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High-speed time-interleaved ADCs are becoming more common in 
wireline receiver front-ends due to the enabling of subsequent digital 
processing for equalization and easier support of higher-order 
modulation schemes [1]. As technology nodes scale, ADCs based 
on the digital-intensive SAR architecture are more pervasive. 
However, implementations with the most common SAR algorithm 
that has sequential single-bit conversion cycles can result in large 
time-interleaving factors. Also, the sampling of wideband analog 
signals associated with higher data rates is difficult for conventional 
bootstrapped switch (BS) T/H circuits that have not adequately 
scaled in performance. One reason for this is that the low-duty-cycle 
sampling clocks, which are utilized for avoiding sampling crosstalk 
between time-interleaved sub-ADCs, shorten the tracking time and 
requires improvements in T/H circuit startup time. This motivates the 
use of simple NMOS switches in high-speed ADCs [2], [3]. However, 
this can negatively impact the high-speed linearity and ADC front-
end bandwidth and also require higher supply voltages. This paper 
presents an ADC that utilizes both a high-bandwidth interleaver 
architecture based on a speed-enhanced bootstrapped switch and a 
pipelined-SAR unit ADC with output level shifting (OLS) settling [4] 
to enable low-power high-speed operation. At 38GS/s, the 7b ADC 
achieves 41.9fJ/conv.-step at low input frequencies, 64.1fJ/conv.-
step at Nyquist, and has 20GHz 3dB bandwidth. 

An overview of the ADC is shown in Fig. 1. The ADC core consists 
of an 8-way first-rank interleaver that samples and buffers the input 
signal, 32-way interleaved unit-ADCs, and a multi-phase clock 
generation block. High input bandwidth is achieved with differential 
T-coil structures that distribute the input pad, ESD diode, 100Ω 
termination, and input buffer capacitances. Clock generation is 
performed with a differential external fs/2 clock connected to an on-
chip CML buffer that drives a CML divider to generate 4 phases 
spaced at 90°. These 4 phases are then fed into the ADC core multi-
phase generation block that outputs the 8 first-rank T/H phases and 
the 32 unit ADC clock phases. The digital output data bits and clock 
signals from each unit ADC are captured by a synchronization block 
connected to a decimator that down samples the output data rate to 
the MHz-range for measurement purposes. 

Figure 2 shows the two-stage interleaver architecture and ADC 
clocks timing diagram. Parallel even and odd input buffers drive half 
of the first-rank 8-way T/Hs where the input is sampled and held 
utilizing 25% duty-cycle fs/8 pulses to avoid sampling crosstalk. 
These critical input T/H pulses are generated utilizing fs/4 differential 
CML-level clocks that are passed through a CML-to-CMOS 
converter and then enabled with an fs/8 signal that is produced by 
dividing the CMOS-level fs/4 clocks. Skew calibration is then 
performed with distribution buffers that have digitally-controlled 
capacitive loading. The second-rank consists of a buffer that drives 
4 parallel T/Hs clocked at fs/32 with 90° phase offsets, such that only 
one unit-ADC sampling switch is on at a time and overlaps the 
corresponding first-rank hold phase. 

A detailed interleaver schematic and the proposed speed-enhanced 
bootstrapped switch is shown in Fig. 3. While the 25% duty cycle 
first-rank T/H signals reduce the input buffer loading and sampling 
crosstalk, it does necessitate that the T/H have a fast start-up time. 
This is difficult because the T/H is loaded by the second-rank buffer 
that has to be sized sufficiently to drive long routing parasitics to the 
second-rank switches. The proposed BS topology modifies the MN1 
gate connection to come directly from Φ. As soon as the clock is 
enabled, MN1 turns on to transfer the boosted voltage to the MNSW 
gate to reduce start-up time and offer better tracking of the high-
speed input. MN5 is also added to rapidly pull up the MNSW gate signal 
upon entering track mode to further improve the start-up time. Post-
layout transient simulation waveforms show that the proposed 
topology has a wider switch on pulse, faster start-up, and better 
tracking relative to a conventional bootstrapped switch. At the 

effective fs/8 T/H frequency of 
4.75GHz for 38GS/s operation, this 
results in 0.75b and 1.1b 
improvement in ENOB with 20GHz 
and 30GHz input signals, 
respectively. Projecting this 
bootstrapped switch operation in 
ADCs with higher-speed 16GHz 
clocks shows further improvement 
of 1.8b with both 20GHz and 
30GHz input signals. 
Figure 4 shows the 7b unit 
pipelined-SAR ADC. Both pipeline stages convert 4-bits, with 1-bit 
redundancy between the stages to relax the first stage gain, offset, 
and reference settling requirements. The second-rank switch is the 
same proposed bootstrapped topology to reduce the input sampling 
time constant and improve linearity. kT/C noise requirements are 
satisfied with CDAC1 and CDAC2 set at 32fF and 16fF, respectively. 
Both stages employ parallel comparators that are asynchronously 
activated sequentially for each conversion step, eliminating the 
comparator reset delay and offering significant speed-up. A clocked 
inverter-based buffer that achieves a gain of ~4 serves as the residue 
amplifier stage. An OLS technique [4] allows the residue amplifier 
output to only settle to 50% of the steady state value, which results 
in a 1.15 settling time that is roughly 3X faster than a conventional 
CML amplifier’s settling for 4-bit resolution. This allows for lower 
average power due to the dynamic amplifier’s reduced activation 
time. Both the first and second pipeline stages have independent 
reference DACs and buffers, which avoids crosstalk and allows for 
inter-channel gain mismatch and inter-stage gain error calibration. 

As shown in the 22nm FinFET die micrograph, one unit pipelined-
SAR ADC occupies 20um X 90um and the entire core 32-way time-
interleaved ADC has an active area of 0.107mm2. Measurements are 
performed with comparator offset, channel gain mismatch, and 
timing-skew errors foreground calibrated based on sine-fitting and 
statistical averaging. Fig. 5 shows the DFT of the decimated (1089X) 
ADC output when sampling an 18.9GHz sinusoidal input at 38GS/s, 
with an achieved SNDR and SFDR of 35.6 dB and 43.7dB, 
respectively. The proposed speed-enhanced bootstrapped switch 
allows for a measured 20GHz input bandwidth with the wirebonded 
chip-on-board test setup, while de-embedding the wirebond 
parasitics show that 28GHz bandwidth is possible. Fig. 6 compares 
this work against previous 7-8b ADCs operating at ≥28GS/s. Total 
ADC power consumption is 119.7mW, with 82.65mW dissipated in 
the pipelined-SAR unit ADCs and clock generation circuitry operating 
on a 0.85V supply and 37.05mW from the 0.9V proposed interleaver. 
Overall, the high input bandwidth and SNDR enabled by the 
proposed interleaver and pipelined-SAR unit ADC with OLS settling 
allows for significant improvement in the Nyquist rate FoM. 
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Fig. 1. 38GS/s 7-bit 32-way time-interleaved ADC architecture. 
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Fig. 2. Interleaver timing diagram and 25% duty cycle T/H clock 
generation circuit with skew calibration. 
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Fig. 3. Interleaver schematic, proposed speed enhanced 
bootstrapped switch, and post-layout simulation results.
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Fig. 4. Unit pipelined-SAR ADC block diagram, dynamic residue 
amplifier schematic, timing diagram, and OLS settling technique. 
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Fig. 5. ADC output DFT for Nyquist rate input, SNDR and SFDR vs 
input frequency, and input frequency response. 
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Technology 
(nm) 

14 28 28 7 16 22 

ADCs/Interleaver 
Supply (V) 
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Fig. 6. Performance summary and comparison table. 
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