representative, with the Chlorophyceae, Trebouxiophyceae, and Mamiellophyceae
overrepresented relative to the number of species in each of these classes and the Ulvophyceae
and Charophyceae severely underrepresented (71).

Genomics and molecular phylogenetics have opened up new opportunities for investigating
multicellularity in different algal groups. As phylogenies based on molecular sequence data be-
came the norm in the late twentieth century, it became clear in many cases that taxonomies based
on morphological characters were misled by frequent convergence. Some taxa were already sus-
pected to be para- or polyphyletic based on detailed studies of cell morphology and ultrastructure,
but as in many other taxa, molecular phylogenetics of algae revealed taxonomic problems at an
unsuspected scale. However, where taxonomists see problems, evolutionary biologists see sample
size. Convergent evolution provides statistical power to comparative analyses, allowing correla-
tions to be measured between, for example, traits and environments or traits and other traits.
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Figure 1 (Figure appears on preceding page)

Approximate phylogeny of the Archaeplastida with representative growth forms. Phylogeny based on data from References 34, 41, 96,
135. Representative multicellular/siphonous algae discussed in the main text are pictured to the left of representatives of their closest
unicellular relatives: () Chara braunii, adapted from Show_ryu, CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0), via
Wikimedia Commons; (b) Mesostigma viride strain SAG 50-1, adapted from Tatyana Darienko, CC BY-SA 4.0 (https://
creativecommons.org/licenses/by-sa/4.0); (c) Volvox aureus, adapted from Matthew D. Herron; (d) Chlamydomonas reinbardtii, adapted
with permission from Deborah Shelton; (¢) Caulerpa racemosa adapted from Nick Hobgood, CC BY-SA 3.0 (https://creativecommons.
org/licenses/by-sa/3.0), via Wikimedia Commons; (f) Desmochloris mollenbaueri strain CCAP 6006, photo kindly provided by Tatyana

Darienko and Thomas Préschold; and (g) Ulva sp., adapted from Matthew D. Herron.

The available genome assemblies include several colonial and multicellular species (for the
purposes of this paragraph, we are taking a broad view of coloniality, including some species that
are described as unicellular or colonial). Within the Chlorophyceae, these include five species of
Volvocaceae (order Chlamydomonadales), a similar number of Scenedesmaceae, two species of
Selenastraceae, and one of Mychonastaceae (order Sphaeropleales). Three colonial species of tre-
bouxiophytes are represented, two from the Chlorellaceae (order Chlorellales) and one from
the Botryococcaceae (order Trebouxiales), as well as three species of ulvophytes, two of which
are Ulva species (Ulvaceae, Ulvales) and one of which is a Caulerpa species (Bryopsidales). Four
species of colonial/multicellular streptophyte algae are represented, from the classes Charo-
phyceae (Chara braunii), Chlorokybophyceae (Chlorokybus atmophyticus), Klebsormidiophyceae
(Klebsormidium nitens), and Zygnematophyceae (Mesotaenium endlicherianum) (71) (Figure 1).

The combination of genomics and molecular phylogenetics can be a powerful tool for under-
standing the evolution of multicellularity. When the genomes of a multicellular organism and its
unicellular relatives are compared, we know that the differences between them must have evolved
since they diverged from a common ancestor. Differences between the unicellular and multicel-
lular genomes, especially when they can be polarized by sampling multiple taxa, are candidates
for the genetic basis of multicellularity. When gene functions are known, this information can be
used to narrow the focus to genes with plausible roles in multicellular development.

While genome sequences are necessary for understanding how multicellularity and other traits
evolved, they are often remarkably uninformative about how complex traits such as multicellular-
ity originated and were manifested. It is increasingly appreciated that many of the items in the
genetic tool kits that were important for multicellularity were already present in simple unicellu-
lar ancestors (124, 128, 129, 131). Understanding the origins and evolution of multicellularity and
other complex traits, therefore, requires a deeper analysis of how those tool kits were modified
and redeployed in the descendant species. Much of the research into the origins of multicellu-
larity focuses on a few well-developed model species as well as on animals and land plants due
to their importance to humans. Our goal here is to highlight a few examples of how green algae
offer additional underexploited opportunities for exploring the origins of complex multicellular
or macroscopic body plans in systems that are increasingly tractable for experimental manipu-
lation. The four genera highlighted here—}Vo/vox and volvocine green algae, Ulva, Caulerpa, and
Chara—all evolved their complex traits and body plans independently. Although these species rep-
resent just a small fraction of the diversity in the green algal universe, they each have the potential
to contribute insights into important general questions about the evolution of organismal com-
plexity and multicellularity, and the latter three deserve additional attention as they are relatively
underdeveloped as models.

THE VOLVOCINE ALGAE

The volvocine green algae are a group of motile unicellular and colonial species within the Chloro-
phyceae. Their life cycle is haplontic, with a dormant, desiccation-resistant zygote or spore as the
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Volvocaceae: the
family that includes
the genera
Colemanosphaera,
Eudorina, Pandorina,
Platydorina, Pleodorina,
Volvox, Volvulina, and
Yamagishiella

Haplontic: a life cycle
in which only the
haploid phase includes
a multicellular stage
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Volvox life cycle and development. Vegetative reproduction (/ight green region) occurs in the haploid

(1n) phase and can be synchronized with a 16 h:8 h light:dark diurnal regime where one full reproductive
cycle is completed every 48 h. Vegetative development starts with mature precleavage adults (@) and
proceeds clockwise through embryogenesis (@), the cytodifferentiation of germ cells (gonidia) and somatic
cells to form juveniles (@), the hatching of juveniles (@), and finally maturation to complete the cycle as the
next generation of adults. After hatching, the parental somatic cells of the previous generation are discarded
and undergo senescence and cell death. Sexual development ([ight gray region) is triggered by exposure to sex
inducer (@) and leads to gonidia undergoing modified embryogenesis and development (not shown) into adult
sexual egg-bearing females or adult sexual sperm-packet-bearing males (@). Sperm packets are released and
swim to females where mating takes place with internal fertilization (@), resulting in the formation of diploid
(2n) zygospores (@). Meiosis (dashed gray line) occurs upon germination and produces three polar bodies

and one haploid progeny that re-enters the vegetative life cycle (@). Figure adapted from Reference 150.

only diploid stage (Figure 2). Reproduction is normally asexual, with entry into the sexual phase
triggered by various environmental stressors, such as heat shock or low nitrogen.

Volvocine is a term of convenience rather than a formal taxon, but it generally refers to three
families of colonial algae—Tetrabaenaceae, Goniaceae, and Volvocaceae—and their close unicel-
lular relatives in the genera Chlamydomonas and Vitreochlamys (Figure 3). Just which unicellular
relatives are included in this group differs somewhat among authors. The Tetrabaenaceae (118)
and Goniaceae (123) include small colonies of 4 and up to 64 cells, respectively. The Volvocaceae
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Approximate phylogeny (chronogram) of the volvocine algae. Phylogeny based on Reference 75.
Developmental changes are those identified by Kirk (91). Extracellular matrix and cytoplasmic bridges are
present in all three families of colonial/multicellular volvocine algae (Tetrabaenaceae, Goniaceae,
Volvocaceae). Rotation of the basal bodies is present in Goniaceae and Volvocaceae. Gonium undergoes
partial inversion; complete inversion is present in all members of the Volvocaceae. Expanded volume of
extracellular matrix evolved independently in Astrephomene and in the Volvocaceae and has been lost in
Platydorina and some members of the Pundorina/Volvulina clade. Sterile soma evolved independently in
Astrephomene and at least two lineages of Volvocaceae and has been lost in Platydorina and some species of
Eudorina. Specialized germ cells and asymmetric cell division evolved in the Volvox carteri lineage and were
lost in Volvox dissipatrix. Retention of cytoplasmic bridges in adults evolved independently in three lineages
of Volvox. Note that several nominal taxa are polyphyletic, including the genera Pundorina, Volvulina,
Eudorina, Pleodorina, and Volvox, as well as some nominal species. Abbreviations: ECM, extracellular matrix;
Mya, million years ago.

includes eight genera of spheroidal colonies ranging from 8 to ~50,000 cells, all of which undergo
complete inversion during embryogenesis (29).

This diversity of forms makes the volvocine algae an outstanding model system for under-
standing the origins of multicellularity. Living volvocine species comprise a near continuum of
sizes and degrees of complexity, including unicellular forms, simple colonies of 4-32 undifferenti-
ated cells, and larger colonies with rudimentary cellular differentiation. Comparative studies have
reconstructed the evolutionary history of traits relevant to the evolution of multicellularity, and
most inferred ancestral states have analogs among extant species (68, 69, 74-76, 91).

Several volvocine genomes have been sequenced, starting with Chlamydomonas reinbardtii
in 2007 (109) and some unicellular relatives of Chlamydomonas more recently (31). All three
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colonial families are now represented, including Tetrabaena socialis (49), Gonium pectorale (70), and
several members of the Volvocaceae: Volvox carteri (124), Yamagishiella unicocca, and Eudorina sp.
(65). Genome sizes are similar, ranging from 111 Mb in C. reinbardtii to 149 Mb in G. pectorale
(49). There is no obvious relationship between genome size and organismal size or complexity; for
example, the V. carteri genome (138 Mb) is similar in size to that of the 4-celled 7 socialis (136 Mb)
and smaller than that of the 8- to 16-celled G. pectorale (149 Mb), and it has fewer protein-coding
genes than either (49).

Comparisons among sequenced genomes showed that the evolution of colony formation as
such did not involve large-scale changes in the protein-coding capacity of the genome. However,
some gene families did originate or expand around the time of this innovation, and among those
are gene families involved in DNA repair, protein kinase activity, the extracellular matrix, and cell
adhesion (49).

Changes in cell cycle regulation may have played a role in the early evolution of volvocine
multicellularity, as such changes would be necessary for the multiple fission cell cycle to adapt
to increasing cell numbers per colony and to more stereotyped cell division numbers compared
with unicellular species where division numbers can range widely from one to five depending on
growth conditions (91). The cyclin-D1-encoding gene has a single copy in C. reinbardtii, three in T.
socialis, and four in G. pectorale and V. carteri, and a downstream target of D-type cyclin-dependent
kinases, the volvocine retinoblastoma-related protein, experienced accelerated evolution in the
colonial taxa relative to C. reinbardtii (49). Expression of the G. pectorale version of retinoblas-
toma in retinoblastoma-deficient C. reinbardtii was sufficient to cause a quasi-colonial phenotype,
though the cause of this phenotype and how it related to changes in the cell cycle (if any) remain
to be determined (70).

Another early step in the evolution of multicellularity was the formation of physical connec-
tions among cells, for example, by cytoplasmic bridges resulting from incomplete cytokinesis and
transformation of cell wall components into a colonial boundary (91). The cytoplasmic bridges
play a critical role in cell-cell adhesion early in development, but in all but a few species, they
are absent in adult colonies (91). Their role in development involves a morphogenetic process
known as inversion, with partial inversion (convex-to-concave shape change) occurring during
Gonium development and complete inversion (inside-out colony reconfiguration) occurring in all
Volvocaceae (52, 53, 64, 101, 139).

Many of the changes that distinguish the multicellular volvocines from their unicellular rela-
tives were established early in their evolution, by about 200 Mya (75). Out of the 12 developmental
changes identified by Kirk (91) that led from a unicellular ancestor to multicellular V. carteri, 8 oc-
curred by shortly after the divergence among the three multicellular families (76).

A crucial subsequent event in the evolution of multicellular complexity is the differentiation
of previously uniform cells into multiple functional types. The last 4 of Kirk’s (91) 12 steps, those
that took place after the divergence among the three multicellular families, all relate to cellular
differentiation. The unicellular ancestor of the volvocine algae is presumed to have had, like all
unicellular organisms, generalist cells capable of performing all necessary functions. This situa-
tion persists in the small multicellular taxa, such as Tetrabaena, Gonium, and Pandorina, and in their
extant unicellular relatives. On at least three separate occasions, a subset of cells has differenti-
ated into sterile somatic cells specialized in motility, leaving the remaining cells responsible for
reproduction (76).

Experiments by Kirk and colleagues (138) showed that differential expression of the transcrip-
tion factor 7egA (somatic regenerator) is necessary and sufficient to cause somatic cell differen-
tiation in V. carteri. In regA~ mutants, somatic cells dedifferentiate and adopt a reproductive fate
(82). RegA is part of a gene cluster that also includes three regA-like paralogs (r/sA, 7isB, risC) whose
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roles are not known (47). The regA cluster is found in other volvocine species that evolved somatic
cells independently (67), but its role in those species is unknown. Interestingly, regA orthologs are
also present in species without soma, suggesting that regA in these species plays roles unrelated to
somatic cell differentiation (58). However, at least in one lineage (Astrephomene), somatic cells are
predicted to have evolved in the absence of 7egA orthologs, indicating that other genetic mecha-
nisms for somatic differentiation exist in the volvocine lineage (58).

Two separate lineages within the polyphyletic nominal genus Folvox have further evolved spe-
cialized reproductive cells (gonidia) that, in addition to being much larger than the cells in undif-
ferentiated species, do not contribute to motility (74). In V. carteri, Volvox obversus, Volvox africanus,
and Volvox reticuliferus, cell fate is determined early in development through a set of asymmet-
ric divisions in which the smaller daughter cell continues to divide, eventually producing somatic
cells, and the larger daughter cell stops dividing and differentiates into a vegetative reproductive
cell (43, 44,74, 92).

Although genes involved in several important developmental processes—somatic cell differ-
entiation, asymmetric division, and inversion—have been characterized in the model organism
within the colonial volvocine algae, V. carteri (104), very little is known about the genetics of these
processes in other volvocine species. Still less is known about the genetic changes responsible
for the early steps in the evolution of multicellularity in this group, for example, the incomplete
cytokinesis that produces cytoplasmic bridges, the conversion of a cell wall into an extracellular
matrix and colonial boundary, and the rotation of the basal bodies that aligns the flagella for colo-
nial motility (91). Analyses of the origin and evolution of gene families in the available genome
sequences have suggested some candidates. Of these, all but 7eg4 have orthologs or co-orthologs
in Chlamydomonas. For example, changes to the retinoblastoma gene (MAT3/RB) and expansion
of the D-type cyclin family have been suggested to have played a role in changes to the cell cycle
related to the origin of multicellularity (70, 124). Defects in the V. carteri glsA gene cause defects
in asymmetric cell division during embryogenesis. Interestingly, the predicted g/s4 gene product
is a chromatin-associated protein conserved in Chlamydomonas and other eukaryotes (110). Like-
wise, the invA gene of V. carteri encodes a kinesin-related protein required for inversion, and this
gene also has an ortholog in Chlamydomonas (115, 116). More generally, a transcriptome study of
V. carteri cell types revealed that lineage-specific genes (those found in Chlamydomonas and multi-
cellular volvocine algae, but not outside this clade) are enriched for cell-type-specific expression
compared with all other genes (105). Thus, some of the roots for specialized processes found in
Volvox first appeared in a unicellular ancestor where their functions remain unclear, but which
could be further investigated in Chlamydomonas or other extant species that lack these innova-
tions. Several gene families that may be associated with multicellularity and that expanded at its
origins include those with inferred functions in cell adhesion, phosphorylation, and the extracel-
lular matrix. Chlamydomonas is a well-established model with reverse genetic methods available
for functional testing (132). Recent advances in stable nuclear transformation in several species
of multicellular volvocine algae suggest that it may soon be possible to test the functions of these
genes through reverse genetics (97-99, 122).

ULVA: A MULTICELLULAR COMMUNITY ORGANIZER

The genus Ulva belongs to the order Ulvales, a clade of filamentous or blade-like marine algae
(Figure 4). The closest unicellular relatives of the Ulvales are in the order Chlorocystidales (33,
34,95, 135) (Figure 4). Chlorocystidales includes marine and terrestrial species with filamentous
(Ochlochaete, Ruthnielsenia) and unicellular (Chlorocystis, Desmochloris, Halochlorococcums) morpholo-
gies (33, 120, 135); note that Halochlorococcum is polyphyletic, and not all described species belong
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Figure 4 (Figure appears on preceding page)

Ulvophyceae. (#). Approximate phylogeny (chronogram) of the class Ulvophyceae with representative growth forms, adapted with
permission from Reference 41 with additional information from References 34, 96, 135. (b)) Approximate phylogeny (cladogram) of the
order Ulvales with representative growth forms, based on data from References 34, 135. The closest unicellular relatives of the Ulvales
are in the genera Desmochloris and Halochlorococcum (34). Halochlorococcum is polyphyletic, with Halochlorococcum marinum within the more
distantly related Oltmannsiellopsidales (125). Abbreviations: Camb., Cambrian; Carb., Carboniferous; Cenoz., Cenozoic; Dev.,
Devonian; Jur., Jurassic; Mya, million years ago; Ord., Ordovician; Perm., Permian; Sil., Silurian; Tri., Triassic.

to Chlorocystidales (125). Divergences within the Ulvales extend to around 300 Mya, and their di-
vergence from the order Ulotrichales to around 500 Mya (41). As with all molecular clock studies
of ancient divergences, the confidence intervals associated with these inferences are large, so they
should be treated as order-of-magnitude estimates. Nevertheless, they give some idea of the age of
the origin of multicellularity within this group, which was likely prior to the earliest divergences
within the Ulvales and, assuming that the most recent common ancestor of Ulvales and Chloro-
cystidales was unicellular, subsequent to their divergence. The genus Ulva has been merged with
Enteromorpha, whose species have a branched tube-like morphology (72, 145). A partly blended
tube-blade morphology is seen in some species of the Ulva-Enteromorpha clade, and experimental
induction of both morphotypes within a clonal population (13) further supports the idea that the
morphogenetic programs of the two genera are manifestations of developmental plasticity and
possibly different degrees of canalization. Because Ulva-like species are better studied, they are
the focus of this description.

Ulva has an isomorphic haplo-diplontic life cycle with diploid thalli of the sporophyte
generation producing haploid unicellular parthenospores through meiosis (Figure 54). The
parthenospores then develop into haploid gametophytes that are similar in morphology to the
sporophytes but are capable of mitotically producing unicellular isogametes of either mz¢+ or mr—
mating type. Additionally, unmated m#+ gametes can produce either new haploid gametophytes
or homozygous diploid parthenosporophytes (7, 80, 81, 155). Sequencing of 7¢+ and m¢— strains
of Ulva partita revealed a complex pair of nonrecombining mating-type haplotypes controlling
gamete differentiation, though the molecular details of mating-type determination remain to be
worked out (161). The life cycle of Ulva from parthenospore or zygote to mature spore-forming
adult takes about five weeks to complete in laboratory culture (137).

The body plan of Ulva is made up of three primary cell types positioned along an apical-basal
axis: basal rhizoid cells, stem-forming stem cells, and apical blade cells, which proliferate the most
actively and form the bulk of the thallus (Figure 54). The lower portion of Ulva is composed of
a hollow stem formed by stem cells from which filamentous rhizoid cells grow basally to produce
a holdfast that can anchor the alga to a substrate. Loss of either apical or basal structures triggers
stem cell proliferation and asymmetric division to reform the missing structures. Only stem cells
can regenerate both of the other cell types (137). As the two-layered flat blade structures mature,
they undergo differentiation starting from their apical margins, where haploid motile gametes or
parthenospores are formed (155).

In plants, phytohormones control growth and morphogenesis, and in Ulva, there are analogous
substances that regulate development. At least three types of endogenous inhibitory substances are
produced by Ulva that control the timing and possibly the spatial distribution of reproductive de-

velopment. These include two sporulation inhibitors (SIs)—a glycoprotein and a low-molecular- ~ Haplo-diplontic:
a life cycle in which

. . both haploid and
(157). Several developmental mutants have been isolated that disrupt normal morphology (15, 21, diploid phases include

50), including slender (S/), which produces filamentous blades and a few basal rhizoid cells but  a multicellular stage
lacks totipotent stem cells. The disrupted genes in S/ and other developmental mutants have yet
to be identified.

weight compound (142)—and an inhibitor of gamete release from the mother cells within thalli
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Figure 5

Life cycle and morphogenesis of Ulva. (a) Simplified diagram of the haplo-diplontic isomorphic life

cycle of Ulva. The multicellular gametophytes (@) of either plus or minus mating type produce biflagellated
gametes (@) that can mate to form a diploid zygote (@), which develops into a sporophyte (@), or they can
settle and redevelop as gametophytes. The diploid sporophyte can produce quadriflagellated haploid meiotic
zooids that settle and develop into gametophytes. (b)) Microbial signaling and chemical communication

in Ulva development. Simplified life cycle diagram showing stages where chemical and microbial interactions
influence development. (@) Motile phase single-celled spores will settle to the seafloor under the influence
of bacterially produced quorum-sensing acyl-homoserine lactones (AHLs) and (@) transition to the sessile
multicellular phase. (@) Three main cell types (blade cells, stem cells, and rhizoids) proliferate to produce
(@) the adult thallus, with morphogenesis under the control of bacterially produced thallusin and as-yet-
unidentified signals. (@) Dimethylsulfoniopropionate (DMSP) and other metabolites produced by Ulva may
supply organic nutrients to associated bacteria. Unidentified sporulation inhibitors (SIs) control the timing of
sporulation that takes place on the distal portion of the thallus where either gametes or zoospores are produced.

The Role of the Microbiome

Macroalgae, including Ulva, have associated microbiomes that colonize surface tissue and may
play roles in growth and morphogenesis (48, 55). Ulva is unable to develop normally when cul-
tured axenically and instead adopts a callus-like morphology with undifferentiated cells when its
microbiome is removed. Normal morphogenesis can be restored when Ulva is cocultured with
one or more bacterial species that produce essential morphogens or developmental regulators.
Research into the identity of morphogenesis-inducing bacteria and the morphogens produced
by the bacteria has yielded important insights and helped frame a new set of questions. Bacterial
associations with Ulva and relatives (e.g., Enteromorpha, Monostroma) have been studied for many
years, resulting in the identification of specific bacterial taxa that associate with some species and of
morphogenetic compounds produced by bacteria (155). It remains unclear how much taxonomic
specificity is associated with the Ulva microbiome or whether morphogenesis-inducing functions
are distributed across different bacterial groups (54, 130).

One interesting class of morphogenetic regulator is a quorum-sensing acyl-homoserine lactone
(AHL) that enhances the substrate attachment of gametes or zooids (diploid spores) to promote
the transition from the unicellular motile phase to the sessile multicellular phase of the life cy-
cle (87, 144, 154) (Figure 5b). This finding is particularly interesting as it ties the communal
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sensing behavior of prokaryotic species via quorum sensing to a major developmental transition
in Ulva related to its decision to enter the multicellular stage of its life cycle (see the next section).
The potential selective advantage for Ulva in settling in areas of high AHL concentration might
be in finding bacteria that can promote its morphogenesis. It is unknown whether there is addi-
tional specificity regarding the class of AHLs recognized by Ulva or variability for this trait across
different species.

A second bacterially produced sesquiterpenoid, thalussin, is a true morphogen for Ulva that
promotes cell differentiation and organismal polarity, though it alone is not sufficient for the full
morphogenesis of axenic Ulva cultures (Figure 5b). Thalussin was first discovered by researchers
using bioassays for morphogenesis-promoting compounds secreted by bacteria in a relative of
Ulva, Monostroma oxyspermum, where it promoted proliferation of the blade-like thallus (103).
One of the morphogenesis-inducing bacteria for Ulva mutabilis, Maribacter, is a member of the
Bacteroidetes family from which thalussin was identified (153). Indeed, thalussin was the molecule
from Maribacter culture supernatants that was identified through fractionation, verified with syn-
thetic analogs, and able to reproduce that effect of Maribacter coculturing on Ulva. The active
form of thallusin was also a siderophore that enabled uptake of Fe(III) by Ulva (4). Notably, the
effect of thallusin on Monostroma and Ulva was different (thallus proliferation versus polarity and
cell differentiation, respectively), indicating that the effect of thallusin has evolved dynamically in
the ulvophytes.

Besides thallusin, there is at least one other bacterial-produced morphogen for Ulva that can
be provided by a much broader range of bacterial taxa and acts to stimulate thallus proliferation
(153, 155) (Figure 5b). One species that can provide this as-yet-unidentified substance or sub-
stances is a Roseovarius strain that engages in a two-way communication with Ulva. The bacteria
senses dimethylsulfoniopropionate (DMSP) produced by Ufva, which serves as a chemoattractant,
and secretes a compound or compounds that promote thallus proliferation and morphogenesis in
Ulva. These compounds in turn also stimulate Ulva to produce and secrete glycerol, which pro-
motes bacterial growth (89). Coculturing of axenically derived Ulva callus with both Maribacter
and Roseovarius leads to normal morphogenesis of Ulva in a simplified tripartite system (155). The
identification of the second morphogenesis factor in this system would be another major step
forward and help set the stage for dissecting the perception and signaling events that must lie
downstream of the bacterial morphogens (130).

Microbiota and the Origins of Multicellularity

Ulva is an example of multicellularity being intertwined with prokaryote—eukaryote cross-
kingdom interactions. Another example of such interactions comes from the choanoflagellate
species Salpingoeca rosetta, which is part of the holozoan clade that includes metazoans and their
closest unicellular and simple multicellular relatives (78). S. rosetta is facultatively multicellular,
producing single cells, chains of cells, or rosettes (36). Interestingly, the propensity to form these
different morphs is influenced by small molecules produced by a bacterial species isolated from
its environment, Algoriphagus machipongonensis (159). The algal and choanoflagellate examples of
bacterial-induced eukaryotic multicellular morphogenesis raise the interesting possibility that
such cross-kingdom interactions were more widespread drivers of the origins of multicellularity
than currently understood (160). While this is an appealing idea, it is difficult to untangle from
what are likely long and complex histories of ecological interactions between prokaryotes and
eukaryotes.

In the case of Ulva, the morphogenetic programming for normal development may have
evolved independently of bacteria and then come to depend on bacterial associations secondarily.
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A somewhat analogous situation is the widespread and frequent transition of algae from vitamin
prototrophy to auxotrophy, where the auxotrophy is presumably complemented by bacterially
produced vitamins in their environment or epibiome (32, 86). Further investigation into the role
of bacterial morphogens in Ulvz may help shed light on how these signals are integrated into
developmental programs and whether in the past there might have been alternate routes for the
development of Ulva without bacterial signals.

Ulva mutabilis Is a Model System for Algal Multicellularity
and Dimorphic Life Cycles

While research on Ulva is spread across multiple species, U. mutabilis [now also including conspe-
cific Ulva compressa (140, 141)] is a promising candidate model organism for the genus Ulva (156)
and related groups of ulvophytes. U. mutabilis has several key advantages, including a relatively
high rate of spontaneous mutability to produce stable morphotypes such as Slender, a life cycle
that can be easily controlled (146, 156), and a sequenced haploid genome (37) (Table 1). Inter-
estingly, the genetic tool kit of U. mutabilis that was inferred from its genome was not especially
enriched in gene families or functional categories that might be associated with multicellularity,
such as transcription factors, and its overall gene content and genome size were on par with uni-
cellular species of chlorophytes. This finding is similar to that for volvocine algae, where the I/
carteri genome was not qualitatively very different from that of its unicellular relative, C. rein-
bardtii (124). Thus, the multicellularity genetic tool kit of Ulvz may also be derived largely from
one shared with its last unicellular ancestor.

Current understanding of ulvophycean relationships places members of the order Chlorocys-
tidales as the closest unicellular relatives of Ulva (Figure 4). These unicellular relatives have a
coccoid morphology, and most members have also undergone adaptation to terrestrial environ-
ments (33, 152). Although these relatives have been little studied to date, they are well positioned
for use in comparative genomics and could potentially have members that are amenable to ge-
netic or molecular genetic manipulation to understand gene function. By combining comparative
genomics and developmental genetics, it may be possible to define the genes necessary for mor-
phogenesis, including pathways that have coevolved with their prokaryotic symbionts, and even
to compare homologous gene functions in a relatively close unicellular outgroup.

Additional genomic resources include mating locus (M7) haplotype sequences and transcrip-
tome data for U. partita and Ulva prolifera (73, 83, 161). The promise of developmental genetics
should also be enhanced by the relatively recent development of nuclear genome transformation
using a method modified from yeast and a dominant selectable marker for zeocin resistance (119),
as well as newly developed vectors (12). The transformation method not only enabled stable ran-
dom integration and expression of transgenes but also yielded several classes of putative develop-
mental mutants that may be tagged with the integrated transgene, thus facilitating identification
of the disrupted loci in these strains. With these tools, it should be possible to gain new insights
into the origins of developmental programming and its relationship to bacterial symbionts.

CAULERPA: COMPLEXITY WITHOUT CELLS?

Caulerpa is a green seaweed genus in the ulvophycean order Bryopsidales (Figure 4) whose indi-
viduals are multinucleate single cells that can grow to meters in length. Caulerpa can propagate
vegetatively through fragmentation and regeneration and sexually through the production of small
motile gametes (151) (Figure 6). Some species of Caulerpa, such as Caulerpa taxifolia, are invasive
pests, while Caulerpa lentillifera (sea grapes) is grown as food and has potential medicinal properties
(26, 163).
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Figure 6

Morphology of giant multinucleate siphonous Caulerpa cells from two species, Caulerpa taxifolia and Caulerpa
lentillifera. Anatomical features (pseudo-organs) and the apical-basal axis are labeled. Messenger RNA
(mRNA) and, presumably, proteins from pseudo-organs show spatial differentiation (colored heat map)
along the apical-basal axis. It is unknown to what extent this is due to the long-distance transport of mRNA
and/or spatial differentiation of nuclei.

Caulerpa and other genera in the Bryopsidales challenge the notion that organismal complexity
can only be achieved through multicellularity and cell-type differentiation (30, 114). Each giant
single-celled Caulerpa individual is organized along an apical-basal axis with organ-like regions
(pseudo-organs) growing from a long tube-shaped stolon that lies on the seabed. Fronds [or anal-
ogous structures, depending on the species (10, 163)] grow upwards from the stolon, while rhi-
zoids (or holdfasts) grow downward into the benthic substratum. These pseudo-organs are struc-
turally and functionally analogous to the tissues of a land plant: Rhizoids act as roots to anchor
the Caulerpa individual to the seabed and are specialized for nutrient uptake (3, 28); stolons are
similar to primary stems, providing structural connectivity between pseudo-organs and initiating
new growth of fronds and rhizoids; fronds, like leaves, are structures where photosynthetic activity
is presumably highest and are also organized along their own apical-basal axis where the apical tip
is the site of growth, much like a shoot apical meristem (Figure 6) (25, 30, 84).

The striking convergence of form and function between land plant morphologies and those
of Caulerpa and other algae in the family Bryopsidales was a key observation supporting Kaplan
& Hagemann’s (88) organismal theory of plant development. This organismal theory considers
the roles of individual plant cells to be less important than the supracellular levels of organization
mediated through symplastic intercellular connections and vasculature (30, 88).

In multicellular organisms, cell-type specialization into reproductive and somatic fates estab-
lishes a potential for genetic conflict that s typically mitigated by organismal clonality (i.e., all cells
are genetically identical) established through a single-celled bottleneck during sexual or asexual
reproduction (59). The multinucleate nature of Caulerpa cells creates a similar potential for con-
flict. Interestingly, propagation of Caulerpa can occur via vegetative fragmentation into portions
containing only one pseudo-organ or a subset of pseudo-organs (22, 136). This observation im-
plies that at least some nuclei in Caulerpa may be totipotent and raises additional questions about
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whether there is any permanent nuclear specialization and how replicative competition between
nuclei is managed.

Recent studies of the Caulerpa transcriptome lend molecular support to the idea that pseudo-
organs are functionally specialized domains within each individual. Independently conducted
studies of transcriptomes using RINA prepared from separate morphological domains of C. taxifo-
lia (126) or C. lentillifera (6) both identified differential enrichment of transcripts encoding specific
functional classes of proteins from each domain (Figure 6). Thus, even in the absence of individual
cells, different regions within a single Caulerpa cell have the capacity for functional differentiation.
The bases for spatially differential transcript accumulation remain to be determined for Caulerpa.
Because Caulerpa cells are multinucleate, the spatial differentiation could be at the level of tran-
scriptional programs of individual nuclei within pseudo-organs, and it could also be based on the
long-distance transport of messenger RNAs (mRNAs) to specific subcellular locations. Addition-
ally, spatial specialization could be mediated by the long-distance transport of proteins or other
molecules within the cell. Cytoplasmic streaming is well documented in Caulerpa and may provide
the mechanism for long-distance transport (35).

Given the size and complexity of Caulerpa cells, it might be expected that they possess large
and complex genomes. On the contrary, the nuclear genome of C. lentillifera (the only currently
sequenced species) was surprisingly modest in size (28.7 Mb), and its predicted protein-coding
gene content (9,311 loci) was comparable with many unicellular species of green algae (5). Thus,
as was also the case for Ulvz and volvocine algae, the genetic tool kits for becoming more com-
plex in size and in form—either through multicellularity or through cellular enlargement and
subcompartmentalization—are not notably different from those of unicellular microalgae. To un-
derstand how Cuulerpa and other coenocytic macroalgae achieve morphological complexity will
require not just comparative genomics but also the advancement of genetic and molecular genetic
tools for interrogating developmental mechanisms. While the production of small biflagellate ga-
metes has been observed in different species of Caulerpa, ploidy levels and the nature of its sexual
cycle remain unclear and may differ between species (163). The existence of highly distinct mor-
photypes at the species level (163) (Figure 6) suggests that heritable patterning modules exist and
might be identified through forward genetics or even nuclear transplantation experiments anal-
ogous to those done to understand the nuclear control of morphogenesis in Acetabularia (66). It
is also currently unclear which species of uninucleate unicellular microalgal ulvophytes might be
the best proxy for an ancestral state that preceded the evolution of Caulerpa and other members

of the Bryopsidales (Figure 4).

Microbiome Studies of Caulerpa

Caulerpa spp. possess distinct epiphytic and endophytic communities of bacteria that have mostly
been characterized with respect to biogeography and as taxonomic markers. Functions in nutrient
uptake, holobiont metabolism, and possibly chemical ecology have also been inferred (1, 2, 28,
111). It remains unknown whether, like Ulva, its microbial associates also shape Caulerpa devel-
opment. It is also unknown whether axenic cultures of Caulerpa might be established for use in
investigating this topic, but doing so would be beneficial.

THE CHAROPHYTE PARADOX

Charophytes are a grade of mostly freshwater green algae with a few terrestrial species. Like most
chlorophytes, they have haplontic life cycles, and some (e.g., Klebsormidiophyceae) appear to
have lost sexuality altogether. All but the order Mesostigmatophyceae have evolved some form of
multicellularity, which, depending on the group, ranges from simple undifferentiated filaments or

www.annualreviews.org o Green Algal Multicellularity

619



Annu. Rev. Genet. 2021.55:603-632. Downloaded from www.annualreviews.org

Access provided by 162.238.117.150 on 12/01/21. For personal use only.

620

clusters to plantlike forms with three-dimensional pseudoparenchymatous structures and multiple
cell types. Charophyte algae are part of a larger taxonomic grouping, streptophytes, that also en-
compasses land plants (embryophytes), but charophyte algae are a paraphyletic grade (Figure 7).
An interesting feature of charophytes as a whole is their relative paucity of species diversity com-
pared with embryophytes and chlorophyte algae (61). Paradoxically, the closest charophyte rel-
atives of embryophytes are members of the highly derived group Zygnematophyceae, which are
unicellular or exhibit simple filamentous multicellularity without obvious cellular differentiation.

Recent research into charophyte algae has made use of genomic information as a guide to the
early evolution of land plants, especially for understanding the genetic origins of key terrestrial
adaptations such as abiotic stress protection (e.g., desiccation, high light, UV radiation) and hor-
monal signaling systems (16, 27, 38, 42, 79, 85, 94, 100, 117). Charophyte algae have also been
championed as possible models for various aspects of land plant physiology and cell biology (46).
Here, we consider charophyte algae from a different perspective, as potential models for the ori-
gins of streptophyte multicellularity (23). This topic is challenging given the age of the major
charophyte orders (41) and the scarcity of well-developed model systems among charophytes.
Thus, unlike the case for volvocine algae, where extant species with different degrees of size and
cellular differentiation can serve as proxies or templates for understanding the progression from
unicellular to more complex multicellular forms, the charophytes have no such subgroupings, with
each order being fairly narrow in terms of the morphological diversity it contains. Nonetheless,
it is worth considering the evolution of charophycean multicellularity and the potential for key
members to serve as developmental genetic models, particularly in light of recently created ge-
nomic resources (Table 1) that now include sequences from several orders, including unicellular
Mesostigmatophyceae (Mesostigima viride) (100), filamentous Klebsormidiophyceae (Klebsormidium
flaccidum) (79), Zygnematophyceae (Penium margaritaceum, Spirogloea muscicola, M. endlicherianuni)
(27, 85), and Charophyceae (C. braunii) (117). Transcriptome data are also available for several
more charophyte species that do not have genome sequences (95). Here we focus on multicellu-
larity in the most morphologically complex genus, Chara.

Chara: Multicellular Atavism or Convergence?

The giant macroscopic internodal cells from members of the freshwater genus Charz have been
of interest for many years as models for cytosolic transport and streaming and for electrophysio-
logical studies (9, 18, 46). The multicellular body plans of Chara and other charalean algae are the
most complex of all charophyte algae, and they exhibit some of the same architectural properties
as land plants and vice versa (Figure 8). For example, the morphology of Chara bears a striking
resemblance to the vegetative morphology of aquatic angiosperms (flowering plants) in the genus
Ceratophyllum. Beyond sharing a similar body plan with land plants, the ontogenetic mechanisms
that give rise to the body plans of Chara also bear similarities to those in land plants, including a
mechanism involving indeterminate and determinate meristematic tip growth.

Prior to their phylogenetic repositioning (Figure 7), the Charales were considered the sister
taxa to embryophytes, but now they have been conclusively displaced by two less complex or-
ders, the Coleochaetophyceae and the Zygnematophyceae. Even after this displacement, it has
been generally assumed that the common ancestor of these three charophycean orders and of em-
bryophytes was similar in complexity to the extant Charales, but this assumption is without strong
support and predicated on the parsimony-based concept that complexity is hard to gain and easy to
lose. We believe this assumption needs revisiting, as the potential for convergent evolution of body
plans in different algal taxa may be underestimated (88, 149). It remains an open question whether
charalean algae are atavistic twins of a primitive embryophyte precursor lineage or the common
ancestor of these two streptophyte orders was a much simpler organism whose charalean and
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Triassic. Adapted with permission from Reference 41 with additional information from References 107, 135.
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embryophyte descendants convergently arrived at similar approaches for generating their body
plans. Either way, we believe some of the most important and exciting discoveries about the strep-
tophyte lineage will come from developing Charales and other charophyte orders as models for
developmental, genetic, and comparative studies. Such an approach will ultimately lead to fur-
ther insights into how complex multicellular body plans were generated among streptophytes,
and whether the underlying mechanisms are truly homologous (23, 143).

Multicellularity and Body Plan Patterning in Chara

The capacity for polarized apical growth with a cellulosic wall, asymmetric cell division, and in-
tercellular communication via plasmodesmata exists in Chara and was probably ancestral to the
Zygnematophyceae, Coleochaetophyceae, and Charophyceae (ZCC) charophytes (149). These
cellular features were the building blocks upon which a multicellular body plan evolved in Chara.
The body plans and development of Chara and other charalean algae are described in excellent
detail in other sources (51, 56) and are summarized here (Figure 8) (also see Reference 117 for in-
formative color illustrations of the C. braunii body plan and life cycle). Chara plants display radial
symmetry along an apical-basal axis. At the growing apex is an indeterminate meristematic cell
that undergoes transverse divisions using a phragmoplast mechanism. The upper daughter cell
of this pair undergoes further cell divisions to form a nodal structure, while the lower daughter
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cell undergoes a massive expansion as it differentiates into a giant multinucleated internode cell
that can grow to centimeter lengths. The lower cell divides again transversely to produce a pair
of daughters. This general pattern of an apical stem cell producing alternating pairs of nodes and
internodes forms the template for the upper (above ground) tissues of Chara (Figure 8). Similar to
those in land plants, daughter cells remain connected by plasmodesmata after division. Nodal pre-
cursor cells undergo a further set of patterned divisions to form a radially symmetric nodal region
that includes branchlet precursor cells; spike-shaped stipulode cells that resemble the stipules on
the lateral organs of plants; and, in some species, cortical cells that surround and elongate with the
internode cell to form a cortical layer. The branchlet precursor cells formed on the circumference
of each node undergo the same type of apical tip growth and patterning as the apical meristem cell,
but unlike the apical meristem, cell division of the branchlet meristem cells is determinate and will
cease after several rounds of extension. However, dormant lateral branchlet meristem cells can be
reactivated and form a new central axis if the central apical meristem is cut off—a phenomenon
similar to apical dominance in embryophytes. Chara does not have the entire embryophyte auxin
synthesis and signaling pathway that mediates apical dominance in plants (117), though auxin is
known to undergo polar transport and modulates some physiological responses in Charales and
other charophyte algae (14,127, 149, 162). It remains unknown whether apical dominance in Chara
is also controlled by some form of auxin signaling or a completely different long-range signal.

The basal region of a Chara plant is specialized with filaments formed from elongated root-like
rhizoid cells emanating from the most basal nodes (Figure 8). Rhizoid cells are highly polarized
(93) and nonphotosynthetic, but they do have colorless plastids and are specialized for nutrient
uptake while also providing structural support and anchoring the above-ground portion of the
plant. Rhizoid filaments are tip growing but can form lateral branches at the interface between
postmitotic cells. Rhizoid cells are also capable of gravitropic responses mediated by statoliths
whose positioning and sedimentation govern an intracellular signaling pathway for anisotropic
growth (8).

Specialized ornate multicellular sexual reproductive structures called oogonia and antheridia
produce female and male gametes in Chara, respectively (Figure 8). Oogonia and antheridia form
at central and branchlet nodes and are easily recognizable by their shapes, the bright orange color
of the antheridia, and the elongated helical pattern of tube cells surrounding each oogonium.
The biflagellate sperm produced in antheridia swim to and enter the oogonia where fertilization
takes place. The zygote forms a thick protective wall, while the oogonial tube cells surrounding
the zygote can become calcified and form an additional protective layer. Meiosis occurs during
germination where a single postmeiotic cell undergoes mitotic divisions and develops into a new
plant (51).

Genomics and Potential for Development as Models
for Streptophyte Multicellularity

C. braunii is currently the only charophycean species with a published nuclear genome sequence
(117). Analyses of the Charz genome in the context of land plant evolution and terrestrialization
are well covered topics (16, 27, 39, 85, 94, 100, 102). Of interest here is whether any aspects of
multicellularity in Chara might be illuminated by genome or transcriptome data. Compared with
distantly related charophytes, including unicellular M. viride, C. braunii has gained several hundred
gene families (100, 117), though it is likely that most of these are related to innovations at the cel-
lular level (e.g., phragmoplast, polyplastidy, plasmodesmata, cell wall) that helped shape the devel-
opmental landscape of multicellularity in Charz (11, 20, 24, 40, 45) and other streptophyte algae.

The capacity for asymmetric cell division and for daughter cells to differentiate and express
complex cell-type gene networks typically depends on transcription factors, and Chara has many
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of the same families as land plants as well as some of its own lineage-specific expansions (94, 117,
158). Transcriptomes of oogonia, antheridia, and zygotes of C. bruunii confirmed expected patterns
of expression for some genes (e.g., motility genes in antheridia), but much remains to be done for
leveraging the genomics of Chara to understand its developmental mechanisms. Using charophyte
genes to rescue the mutants of their homologs from genetically tractable embryophytes is a pow-
erful method to help establish similarity in molecular function for charophyte genes (63, 77, 102)
but is not sufficient to understand the developmental context in which these genes are utilized
in their native charalean species. Being able to directly test gene function in Chara, especially for
key developmental transcription factors, will be essential for understanding and comparing Chara
multicellularity to embryophyte multicellularity.

Although Chara has a short life cycle with means of vegetative and sexual propagation, avail-
ability of both monoicous and dioicous species (108), and amenability to controlled crossing (57),
developmental genetics has not been developed or exploited for Charz or any other charophycean
species. With a sequenced genome, C. braunii would be a leading candidate, but sequencing ad-
ditional genomes in this genus or other charophycean relatives should not be a major hurdle.
Probably the most important consideration is amenability to mutagenesis and isolation of devel-
opmental mutants. Whether this has been attempted before is not known to us, but with their
large genomes this would have been a daunting proposition before the current age of inexpensive
genome sequencing. We argue that this group is ready for more serious consideration as a model
for streptophyte multicellularity.

CONCLUSION AND PERSPECTIVES

Algae in general, and green algae in particular, seem to have a predisposition to evolve multicel-
lular forms, some of which reach high levels of complexity. We have reviewed several existing and
potential model organisms for the evolution of multicellularity, cellular differentiation, and mul-
ticellular development within the green algae. In each case, we have identified the closest known
unicellular relatives of the multicellular species, a critical resource for the application of compara-
tive methods. Recent technological advances, particularly cheap genome sequencing and methods
for genomic manipulation, make the development of new model organisms easier than it has ever
been.

If there is one universal principle that emerges from comparing the evolution of multicellu-
larity across green algal taxa, it is that there are no universal principles. The diversity of ways
in which green algae have made the transition from unicellular to multicellular life precludes
generalizations, or at least generalizations that are free of exceptions. The sheer variety of life
cycles, body plans, and lifestyles suggests that the particular path the transition to multicellular-
ity or complex morphology takes is highly contingent on the nature of the unicellular ancestor,
the ecological conditions that determine selective pressures, chance events, or some combination
of the three. Whether the haploid stage, the diploid stage, or both develop multicellular struc-
tures; whether the resulting structures are motile or sessile, complex or simple; and even whether
they are strictly multicellular at all (as opposed to giant multinucleate cells) vary without obvious
pattern.

What, then, can we learn from the green algae that might generalize to the evolution of
multicellularity more broadly? We can at least eliminate some proposed patterns or rules. For
example, there is clearly no general requirement that the evolution of multicellularity be asso-
ciated with a wholesale expansion or reorganization of the genome. Volvox, Ulva, and Caulerpa
all have genomes similar in size and gene content to their closest unicellular (and uninucleate)
relatives. This is an instance of the so-called C-value paradox, the observation that there is no
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consistent relationship between genome size and the size and complexity of the organism (147).
This is not to say that the evolution of multicellularity never involves a big increase in genome size,
but there are clearly enough exceptions to dismiss such a relationship from consideration as a rule.
All of this suggests an important role for co-option in the evolution of multicellularity, and in fact
we have abundant evidence for particular co-opted functions (17, 121, 148). Moreover, it appears
that lineage-specific genes (those genes found in the multicellular clade and its closest unicellular
relatives but not elsewhere) may play disproportionately large roles in co-option and shaping the
transition to multicellularity and cell-type specialization. This is evident in volvocine algae, where
cell-type specialization is associated with expression of lineage-specific genes (105), and is likely
to be a more general phenomenon. For example, what were once thought of as metazoan-specific
genes and signaling pathways are now known to have their roots in holozoans (animals and their
closest unicellular relatives, which include choanoflagellates and several other taxa) (19).

Understanding the genetic changes underlying the evolution of multicellularity more gener-
ally will require expanding both the depth and breadth of our search. Looking more deeply will
mean experimentally investigating gene functions, and recent advances allowing precise genetic
manipulation of nonmodel organisms are likely to facilitate this. Looking more broadly will re-
quire increasing the sample size of comparisons, that is, the number of sets of unicellular and
multicellular relatives between which we can make comparisons. Although single-celled green al-
gae seem superficially similar, there is immense diversity within this group, and it is clear from the
examples we have presented here that the way multicellularity evolves is contingent on differences
among them. With additional points of comparison, it may eventually be possible to understand
what features of the unicellular ancestor affect the subsequent evolution of multicellularity and
how they do so.

1. Multicellularity has evolved many times independently, and a large proportion of those
origins were within the green algae.

2. Green algae have evolved a diverse array of multicellular and giant unicellular forms that
differ dramatically in their morphology, life cycles, and development.

3. Molecular phylogenetic studies show that convergent evolution of similar morphologies
is rampant in several groups of green algae.

4. Genomic comparisons often reveal that the evolution of multicellularity does not require
large-scale changes in gene content or genome size.

5. Many components of the molecular tool kits we associate with multicellularity were
present in unicellular ancestors.

6. Multicellular development requires interactions with bacterial microbiomes in some red
and green algae.

7. We identify several taxa spanning the major clades of green algae that are well posi-
tioned to serve as model organisms for the evolution of multicellularity and cellular
differentiation.

8. Recent advances in DNA sequencing technology and newly developed techniques for
genetic manipulation facilitate the development of new model organisms.
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