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This article is devoted to the study of a nonlinear and nonlocal parabolic equation
introduced by Stefan Steinerberger to study the roots of polynomials under
differentiation; it also appeared in a work by Dimitri Shlyakhtenko and Terence
Tao on free convolution. Rafael Granero-Belinchén obtained a global well-posedness
result for initial data small enough in a Wiener space, and recently Alexander Kiselev
and Changhui Tan proved a global well-posedness result for any initial data in the
Sobolev space H*(S) with s > 3/2. In this paper, we consider the Cauchy problem
in the critical space H1/2(S). Two interesting new features, at this level of regularity,
are that the equation can be written in the form

Ou + VIyu + yAu = 0,

where V' is not bounded and + is not bounded from below. Therefore, the equation is
only weakly parabolic. We prove that nevertheless the Cauchy problem is well posed
locally in time and that the solutions are smooth for positive times. Combining this
with the results of Kiselev and Tan, this gives a global well-posedness result for
any initial data in H'/2(S). Our proof relies on sharp commutators estimates and
introduces a strategy to prove a local well-posedness result in a situation where the
lifespan depends on the profile of the initial data and not only on its norm.

© 2022 Elsevier Masson SAS. All rights reserved.

RESUME

Cet article traite de I’étude d’une équation parabolique non linéaire et non locale
introduite par Stefan Steinerberger dans le but d’étudier les zéros d’un polynéme
sous l'action de la derivation; cette équation apparait aussi dans un travail de
Dimitri Shlyakhtenko et Terence Tao sur les convolutions libres. Rafael Granero-
Belinchén a prouvé que ’équation est globalement bien posée pour toutes données
initiales dans l’espace de Wiener, plus récémment, Alexander Kiselev and Changhui
Tan ont démontré que 1’équation est globalement bien posée pour toutes données
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initiales dans l’espace de Sobolev H*(S) ot s > 3/2. Dans cet article, on s’intéresse
au probléme de Cauchy pour des données initiales dans ’espace critique H'/2(S). Il
y a principalement deux nouveautés, a ce niveau de régularité, I’équation peut étre
écrite sous la forme

ou 4+ VIzu + yAu = 0,

ou V n’est pas borné et v n’est pas majoré. Par conséquent, 1’équation n’est
que faiblement parabolique. On arrive néanmoins & démontrer que le probléme de
Cauchy est globalement bien posé en temps et que les solutions sont réguliéres pour
des temps positifs. En combinant notre résultat avec celui obtenu par Kiselev et
Tan, on obtient que le probleme est globablement bien posé pour toutes données
initiales dans H'/2(S). Notre preuve est basée sur des estimations optimales de
commutateurs et utilise une stratégie adapatée au cas ou le temps d’existence dépend
du profil de la solution et non pas uniquement de sa norme.

© 2022 Elsevier Masson SAS. All rights reserved.

1. Introduction

Stefan Steinerberger studied in [38] the following question: considering a polynomial p,, of degree n having
all its roots on the real line (see [34] for the complex case) distributed according to a smooth function ug(z),
and a real-number ¢ € (0,1), how is the distribution of the roots of the derivatives 9¥p,, distributed with
k = [t - n]? This question led him to discover a nice nonlocal nonlinear equation of the form

Oru + lax (arctan (Hu)) =0, (1
T U

where the unknown v = u(t, z) is a positive real-valued function.

~—

Besides its aesthetic aspect, this equation has many interesting features. Shlyakhtenko and Tao [36]
derived the same equation in the context of free probability and random matrix theory (see also [39]).
However, our motivation comes from the links between this equation and many models studied in fluid
dynamics.

In this paper, we assume that the space variable x belongs to the circle S = R/(27Z), and H is the
circular Hilbert transform (which acts on periodic functions), defined by

Hg(x) = S pv/ % de, (2)

where the integral is understood as a principal value. Granero-Belinchén ([25]) proved the local existence of
smooth solutions for initial data ug in the Sobolev space H?(S) = {u € L*(S); 92u € L*(S)}, as well as the
global existence under a condition in appropriate Wiener spaces. Then, Kiselev and Tan proved [28] that
the Cauchy problem for (1) is globally well-posed in the homogeneous Sobolev space H 5(S) for all s > 3/2,
where H*(S) = {u € L*(S); A*u € L?(S)} where A denotes the fractional Laplacian:

A=0,H = (—0y)7.

In fact, the equation (1) enters the family of fractional parabolic equations, which has attracted a lot of
attention in recent years. To see this, introduce the coefficients

1 Hu 1 U

V=—-o—ov— = .
mu?+ (Hu)2 mu? + (Hu)?
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Then the equation (1) has the following form
Oru + Voyu+ yAu = 0. (3)

This last equation shares many characteristics with the Hele-Shaw equation ([6]), the Muskat equation, the
dissipative quasi-geostrophic equation, and 1D models for the 3D incompressible Euler equation ([19], [21],
[29], [30], [7]), to name a few. Many different techniques have been introduced to study these problems.

For the critical dissipative SQG equation, the global regularity has been proved by Kiselev, Nazarov and
Volberg [27], Caffarelli-Vasseur [8] and Constantin-Vicol [20] (see also [26,37,41,33]). The nonlinearity in
the Muskat equation is more complicated. However, Cameron has succeeded in [9] to apply the method
introduced by Kiselev-Nazarov-Volberg to prove the existence of global solutions in time when the product
of the maximum and minimum slopes is less than 1 (see also [11]). Recently, many works have extended
this last result. The main results in [2-5] imply that the Cauchy problem can be solved for non-Lipschitz
initial data, following earlier work by Deng, Lei and Lin [23], Cameron [9], Cérdoba and Lazar [22], Gancedo
and Lazar [24] which allowed arbitrary slopes of large size. Recently, in [13] the third author proved local
existence with C! initial data which extends some previous results in [1], [31], [15]. The main issue is that
it is difficult to dispense with the assumption of finite slopes as it is explained in [18]. Indeed, the classical
nonlinear estimates require to control the L norm of some factors, which is the same for the Muskat
problem to control the L™ norm of the slope ([16], [17], [35], [10], [11]) which in turn amounts to controlling
the Lipschitz norm of f. Second, the Muskat equation is a degenerate parabolic equation for solutions which
are not controlled in the Lipschitz semi-norm and singularities are possible [12]. We also refer interested
readers to [14] for another non-local parabolic equation (see also [32], [33]).

Inspired by these results, our goal here is to solve the Cauchy problem for (1) in the critical Sobolev
space H2(S). Several interesting difficulties appear at that level of regularity.

The main result of this paper is the following

Theorem 1.1. For all initial data ug in H%(T) such that infug > 0, the Cauchy problem has a global in
time solution u satisfying the following properties:

(i) u € CO([0,+00); H=(S)) N L2((0,+00); H'(S)) together with the estimate

A 2
sup ||u(t) //u2“| “' 5 dadt <10 Jluol?, 5 - (4)

t>0

(if) u € C°((0,400) x S) and moreover for any s > 0 and g9 > 0 there exists a constant C(s,eq) such
that

sup ¢+ [lu(®)l] ;4. < Cls,0) luol 3
>

(iii) 1nf u(t,z) > 1nf uo(z) fort > 0.
z€S

Remark 1.2. The main difficulty is that the coercive quantity that appears in the left-hand member of (4),

//u2“|A“|2 de dt, (5)

i.e.
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is insufficient to control the [|-|| ;271 -norm of u. Indeed, even if we assume that the initial value of u is
bounded (which propagates in time), since the Hilbert transform is not bounded from L*°(S) to itself, we
would have no control from below of the denominator u? + (Hu)?.

Regarding uniqueness, we have the following theorem,

Theorem 1.3. For any a > 0 and initial data ug € H%+“(S), such that infug > 0, the Cauchy problem has
a unique global in time solution.

Remark 1.4. Our uniqueness theorem improves the one obtained by Kiselev and Tan [28]. Indeed, they
proved uniqueness in the space H %+G(S) while our result deals with data in the space H %Jra(S). The
question of uniqueness in the case H? (S) remains open.

Plan of the paper. Since Kiselev and Tan ([28]) proved that the Cauchy problem for (1) is globally well-
posed in the homogeneous Sobolev space H*(S) for all s > 3/2, it will be sufficient to prove that a local
well-posedness result, together with the fact that the solutions are smooth for positive times. We start in
Section §2 by discussing a model equation, to explain one (somewhat classical) commutator estimate and
to explain the main difficulty one has to cope with. Then we prove the local-well posedness result in §3 and
establish the smoothing effect in §4.

2. Estimate in H'/2 for a toy model

To prove Theorem 1.1, the main difficulty is that, even if we know that u satisfies a maximum principle,
the coefficient ~y is not bounded from below by a positive constant. Indeed, it is well-known that the Hilbert
transform is not bounded on L*°(S). This means that (3) is a degenerate parabolic equation.

Although it is not essential for the rest of the paper, it helps if we begin by examining a model equation
with some non-degenerate dissipative term. Our goal here is to introduce a basic commutator estimate
which allows to deal with equations of the form (3).

Consider the equation

Owu + a(u, Hu)Au = b(u, Hu) H Au, (6)

where a and b are two C*° real-valued functions defined on R?, satisfying a > m > 0 for some given positive
constant m, together with
[b(z, y) — b(z',y")|

sup < +00.
(z,2",y,y")ER4 lz — 2| + |y — ¢/l

Proposition 2.1. There exists a constant C > 0 such that, for all T > 0 and for all u € C*([0,T]; Hz(S))
solution to (6), there holds

1d
5 el +m [ 180 do < O ul 4. ™)
S

Remark 2.2. Using classical arguments, it is then possible to infer from the a priori estimate (7) a global
well-posedness result for initial data which are small enough in H 2 (S). However, the study of the local well-
posedness of the Cauchy problem for large data is more difficult and requires and extra argument which is
explained in the next section.



T. Alazard et al. / J. Math. Pures Appl. 162 (2022) 1-22 5

Proof. Let us use the short notations a = a(u, Hu) and b := b(u, Hu). Multiplying the equation (6) by Au
and integrating over S, we obtain

1d

R lull?, 3 +/a|Au|2d9: =1:= /b(HAu)(Au) dz. (8)

S S

To estimate I, we exploit the fact that H* = —H to write

I= %/b(HAu)(Au) dz — % /(Au)H(bAu) dz

S S
1 ©
=3 / ([b, H]Au)Audx.
S
Now we claim that
15, H] Aul| . S 1], 3 1Al e (10)

Indeed, this follows from the Sobolev embedding H 2 C BMO and the classical commutator estimate

IH, flvll e < 11fllsao vl e - (11)

(Alternatively one can prove (10) directly using the definition of the Hilbert transform as a singular
integral and the Gagliardo semi-norm; see below.) It follows that

TSl [[Aul (12)
Now we estimate the H2-norm of b by means of the following elementary estimate.
Lemma 2.3. Consider a C* function o: R?> — R satisfying
V(@,2',y,y) €RY, o(z,y) —o(@',y)| S Ko — o[+ Ky —y/|.

Then, for all s € (0,1) and all u € H*(R), one has o(u, Hu) € H*(R) together with the estimate

llo(u, Hu) o < K Jull 7. - (13)
Proof. By assumption, for any a € R, we have

1000 (u, Hu)l| 1o < K [|date]| 2 + (|00 Hul| 12 -
Then by using the Gagliardo semi-norms, we get
lo(u, Hu)|l o < K [[ull o + K [|Hull .,

and the desired result follows since ||Hul| . = [Jul|g.. O

The previous lemma implies that

1815 < Nl + 1Eul < g



6 T. Alazard et al. / J. Math. Pures Appl. 162 (2022) 1-22

and we deduce from (12) that
IS Jlull g IAullZe -
~ H2 L2
Therefore the wanted result (7) follows from (8). O
3. Local well-posedness

We construct solutions to (1) as limits of solutions to a sequence of approximate nonlinear systems. We
divide the analysis into three parts.

1. We start by proving that the Cauchy problem for these systems are well posed globally in time and
satisfy the maximum principles. In particular, the approximate solutions are bounded by a positive
constant.

2. Then, we show that the solutions of the approximate systems are bounded in C°([0, T; H %(S)), on a
uniform time interval that depends on the profile of the initial data (and not only on their norm).

3. The third task is to show that these approximate solutions converge to a limit which is a solution of the
original equation. To do this, we use interpolation and compactness arguments.

3.1. Approximate systems

Fix ¢ € (0,1] and consider the following approximate Cauchy problem:

1 ulAu — (Hu)Opu 502 = 0,
7r5+u2+(Hu)2 (14)

2
Uli=p = 9% .

Otu +

The following lemma states that this Cauchy problem has smooth solutions.

Lemma 3.1. For any positive initial data ug € L*(S) and for any § > 0, the initial value problem (14) has
a unique solution u in C1([0,+o00); H*(S)). This solution is such that, for all t € [0,+00),

inf u(t,z) > inf up(z) and maxu(t,z) < maxug(z). (15)
€S €S €S TES
Proof. The proof is classical and follows from arguments already introduced by Granero in [25], but we
repeat it for completeness.
Fix § > 0. The Cauchy problem (14) has the following form

2

dyu — 60%u = Fs,  uleo = "%y, (16)
where

P - LulAu— (Hu)Ozu
"T TR 04 u?+ (Hu)?

Step 1: existence of mild solution locally in time. Since H21*(S) € L>°(S) for all v > 0 and since the
circular Hilbert transform H is bounded on H21¥(S), it is easy to verify that
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1Fs(u) = Fs()ll 2 Ss (llull g0 + 10l 300 ) e = vl

+ (Nlull g+ 0l ) e = oll 3

where the notation <s is intended to indicate that the implicit constant depends on §. Therefore, it
follows from the interpolation inequality in Sobolev space, from the fixed point theorem and from the
usual energy estimate for the heat equation that the Cauchy problem has a unique mild solution in
C°([0,T5); L*(S)) N L?(0,T5; H'(S)), where Ty is estimable from below in terms of |ulsol/;> (see [40,
Section 15.1]). In particular, we have the following alternative: either

Ts = 400 or lim sup ||u(t)] ;. = +o0. (17)

t—Ts

Step 2: Global well-posedness On the other hand, directly from the obvious estimate

1E5 ] 2 <o llull g

the energy estimate for the heat equation implies that limsup, , [lu(t)|,. = +oo is impossible with
T,, < 4o00. This proves that the solution exists globally in time.

Step 3: Regularity. We verify that the solution defined above is regular by noting that one can solve the
Cauchy problem in H*(S) for all s > 3/2 using the usual nonlinear estimates in Sobolev spaces and the
argument above. By uniqueness, this implies that the mild solution defined above is continuous in time with
values in H*(S) for all s.

Step 4: maximum principle. The claim (15) follows from the classical arguments. Firstly, notice that

inf e‘saiuo(m) > inf ug(x).
z€S zeS

On the other hand, at a point x; where the function u(¢,-) reaches its minimum, we have
Opu(t,zy) =0, O%u(t,zs) >0, Au(t,zs) <0,

where the last inequality follows from the fact that

1 u(z) — u(z — @)
Au(z) = yp pv/ ~en(a2r da.

It follows that inf,cs u(t,z) > inf e ugp(z).
By similar arguments, we obtain the second inequality sup,cg u(t, ) < sup,cg uo(z). This completes the
proof. 0O

3.2. Uniform estimates

Fix § > 0 and ¢y and consider an initial data uo in H2 (S) with infyes uo(z) > co. As we have seen in
the previous paragraph, there exists a unique function u € C*([0, +o0); H>(S)) satisfying

1 uAu — (Hu)0gzu

O+ 76+ u2 + (Hu)?

—00%u =0,

582
u|t:0 = € "*Uo,

inf u(t,z) > co.
z€eS
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We shall prove estimates which are uniform with respect to § € (0,1] (this is why we are writing simply
u instead of ug, to simplify notations).
Let € > 0. We want to estimate

vi=u— (5+5)6§u0.
Set
ug,e = eEH%
and introduce the coefficients
- 1 U
= w0 +u?+ (Hu)?’
1 Hu

Cmo+u? + (Hu)?
d+u?+ (Hu)2.

With the previous notations, we have
O + Vv + yAv — 60%0 = R (u, uo) (19)
where
Re(u,up) = —yAug e — Vyug e + 602up e

Lemma 3.2. For any ug € H2(S) with inf,cs ug(z) > 0, there exist a constant g and a function T: (0,1] —
(0,1) with

lim T'(e) = 0,

e—0

such that the following result holds: for all § € (0,1], allu € C1([0,4+00); H*(S)) satisfying (18) with initial

data uli—p = e‘wiuo, and for all € € (0,e9], the function v =u — (e +0)3 ug satisfies
T(e)
sup [[o(t) / / 'A”| drdt + 6 / ol g dt < F(T(E), (20)
1 3
t€[0,T(<)] H 0+ u? + (Hu)?

for some function F: Ry — Ry with lim,_,0 F(7) = 0.

Proof. Hereafter, C' denotes various constants which depend only on the constant ¢y (remembering that ¢
is some given constant such that inf u(t,z) > inf ug > ¢g) and we use the notation A <., B to indicate that
A < CB for such a constant C.

Consider a parameter x € (0, 1] whose value is to be determined. Then decompose the Hilbert transform
as H = H,.1 + H,, » where

Heagle) = o [ oo —ap (%) 50

tan(a/2)’
S

200 = 5= [ o =) (1 =x (%)) s

S
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for some cut-off function x € C* satisfying x =1 in [-1,1] and x =0in R\ [-2,2].
Multiply equation (19) by Av and then integrate over S, to obtain

1d 2 2.
5 & ol +/7(Av) de=A+B+R (21)
S
where
A= /V(HKJAU)(AU) dz,
S
B= /’V(HK’QA’U)(AU) dz,
S
R= /R(u, uo,e ) (Av) dz.
S
Set

W = \/vAv,

so that the dissipative term in (21) is of the form

/7(Av)2 dz = /W2 dz.
S

S

Step 1: estimate of B and R. Directly from the definition of v and V', we have

1 1

mCo 2mey

(22)

One important feature of the critical problem is that the dissipative term is degenerate. This means that
the coefficient 7 is not bounded from below by a fixed positive constant. As a result, we do not control the
L?-norm of Av. Instead, we merely control the L?-norm of W = Vv YAv. Therefore, we will systematically
write Av under the form

1 1
— A= —W.
V4l val

To absorb the contribution of the factor 1/,/7 in the estimates for B and R, it will be sufficient to notice

that we have the pointwise bound

Av =

1
_|Hul <., |Hul.

‘;ﬁ“um

In particular, remembering that the Hilbert transform is bounded from LP(S) to LP(S) for any p €
(1, +00) and using the Sobolev embedding H*(S) C L? (1=29)(S), we deduce that

VIV L Seo 1Hullpa Seo llullpa Seo llull - (23)

Then it follows from Hoélder’s inequality that
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v
|B| < /\ﬁ [Hy 2 M| [VyAv|dz Seq (lull g [ He 2 M| Lo (W] 22 -

On the other hand,

”Hm,?AUH[A = ||Hn,2aa:HU”L4 Skt HHU”L4

~

S ollps

~

where we used the definition of Hy, o2, noting that g,(x —a) = 04(g9(x) — g(z — a)) and integrating by parts
in a.
By combining the previous estimates, we conclude that
1Bl Seo w7 lull 3 01,3 W
The estimate of R is similar. Recall that

Re(u,ug) = —yAug e — VOyup e + 58§u0,€.

To estimate the contribution of the first term, we write

1
/V(AUO,a)(Av) dz| < VAl Auo el g2 VA 2 Seo €72 luoll 3 W lL2
S

where we have used the elementary inequality

_1 _1
luoelln S (€ +6) Hlluoell ;3 S uol,y

since the Fourier transform of ug . = e+ is essentially localized in the interval || < /e + 0. With
regards to the second term, we use again the estimate (23) to get

/V(&cuO,e)(Av) dz| < IV/\All s 19zu0.ell Lo VYA 2

S
Seo el ol g Iz
Eventually, we have
2 2
[602u0.c|| 3 = ||502e % uo |\ S ||602e % u| S luollys -

So, by combining the previous inequalities, we conclude that

_ 1
B+ R Sep 7 |l gy 0l W e 4272+ Jlull 4 1) luoll 3 1Wl 22 + lluol

1 o1,
2 H?2

hence, replacing u by v 4 uo . in the right-hand side, we conclude that

_ _1
B+ R Sey (57 ull 3+ luoll 3 ) ol 3 19112

1
2

_1 2
+e b (lluoll 3 + ol y ) W12 + lluoll
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Step 2: Estimate of A. By an argument parallel to (9), the fact that H} , = —H, implies that

A= / V(Hoaho)(A) da — / (Av) 1 (VAv) da
S S
- %/([V, H, 1] Av)Avdz.
S

Then, the Cauchy-Schwarz inequality implies that

2

A< /7_1][V,HN’1](AU)]2da: VA2 (25)
S

We now have to estimate the commutator [V, H 1]. Previously in §2, we deduced the commutator es-
timate (7) from (11). This time, we will proceed directly from the definition of H, 1, without a détour by
BMO. The main new point is that this will allow us to obtain an estimate in terms of ||[WW|| . instead of
|Av]| ;2. Namely, directly from the definition of H, i, we have

[V, Heal(Av) = 1 pv / v (x)(éaAﬂf()a_/g“(VA“W)x (%) do
S
1 [ EV@A0)@E-a) o
| ()
S
- v LaV)(@) T — ay__da
N 47rp 4 \ﬁ(x_O‘)W( )X(n> tan(a/2)

where we replaced Av by W/,/¥ to obtain the last identity.
Therefore,

[V Heal o)

S
2
< -1 —1/2 da
S [ (v(=) 162V ()] v(z — ) W(z — o Ttan(a/2)| dz
S a|<2k
2
So [@@ | [ V@l - )W -0l ]
e “ | tan(a/2)|
S a|<2k
Lemma 3.3. Introduce the notation
Qa(g) = ‘6ag| + |6O¢Hg"
Then there holds
Qa v)(1 +Qa U) 2 _
6] Sy L2V Qu | o5y 4 g 413]al. (26)

p
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Proof. One has

[0a Hu(z)| datu(@)|(Ju(z)] + |ulz — a)])

0, V(x)| < + |Hu(x —
V(@) 5 P 4 Hu(e — a)| P
PaHu(@)| | |Saw@) + baHu@)  [au(®)| +[aHu(®)]
~e () p(z —a)p(x) plz —a)p(z)
Since
S (U (e + B Hru(e)])
— S — au(x oHu(z)l),
plz —a) ~ p(x)
we obtain
« 1 « 2
1 5., Qo0 Qo
p
To get the wanted result (26) from this, we replace u by v + up and use the two following elementary
ingredients:
al(u0,e) (1 + Qaluo,e 2
Qul " ) ng ( b ) Seo Qa(uo,e)(1+Qa(u0,e))2
Qa(uo,e) < ( + 100 (Huo e )ll oo ) It S Muo,ell gz ol S €77 JJuoll, 3 lol-

Since |a]® < |al, this completes the proof. O

Set K(g) :=e3(1 + ||u0’€||H 1 )3. It follows from the previous lemma and the preceding inequality that

[V Heal @) do S, (0 + (D),

S
where
= (/ T ”2p<xa>|vv<o:a>||t;iﬁ)2dx,
e)? [ p(z plz —a) |[W(z —a)|da 2dx.
é (aléme )

Using the Cauchy-Schwarz inequality, we see that

(//Qa "1+ Qalv)(x >>”p—@f)%> W

Since

we end up with
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|of?

5(/ Qu () (221 + Qu(0) () (1 + Qu(u)(2)) )HWHLz.

On the other hand,

=

gdadr : ydadx
(/ Qu (o)) (1 + Qu(v)(@)" W) (S/ Qu(e)() W)

Sl (L4 ol ) (L lull )%

where we used the fact that Q. (f)(z) = |0af ()| + |0o.H f(x)| and

[ (as@P +1at @) 25 <111,
J

for any v > 1.
This gives

2 4 2
(D) ol s (- loll g ) (L llull 4 )* Wz -

On the other hand,

1
(I1) £ K ()3 ull’,y [WI2

Therefore, it follows from (25) that

A< (/7‘1|[V,Hn,1](/\v)\2dx> W2

S
1
< (D + D) W],z
2 2 1 2 2
<ol (1 loll 3 )21+ Dl ) W12 + K ()%l y W11

By combining this with (24), we get from (21) that there exists a constant C' depending only on ¢y such
that

1d 2 2 2
T o3 + W72 < Clloll,s (14 lloll,3 ) (1 + llull 1) W17

1 2 2
+ CK () lull?y W13

. (27)
+C (57 ull 3+ Ce™ fluoll ) ol 3 W1

_1 2
+C= A (Jluoll 5y + lluollyy ) W o
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Using the Young’s inequality, this immediately implies that an inequality of the form

1d

2 2 2
s It + TIWILe < Milvlyy + F, (28)

where
M = 40% (ol 3 + ol )2,
H?2 H?2
F = a0% (uolly + ol )
H?2 H?2
1 2
Ti= 3= Clolly (41l )" (L4 ull )
~ CK(e)s™ [lull} 3
1 2
=0 (W ull g + e ol ) N0l

In particular, as long as T > 0, we have

etM _ 1

2 2
lo@®)153 <M Oy + —57—F

If one further assumes that tM < 1, it follows that
2 2
o)1 < M [v(0)[I7, 5 + tF.

Introduce the parameter

€d?

v(e) = 2 |[v]o—o ):2Huo—e S

A3 (S HH%(S)'

Then choose ¢ small enough, so that
Cu(e)(1+(e)* (1 +2 [luoll 3

We then fix k small enough to that
CK(e)r+ (2 [luoll ;3)* <

where recall that K(g) := e 3(1 + ||u0’5||H% )3.
We then deduce the wanted uniform estimate by an elementary continuation argument. O

3.3. Compactness

Previously, we have proved a priori estimates for the spatial derivatives. In this paragraph, we collect
results from which we will derive estimates for the time derivative as well as for the nonlinearity. These
estimates are used to pass to the limit in the equation.

Recall the notations introduced in the previous section, as well as the estimates proved there. Fix ¢y > 0.
Given 6 € (0,1] and an initial data ug € Hz(S) satisfying ug > ¢, we have seen that there exists a (global
in time) solution u;s to the Cauchy problem:
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8t us + %ugAu(; - (Hu5)8 us

—00%us =0
5+ + (Hus)? (29)

50?2
ugli=o = €°“=uyg.

Moreover, we have proved that one can fix € small enough such that one can write us under the form
us(t,x) = (0% ug) () + vs (),

and there exist T > 0 and M > 0 depending on ug such that, for all 6 € (0, 1],

A
sup ||vs(t) // ”” ”5| da:dt+5/||v5|\.adt<M (30)

te[0,T7] 6 +uj + (Hus)?

Now, to pass to the limit in the equation (29), we need to extract some uniform estimates for the time
derivative. Since dyus = O,vs, it is sufficient to estimate the latter quantity. It is given by

Oyvs = — V50,05 — YsAvs + 00%vs + Ry, (31)
where
o 1 us Ve — 1 HU5
76_7T5+U§+(HU5)2 ’ 5 — 7T(5+U§+(HU5)2’
Rs = 7%(Ae(s+6)82 ug) — ‘/5(3956(6+6)8i up) + 53£e(€+5)82 Ug.

<., 1 and |Vs| <., 1. By combining this with the fact that e=% is a
smoothing operator, we immediately see that

As already seen in (22), we have 75 <

185 oo (j0,7);22) Seose [[woll 73

Here the implicit constant depends on e, but this is harmless since ¢ is fixed now. On the other, directly
from (30), we get that

||’Y§A'UJ||L2([0,T];L2) Seo ||\/’)/5AUSHL2([0,T];L2) Seo M,

and

6"82%”9 ([0, T);H™ %) < \/—H62v5”L2 ([0,T;H™ %) < M.

It remains only to estimate the contribution of Vsd,vs. For this, we begin by proving that (vs)se(o,1] is
bounded in LP([0,T]; H'(S)) for any 1 < p < 2. Indeed, we can write

Uus |A’U§|2
3 dx
=~ uy + (Hus)
ug | Avl?
u? + (Hus)?

u? + (Hus)?

2
o <
Iosllin < ||

2
<o (s, Hug) 2 / do
S

ug | Avl?

——d
u? + (Hus)? ac

2 —1 2
Seo <||(1)5,1rf’05)\|L3o +e72 Jluolly, )/
s
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2
2 -1 2 ug |Avs|

Seo (||U5”H% log (2 + [lvsl 71 ) +&72 [luoll, 3 ) / Wd%

S

to conclude that

2
sl / uslAvs*
log(2 + fluallza) 1" lut [ uf + (Hus)?

Remembering that |Vs| <., 1, it immediately follows that, for any p € [1,2),

~~co
V50205l Lo 0,772y S M-

Now, by combining all the previous estimates, we see that (vs)sec(o,1) is bounded in the space
Xy = {ue C0,T); HA(S) N L(10,T); H'(S)); dru € LP(0, T H-4 ()}

Since Hz(S) (resp. H'(S)) is compactly embedded into H*(S) (resp. H2+5(S) for any s < 1/2. By the
classical Aubin-Lions lemma, this in turn implies that one extract a sequence (us, )pen Which converges
strongly in

CO((0, T); H*(S) N L ([0, T]; H=*4(8)).
Then it is elementary to pass to the limit in the equation.
4. Smoothing effect

The goal of this section is to prove the second statement in Theorem 1.1 which asserts that the solutions
are smooth. By classical methods for parabolic equations (see [40, Chapter 15]), it is easy to prove that
solutions which are smooth enough (say with initial data in H?(S)) are C°° for positive time. So it is
sufficient to prove that the solutions are at least H? for positive times. This is the purpose of the following
proposition.

Proposition 4.1. The solution u constructs in the previous section is such that, for any & > 4, there exists a
constant C = C(&) such that

2
sup ¢* [lu(t)[l;3 < +oo. (32)
te[0,7]

Proof of Proposition 4.1. Since u was constructed as the limit of smooth solutions (see §3.1 and §3.3), we
will prove only a priori estimates. As in the previous part, we work with the function

v=mu— e Ug,
with e small enough. Recall from (19) that v solves
00 + VO,v + yAv = R.(u,up) (33)

where

RE(U,, UO) = _FYAUO,E - V8$U0,£~
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We will estimate the H2-norm of v. For this introduce # = 92, solution to

0+ YAD =V (H, 1 AD) + Ry + Ry (34)

where

Ry = 02 (V (H, 2Av)) + 92R.(u, uo)
Rl = _(857)(/\”) - 2(893’}/)(/\8351}) + (@%V)(Hml/\?f) + 2(612(VHH,1A830U))

Now, we multiply (34) by A? and then integrate in = over S, to obtain

1d o 12 1 o
Sdt HUHH% +/7’Av| dzr = 5/[V,H,§’1](AU)Avdx
S S
S S
Set
W = \/7AD.

By using arguments parallel to those used in the first step of the proof of Lemma 3.2, one finds that

’/[Va HodJ(AD)AT dz| Seo 1] s (L4 [0l ga2) @132 + ()R ([0l sz + 1) 1]

and,
|/ROA6 dz| Soy Cle, )| |3s + Cle, 1),
Since
031+ 10:V1 5 5 (1l + |Au).
0291+ 102V 5 = (02l + | H02u]) + G775 (cul® + |Auf?).

then one finds
1 1
Ri| <er (; (02l + 02]) + = ((0uuf? + |Au|2>) (IAv] + | Hy Av])
1
+ F (10zu] + |Au]) (JADzv| + |Hk 1 ADv))
We obtain,
1 2 2 1 2 2
IR| Seo (5 (1020] + 1HO20]) + 5 (10202 + A0 ) ) (|Av] + | Hic Av])
P P

1
+ 2 (10xv]| + |Av]) (JAOyv| + |Hi,1ADpv|) + C(e) (|Av| + |Hy 1 Av| 4 |[ADpv| + |Hi 1 ADv])
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Thus,

~ 1
Seo Il grae U ol grage)l]72 + Ce)RT (0]l grase + 1)@ [72 + O, €)

Therefore, we find

_ 1 _
au[o1[%, /\wl2 dz Seo 0]l 7172 L+ vl g 2?1072 + C(e)R (0]l /2 + 1) ||0][Z2 + Clr, )
Choosing ¢ and then s small enough, we obtain

ool + [ 16 do < Cleos ),
for any t € (0,T). So, integrating in time 7 € (s,¢) we have obtained that,

uA3v2
IR // s o dr S Cleas) + 00

Then, in order to measure the decay rate in time, we multiply the last inequality by s¢~! and then
integrate in s € [0, T, one finds

T T t T
/55_1”1} ||2 —l—/s& 1// A% dzx dr ds</sf_1C(co k,e) + s Hu(s)||2 5 ds
u? + (Hu)? ~ T a3
0 0 s 0
Then,
A%P t
u v
£ ()2 < 7¢C / E1ju(s)|2 , ds.
sup oo / | S ST, ) [ g
Since
2 2 U|A3U\2
ol S N O [ o
_ 2 U|A3”|2
S (10 HO) o+ aallye) [ s o
2 _ 2 U‘A3U|2
Seo (0l 082+ o)+ &= o) [ 7 s -

Then, using the inequality

E / ulAo?
l0g(2 + [[v]l y5) ~0 el [ w2 (Huy?
we find that,
t

t
o] :
s KON g + [ o T S+ [ Sl
0

0<t<T g(2+ ||U||H3) 0
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Then, we use the fact that some 6 > 0 small enough, a®>~% < ZOL, we find
~ log(2+a)

T T

sup €][u(0)|23 + / llu(s) |27 < TEH + / 1 us) %2 ds. (35)
o<t<T 0 0

Let € > 0 and &g > 0, using the following interpolation inequality

_ _ 8/5 _— — 2/5
S ) [1Zs 2 < esE7IF00 u(s) |50 € Lo luls) (1,

together with Young’s inequality (with the conjugate exponents p = 10‘%55 and q = 120%5565) we find
T T
- e’ 5 )
[ e ds < S [ a3 ds
0 0
T
1 /5 —qé
L sup (s / W g,
qe? s€(0,T) H'/?
0
Therefore, inequality (35) becomes
T T
sup t€||’u(t)\|2,§ Jr/sEHu( )”2 5 ds <T€+1 /Spé p+p60”u( )H2 5 s
0<t<T H2 D
0 0
T
1 2q/5 Y
+ — sup |lu(s)| 0 (ds. (36)
qu s€(0,7) H/? 0

Choosing m, dg such that ¢dp < 1 (so that the last integral in the right hand side is finite) and, for a

scaling purpose, we also need that
§=p§ —p+pdo.
So,
§=q—00q>q—1

Then, for any £ > 4 (note that ¢ > 4 for any § > 0) and any e > 0 sufficiently small, we may absorb the H3
in the left hand side of inequality (36), we obtain

T

sup IOl + [ (o) %ds < 1.

o<t<T
0

In particular, for any £ > 4

sup t£||v(t)|\i.lg <C. O
0<t<T
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5. Uniqueness

The goal of this section is to prove Theorem 1.3. For any data ug € H1/2+“(S) we know from Theorem 1.1
lta

that u in CO([0, +o0); H =" (S)) N L2((0, +o0); H*3(S)) and satisfy the following condition

S+€0
supt lu@)I] ;1404 <00

for any s > 0. We will follow an idea in [13]. Let u, ug be two solutions of (3) with same initial data. Assume
that uy,us > co > 0. Set @ = uy — ug. Let x4,z satisfy u(xy, t) = supu(z,t) and u(xt, t) = sup(—u)(z,t).
x x

By evaluating the evolution equation at x = x¢, one finds

1 (5%

Oy (u(xe,t)) + T+ (Huy)?

_l U1 . U2 Au +l H’LL1 _ HUQ o
7 \u?+ (Hu1)?2  u3+ (Hus)? 2T u? + (Hup)2  u?+ (Hug)2) ™ 2

1 [@||Auo| + [Ha||0pus| 1 1 1
— — A Hus||0y — .
-7 u? + (Huy)? +7r<|u2|| uz + [Hua |0 u2]) u? + (Hup)? w3 + (Husg)?
Since
1 B 1 [a] + |Hul < _lul+|H7l
uf + (Hu1)?  ud + (Hu2)? |~ (Jua| + [Hua|)(Juz| + [Huz|) ~ Juz| + [Hus|’
one gets

1 U
AT e, ([l + [Haa(we, t)]) [[(Aus, Opusn)|| L.

O (u(ze, t)) + mu? + (Hup)?

We need to control |[Hu(zy,t)| by Au(xs,t) and |[u]|r~. For any e € (0,1/2), since u(x¢,t) > 0, we may

write

da da
— < _ ac _ ad
|H’LL($t,t)| ~ / |5O&u(xt7t)||a| + / |6O¢u(ztat)‘|a|

27> |a|>e |al<e

S [og(e)ll[ull e + elAu(ay, )],
Thus, for any ¢ € (0,1/2)

1 (5%

Oy (u(xe,t)) + T+ (Huy)?

Seo |10g(e)|l[(Aug, Aug)||Lee[[ul| e + el|(Aug, Dpus)|| e AT

U
va )[[(Aug, Daua)|| Lo —— AT

Seo |log(e)|[(Aug, Aug)|| Lo |[@]| Lo + (1 + ||U1HLOQH + m
1

Choosing

e~ [+ Il g )1+ [|(Auz, o) )]

one obtains
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O (u(wr, 1)) Seo log ((2 +lwll; e )1+ ||(AU273:DU2)||L;°)) [[(Auz, Opus)|| e [l | 2o

Using similar arguments, it is easy to get that

Ou(@(a', 1)) Sy log ((2+ [l

jeop e (1 + ||(Au275zU2)|ngo)) [[(Auz, Ozus)|| e [l ox

Thus, we obtain,

t

@@l < [[a(0)]] e +/w(7)||ﬂ(T)HLwdT,
0

where,
w(t) i=10g (2 + [uall, ., 150 ) (1 + [l (A2, Do) (1) |252) ) [/ (Aviz, Dotiz) ()] e

Note that, for any ag € (0,1),

t

/w(T)dT Sao @+ Nl 5e)

2
1+ sup (Tl“°||(AuQ,5‘muQ)(T)|L;o)] .
0

T€(0,t)

By Sobolev’s inequality

81(10pt) (7||(Aug, Oyus)(1)|| Lo ) Stlluall; 3 + sup (Tl_a0||u2(7)||H%+%)
T7€(0,

7€(0,t)

§Ct<OO.

Therefore, by using Gronwall’s inequality, one obtains
t
[[a(®)][Le < [[(0)|] Lo eXp(C(%)/w(T)dT) S Cul[a(0)]|pe- -
0

Hence, we proved the wellposedness of (3) in H 31 ipitial data for any a > 0. O
Acknowledgements

T.A. acknowledges the SingFlows project (grant ANR-18-CE40-0027) of the French National Research
Agency (ANR). Q.H.N. is supported by the Academy of Mathematics and Systems Science, Chinese
Academy of Sciences startup fund, and the National Natural Science Foundation (12050410257).

References

[1] Thomas Alazard, Omar Lazar, Paralinearization of the Muskat equation and application to the Cauchy problem, Arch.
Ration. Mech. Anal. 237 (2) (2020) 545-583.

[2] Thomas Alazard, Quoc-Hung Nguyen, On the Cauchy problem for the Muskat equation with non-Lipschitz initial data,
arXiv:2009.04343.

[3] Thomas Alazard, Quoc-Hung Nguyen, On the Cauchy problem for the Muskat equation. II: critical initial data, Ann. PDE
7 (2021) 7.

[4] Thomas Alazard, Quoc-Hung Nguyen, Endpoint Sobolev theory for the Muskat equation, arXiv:2010.06915.

[6] Thomas Alazard, Quoc-Hung Nguyen, Quasilinearization of the 3D Muskat equation, and applications to the critical
Cauchy problem, arXiv:2103.02474.


http://refhub.elsevier.com/S0021-7824(22)00039-3/bib14904568CECDC9C29E3BEF3FCDB27EAAs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib14904568CECDC9C29E3BEF3FCDB27EAAs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib5CFAF082065964547A6EF50395ACB6C3s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib5CFAF082065964547A6EF50395ACB6C3s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibA667CCC48ACAD4850CD414CA9CDCBBDEs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibA667CCC48ACAD4850CD414CA9CDCBBDEs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib50F261BDC46AF5DA3E0A89929789DE23s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib319867517CD6176F38E12193FBEFA9F6s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib319867517CD6176F38E12193FBEFA9F6s1

22 T. Alazard et al. / J. Math. Pures Appl. 162 (2022) 1-22

[6] David M. Ambrose, Well-posedness of two-phase Hele-Shaw flow without surface tension, Eur. J. Appl. Math. 15 (5) (2004)
597-607.
[7] H. Bae, R. Granero-Belinchén, Global existence for some transport equations with nonlocal velocity, Adv. Math. 269
(2015) 197-219.
[8] Luis A. Caffarelli, Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,
Ann. Math. (2) 171 (3) (2010) 1903-1930.
[9] Stephen Cameron, Global well-posedness for the two-dimensional Muskat problem with slope less than 1, Anal. PDE
12 (4) (2019) 997-1022.
[10] Stephen Cameron, Eventual regularization for the 3d Muskat problem: Lipschitz for finite time implies global existence,
arXiv:2007.03099, 2020.
[11] Stephen Cameron, Global wellposedness for the 3d Muskat problem with medium size slope, arXiv:2002.00508, 2020.
[12] Angel Castro, Diego Cérdoba, Charles Fefferman, Francisco Gancedo, Marfa Lépez-Fernandez, Rayleigh-Taylor breakdown
for the Muskat problem with applications to water waves, Ann. Math. (2) 175 (2) (2012) 909-948.
[13] Ke Chen, Quoc-Hung Nguyen, Yiran Xu, The Muskat problem with C* data, Trans. Am. Math. Soc. 375 (2022) 3039-3060.
[14] Ke Chen, Quoc-Hung Nguyen, The Peskin problem with BMO! initial data, submitted for publication, arXiv:2107.
13854v1.
[15] C.H. Arthur Cheng, Rafael Granero-Belinchén, Steve Shkoller, Well-posedness of the Muskat problem with H? initial
data, Adv. Math. 286 (2016) 32-104.
[16] Peter Constantin, Diego Cérdoba, Francisco Gancedo, Luis Rodriguez-Piazza, Robert M. Strain, On the Muskat problem:
global in time results in 2D and 3D, Am. J. Math. 138 (6) (2016) 1455-1494.
[17] Peter Constantin, Diego Cérdoba, Francisco Gancedo, Robert M. Strain, On the global existence for the Muskat problem,
J. Eur. Math. Soc. 15 (1) (2013) 201-227.
[18] Peter Constantin, Francisco Gancedo, Roman Shvydkoy, Vlad Vicol, Global regularity for 2D Muskat equations with finite
slope, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34 (4) (2017) 1041-1074.
[19] Peter Constantin, Peter Lax, Andrew Majda, A simple one-dimensional model for the three-dimensional vorticity equation,
Commun. Pure Appl. Math. 38 (6) (1985) 715-724.
[20] Peter Constantin, Vlad Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications,
Geom. Funct. Anal. 22 (5) (2012) 1289-1321.
[21] Antonio Cérdoba, Diego Cérdoba, Marco A. Fontelos, Formation of singularities for a transport equation with nonlocal
velocity, Ann. Math. (2) 162 (3) (2005) 1377-1389.
[22] Diego Cérdoba, Omar Lazar, Global well-posedness for the 2d stable Muskat problem in H%, Ann. Sci. Ec. Norm. Supér.
54 (4) (2021) 1315-1351.
[23] Fan Deng, Zhen Lei, Fanghua Lin, On the two-dimensional Muskat problem with monotone large initial data, Commun.
Pure Appl. Math. 70 (6) (2017) 1115-1145.
[24] Francisco Gancedo, Omar Lazar, Global well-posedness for the 3d Muskat problem in the critical Sobolev space, arXiv:
2006.01787.
[25] Rafael Granero-Belinchén, On a nonlocal differential equation describing roots of polynomials under differentiation, Com-
mun. Math. Sci. 18 (6) (2020) 1643-1660.
[26] Alexander Kiselev, Fedor Nazarov, A variation on a theme of Caffarelli and Vasseur, Zap. Nau¢. Semin. POMI 370 (2009)
58-72, 220 (Kraevye Zadachi Matematicheskol Fiziki i Smezhnye Voprosy Teorii Funktsit 40).
[27] Alexander Kiselev, Fedor Nazarov, Alexander Volberg, Global well-posedness for the critical 2D dissipative quasi-
geostrophic equation, Invent. Math. 167 (3) (2007) 445-453.
[28] Alexander Kiselev, Changhui Tan, The flow of polynomial roots under differentiation, arXiv:2012.09080.
[29] Omar Lazar, Pierre-Gilles Lemarié-Rieusset, Infinite energy solutions for a 1D transport equation with nonlocal velocity,
Dyn. Partial Differ. Equ. 13 (2) (2016) 107-131.
[30] Omar Lazar, On a 1D nonlocal transport equation with nonlocal velocity and subcritical or supercritical diffusion, J.
Differ. Equ. 261 (9) (2016) 4974-4996.
[31] Huy Q. Nguyen, Benoit Pausader, A paradifferential approach for well-posedness of the Muskat problem, Arch. Ration.
Mech. Anal. 237 (1) (2020) 35-100.
[32] Quoc-Hung Nguyen, Quantitative estimates for regular lagrangian flows with BV vector fields, Commun. Pure Appl.
Math. (2021).
[33] Quoc-Hung Nguyen, Yannick Sire, Potential theory for drift diffusion equations with critical diffusion and applications to
the dissipative SQG equation, arXiv:2003.10848, 2020.
[34] Sean O’Rourke, Stefan Steinerberger, A nonlocal transport equation modeling complex roots of polynomials under differ-
entiation, arXiv:1910.12161.
[35] Neel Patel, Robert M. Strain, Large time decay estimates for the Muskat equation, Commun. Partial Differ. Equ. 42 (6)
(2017) 977-999.
[36] Dimitri Shlyakhtenko, Terence Tao, With an appendix by David Jekel. Fractional free convolution powers, arXiv:2009.
01882.
[37] Luis Silvestre, Holder estimates for advection fractional-diffusion equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 11 (4)
(2012) 843-855.
[38] Stefan Steinerberger, A nonlocal transport equation describing roots of polynomials under differentiation, Proc. Am. Math.
Soc. 147 (2019) 4733-4744.
[39] Stefan Steinerberger, Free convolution of measures via roots of polynomials, arXiv:2009.03869.
[40] Michael E. Taylor, Partial Differential Equations III. Nonlinear Equations, second edition, Applied Mathematical Sciences,
vol. 117, Springer, New York, 2011, xxii+715 pp.
[41] Toann Vasilyev, Frangois Vigneron, Variation on a theme by Kiselev and Nazarov: Holder estimates for non-local transport-
diffusion, along a non-divergence-free BMO field, arXiv:2002.11542, 2020.


http://refhub.elsevier.com/S0021-7824(22)00039-3/bib94DD7DB106F58B753329990717F38919s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib94DD7DB106F58B753329990717F38919s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib48AA6C6D9D866A07DEDCCCD8067E724Fs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib48AA6C6D9D866A07DEDCCCD8067E724Fs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib6D3B19986B04E80FDD4550AB56B00F54s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib6D3B19986B04E80FDD4550AB56B00F54s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib067A4D140EC4B2E9214773579A235613s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib067A4D140EC4B2E9214773579A235613s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib2E26B1C454210678CCB297F3DBB29F2Ds1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib2E26B1C454210678CCB297F3DBB29F2Ds1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib00FDEDF5909477306486E0265B6CE201s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib5D3C363D11F2C9BD291882920CA77C6Cs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib5D3C363D11F2C9BD291882920CA77C6Cs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib54F27B49E45F2BB96F995BC406B9AE7Fs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibDD753C0D8511CDF9265F6D99832B70B5s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibDD753C0D8511CDF9265F6D99832B70B5s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib0454CFA8914C0569076E27DB1374AB8Fs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib0454CFA8914C0569076E27DB1374AB8Fs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib88EE7023D7E5D7A337309B80AA9B3B32s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib88EE7023D7E5D7A337309B80AA9B3B32s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibCABCC6E24353D42463F7BC1163B4464As1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibCABCC6E24353D42463F7BC1163B4464As1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibA73BA2B40CE87B356734A3CA397756CFs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibA73BA2B40CE87B356734A3CA397756CFs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibC821D1B71379BBFFDB16857D4F95D890s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibC821D1B71379BBFFDB16857D4F95D890s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib9CD8EA23A528D3BD331DA6E59116F37Ds1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib9CD8EA23A528D3BD331DA6E59116F37Ds1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibB1032B47C76E15DAE263547B83164123s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibB1032B47C76E15DAE263547B83164123s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib3C6B7CDF98012ABD3105ECD582F5B1BEs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib3C6B7CDF98012ABD3105ECD582F5B1BEs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib5884E40D596370BE5406F2711AD9E39As1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib5884E40D596370BE5406F2711AD9E39As1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibD70B37CAEC92B78357ADBCB80AF9BC92s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibD70B37CAEC92B78357ADBCB80AF9BC92s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibCD92C15BF741D2F22CEBED1A5B8BACE8s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibCD92C15BF741D2F22CEBED1A5B8BACE8s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib83C7CD509A7623F0ECBD66C53C0D4E12s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib83C7CD509A7623F0ECBD66C53C0D4E12s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib1B2FF7002816CDF6100E1528E620D443s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib1B2FF7002816CDF6100E1528E620D443s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib34401670FE5AA4D1DB5429D823C435C9s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib0CFDFC77F1ED4B32EB9A55F20E29C91Bs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib0CFDFC77F1ED4B32EB9A55F20E29C91Bs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibF66D252C3F6C1970A20A95224DE9AEE0s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibF66D252C3F6C1970A20A95224DE9AEE0s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibD1989A77B851E1D6E8CB8AF93C93EF32s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibD1989A77B851E1D6E8CB8AF93C93EF32s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib8582D13498FB14C51EBA9BC3742B8C2Fs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib8582D13498FB14C51EBA9BC3742B8C2Fs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib1ED5A09B86AEFC5C92C27AF98D772BE2s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib1ED5A09B86AEFC5C92C27AF98D772BE2s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib23868A5868D8F35CB012AFB855CDAE6Cs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib23868A5868D8F35CB012AFB855CDAE6Cs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibE21DCDE6DC83EF7BA9EBA08993335839s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibE21DCDE6DC83EF7BA9EBA08993335839s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib75472DBB9B6219743EBAB6E51F6B0DB8s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib75472DBB9B6219743EBAB6E51F6B0DB8s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib1DBED0DDA0856B631931825C41E6CFB5s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib1DBED0DDA0856B631931825C41E6CFB5s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib627D1994D380CEF821F500B481CAC4FAs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bib627D1994D380CEF821F500B481CAC4FAs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibF13E36EDDC9349B4C7F3EC271473005Bs1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibDFA4F04ABD856EF728FCD3FCA479C636s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibDFA4F04ABD856EF728FCD3FCA479C636s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibB43CCCFF5CDE7D4A57554C0F4DCB0727s1
http://refhub.elsevier.com/S0021-7824(22)00039-3/bibB43CCCFF5CDE7D4A57554C0F4DCB0727s1

	On the dynamics of the roots of polynomials under differentiation
	1 Introduction
	2 Estimate in Ḣ1/2 for a toy model
	3 Local well-posedness
	3.1 Approximate systems
	3.2 Uniform estimates
	3.3 Compactness

	4 Smoothing effect
	5 Uniqueness
	Acknowledgements
	References


