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ABSTRACT. Suppose f € K|[z] is a polynomial. The absolute Galois group of
K acts on the preimage tree 1" of 0 under f. The resulting homomorphism
¢r: Galg — AutT is called the arboreal Galois representation. Odoni con-
jectured that for all Hilbertian fields K there exists a polynomial f for which
¢y is surjective. We show that this conjecture is false.

1. INTRODUCTION

Suppose that K is a field and f € KJ[z] is a polynomial of degree d. Suppose
additionally that f and all of its iterates f°%(x) := fo fo---o f are separable.
To f we can associate the arboreal Galois representation — a natural dynamical
analogue of the Tate module — as follows. Define a graph structure on the set of
vertices V :=| |, (f"’“)_1 (0) by drawing an edge from « to 5 whenever f(«a) = (.
The resulting graph is a complete rooted d-ary tree T (d), see Figure 1. The
Galois group Galg acts on the roots of the polynomials f°* and preserves the tree
structure; this defines a morphism ¢: Galxy — Aut T (d) known as the arboreal
representation attached to f.
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FIGURE 1. First two levels of the tree T (2) associated with the
polynomial f =22 —3

This definition is analogous to that of the Tate module of an elliptic curve,
where the polynomial f is replaced by the multiplication-by-p morphism. However,
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in contrast to the case of Tate modules, arboreal representations are rather poorly
understood. In particular, the images of arboreal representations are often expected
to be large (see [Jonl3] for a survey), even though describing these images is out
of reach even for some quadratic polynomials.

In [Odo85] Odoni proves that for the generic polynomial the associated arboreal
representation is surjective. Therefore, over fields in which Hilbert’s irreducibility
theorem holds — the so-called Hilbertian fields — for every integer k£ the Galois group
of f°F is maximal for infinitely many polynomials f. He then asks if the same holds
for the whole arboreal representation.

Conjecture 1.1 ([Odo85, Conjecture 7.5.]). Suppose K is a Hilbertian field of
characteristic zero, and d > 1 is an integer. Then there exists a degree d monic
polynomial f € K[x] such that the associated arboreal representation ¢¢: Galy —
Aut Too(d) is surjective.

Most of the work on arboreal representations focuses on the cases when K is
a number field or a function field. For example, Odoni’s conjecture is known to
be true for all number fields; this was proved in varying degrees of generality in
[Spel8], [BJ19], [Kad20]. The goal of this paper is to disprove Odoni’s conjecture.

Theorem 1.2. Suppose k is a countable Hilbertian field of characteristic zero.
There exists a Hilbertian algebraic field extension F/k such that for every f € F[x]
of degree d > 2 the image of the associated arboreal representation has infinite index
in Aut Too(d).

We give two separate proofs for Theorem 1.2. The first proof involves a very
explicit general construction applicable to countable collections of special field ex-
tensions, of which finite index arboreal representations are a special case. To state
the more general result we need Definition 1.3.

Definition 1.3. An algebraic field extension L/K is called vast if L # K and for
every finite extension F'/K there exists a subfield M 2 K of L such that M and F
are linearly disjoint over K.

The general result that will be used to prove Theorem 1.2 is Theorem 1.4.

Theorem 1.4. Let k denote a countable Hilbertian field of characteristic 0. Sup-
pose A is a countable collection of vast extensions L/ K, such that for every L/ K €
A the field K is a finite extension of k. Then there exists an algebraic Hilbertian
field extension F/k such that:

(1) the degree [F : k] divides the product of degrees of the extensions from A
(as supernatural numbers);

(2) for every subextension K/k of F/k and every extension L/K from A the
extensions F/K and L/K are not linearly disjoint.

From Theorem 1.4 it is easy to deduce Theorem 1.2, with a field F//k whose
degree (as a supernatural number) is a power of two.

In Section 3, we give a second proof of Theorem 1.2 using model-theoretic tech-
niques. The counterexamples to Odoni’s conjecture constructed there are of a very
special kind, as they are pseudo-algebraically closed. The argument crucially relies
on the fact that the class of Hilbertian pseudo-algebraically closed fields is model-
theoretically well understood. However, the result obtained in this way through an
abstract existence theorem is slightly weaker than what is given by the first proof,

Licensed to Mathematical Sciences Research Institute. Prepared on Mon Aug 8 17:43:26 EDT 2022 for download from IP 173.239.64.2.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ODONI'S CONJECTURE IS FALSE 3337

see Remark 3.3. In particular, weaker control on the degree of F/k is obtained in
the second proof, see Remark 3.2; for instance when k = Q the degree of F' over Q
obtained in this way is divisible by every natural number. Nevertheless the second
proof seems to be of independent interest due to the techniques used.

2. AN EXPLICIT CONSTRUCTION OF A COUNTEREXAMPLE

Throughout the paper we assume that all fields have characteristic zero. We
begin by recalling the definition of a Hilbertian field.

Definition 2.1. A characteristic zero field K is called Hilbertian if for every smooth
geometrically integral curve X/K and any nonconstant morphism f: X — Pk of
degree at least 2, there are infinitely many points 2 € P'(K) such that f~!(z) is
integral.

Over such fields Hilbert’s irreducibility theorem holds; hence the name. See
[FJ08, Chapters 12, 13] for a detailed discussion of Hilbertian fields.

Remark 2.2. There are a few (equivalent) definitions of a Hilbertian field in the
literature; the equivalence of Definition 2.1 with other commonly used definitions
is proved in [BS08, Theorem 1.1]. Note that [BS08, Theorem 1.1] writes the main
results in terms of polynomials. We now explain why the two definitions are equiv-
alent. To disambiguate the notational conflicts with [BS08|, we write the notation
from [BSO8] in bold. To arrive at Definition 2.1 in the notation of [BS08] take
the curve X of Definition 2.1 to be the normalization of the projective closure of
f(T, X) =0 in [BS08] and the morphism f of Definition 2.1 to be the T coordinate
on f(7, X) = 0. Definition 2.1 is not more general than the one from [BS08], since
every X, f from definition 2.1 has a birational model of the form f(7', X') = 0 with
the map f given by the T-coordinate map.

Before proving Theorem 1.4, we need the following simple property of vast ex-
tensions.

Lemma 2.3. Let L/K be a vast extension. Suppose K'/K is a finite extension
linearly disjoint from L/K. Then LK'/K' is vast.

Proof. Suppose F/K' is a finite extension. We need to construct a finite subex-
tension of LK’/K' linearly disjoint from F. Consider the extension F/K. Since
L/K is vast, there exists a finite subextension M /K of L/K linearly disjoint from
F/K. The compositum FM/K of F and M has degree [F : K][M : K]|. Since
K' C F C FM, the extension M/K is linearly disjoint from K’/K and the degree
of FM over K' is

[FM:K'|=[F:K|M:K|[K':K|"'=[F:K'|[M:K]=[F:K'|[K'M: K.

Since FM/K' is the compositum of F/K" and K'M/K’, the degree formula above
implies that F/K’ and K'M /K’ are linearly disjoint. Thus K'M /K’ is a subfield
of LK'/K' linearly disjoint from F/K’. O

Proof of Theorem 1.4. By Lemma 2.3, without loss of generality, we can assume
that if L/K is an element of A and K'/K is a finite extension linearly disjoint
from L, then LK'/K' is also an element of A. We can also assume that no finite
extension F'/k satisfies the conclusion of the theorem.
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The idea of the proof is to carefully construct a tower of extensions k = F; C
F5 C ... such that all elements of .4 defined over a finite subextension of F' = |J F,,
are not linearly disjoint from F, and yet F' is Hilbertian. This is achieved by a
“diagonal argument”: we inductively produce extensions F.1/F, that are not
linearly disjoint from a smallest element of A in a certain ordering, while at the
same time keeping fibers of finitely many coverings integral when base changed to
F,, to eventually force F' to be Hilbertian.

Fix an ordering of all elements of A by natural numbers. Let B be a list of
all covers of smooth geometrically integral curves f: X — P!, deg f > 2 defined
over some finite extension of k, with every covering repeated in B infinitely many
times. We now produce sequences of fields Fi C F» C --- C F,, C ..., coverings
fn € B, fn: X,, — P!, points ¢, € P!, and extensions L,,/K, € A, indexed by
natural numbers, with the following properties, that depend on a parameter m € N.

(1,,) The point ¢, belongs to P*(F,,) and does not coincide with ¢; for i < m.

(2,,) For every i < m the scheme f; '(¢;) is integral, and the function field
Fi(f7 (es)) of f71(c;) is linearly disjoint from F,,/F;.

(3,,) The covering f,, € B is the first element of B\ {fi,..., fin—1} defined over
F,,.

(4,,) The extension L,,/K,, is the first element of A\{L,,—1/K;—1,...,L1/K1}
such that K, is a subfield of F;,, and the extensions F,,/K,, and L,,/K,,
are linearly disjoint.

(5,,) The extension F,,/F,,—1 is a nontrivial finite subextension of
Lm—lFm—l/Fm—l-

We do so inductively. Set Fy = k. Let fi; € B be the first element defined over
k. Let L1/K; be the first element of A with K = k; if no such element exists,
then F' = k is a finite extension satisfying the conclusions of the theorem, which we
assumed in the beginning to not exist. Choose a point ¢; € P*(k) such that f;*(c1)
is integral; such a point exists because k is Hilbertian. The properties (1,,)—(4,,)
are satisfied for m = 1, while the property (5,,) for m =1 is vacuous.

Suppose a sequence F,, fu,Cm, L /K, is defined for m < n and satisfies
(1) (5.m). We start by constructing the field F,,. Let M denote the compositum
of F,_1(f(c;)) for all i < n; it is a finite extension of F,,_;. Let L denote the
compositum F,,_1L,_;. By Lemma 2.3 and property (4,,) applied for m =n — 1,
the field extension L/F,_; is vast. Since L/F,,_; is vast and M is finite, we can
choose a subextension F,, of L/F,,_1 linearly disjoint from M. Let f, € B be the
element defined by condition (3,,) for m = n. Let L, /K, € A be defined by (4,,)
for m = n; if no such element exists then by property (5,,) for m < n, the finite
extension F,,/k satisfies the conclusion of the theorem, which does not happen by
assumption. Since F}, is a finite extension of a Hilbertian field it itself is Hilbertian.
Therefore there exists a point ¢, € P!(F},) distinct from ¢; for i < n and such that
[ 1(cy) is integral. With these choices conditions (1,,)—(5,,) are satisfied for all
m<n+1.

Let F' denote the union | J,, F,,. We claim that F' is Hilbertian. Indeed, suppose
we are given a covering of f: X — P! defined over F, with X a smooth geometrically
integral curve and deg f > 2. Since a covering is defined by finitely many equations,
f will be defined over F,, for some n. By condition (3,,) and the definition of B
infinitely many of the coverings f,, are equal to f. Let ¢n,,Cpny,... € PH(F) be
the corresponding sequence of points. By condition (2,,) the schemes f~!(c,,) are
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integral over F'. Therefore F' is Hilbertian. On the other hand, conditions (4,,)
and (5,,) ensure that there is no vast extension L/K in A such that L is linearly
disjoint from F over K. Finally, by condition (5,,) the degree of F' divides the
product of degrees of extensions from .A. O

Before proving Theorem 1.2 we recall some group-theoretic properties of the
profinite group Aut T (d). Consider the action of Aut T (d) on the n-th level of
the tree. The sign of this action defines a homomorphism o, : Aut Too(d) — Z/2Z.
Note that a simple transposition on the n-th level of the tree lifted arbitrarily
to an element g € Aut T (d) satisfies 0,,(9) = 0 for m < n and o,(g) = 1,
therefore the homomorphisms ¢,, are linearly independent in the Fs-vector space
Hom(Aut T (d),Z/27). Thus the collection of all sign homomorphisms defines a
homomorphism o: Aut Too(d) — [[,—, Z/2Z whose image is dense in the product
topology. Since ¢ is a continuous homomorphism of profinite groups, it is then sur-
jective. We use ¢,, to denote the homomorphism ¢,, := (0, 011, ... ): Aut Too(d)
% Hzo:’ll Z/QZ'

Definition 2.4. Suppose K is a field and f € K[z] a monic polynomial of degree
d > 2 such that ¢f: Galg — Aut T (d) has image of finite index. The n-th
discriminant extension K, of K attached to f is the algebraic extension of K
corresponding to the kernel of ¢, 0 ¢ in Galg.

Remark 2.5. The homomorphism ¢,, o ¢ of Definition 2.4 is not necessarily surjec-
tive. However, since the image of ¢ has finite index in Aut T (d) by assumption,
the image of ¢, 0¢ has finite index in [~ ; Z/2Z, and so im ¢, 0y = Gal K,, /K =~
[, Z/2L.

Remark 2.6. The term “discriminant extension” comes from the relation between

the sign homomorphism and discriminants of polynomials; see [Cox12, Section
74.A].

Proof of Theorem 1.2. Consider the set S consisting of pairs (K, f), where K/k is
a finite extension and f € K[X] is a monic polynomial of degree at least 2 such
that the image of ¢5: Galxy — Aut T (deg f) has finite index. Let

A={K,/K: (K, [) €S,
K,, is the n-th discriminant extension of K attached to f for some n}.

Since every [~ Z/2Z-extension is vast, the collection A satisfies the assumptions
of Theorem 1.4. Therefore there exists a Hilbertian extension F/k of 2-power degree
such that F' is not linearly disjoint from any K, /K € A with K C F.

We wish to show that F is as desired, so suppose for a contradiction that
f € F[X] is a monic polynomial of degree at least 2 with finite index arboreal
representation over F'. We can choose K C F finite over k with f € K[X], so
that (K, f) € S. The fields K,, attached to f (over K) are nested K; D Ky D ...
and [, K, = K. Since F//K is not linearly disjoint from K, for any n, F'N K is
an infinite extension of K. Therefore the arboreal representation of f over F' has
infinite index in Aut T (deg f), giving the desired contradiction. Ol

3. A MODEL-THEORETIC CONSTRUCTION OF A COUNTEREXAMPLE

The iterative construction from Theorem 1.4, constructing an algebraic exten-
sion which step-by-step forces all polynomials to induce arboreal representations
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with image of infinite index, can also naturally be understood model-theoretically
using the Omitting Types Theorem. In this section we will therefore give another
construction of counterexamples to Conjecture 1.1, using standard tools from field
arithmetic.

Theorem 3.1. Let K be a countable field of characteristic zero. There exists a
Hilbertian pseudo-algebraically closed extension field L of K such that every monic
polynomial over L of degree d > 2 induces an arboreal representation whose image
has infinite index in Aut Too(d). If K is Hilbertian, we can choose L to be algebraic
over K.

Remark 3.2. The fact that the resulting field L is pseudo-algebraically closed should
be seen as an artefact of the construction. In particular, this forces L to have
projective absolute Galois group (see [FJ08, Theorem 11.6.2]). If K is a number
field and L/K is algebraic, this means that the degree of L/K as a supernatural
number must be divisible infinitely many times by every prime number for reasons
of cohomological dimension (see [NSWO08, Proposition 3.3.5]), in contrast to the
construction in the previous section.

Remark 3.3. Let K be a countable field of characteristic zero. If K is not Hilbertian,
replace it by its Hilbertian extension K (¢). Then K has an algebraic extension K’
which is Hilbertian and pseudo-algebraically closed (see [FJ08, Theorem 27.4.8]),
and the proof in the previous section yields an algebraic extension L/K’ in which ev-
ery monic polynomial of any degree d > 2 induces an arboreal representation whose
image has infinite index in Aut Too(d). This field L is then pseudo-algebraically
closed as an algebraic extension of K’ [FJ08, Corollary 11.2.5]. Therefore the proof
in the previous section yields Theorem 3.1 as a corollary. We nevertheless think
that the separate proof below is interesting in its own right.

We use basic model-theoretic terminology, with [Hod97] as our general reference,
although other textbooks such as [Mar02] also contain all necessary results.

We work in the first-order language of rings, i.e. with symbols +, —, -, 0, 1, later
expanded by constants. Let us introduce some terminology for sets p(z) consisting
of formulae with free variables among the (finite) tuple of variables x. We say
that a tuple a in a structure 9 realises p if M = p(a) for all p € p. Following
[Hod97, Section 6.2], we say that a formula ¢(z) supports the set p(z) in a theory
T if T U {3z} has a model, and for every ¥ € p, T |= Vz(p — 1).! We say that
the set p(x) is supported in 7" if there exists a formula which supports it.

Lemma 3.4. Fizd > 2, n > 1. There is a set pin(x1,...,2q) of formulae (in
the language of rings) such that a tuple (ai,...,aq) in a field L realises pan if
and only if the arboreal representation ¢r: Galp, — Aut To(d) associated to f =
X941 X4 4.+ ag has image of index at most n in Aut Too(d).

Proof. For every k > 1, let us write Ty(d) for the part of Too(d) up to level k.
The image of ¢ has index at most n if and only if the image of the finite stages
Galy, — Aut Tk (d) has index at most n, for all k. Equivalently, the splitting field of
f°F has degree at least |Aut Ty (d)|/n. Since the coefficients of f°* are polynomials

'In [Mar02, Definition 4.2.1] the terminology for this property is that ¢(z) isolates p(z),
but there it is required throughout that 7" U p(z) be consistent (which is true in all interesting
situations).
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in the a;, this property is expressed by a first-order formula in the language of rings.
Collecting these formulae for all £ yields the desired pg_,. (|

Let us now fix a countable field K of characteristic zero, and work in the lan-
guage L which is the language of rings together with constant symbols for each
element of K. Consider the £-theory 7" which consists of the theory of Hilbertian
pseudo-algebraically closed fields (see [FJ08, Chapter 27]) and the diagram of K (see
[Hod97, Section 1.4]). In this way, models of 7" correspond to field extensions L/K
such that L is Hilbertian and pseudo-algebraically closed. For pseudo-algebraically
closed fields, being Hilbertian is equivalent to the absolute Galois group satisfying
a certain group-theoretic condition, called w-freeness, see [Jarll, Theorem 5.10.3].

Proving Theorem 3.1 now means showing that there exists a model L of T in
which none of the sets py,, from Lemma 3.4 is realised by any tuple. (Let us ignore
the additional condition that L/K be algebraic if K is Hilbertian for the moment.)
We will apply the following standard tool from model theory, which applies to any
consistent theory 7" in a countable language £, thus in particular in our setting:

Theorem 3.5 (Omitting types, [Hod97, Theorem 6.2.1]; see also [Mar02, Theorem
4.2.4]). For each i € N, let p; be a set of L-formulae in free variables 1,...,Tn,,
such that no p; is supported in T'. Then there exists a model of T realising none of
the p;, i.e. the p; are omitted.

We thus wish to show that none of the sets pg, from Lemma 3.4 are supported
in 7. We first isolate two important properties of 7" from [FJ08, Theorem 27.2.3]
rephrasing the model-theoretic terminology there in more elementary terms.

9

Lemma 3.6. Let ¢(z) be an L-formula. Then ¢ is equivalent modulo T to a
formula of the form Jy(y(z,y)), where ¥ is a positive boolean combination of poly-
nomial equalities and formulae of the form Vz(2™ +t12™ '+ -+ t,, # 0), where
the t; are polynomial expressions in x,y with coefficients from K.

Proof. This is a relatively straightforward translation of the model completeness
part of [FJ08, Theorem 27.2.3]. Let us explain this in detail.

The theorem cited works in an extended language £’ for fields, containing not
only symbols 4+, — and -, but also an additional n-ary predicate R, for every n > 2,
and states in particular that the theory 7" consisting of 7" and the additional axioms

Vi, .o o (R (1, ..o, @) <> F2(2" + 2" Y, = 0))

for all n (specifying the intended interpretation for R,,) is model complete.

By [Hod97, Theorem 7.3.1], this implies that the formula —p(z) is equivalent
modulo 7" to a universal £'-formula 6y(z), i.e. a formula built by universal quan-
tification, A and V from atomic formulae and their negations. Here atomic formulae
are equations between terms (i.e. polynomial expressions in the variables and con-
stants), as well as formulae of the form R,,(t1,...,t,) with terms ¢;.

Taking negations, (z) is equivalent modulo 7”7 to —6o(z), which in turn is
equivalent to an existential formula 0y (z), i.e. one built from atomic formulae and
their negations using existential quantification, A and V. We may eliminate all
negated equalities t; # to between terms by rewriting them as 3z(zt; = zts + 1).
Now replace all occurrences of =R, (t1,...,t,) in ¥; by Vz(2" +212" 1 +-- -+ 2, #
0) and all occurrences of Ry, (t1,...,t,) by 32(z" +x12" 1 4--- 4+, = 0) to obtain
an L-formula 05(z). Moving all existential quantifiers to the front of the formula,
02 is equivalent to an L-formula 3 = Jy(¢(z,y)) with ¢ of the required shape.
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We have seen that ¢ is equivalent to #3 modulo 7”. Since T” is a so-called
definitional expansion of 7T, i.e. only adds axioms specifying the interpretation of
additional relation symbols, ¢ and 63 are actually already equivalent modulo 7,
since any model of 7" in which they are not equivalent could be expanded to a
model of 7" [Hod97, Theorem 2.6.4(a)]. O

Lemma 3.7. For every extension L/K there exists a reqular extension F'/L with
FET.

Proof. This is a translation of another part of [FJ08, Theorem 27.2.3], as we now
explain. By the statement about model companions given there, L embeds into a
model F' of T such that the embedding L. — F not only preserves addition and
multiplication, but also embeds L as a relatively algebraically closed subfield of F’
see [FJO8, top of p. 660]. Identifying the embedding with an inclusion, this means
that F'/L is regular since the characteristic is zero. ]

We now prove the key technical statements for the proof of Theorem 3.1.

Lemma 3.8. For any fizred d > 2 and n, the set pq, from Lemma 3.4 is not
supported in T'.

Proof. Let ¢(x) be an arbitrary £-formula such that 7"U {3z(p(z))} is consistent;
we show that ¢ does not support pq., in 7. We may assume that ¢ = Jy(¥(z,y))
as in Lemma 3.6. Since T'U {3Jzp} is consistent, there is a Hilbertian pseudo-
algebraically closed field L/K with elements z,y such that L = ¥(z,y). We can
choose an algebraic extension L'/L, with Galys finitely generated, such that L' |
¥(z,y), since we only need to ensure that the finitely many polynomials Z™ +
tyZm™~ ' 4+ ... 4 t,, mentioned in 1) which have no root in L do not have any root in
L’. Then the arboreal representation ¢r: Galp — Aut T (d) associated to f =
X443 X941 ...+ 2, has image of infinite index, since Aut T (d) is not finitely
generated because of the surjective homomorphism Aut Too(d) — [ Z/2Z.

By Lemma 3.7, there exists a regular extension F/L’ with F = T. Since the
representation Galp — Aut T, (d) associated to f factors through Galy/, its image
has infinite index, so the tuple z does not realise py, in F. As F = p(z) by
construction, ¢ does not support pg . Il

Lemma 3.9. Assume in addition that the fixed countable field K is Hilbertian. Let
p(x) be the set of formulae in one variable which assert that x satisfies no nontrivial
polynomial relation over K. Then p is not supported in T

Proof. Suppose ¢(x) is a formula supporting p. In particular, there exists an ex-
tension L/K with L E T U {3xp(x)}. By the downward Lowenheim-Skolem the-
orem, we may assume that L is countable. By [FJ08, Proposition 23.2.4], L is
elementarily equivalent over K to an ultraproduct L' = [[.2, L,,/D, where D is
an ultrafilter on N and each L,, is an algebraic extension of K which is PAC and
satisfies Galy, = Galg, so in particular every L,, is w-free. Since L' = L = Jxp(z),
by Lo$’s theorem on ultraproducts [FJ08, Corollary 7.7.2] there exists an n such
that L,, = Jze(x). Now L, contains no element realising p, but has an element

satisfying ¢, so we deduce that ¢ does not support p. 0l

Proof of Theorem 3.1. The theorem follows immediately from Theorem 3.5 with
Lemma 3.8, by simultaneously omitting the sets p,, 4 for all n and d, and additionally
omitting the set p from Lemma 3.9 if K is Hilbertian. 0l
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