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This article is devoted to the study of a nonlinear and nonlocal parabolic equation 
introduced by Stefan Steinerberger to study the roots of polynomials under 
differentiation; it also appeared in a work by Dimitri Shlyakhtenko and Terence 
Tao on free convolution. Rafael Granero-Belinchón obtained a global well-posedness 
result for initial data small enough in a Wiener space, and recently Alexander Kiselev 
and Changhui Tan proved a global well-posedness result for any initial data in the 
Sobolev space Hs(S) with s > 3/2. In this paper, we consider the Cauchy problem 
in the critical space H1/2(S). Two interesting new features, at this level of regularity, 
are that the equation can be written in the form

∂tu + V ∂xu + γΛu = 0,

where V is not bounded and γ is not bounded from below. Therefore, the equation is 
only weakly parabolic. We prove that nevertheless the Cauchy problem is well posed 
locally in time and that the solutions are smooth for positive times. Combining this 
with the results of Kiselev and Tan, this gives a global well-posedness result for 
any initial data in H1/2(S). Our proof relies on sharp commutators estimates and 
introduces a strategy to prove a local well-posedness result in a situation where the 
lifespan depends on the profile of the initial data and not only on its norm.

© 2022 Elsevier Masson SAS. All rights reserved.

r é s u m é

Cet article traite de l’étude d’une équation parabolique non linéaire et non locale 
introduite par Stefan Steinerberger dans le but d’étudier les zéros d’un polynôme 
sous l’action de la derivation ; cette équation apparaît aussi dans un travail de 
Dimitri Shlyakhtenko et Terence Tao sur les convolutions libres. Rafael Granero-
Belinchón a prouvé que l’équation est globalement bien posée pour toutes données 
initiales dans l’espace de Wiener, plus récèmment, Alexander Kiselev and Changhui 
Tan ont démontré que l’équation est globalement bien posée pour toutes données 
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initiales dans l’espace de Sobolev Hs(S) où s > 3/2. Dans cet article, on s’intéresse 
au problème de Cauchy pour des données initiales dans l’espace critique H1/2(S). Il 
y a principalement deux nouveautés, à ce niveau de régularité, l’équation peut être 
écrite sous la forme

∂tu + V ∂xu + γΛu = 0,

où V n’est pas borné et γ n’est pas majoré. Par conséquent, l’équation n’est 
que faiblement parabolique. On arrive néanmoins à démontrer que le problème de 
Cauchy est globalement bien posé en temps et que les solutions sont régulières pour 
des temps positifs. En combinant notre résultat avec celui obtenu par Kiselev et 
Tan, on obtient que le problème est globablement bien posé pour toutes données 
initiales dans H1/2(S). Notre preuve est basée sur des estimations optimales de 
commutateurs et utilise une stratégie adapatée au cas où le temps d’existence dépend 
du profil de la solution et non pas uniquement de sa norme.

© 2022 Elsevier Masson SAS. All rights reserved.

1. Introduction

Stefan Steinerberger studied in [38] the following question: considering a polynomial pn of degree n having 
all its roots on the real line (see [34] for the complex case) distributed according to a smooth function u0(x), 
and a real-number t ∈ (0, 1), how is the distribution of the roots of the derivatives ∂k

xpn distributed with 
k = �t · n�? This question led him to discover a nice nonlocal nonlinear equation of the form

∂tu + 1
π
∂x

(
arctan

(
Hu

u

))
= 0, (1)

where the unknown u = u(t, x) is a positive real-valued function.
Besides its aesthetic aspect, this equation has many interesting features. Shlyakhtenko and Tao [36]

derived the same equation in the context of free probability and random matrix theory (see also [39]). 
However, our motivation comes from the links between this equation and many models studied in fluid 
dynamics.

In this paper, we assume that the space variable x belongs to the circle S = R/(2πZ), and H is the 
circular Hilbert transform (which acts on periodic functions), defined by

Hg(x) = 1
2π pv

ˆ

S

g(x) − g(x− α)
tan(α/2) dα, (2)

where the integral is understood as a principal value. Granero-Belinchón ([25]) proved the local existence of 
smooth solutions for initial data u0 in the Sobolev space H2(S) = {u ∈ L2(S) ; ∂2

xu ∈ L2(S)}, as well as the 
global existence under a condition in appropriate Wiener spaces. Then, Kiselev and Tan proved [28] that 
the Cauchy problem for (1) is globally well-posed in the homogeneous Sobolev space Ḣs(S) for all s > 3/2, 
where Ḣs(S) = {u ∈ L2(S) ; Λsu ∈ L2(S)} where Λ denotes the fractional Laplacian:

Λ = ∂xH = (−∂xx) 1
2 .

In fact, the equation (1) enters the family of fractional parabolic equations, which has attracted a lot of 
attention in recent years. To see this, introduce the coefficients

V = − 1 Hu
2 2 , γ = 1 u

2 2 ·
π u + (Hu) π u + (Hu)
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Then the equation (1) has the following form

∂tu + V ∂xu + γΛu = 0. (3)

This last equation shares many characteristics with the Hele-Shaw equation ([6]), the Muskat equation, the 
dissipative quasi-geostrophic equation, and 1D models for the 3D incompressible Euler equation ([19], [21], 
[29], [30], [7]), to name a few. Many different techniques have been introduced to study these problems.

For the critical dissipative SQG equation, the global regularity has been proved by Kiselev, Nazarov and 
Volberg [27], Caffarelli-Vasseur [8] and Constantin-Vicol [20] (see also [26,37,41,33]). The nonlinearity in 
the Muskat equation is more complicated. However, Cameron has succeeded in [9] to apply the method 
introduced by Kiselev-Nazarov-Volberg to prove the existence of global solutions in time when the product 
of the maximum and minimum slopes is less than 1 (see also [11]). Recently, many works have extended 
this last result. The main results in [2–5] imply that the Cauchy problem can be solved for non-Lipschitz 
initial data, following earlier work by Deng, Lei and Lin [23], Cameron [9], Córdoba and Lazar [22], Gancedo 
and Lazar [24] which allowed arbitrary slopes of large size. Recently, in [13] the third author proved local 
existence with C1 initial data which extends some previous results in [1], [31], [15]. The main issue is that 
it is difficult to dispense with the assumption of finite slopes as it is explained in [18]. Indeed, the classical 
nonlinear estimates require to control the L∞ norm of some factors, which is the same for the Muskat 
problem to control the L∞ norm of the slope ([16], [17], [35], [10], [11]) which in turn amounts to controlling 
the Lipschitz norm of f . Second, the Muskat equation is a degenerate parabolic equation for solutions which 
are not controlled in the Lipschitz semi-norm and singularities are possible [12]. We also refer interested 
readers to [14] for another non-local parabolic equation (see also [32], [33]).

Inspired by these results, our goal here is to solve the Cauchy problem for (1) in the critical Sobolev 
space H

1
2 (S). Several interesting difficulties appear at that level of regularity.

The main result of this paper is the following

Theorem 1.1. For all initial data u0 in Ḣ
1
2 (T ) such that inf u0 > 0, the Cauchy problem has a global in 

time solution u satisfying the following properties:

(i) u ∈ C0([0, +∞); Ḣ 1
2 (S)) ∩ L2((0, +∞); Ḣ1(S)) together with the estimate

sup
t>0

‖u(t)‖2
Ḣ

1
2

+
∞̂

0

ˆ

S

u|Λu|2
u2 + (Hu)2 dx dt ≤ 10 ‖u0‖2

Ḣ
1
2
. (4)

(ii) u ∈ C∞((0, +∞) × S) and moreover for any s > 0 and ε0 > 0 there exists a constant C(s, ε0) such 
that

sup
t>0

ts+ε0 ‖u(t)‖
Ḣ

1
2+s ≤ C(s, ε0) ‖u0‖

Ḣ
1
2
.

(iii) inf
x∈S

u(t, x) ≥ inf
x∈S

u0(x) for t > 0.

Remark 1.2. The main difficulty is that the coercive quantity that appears in the left-hand member of (4), 
i.e.

∞̂ˆ
u|Λu|2

u2 + (Hu)2 dx dt, (5)

0 S
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is insufficient to control the ‖·‖L2
t Ḣ

1
x
-norm of u. Indeed, even if we assume that the initial value of u is 

bounded (which propagates in time), since the Hilbert transform is not bounded from L∞(S) to itself, we 
would have no control from below of the denominator u2 + (Hu)2.

Regarding uniqueness, we have the following theorem,

Theorem 1.3. For any a > 0 and initial data u0 ∈ Ḣ
1
2+a(S), such that inf u0 > 0, the Cauchy problem has 

a unique global in time solution.

Remark 1.4. Our uniqueness theorem improves the one obtained by Kiselev and Tan [28]. Indeed, they 
proved uniqueness in the space Ḣ

3
2+a(S) while our result deals with data in the space Ḣ

1
2+a(S). The 

question of uniqueness in the case Ḣ
1
2 (S) remains open.

Plan of the paper. Since Kiselev and Tan ([28]) proved that the Cauchy problem for (1) is globally well-
posed in the homogeneous Sobolev space Hs(S) for all s > 3/2, it will be sufficient to prove that a local 
well-posedness result, together with the fact that the solutions are smooth for positive times. We start in 
Section §2 by discussing a model equation, to explain one (somewhat classical) commutator estimate and 
to explain the main difficulty one has to cope with. Then we prove the local-well posedness result in §3 and 
establish the smoothing effect in §4.

2. Estimate in Ḣ1/2 for a toy model

To prove Theorem 1.1, the main difficulty is that, even if we know that u satisfies a maximum principle, 
the coefficient γ is not bounded from below by a positive constant. Indeed, it is well-known that the Hilbert 
transform is not bounded on L∞(S). This means that (3) is a degenerate parabolic equation.

Although it is not essential for the rest of the paper, it helps if we begin by examining a model equation 
with some non-degenerate dissipative term. Our goal here is to introduce a basic commutator estimate 
which allows to deal with equations of the form (3).

Consider the equation

∂tu + a(u,Hu)Λu = b(u,Hu)HΛu, (6)

where a and b are two C∞ real-valued functions defined on R2, satisfying a ≥ m > 0 for some given positive 
constant m, together with

sup
(x,x′,y,y′)∈R4

|b(x, y) − b(x′, y′)|
|x− x′| + |y − y′| < +∞.

Proposition 2.1. There exists a constant C > 0 such that, for all T > 0 and for all u ∈ C1([0, T ]; Ḣ 1
2 (S))

solution to (6), there holds

1
2

d
dt ‖u‖

2
Ḣ

1
2

+ m

ˆ

S

|Λu|2 dx ≤ C ‖u‖
Ḣ

1
2
‖Λu‖2

L2 . (7)

Remark 2.2. Using classical arguments, it is then possible to infer from the a priori estimate (7) a global 
well-posedness result for initial data which are small enough in H

1
2 (S). However, the study of the local well-

posedness of the Cauchy problem for large data is more difficult and requires and extra argument which is 
explained in the next section.
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Proof. Let us use the short notations a = a(u, Hu) and b := b(u, Hu). Multiplying the equation (6) by Λu
and integrating over S, we obtain

1
2

d
dt ‖u‖

2
Ḣ

1
2

+
ˆ

S

a |Λu|2 dx = I :=
ˆ

S

b(HΛu)(Λu) dx. (8)

To estimate I, we exploit the fact that H∗ = −H to write

I = 1
2

ˆ

S

b(HΛu)(Λu) dx− 1
2

ˆ

S

(Λu)H
(
bΛu

)
dx

= 1
2

ˆ

S

([
b,H

]
Λu

)
Λu dx.

(9)

Now we claim that

∥∥[b,H]
Λu

∥∥
L2 � ‖b‖

Ḣ
1
2
‖Λu‖L2 . (10)

Indeed, this follows from the Sobolev embedding Ḣ
1
2 ⊂ BMO and the classical commutator estimate

‖[H, f ]v‖L2 � ‖f‖BMO ‖v‖L2 . (11)

(Alternatively one can prove (10) directly using the definition of the Hilbert transform as a singular 
integral and the Gagliardo semi-norm; see below.) It follows that

I � ‖b‖
Ḣ

1
2
‖Λu‖2

L2 . (12)

Now we estimate the Ḣ
1
2 -norm of b by means of the following elementary estimate.

Lemma 2.3. Consider a C∞ function σ : R2 → R satisfying

∀(x, x′, y, y′) ∈ R4, |σ(x, y) − σ(x′, y′)| ≤ K |x− x′| + K |y − y′| .

Then, for all s ∈ (0, 1) and all u ∈ Ḣs(R), one has σ(u, Hu) ∈ Ḣs(R) together with the estimate

‖σ(u,Hu)‖Ḣs ≤ K ‖u‖Ḣs . (13)

Proof. By assumption, for any α ∈ R, we have

‖δασ(u,Hu)‖L2 ≤ K ‖δαu‖L2 + ‖δαHu‖L2 .

Then by using the Gagliardo semi-norms, we get

‖σ(u,Hu)‖Ḣs ≤ K ‖u‖Ḣs + K ‖Hu‖Ḣs ,

and the desired result follows since ‖Hu‖Ḣs = ‖u‖Ḣs . �
The previous lemma implies that

‖b‖ 1 � ‖u‖ 1 + ‖Hu‖ 1 � ‖u‖ 1 ,

Ḣ 2 Ḣ 2 Ḣ 2 Ḣ 2
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and we deduce from (12) that

I � ‖u‖
Ḣ

1
2
‖Λu‖2

L2 .

Therefore the wanted result (7) follows from (8). �
3. Local well-posedness

We construct solutions to (1) as limits of solutions to a sequence of approximate nonlinear systems. We 
divide the analysis into three parts.

1. We start by proving that the Cauchy problem for these systems are well posed globally in time and 
satisfy the maximum principles. In particular, the approximate solutions are bounded by a positive 
constant.

2. Then, we show that the solutions of the approximate systems are bounded in C0([0, T ]; Ḣ 1
2 (S)), on a 

uniform time interval that depends on the profile of the initial data (and not only on their norm).
3. The third task is to show that these approximate solutions converge to a limit which is a solution of the 

original equation. To do this, we use interpolation and compactness arguments.

3.1. Approximate systems

Fix δ ∈ (0, 1] and consider the following approximate Cauchy problem:

⎧⎪⎨
⎪⎩
∂tu + 1

π

uΛu− (Hu)∂xu
δ + u2 + (Hu)2 − δ∂2

xu = 0,

u|t=0 = eδ∂
2
xu0.

(14)

The following lemma states that this Cauchy problem has smooth solutions.

Lemma 3.1. For any positive initial data u0 ∈ L2(S) and for any δ > 0, the initial value problem (14) has 
a unique solution u in C1([0, +∞); H∞(S)). This solution is such that, for all t ∈ [0, +∞),

inf
x∈S

u(t, x) ≥ inf
x∈S

u0(x) and max
x∈S

u(t, x) ≤ max
x∈S

u0(x). (15)

Proof. The proof is classical and follows from arguments already introduced by Granero in [25], but we 
repeat it for completeness.

Fix δ > 0. The Cauchy problem (14) has the following form

∂tu− δ∂2
xu = Fδ, u|t=0 = eδ∂

2
xu0, (16)

where

Fδ = − 1
π

uΛu− (Hu)∂xu
δ + u2 + (Hu)2 ·

Step 1: existence of mild solution locally in time. Since H
1
2+ν(S) ⊂ L∞(S) for all ν > 0 and since the 

circular Hilbert transform H is bounded on H
1
2+ν(S), it is easy to verify that
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‖Fδ(u) − Fδ(v)‖L2 �δ

(
‖u‖

H
1
2+ν + ‖v‖

H
1
2 +ν

)
‖u− v‖H1

+
(
‖u‖H1 + ‖v‖H1

)
‖u− v‖

H
1
2 +ν ,

where the notation �δ is intended to indicate that the implicit constant depends on δ. Therefore, it 
follows from the interpolation inequality in Sobolev space, from the fixed point theorem and from the 
usual energy estimate for the heat equation that the Cauchy problem has a unique mild solution in 
C0([0, Tδ); L2(S)) ∩ L2(0, Tδ; H1(S)), where Tδ is estimable from below in terms of ‖u|t=0‖L2 (see [40, 
Section 15.1]). In particular, we have the following alternative: either

Tδ = +∞ or lim sup
t→Tδ

‖u(t)‖L2 = +∞. (17)

Step 2: Global well-posedness On the other hand, directly from the obvious estimate

‖Fδ‖L2 �δ ‖u‖H1 ,

the energy estimate for the heat equation implies that lim supt→Tn
‖u(t)‖L2 = +∞ is impossible with 

Tn < +∞. This proves that the solution exists globally in time.
Step 3: Regularity. We verify that the solution defined above is regular by noting that one can solve the 

Cauchy problem in Hs(S) for all s > 3/2 using the usual nonlinear estimates in Sobolev spaces and the 
argument above. By uniqueness, this implies that the mild solution defined above is continuous in time with 
values in Hs(S) for all s.

Step 4: maximum principle. The claim (15) follows from the classical arguments. Firstly, notice that

inf
x∈S

eδ∂
2
xu0(x) ≥ inf

x∈S
u0(x).

On the other hand, at a point xt where the function u(t, ·) reaches its minimum, we have

∂xu(t, xt) = 0, ∂2
xu(t, xt) ≥ 0, Λu(t, xt) ≤ 0,

where the last inequality follows from the fact that

Λu(x) = 1
4π pv

ˆ

S

u(x) − u(x− α)
sin(α/2)2 dα.

It follows that infx∈S u(t, x) ≥ infx∈S u0(x).
By similar arguments, we obtain the second inequality supx∈S u(t, x) ≤ supx∈S u0(x). This completes the 

proof. �
3.2. Uniform estimates

Fix δ > 0 and c0 and consider an initial data u0 in H
1
2 (S) with infx∈S u0(x) ≥ c0. As we have seen in 

the previous paragraph, there exists a unique function u ∈ C1([0, +∞); H∞(S)) satisfying
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu + 1
π

uΛu− (Hu)∂xu
δ + u2 + (Hu)2 − δ∂2

xu = 0,

u|t=0 = eδ∂
2
xu0,

inf u(t, x) ≥ c0.

(18)
x∈S
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We shall prove estimates which are uniform with respect to δ ∈ (0, 1] (this is why we are writing simply 
u instead of uδ, to simplify notations).

Let ε > 0. We want to estimate

v := u− e(ε+δ)∂2
xu0.

Set

u0,ε = e(ε+δ)∂2
xu0,

and introduce the coefficients

γ = 1
π

u

δ + u2 + (Hu)2 ,

V = − 1
π

Hu

δ + u2 + (Hu)2 ,

ρ =
√

δ + u2 + (Hu)2.

With the previous notations, we have

∂tv + V ∂xv + γΛv − δ∂2
xv = Rε(u, u0) (19)

where

Rε(u, u0) = −γΛu0,ε − V ∂xu0,ε + δ∂2
xu0,ε.

Lemma 3.2. For any u0 ∈ H
1
2 (S) with infx∈S u0(x) > 0, there exist a constant ε0 and a function T : (0, 1] →

(0, 1) with

lim
ε→0

T (ε) = 0,

such that the following result holds: for all δ ∈ (0, 1], all u ∈ C1([0, +∞); H∞(S)) satisfying (18) with initial 
data u|t=0 = eδ∂

2
xu0, and for all ε ∈ (0, ε0], the function v = u − e(ε+δ)∂2

xu0 satisfies

sup
t∈[0,T (ε)]

‖v(t)‖2
Ḣ

1
2

+
T (ε)ˆ

0

ˆ

S

u |Λv|2

δ + u2 + (Hu)2 dx dt + δ

T (ε)ˆ

0

‖v‖2
Ḣ

3
2

dt ≤ F(T (ε)), (20)

for some function F : R+ → R+ with limτ→0 F(τ) = 0.

Proof. Hereafter, C denotes various constants which depend only on the constant c0 (remembering that c0
is some given constant such that inf u(t, x) ≥ inf u0 ≥ c0) and we use the notation A �c0 B to indicate that 
A ≤ CB for such a constant C.

Consider a parameter κ ∈ (0, 1] whose value is to be determined. Then decompose the Hilbert transform 
as H = Hκ,1 + Hκ,2 where

Hκ,1g(x) = 1
2π

ˆ

S

g(x− α)χ
(α
κ

) dα
tan(α/2) ,

Hκ,2g(x) = 1
2π

ˆ

S

g(x− α)
(
1 − χ

(α
κ

)) dα
tan(α/2) ,
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for some cut-off function χ ∈ C∞ satisfying χ = 1 in [−1, 1] and χ = 0 in R \ [−2, 2].
Multiply equation (19) by Λv and then integrate over S, to obtain

1
2

d
dt ‖v‖

2
Ḣ

1
2

+
ˆ

S

γ(Λv)2 dx = A + B + R (21)

where

A =
ˆ

S

V (Hκ,1Λv)(Λv) dx,

B =
ˆ

S

V (Hκ,2Λv)(Λv) dx,

R =
ˆ

S

R(u, u0,ε)(Λv) dx.

Set

W := √
γΛv,

so that the dissipative term in (21) is of the form
ˆ

S

γ(Λv)2 dx =
ˆ

S

W 2 dx.

Step 1: estimate of B and R. Directly from the definition of γ and V , we have

γ ≤ 1
πc0

, |V | ≤ 1
2πc0

. (22)

One important feature of the critical problem is that the dissipative term is degenerate. This means that 
the coefficient γ is not bounded from below by a fixed positive constant. As a result, we do not control the 
L2-norm of Λv. Instead, we merely control the L2-norm of W = √

γΛv. Therefore, we will systematically 
write Λv under the form

Λv = 1
√
γ

√
γΛv = 1

√
γ
W.

To absorb the contribution of the factor 1/√γ in the estimates for B and R, it will be sufficient to notice 
that we have the pointwise bound

∣∣∣∣ V
√
γ

∣∣∣∣ = 1
u
√

δ + u2 + (Hu)2
|Hu| �c0 |Hu| .

In particular, remembering that the Hilbert transform is bounded from Lp(S) to Lp(S) for any p ∈
(1, +∞) and using the Sobolev embedding Hs(S) ⊂ L2/(1−2s)(S), we deduce that

‖V/√γ‖L4 �c0 ‖Hu‖L4 �c0 ‖u‖L4 �c0 ‖u‖
Ḣ

1
2
. (23)

Then it follows from Hölder’s inequality that
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|B| ≤
ˆ

S

V
√
γ
|Hκ,2Λv| |

√
γΛv|dx �c0 ‖u‖

Ḣ
1
2
‖Hκ,2Λv‖L4 ‖W‖L2 .

On the other hand,

‖Hκ,2Λv‖L4 = ‖Hκ,2∂xHv‖L4 � κ−1 ‖Hv‖L4 � κ−1 ‖v‖L4 ,

where we used the definition of Hκ,2, noting that gx(x − α) = ∂α(g(x) − g(x − a)) and integrating by parts 
in α.

By combining the previous estimates, we conclude that

|B| �c0 κ−1 ‖u‖
Ḣ

1
2
‖v‖

Ḣ
1
2
‖W‖L2 .

The estimate of R is similar. Recall that

Rε(u, u0) = −γΛu0,ε − V ∂xu0,ε + δ∂2
xu0,ε.

To estimate the contribution of the first term, we write

∣∣∣∣∣∣
ˆ

S

γ(Λu0,ε)(Λv) dx

∣∣∣∣∣∣ ≤ ‖√γ‖L∞ ‖Λu0,ε‖L2 ‖
√
γΛv‖L2 �c0 ε−

1
2 ‖u0‖

Ḣ
1
2
‖W‖L2 ,

where we have used the elementary inequality

‖u0,ε‖Ḣ1 � (ε + δ)− 1
4 ‖u0,ε‖

Ḣ
1
2

� ε−
1
4 ‖u0‖

Ḣ
1
2
,

since the Fourier transform of u0,ε = e(ε+δ)∂2
xu0 is essentially localized in the interval |ξ| �

√
ε + δ. With 

regards to the second term, we use again the estimate (23) to get

∣∣∣∣∣∣
ˆ

S

V (∂xu0,ε)(Λv) dx

∣∣∣∣∣∣ ≤ ‖V/√γ‖L4 ‖∂xu0,ε‖L4 ‖
√
γΛv‖L2

�c0 ε−1 ‖u‖
Ḣ

1
2
‖u0‖

Ḣ
1
2
‖W‖L2 .

Eventually, we have

∥∥δ∂2
xu0,ε

∥∥
Ḣ

1
2

=
∥∥∥δ∂2

xe
(ε+δ)∂2

xu0

∥∥∥
Ḣ

1
2

�
∥∥∥δ∂2

xe
δ∂2

xu0

∥∥∥
Ḣ

1
2

� ‖u0‖
Ḣ

1
2
.

So, by combining the previous inequalities, we conclude that

B + R �c0 κ−1 ‖u‖
Ḣ

1
2
‖v‖

Ḣ
1
2
‖W‖L2 + ε−

1
2 (1 + ‖u‖

Ḣ
1
2
) ‖u0‖

Ḣ
1
2
‖W‖L2 + ‖u0‖

Ḣ
1
2
,

hence, replacing u by v + u0,ε in the right-hand side, we conclude that

B + R �c0

(
κ−1 ‖u‖

Ḣ
1
2

+ ε−
1
2 ‖u0‖

Ḣ
1
2

)
‖v‖

Ḣ
1
2
‖W‖L2

+ ε−
1
2
(
‖u ‖ 1 + ‖u ‖2

1
)
‖W‖ 2 + ‖u ‖ 1 .

(24)

0

Ḣ 2 0
Ḣ 2 L 0

Ḣ 2
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Step 2: Estimate of A. By an argument parallel to (9), the fact that H∗
κ,1 = −Hκ,1 implies that

A = 1
2

ˆ

S

V (Hκ,1Λv)(Λv) dx− 1
2

ˆ

S

(Λv)Hκ,1(V Λv) dx

= 1
2

ˆ

S

([
V,Hκ,1

]
Λv

)
Λv dx.

Then, the Cauchy-Schwarz inequality implies that

A ≤

⎛
⎝ˆ

S

γ−1∣∣[V,Hκ,1](Λv)
∣∣2 dx

⎞
⎠

1
2

‖√γΛv‖L2 . (25)

We now have to estimate the commutator [V, Hκ,1]. Previously in §2, we deduced the commutator es-
timate (7) from (11). This time, we will proceed directly from the definition of Hκ,1, without a détour by 
BMO. The main new point is that this will allow us to obtain an estimate in terms of ‖W‖L2 instead of 
‖Λv‖L2 . Namely, directly from the definition of Hκ,1, we have

[V,Hκ,1](Λv) = 1
4π pv

ˆ

S

V (x)(δαΛv)(x) − δα(V Λv)(x)
tan(α/2) χ

(α
κ

)
dα

= − 1
4π pv

ˆ

S

(δαV )(x)(Λv)(x− α)
tan(α/2) χ

(α
κ

)
dα

= − 1
4π pv

ˆ

S

(δαV )(x)
√
γ(x− α)W (x− α)χ

(α
κ

) dα
tan(α/2)

where we replaced Λv by W/
√
γ to obtain the last identity.

Therefore,
ˆ

S

γ−1∣∣[V,Hκ,1](Λv)
∣∣2 dx

�
ˆ

S

(γ(x))−1

⎛
⎜⎝ ˆ

|α|≤2κ

|δαV (x)| γ(x− α)−1/2 |W (x− α)| dα
| tan(α/2)|

⎞
⎟⎠

2

dx

�c0

ˆ

S

(ρ2(x)

⎛
⎜⎝ ˆ

|α|≤2κ

|δαV (x)| ρ(x− α) |W (x− α)| dα
| tan(α/2)|

⎞
⎟⎠

2

dx.

Lemma 3.3. Introduce the notation

Qα(g) := |δαg| + |δαHg|.

Then there holds

|δαV | �c0

Qα(v)(1 + Qα(v))2
2 + ε−3(1 + ‖u0‖ 1

2
)3 |α| . (26)
ρ H
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Proof. One has

|δαV (x)| � |δαHu(x)|
ρ2(x) + |Hu(x− α)| |δαu(x)|(|u(x)| + |u(x− α)|)

ρ2(x− α)ρ2(x)

�c0

|δαHu(x)|
ρ2(x) + |δαu(x)|2 + |δαHu(x)|2

ρ(x− α)ρ(x) + |δαu(x)| + |δαHu(x)|
ρ(x− α)ρ(x) .

Since

1
ρ(x− α) � 1

ρ(x) (1 + |δαu(x)| + |δαHu(x)|),

we obtain

|δαV | �c0

Qα(v)(1 + Qα(v))2

ρ2 ·

To get the wanted result (26) from this, we replace u by v + u0,ε and use the two following elementary 
ingredients:

Qα(u0,ε)(1 + Qα(u0,ε))2

ρ2 �c0 Qα(u0,ε)(1 + Qα(u0,ε))2

Qα(u0,ε) ≤
(
‖∂xu0,ε‖L∞ + ‖∂x(Hu0,ε)‖L∞

)
|α| � ‖u0,ε‖H2 |α| � ε−

3
4 ‖u0‖

H
1
2
|α| .

Since |α|3 � |α|, this completes the proof. �
Set K(ε) := ε−3(1 + ‖u0,ε‖

H
1
2
)3. It follows from the previous lemma and the preceding inequality that

ˆ

S

γ−1∣∣[V,Hκ,1](Λv)
∣∣2 dx �c0 (I) + (II),

where

(I) :=
ˆ

S

ρ(x)2
( ˆ

|α|≤2κ

Qα(v)(x)(1 + Qα(v)(x))2

ρ(x)2 ρ(x− α) |W (x− α)| dα
| tan(α2 )|

)2

dx,

(II) := K(ε)2
ˆ

S

ρ(x)2
( ˆ

|α|≤2κ

ρ(x− α) |W (x− α)| dα
)2

dx.

Using the Cauchy-Schwarz inequality, we see that

(I) �
(¨

S2

Qα(v)(x)2(1 + Qα(v)(x))4 ρ
2(x− α)
ρ2(x)

dα dx
|α|2

)
‖W‖2

L2 .

Since

ρ2(x− α)
ρ2(x) � 1 + |Qα(u)(x)|2,

we end up with
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(I) �
(¨

S2

Qα(v)(x)2(1 + Qα(v)(x))4(1 + Qα(u)(x))2 dα dx
|α|2

)
‖W‖2

L2 .

On the other hand,
¨

S2

Qα(v)(x)2(1 + Qα(v)(x))4(1 + Qα(u)(x))2 dα dx
|α|2

�
¨

S2

Qα(v)(x)2(1 + Qα(v)(x))4 dα dx
|α|2

+

⎛
⎝¨

S2

Qα(v)(x)4(1 + Qα(v)(x))8 dα dx
|α|2

⎞
⎠

1
2
⎛
⎝¨

S2

Qα(u)(x)4 dα dx
|α|2

⎞
⎠

1
2

� ‖v‖2
Ḣ

1
2

(
1 + ‖v‖

Ḣ
1
2

)4(1 + ‖u‖
Ḣ

1
2
)2,

where we used the fact that Qα(f)(x) = |δαf(x)| + |δαHf(x)| and

¨

S2

(
|δαf(x)|2γ + |δαHf(x)|2γ

)dα dx
|α|2 � ||f ||2γ

Ḣ
1
2

for any γ ≥ 1.
This gives

(I) � ‖v‖2
Ḣ

1
2

(
1 + ‖v‖

Ḣ
1
2

)4(1 + ‖u‖
Ḣ

1
2
)2 ‖W‖2

L2 .

On the other hand,

(II) � K(ε)2κ 1
2 ‖u‖4

Ḣ
1
2
‖W‖2

L2

Therefore, it follows from (25) that

A ≤

⎛
⎝ˆ

S

γ−1∣∣[V,Hκ,1](Λv)
∣∣2 dx

⎞
⎠

1
2

‖W‖L2

�
(
(I) + (II)

) 1
2 ‖W‖L2

� ‖v‖
Ḣ

1
2

(
1 + ‖v‖

Ḣ
1
2

)2(1 + ‖u‖
Ḣ

1
2
) ‖W‖2

L2 + K(ε)κ 1
4 ‖u‖2

Ḣ
1
2
‖W‖2

L2 .

By combining this with (24), we get from (21) that there exists a constant C depending only on c0 such 
that

1
2

d
dt ‖v‖

2
Ḣ

1
2

+ ‖W‖2
L2 ≤ C ‖v‖

Ḣ
1
2

(
1 + ‖v‖

Ḣ
1
2

)2(1 + ‖u‖
Ḣ

1
2
) ‖W‖2

L2

+ CK(ε)κ 1
4 ‖u‖2

Ḣ
1
2
‖W‖2

L2

+ C
(
κ−1 ‖u‖

Ḣ
1
2

+ Cε−
1
2 ‖u0‖

Ḣ
1
2

)
‖v‖

Ḣ
1
2
‖W‖L2

+ Cε−
1
2

(
‖u0‖ 1 + ‖u0‖2

1

)
‖W‖ 2 .

(27)
Ḣ 2 Ḣ 2 L
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Using the Young’s inequality, this immediately implies that an inequality of the form

1
2

d
dt ‖v‖

2
Ḣ

1
2

+ Υ ‖W‖2
L2 ≤ M ‖v‖2

Ḣ
1
2

+ F, (28)

where

M := 4C2ε−1
(
‖u0‖

Ḣ
1
2

+ ‖u0‖2
Ḣ

1
2

)2
,

F := 4C2ε−1
(
‖u0‖

Ḣ
1
2

+ ‖u0‖2
Ḣ

1
2

)2
,

Υ := 1
4 − C ‖v‖

Ḣ
1
2

(
1 + ‖v‖

Ḣ
1
2

)2(1 + ‖u‖
Ḣ

1
2
)

− CK(ε)κ 1
4 ‖u‖2

Ḣ
1
2

− C2
(
κ−1 ‖u‖

Ḣ
1
2

+ ε−
1
2 ‖u0‖

Ḣ
1
2

)2
‖v‖2

Ḣ
1
2
.

In particular, as long as Υ ≥ 0, we have

‖v(t)‖2
Ḣ

1
2
≤ e2Mt ‖v(0)‖2

Ḣ
1
2

+ etM − 1
M

F.

If one further assumes that tM ≤ 1, it follows that

‖v(t)‖2
Ḣ

1
2
≤ e2Mt ‖v(0)‖2

Ḣ
1
2

+ tF.

Introduce the parameter

ν(ε) := 2 ‖v|t=0‖
Ḣ

1
2 (S)

= 2
∥∥∥u0 − eε∂

2
xu0

∥∥∥
Ḣ

1
2 (S)

.

Then choose ε small enough, so that

Cν(ε)
(
1 + ν(ε)

)2(1 + 2 ‖u0‖
Ḣ

1
2
) ≤ 1

16 .

We then fix κ small enough to that

CK(ε)κ 1
4 (2 ‖u0‖

Ḣ
1
2
)2 ≤ 1

16 ,

where recall that K(ε) := ε−3(1 + ‖u0,ε‖
H

1
2
)3.

We then deduce the wanted uniform estimate by an elementary continuation argument. �
3.3. Compactness

Previously, we have proved a priori estimates for the spatial derivatives. In this paragraph, we collect 
results from which we will derive estimates for the time derivative as well as for the nonlinearity. These 
estimates are used to pass to the limit in the equation.

Recall the notations introduced in the previous section, as well as the estimates proved there. Fix c0 > 0. 
Given δ ∈ (0, 1] and an initial data u0 ∈ H

1
2 (S) satisfying u0 ≥ c0, we have seen that there exists a (global 

in time) solution uδ to the Cauchy problem:
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⎧⎪⎨
⎪⎩
∂tuδ + 1

π

uδΛuδ − (Huδ)∂xuδ

δ + u2
δ + (Huδ)2

− δ∂2
xuδ = 0,

uδ|t=0 = eδ∂
2
xu0.

(29)

Moreover, we have proved that one can fix ε small enough such that one can write uδ under the form

uδ(t, x) = (e(ε+δ)∂2
xu0)(x) + vδ(x),

and there exist T > 0 and M > 0 depending on u0 such that, for all δ ∈ (0, 1],

sup
t∈[0,T ]

‖vδ(t)‖2
Ḣ

1
2

+
T̂

0

ˆ

S

uδ |Λvδ|2

δ + u2
δ + (Huδ)2

dx dt + δ

T̂

0

‖vδ‖2
Ḣ

3
2

dt ≤ M. (30)

Now, to pass to the limit in the equation (29), we need to extract some uniform estimates for the time 
derivative. Since ∂tuδ = ∂tvδ, it is sufficient to estimate the latter quantity. It is given by

∂tvδ = −Vδ∂xvδ − γδΛvδ + δ∂2
xvδ + Rδ, (31)

where

γδ = 1
π

uδ

δ + u2
δ + (Huδ)2

, Vδ = − 1
π

Huδ

δ + u2
δ + (Huδ)2

,

Rδ = −γδ(Λe(ε+δ)∂2
xu0) − Vδ(∂xe(ε+δ)∂2

xu0) + δ∂2
xe

(ε+δ)∂2
xu0.

As already seen in (22), we have γδ �c0 1 and |Vδ| �c0 1. By combining this with the fact that eε∂2
x is a 

smoothing operator, we immediately see that

‖Rδ‖L∞([0,T ];L2) �c0,ε ‖u0‖
Ḣ

1
2
.

Here the implicit constant depends on ε, but this is harmless since ε is fixed now. On the other, directly 
from (30), we get that

‖γδΛvδ‖L2([0,T ];L2) �c0 ‖√γδΛvδ‖L2([0,T ];L2) �c0 M,

and

δ
∥∥∂2

xvδ
∥∥
L2([0,T ];H− 1

2 )
≤

√
δ
∥∥∂2

xvδ
∥∥
L2([0,T ];H− 1

2 )
≤ M.

It remains only to estimate the contribution of Vδ∂xvδ. For this, we begin by proving that (vδ)δ∈(0,1] is 
bounded in Lp([0, T ]; Ḣ1(S)) for any 1 ≤ p < 2. Indeed, we can write

‖vδ‖2
Ḣ1 ≤

∥∥∥∥u2
δ + (Huδ)2

uδ

∥∥∥∥
L∞

ˆ

S

uδ |Λvδ|2

u2
δ + (Huδ)2

dx

�c0 ‖(uδ, Huδ)‖2
L∞

ˆ

S

uδ |Λv|2

u2
δ + (Huδ)2

dx

�c0

(
‖(vδ, Hvδ)‖2

L∞ + ε−
1
2 ‖u0‖2

H
1
2

) ˆ uδ |Λv|2

u2
δ + (Huδ)2

dx

S
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�c0

(
‖vδ‖2

Ḣ
1
2

log
(
2 + ‖vδ‖Ḣ1

)
+ ε−

1
2 ‖u0‖2

H
1
2

) ˆ
S

uδ |Λvδ|2

u2
δ + (Huδ)2

dx,

to conclude that

‖vδ‖2
Ḣ1

log(2 + ‖vδ‖Ḣ1)
�c0,ε,‖u0‖

H
1
2

ˆ

S

uδ|Λvδ|2
u2
δ + (Huδ)2

dx.

Remembering that |Vδ| �c0 1, it immediately follows that, for any p ∈ [1, 2),

‖Vδ∂xvδ‖Lp([0,T ];L2) � M.

Now, by combining all the previous estimates, we see that (vδ)δ∈(0,1] is bounded in the space

Xp =
{
u ∈ C0([0, T ];H 1

2 (S) ∩ Lp([0, T ];H1(S)) ; ∂tu ∈ Lp([0, T ];H− 1
2 (S))

}
.

Since H
1
2 (S) (resp. H1(S)) is compactly embedded into Hs(S) (resp. H 1

2+s(S) for any s < 1/2. By the 
classical Aubin-Lions lemma, this in turn implies that one extract a sequence (uδn)n∈N which converges 
strongly in

C0([0, T ];Hs(S) ∩ Lp([0, T ];H 1
2+s(S)).

Then it is elementary to pass to the limit in the equation.

4. Smoothing effect

The goal of this section is to prove the second statement in Theorem 1.1 which asserts that the solutions 
are smooth. By classical methods for parabolic equations (see [40, Chapter 15]), it is easy to prove that 
solutions which are smooth enough (say with initial data in H2(S)) are C∞ for positive time. So it is 
sufficient to prove that the solutions are at least H2 for positive times. This is the purpose of the following 
proposition.

Proposition 4.1. The solution u constructs in the previous section is such that, for any ξ > 4, there exists a 
constant C = C(ξ) such that

sup
t∈[0,T ]

tξ ‖u(t)‖2
Ḣ

5
2
< +∞. (32)

Proof of Proposition 4.1. Since u was constructed as the limit of smooth solutions (see §3.1 and §3.3), we 
will prove only a priori estimates. As in the previous part, we work with the function

v = u− eε∂
2
xu0,

with ε small enough. Recall from (19) that v solves

∂tv + V ∂xv + γΛv = Rε(u, u0) (33)

where

Rε(u, u0) = −γΛu0,ε − V ∂xu0,ε.
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We will estimate the Ḣ2-norm of v. For this introduce ṽ = ∂2
xv, solution to

∂tṽ + γΛṽ = V
(
Hκ,1Λṽ

)
+ R0 + R1 (34)

where

R0 = ∂2
x (V (Hκ,2Λv)) + ∂2

xRε(u, u0)

R1 = −(∂2
xγ)(Λv) − 2(∂xγ)(Λ∂xv) + (∂2

xV )(Hκ,1Λv) + 2(∂x(V Hκ,1Λ∂xv)).

Now, we multiply (34) by Λṽ and then integrate in x over S, to obtain

1
2

d
dt ‖ṽ‖

2
Ḣ

1
2

+
ˆ

S

γ
∣∣Λṽ∣∣2 dx = 1

2

ˆ

S

[V,Hκ,1](Λṽ)Λṽ dx

+
ˆ

S

R1Λṽ dx +
ˆ

S

R0Λṽ dx.

Set

W̃ := √
γΛṽ.

By using arguments parallel to those used in the first step of the proof of Lemma 3.2, one finds that
∣∣∣∣
ˆ

[V,Hκ,1](Λṽ)Λṽ dx

∣∣∣∣ �c0 ‖v‖Ḣ1/2 (1 + ‖v‖Ḣ1/2)3||w̃||2L2 + C(ε)κ 1
4 (‖v‖Ḣ1/2 + 1)2||w̃||2L2

and,

|
ˆ

R0Λṽ dx| �c0 C(ε, κ)||w̃||
9
5
L2 + C(ε, κ).

Since

|∂xγ| + |∂xV | � 1
ρ2 (|∂xu| + |Λu|) ,

|∂2
xγ| + |∂2

xV | � 1
ρ2

(
|∂2

xu| + |H∂2
xu|

)
+ 1

V 3/2

(
|∂xu|2 + |Λu|2

)
,

then one finds

|R1| �c0

(
1
ρ2

(
|∂2

xu| + |H∂2
xu|

)
+ 1

ρ3

(
|∂xu|2 + |Λu|2

))
(|Λv| + |Hκ,1Λv|)

+ 1
ρ2 (|∂xu| + |Λu|) (|Λ∂xv| + |Hκ,1Λ∂xv|) .

We obtain,

|R1| �c0

(
1
ρ2

(
|∂2

xv| + |H∂2
xv|

)
+ 1

ρ3

(
|∂xv|2 + |Λv|2

))
(|Λv| + |Hκ,1Λv|)

+ 1
ρ2 (|∂xv| + |Λv|) (|Λ∂xv| + |Hκ,1Λ∂xv|) + C(ε) (|Λv| + |Hκ,1Λv| + |Λ∂xv| + |Hκ,1Λ∂xv|)
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Thus, ∣∣∣∣
ˆ

R1Λṽ dx

∣∣∣∣ �c0 ‖v‖Ḣ1/2 (1 + ‖v‖Ḣ1/2)3||w̃||2L2 + C(ε)κ 1
4 (‖v‖Ḣ1/2 + 1)4||w̃||2L2 + C(κ, ε)

Therefore, we find

∂t||ṽ||2
Ḣ

1
2

+
ˆ

|w̃|2 dx �c0 ‖v‖Ḣ1/2 (1 + ‖v‖Ḣ1/2)3||w̃||2L2 + C(ε)κ 1
4 (‖v‖Ḣ1/2 + 1)4||w̃||2L2 + C(κ, ε)

Choosing ε and then κ small enough, we obtain

∂t||ṽ||2
Ḣ

1
2

+
ˆ

S

|w̃|2 dx � C(c0, κ, ε),

for any t ∈ (0, T ). So, integrating in time τ ∈ (s, t) we have obtained that,

||v(t)||2
Ḣ

5
2

+
tˆ

s

ˆ

S

u|Λ3v|2
u2 + (Hu)2 dx dτ � C(c0, κ, ε) + ||v(s)||2

Ḣ
5
2
.

Then, in order to measure the decay rate in time, we multiply the last inequality by sξ−1 and then 
integrate in s ∈ [0, T ], one finds

T̂

0

sξ−1||v(t)||2
Ḣ

5
2
ds +

T̂

0

sξ−1
tˆ

s

ˆ

S

u|Λ3v|2
u2 + (Hu)2 dx dτ ds �

T̂

0

sξ−1C(c0, κ, ε) + sξ−1||v(s)||2
Ḣ

5
2
ds.

Then,

sup
0<t<T

tξ||v(t)||2
Ḣ

5
2

+
tˆ

0

sξ
ˆ

u|Λ3v|2
u2 + (Hu)2 � T ξC(c0, κ, ε) +

tˆ

0

sξ−1||v(s)||2
Ḣ

5
2
ds.

Since

‖v‖2
H3 �c0 ‖(u,Hu)‖2

L∞

ˆ
u|Λ3v|2

u2 + (Hu)2

�c0 (‖(v,Hv)‖2
L∞ + ε−1/2 ‖u0‖2

H1/2)
ˆ

u|Λ3v|2
u2 + (Hu)2 dx

�c0 (‖v‖2
H1/2 log(2 + ‖v‖H3) + ε−1/2 ‖u0‖2

H1/2)
ˆ

u|Λ3v|2
u2 + (Hu)2 dx.

Then, using the inequality

‖v‖2
H3

log(2 + ‖v‖H3)
�c0,ε,‖u0‖H1/2

ˆ
u|Λ3v|2

u2 + (Hu)2 ,

we find that,

sup
0<t<T

tξ||v(t)||2
Ḣ

5
2

+
tˆ

0

sξ
‖v‖2

H3

log(2 + ‖v‖H3)
� tξC(c0, κ, ε) +

tˆ

0

sξ−1||v(s)||2
Ḣ

5
2
.
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Then, we use the fact that some δ > 0 small enough, a2−δ � a2

log(2+a) , we find

sup
0<t<T

tξ||v(t)||2
Ḣ

5
2

+
T̂

0

sξ‖u(s)‖2−δ
Ḣ3 � T ξ+1 +

T̂

0

sξ−1‖u(s)‖2
Ḣ5/2 ds. (35)

Let ε > 0 and δ0 > 0, using the following interpolation inequality

sξ−1‖u(s)‖2
Ḣ5/2 ≤ εsξ−1+δ0‖u(s)‖8/5

Ḣ3 ε−1s−δ0‖u(s)‖2/5
Ḣ1/2 ,

together with Young’s inequality (with the conjugate exponents p = 10−5δ
8 and q = 10−5δ

2−5δ ) we find

T̂

0

sξ−1‖u(s)‖2
Ḣ5/2 ds ≤ εp

p

T̂

0

spξ−p+pδ0‖u(s)‖2−δ
Ḣ3 ds

+ 1
qεq

sup
s∈(0,T )

‖u(s)‖2q/5
Ḣ1/2

T̂

0

s−qδ0 ds.

Therefore, inequality (35) becomes

sup
0<t<T

tξ||v(t)||2
Ḣ

5
2

+
T̂

0

sξ‖u(s)‖2−δ
Ḣ3 ds � T ξ+1 + εp

p

T̂

0

spξ−p+pδ0‖u(s)‖2−δ
Ḣ3 ds

+ 1
qεq

sup
s∈(0,T )

‖u(s)‖2q/5
Ḣ1/2

T̂

0

s−qδ0 ds. (36)

Choosing m, δ0 such that qδ0 < 1 (so that the last integral in the right hand side is finite) and, for a 
scaling purpose, we also need that

ξ = pξ − p + pδ0.

So,

ξ = q − δ0q > q − 1.

Then, for any ξ > 4 (note that q > 4 for any δ > 0) and any ε > 0 sufficiently small, we may absorb the Ḣ3

in the left hand side of inequality (36), we obtain

sup
0<t<T

tξ||v(t)||2
Ḣ

5
2

+
T̂

0

sξ‖u(s)‖2−δ
Ḣ3 ds � 1.

In particular, for any ξ > 4

sup tξ||v(t)||2
Ḣ

5
2
≤ C. �
0<t<T
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5. Uniqueness

The goal of this section is to prove Theorem 1.3. For any data u0 ∈ H1/2+a(S) we know from Theorem 1.1
that u in C0([0, +∞); Ḣ 1+a

2 (S)) ∩ L2((0, +∞); Ḣ1+ a
2 (S)) and satisfy the following condition

sup
t>0

ts+ε0 ||u(t)||
Ḣ

1+a
2 +s < ∞

for any s > 0. We will follow an idea in [13]. Let u1, u2 be two solutions of (3) with same initial data. Assume 
that u1, u2 ≥ c0 > 0. Set u = u1 − u2. Let xt, xt satisfy u(xt, t) = sup

x
u(x, t) and u(xt, t) = sup

x
(−u)(x, t). 

By evaluating the evolution equation at x = xt, one finds

∂t(u(xt, t)) + 1
π

u1

u2
1 + (Hu1)2

Λu

= − 1
π

(
u1

u2
1 + (Hu1)2

− u2

u2
2 + (Hu2)2

)
Λu2 + 1

π

(
Hu1

u2
1 + (Hu1)2

− Hu2

u2
2 + (Hu2)2

)
∂xu2

≤ 1
π

|u||Λu2| + |Hu||∂xu2|
u2

1 + (Hu1)2
+ 1

π
(|u2||Λu2| + |Hu2||∂xu2|)

∣∣∣∣ 1
u2

1 + (Hu1)2
− 1

u2
2 + (Hu2)2

∣∣∣∣ .
Since ∣∣∣∣ 1

u2
1 + (Hu1)2

− 1
u2

2 + (Hu2)2

∣∣∣∣ � |u| + |Hu|
(|u1| + |Hu1|)(|u2| + |Hu2|)

�c0

|u| + |Hu|
|u2| + |Hu2|

,

one gets

∂t(u(xt, t)) + 1
π

u1

u2
1 + (Hu1)2

Λu �c0

(
||u||L∞

x
+ |Hu(xt, t)|

)
||(Λu2, ∂xu2)||L∞

x
.

We need to control |Hu(xt, t)| by Λu(xt, t) and ||u||L∞
x

. For any ε ∈ (0, 1/2), since u(xt, t) ≥ 0, we may 
write

|Hu(xt, t)| �
ˆ

2π>|α|>ε

|δαu(xt, t)|
dα

|α| +
ˆ

|α|≤ε

|δαu(xt, t)|
dα

|α|

� | log(ε)|||u||L∞
x

+ ε|Λu(xt, t)|.

Thus, for any ε ∈ (0, 1/2)

∂t(u(xt, t)) + 1
π

u1

u2
1 + (Hu1)2

Λu

�c0 | log(ε)|||(Λu2,Λu2)||L∞
x
||u||L∞

x
+ ε||(Λu2, ∂xu2)||L∞

x
Λu

�c0 | log(ε)|||(Λu2,Λu2)||L∞
x
||u||L∞

x
+ ε(1 + ||u1||

L∞Ḣ
1+a
2

)||(Λu2, ∂xu2)||L∞
x

u1

u2
1 + (Hu1)2

Λu.

Choosing

ε ∼
[
(2 + ||u1||

L̇∞H
1+a
2

)(1 + ||(Λu2, ∂xu2)||L∞
x

)
]−1

,

one obtains
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∂t(u(xt, t)) �c0 log
(
(2 + ||u1||

L̇∞H
1+a
2

)(1 + ||(Λu2, ∂xu2)||L∞
x

)
)
||(Λu2, ∂xu2)||L∞

x
||u||L∞

x
.

Using similar arguments, it is easy to get that

∂t(u(xt, t)) �c0 log
(
(2 + ||u1||

L̇∞H
1+a
2

)(1 + ||(Λu2, ∂xu2)||L∞
x

)
)
||(Λu2, ∂xu2)||L∞

x
||u||L∞ .

Thus, we obtain,

||u(t)||L∞ � ||u(0)||L∞ +
tˆ

0

ω(τ)||u(τ)||L∞dτ,

where,

ω(t) := log
(
(2 + ||u1||

L̇∞H
1+a
2

)(1 + ||(Λu2, ∂xu2)(t)||L∞
x

)
)
||(Λu2, ∂xu2)(t)||L∞

x
.

Note that, for any a0 ∈ (0, 1),

tˆ

0

ω(τ)dτ �a0 (2 + ||u1||
L̇∞H

1+a
2

)
[
1 + sup

τ∈(0,t)

(
τ1−a0 ||(Λu2, ∂xu2)(τ)||L∞

x

)]2

.

By Sobolev’s inequality

sup
τ∈(0,t)

(
τa0 ||(Λu2, ∂xu2)(τ)||L∞

x

)
� t||u1||

L̇∞H
1
2

+ sup
τ∈(0,t)

(
τ1−a0 ||u2(τ)||

H
3
2 + a

4

)

� Ct < ∞.

Therefore, by using Gronwall’s inequality, one obtains

||u(t)||L∞ � ||u(0)||L∞ exp(C(c0)
tˆ

0

ω(τ)dτ) � Ct||u(0)||L∞ .

Hence, we proved the wellposedness of (3) in H
1
2+a initial data for any a > 0. �
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