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1. Introduction

For a closed surface S of genus g ≥ 1, the classical curve graph C(S) has vertex set 
the isotopy classes of essential simple closed curves on S, with edges between pairs of 
isotopy classes that can be realized disjointly (a slight modification is needed for genus 1 
surfaces). Masur and Minsky [32,33] showed that the graph C(S) is Gromov hyperbolic, 
a result which has become an essential tool in the study of the geometric and algebraic 
structure of the mapping class group Map(S), see for example [5,31,4,6,13].

In [7] three of the authors introduced the fine curve graph C†(S) to study the group 
of all homeomorphisms of S. This graph has essential simple closed curves as vertices, 
so admits a faithful action of Homeo(S) by isometries. It is shown in [7] that C†(S)
has infinite diameter and is hyperbolic (here, the assumption on positive genus is nec-
essary, see [7, Section 5.2]). This enables large scale geometric techniques for studying 
Homeo(S) via its action on C†(S), for instance, stable commutator length and fragmenta-
tion norm on Homeo0(S) are unbounded, answering a question posed by Burago, Ivanov, 
and Polterovich [12].

In this paper, we show that there is a rich correspondence between the dynamics of 
the induced action of a homeomorphism on C†(S) and its dynamics on the surface S
itself. We first address this in a general setting, then specialize to the case of the torus 
where we study the interactions between the curve graph and the existing dynamical 
theory of rotation sets for torus homeomorphisms.

1.1. General results

Isometries of hyperbolic metric spaces admit a dynamical trichotomy as elliptic, 
parabolic or hyperbolic according to the asymptotic translation length and diameter of 
orbits (see Section 2 for a review of definitions). In the classical setting of C(S), it follows 
from [32, Proposition 4.6] and the Nielsen–Thurston classification [37] that no mapping 
classes act parabolically. By contrast, we show the following.

Theorem 1.1 (Parabolic examples). For any closed orientable surface S �= S2 there exist 
isotopically trivial homeomorphisms of S whose action on C†(S) is parabolic.

The proof of Theorem 1.1 is via explicit constructions, some of which also yield smooth 
examples. Hyperbolic and elliptic isometries are much easier to build: for the elliptic case, 
it is easy to define many homeomorphisms which fix a given curve, and many examples 
of hyperbolics are given in [7].

Our next result shows that the action of Homeo(S) on C†(S) is dynamically very 
rich; it may be interpreted as giving some justification of the pervasiveness of hyperbolic 
examples.

Theorem 1.2 (Continuity). Let S have genus g ≥ 1. Asymptotic translation length on 
C†(S) is a continuous function on Homeo(S). Consequently,
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(1) all nonnegative real numbers can be realized as asymptotic translation lengths in 
Homeo0(S), and

(2) hyperbolicity is an open condition in the C0 topology.

Interestingly, while the set of elliptic mapping classes is not open, one can easily 
construct examples of open subsets of Homeo(S) consisting entirely of elliptics, see Con-
struction 3.3, which can be taken to be smooth. Hence hyperbolicity is not generic in 
the C0 topology.

We highlight another key difference to the classical setting of C(S) via Theorem 1.2. 
Indeed, Bowditch [8] proved that asymptotic translation lengths on C(S) belong to 1

mZ

with m depending only on S i.e. they are uniformly rational. On the other hand The-
orem 1.2 shows that all nonnegative reals occur as asymptotic translation lengths on 
C†(S).

1.2. Torus homeomorphisms and rotation sets

In the case of the torus T = R2/Z2, there is a well-developed theory of the dynamics of 
isotopically trivial homeomorphisms via their rotation sets, subsets of R2 which, loosely 
speaking, measure the average displacement of points under iteration. The influential 
paper [35] of Misiurewicz and Ziemian sparked a general program to relate the dynamics 
of torus homeomorphisms to the geometric and topological properties of their rotation 
sets. Their work shows that rotation sets are compact and convex, so these are either 
points, line segments or have nonempty interior. Each of these do in fact arise: by con-
sidering homeomorphisms of the torus which preserve a foliation by circles and act like 
a rotation on each of those circles, it is easy to produce examples of homeomorphisms 
whose rotation set is a singleton or a segment of rational slope containing rational points. 
Homeomorphisms whose rotation set is a segment with irrational slope were constructed 
by Katok (see [22, Example 1.4] and [28]); while Avila announced a construction of an ex-
ample whose rotation set is a segment contained in a line of irrational slope and with no 
rational point. Le Calvez and Tal [29] introduced a new orbit forcing theory and proved, 
among other results, that an irrational slope line rotation set cannot have a rational 
point in its interior, which verifies a case of the Franks–Misiurewicz conjecture [18].

We show that the topology of the rotation set classifies homeomorphisms of the torus 
which act hyperbolically on C†(T ):

Theorem 1.3 (Hyperbolic characterisation, special case). Let f ∈ Homeo0(T ). The fol-
lowing are equivalent

(1) f acts hyperbolically on C†(T ),
(2) ρ(f) has non-empty interior, and
(3) there is a finite, f -invariant set P ⊂ T such that the restriction of f to T − P

represents a pseudo-Anosov mapping class.
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We also show that the area of the rotation set is bounded from below in terms of the 
square of the asymptotic translation length, see Proposition 5.2.

The above theorem highlights a new connection between geometry of C†(S), dynamics
via the rotation set, and topology via the mapping class represented in the complement of 
an invariant finite set of points. We note that the implication from (2) to (3) above was 
already known: it is a consequence of the work of Franks [17] and Llibre–MacKay [30]. 
The implication from (3) to (2) is more subtle because the rotation vectors of P may be 
equal. Nonetheless Boyland [10] shows that the Thurston representative on T − P has 
rotation set with non-empty interior, and so (2) can be deduced from Nielsen fixed point 
theory and the convexity of the rotation set. In this paper we prove (1) implies (2) and 
(3) implies (1) using different methods.

Following [15], one may also define a rotation set for homeomorphisms of T that admit 
a power isotopic to a (power of a) Dehn twist map. This set measures the speed of orbits 
transversally to the twist; see Definition 2.14. Using this, we extend Theorem 1.3 to 
give an analogous characterisation applicable to all homeomorphisms of T . The precise 
statement is given in Theorem 5.3 below.

One might hope that elliptic and parabolic isometries of C†(T ) could similarly be 
distinguished by their rotation sets. This is half-true: we show that one can give sufficient 
conditions separately for parabolicity and ellipticity, but also show via explicit examples 
that one cannot hope to give both sufficient and necessary conditions as in Theorem 1.3.

Theorem 1.4. Let f ∈ Homeo0(T ). If ρ(f) is a segment of irrational slope, then f acts 
on C†(T ) parabolically. If ρ(f) is a segment of rational slope containing rational points, 
then f acts elliptically.

Note that there are many elliptic elements whose rotation set is a singleton e.g. any 
homeomorphism whose support is contained in a disk has null rotation set. Thus, the 
condition on elliptics in Theorem 1.4 is not necessary. For parabolics, in Section 6 we 
also show

Proposition 1.5. There are homeomorphisms f that act parabolically on C†(T ) with 
ρ(f) = {(0, 0)}.

This implies, in particular, that one cannot hope to distinguish elliptics from parabol-
ics via rotation sets alone. Some of our examples can be chosen to be smooth.

1.3. Further questions

An interesting related question is to study actions on analogous graphs for infinite 
type surfaces, as a kind of intermediate point between C†(S) and C(S). Work of Bavard 
[2] and of Horbez–Qing–Rafi [24] shows that many of these groups admit dynamically 
interesting actions on hyperbolic metric spaces. However, there is no known analog of 
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the Nielsen–Thurston classification, and whether these actions have parabolic elements 
appears to be open.

It is natural to try to extend Theorem 1.3 on rotation sets for tori to the case of higher 
genus surfaces. We conjecture that the equivalence of (1) and (3) should hold generally. 
However, existing analogs of the rotation set on higher genus surfaces do not lend them-
selves as easily to such an analysis as we do here. Guihéneuf and the fourth author [21]
recently introduced the notion of homotopic rotation sets, and proved that the desired 
periodic points exist under slightly stronger conditions on the corresponding rotation 
sets, giving a step towards the equivalence of statements analogous to (2) and (3).

There is also the question of the relationship between the asymptotic translation 
length on the fine curve graph, and the topological entropy of the homeomorphism. Since 
homeomorphisms supported on a disc can have arbitrarily large topological entropy, there 
can be no upper bound on entropy in terms of the asymptotic translation length. On 
the other hand, a lower bound seems to be within reach. For the torus, the area of the 
rotation set is bounded from below in terms of the asymptotic translation length, see 
Proposition 5.2 below. The work of Kwapisz [27] provides lower bounds on the topological 
entropy in terms of shape and area of the rotation set.

1.4. Outline

The paper is organised as follows. In Section 2 we briefly provide the necessary back-
ground for our theorems and proofs. In Section 3 we show that the asymptotic translation 
length of a homeomorphism on C†(S) is C0-continuous, and therefore Cr-continuous for 
1 ≤ r ≤ ∞. In Section 4 we provide useful bounds on distances in C†(S), which enable 
us to give statements about rotation sets given actions on curves, or vice versa. These 
are of independent interest, but also used in our later proofs. In Section 5 we provide 
the proofs of Theorems 1.3 and 5.3. In Section 6 we provide the proofs of Theorem 1.1
and Proposition 1.5.

2. Background

In this section, we set up notation and recall basic facts from coarse geometry and 
topological dynamics to be used later in this work.

2.1. Hyperbolic spaces and their isometries

Let X be a geodesic metric space.

Notation 2.1. For points x, y in X, we denote by [x, y] any geodesic between them. We 
make the convention that statements about [x, y] are supposed to hold for any choice of 
geodesic.

We say that X is δ–hyperbolic if geodesic triangles are δ–slim i.e. if for all points 
x, y, z ∈ Z we have
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[x, y] ⊂ Nδ([y, z] ∪ [z, x]).

Here, Nδ denotes the closed δ-neighbourhood. We say that X is Gromov hyperbolic (or 
just hyperbolic) if X is δ-hyperbolic for some δ ≥ 0. For details, background, and basic 
properties of Gromov hyperbolic spaces, we refer the reader to [11, Chapter III.H]. It is 
a straightforward consequence of the definition that the Hausdorff distance between any 
geodesics joining the same two points is bounded by δ.

For an isometry g of a Gromov hyperbolic space X, the asymptotic translation length
is defined as

|g|X := lim
n→∞

1
ndX(x, gn(x))

It is a standard exercise to see that this limit exists and is independent of x. This 
independence immediately implies that the asymptotic translation length is a conjugacy 
invariant of isometries of X.

We have the following classification of isometries [20, §8]:

Definition 2.2. Let g be an isometry of a Gromov hyperbolic space. We say that g is

Hyperbolic: if the asymptotic translation length is positive,
Parabolic: if the asymptotic translation length is zero but g has no finite diameter orbits, 

and
Elliptic: if g has finite diameter orbits.

Note again that these categories are invariant under conjugation by isometries. The 
reader may recall that there is an equivalent reformulation of this trichotomy in terms 
of fixed points on the Gromov boundary of X, but we do not require this point of view 
in the present work.

2.2. Surfaces and curves

Throughout this article, surface will mean a closed, oriented surface S of genus at 
least 1, with T being used to denote the torus. A curve on such a surface will always be 
required to be an essential closed loop (i.e. non-trivial in π1(S)), frequently we restrict 
our attention to simple (i.e. topologically embedded) curves.

The main geometric tool we use in this article is the following variant of the classical 
curve graph, which is the 1-skeleton of the curve complex, see [32, Section 2.2] for a 
definition.

Definition 2.3. For a surface S of genus at least two, the fine curve graph, denoted by 
C†(S), is the graph with vertex set equal to the set of essential simple closed curves in 
S, and edges given by disjointness.
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In the case of the torus T , vertices of C†(T ) are again essential simple closed curves, 
but two vertices are now joined by an edge when the corresponding curves are either 
disjoint or intersect topologically transversely at most once.

We endow C†(S) with a metric in which each edge is isometric to the unit interval, 
and the distance between two vertices is given by the minimal length of a path between 
them. The distance between two vertices α and β of C†(S) will be denoted by d†(α, β).

We need two facts about C†(S) which are true for any surface S of genus at least 1
(compare also [7, Section 5.2] for comments on the torus case):

Theorem 2.4 ([7, Theorem 3.8]). The graph C†(S) is Gromov hyperbolic.

Theorem 2.5 ([7, Lemma 4.2]). Suppose that F : S → S is a homeomorphism fixing a 
finite set P ⊂ S, and let ϕ be the mapping class of S − P defined by F . Then,

|F |C†(S) ≥ |ϕ|C(S−P ).

By the work of Masur–Minsky (see [32, Proposition 4.6]), if ϕ is pseudo-Anosov, then 
|ϕ|C(S−P ) > 0 hence F acts hyperbolically on C†(S).

Remark 2.6 (Smooth versus non-smooth). In [7], the graph C†(S) has vertices correspond-
ing to smooth curves, whereas for the applications here we need to allow all essential 
curves as vertices. As discussed in [7, Remark 3.2], these two graphs are quasi-isometric, 
which yields Theorem 2.4. The argument given in [7] for Theorem 2.5 is stated in the 
smooth context but applies equally well in the C0 setting, giving the statement above.

In addition, we use the following easy lemma:

Lemma 2.7. Suppose that S is any surface of genus g ≥ 1, and suppose that α and β are 
two curves on S intersecting in a finite number of points. Then

d†(α, β) ≤ 2#(α ∩ β) + 2

This lemma can be deduced easily from Lemma 3.4 of [7] and the corresponding 
estimate for usual curve graphs. We give an alternative proof using curve surgery, as a 
warm-up for later arguments which will use similar tools.

Proof. Suppose that α and β are two curves which intersect in a finite number of points. 
Let a ⊂ α be an embedded subarc such that a ∩β is equal to the endpoints of a. Denote 
by b′, b′′ ⊂ β the two connected components of β \ a. Then a ∪ b′ and a ∪ b′′ are simple 
closed curves, at least one of which is essential. Call this essential curve β′.

If a approaches β from the same side at both endpoints, then β′ is homotopic to, 
and disjoint from, a curve β′′ which is disjoint from β. If instead a approaches β from 
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opposite sides at both endpoints, one can instead find such a curve β′′ that intersects β
in a single point.

Thus, this curve β′′ obtained from β by surgery along a has distance at most 2 from 
β in C†(S). By construction, β′′ can be taken to intersect α in strictly fewer points than 
β, which shows Lemma 2.7 by induction. �
Remark 2.8. The bound given in Lemma 2.7 is far from optimal. In fact, one could also 
bound the distance d† by the logarithm of the intersection number (as in the case of 
usual curve graphs, see [23]). Namely, by choosing the right subarc a, one can ensure 
that both choices for β′′ are essential, so we can halve the number of intersections in 
each step.

2.3. Rotation sets for torus homeomorphisms

Here and in what follows, we view the torus with its standard Euclidean structure 
T = R2/Z2.

Definition 2.9. Let f̃ ∈ Homeo0(R2) be a lift of an isotopically trivial homeomorphism 
of T . The rotation set ρ(f̃) ⊂ R2 is the set of vectors

ρ(f̃) :=
{
v ∈ R2 : ∃xi ∈ R2, ni → ∞ s.t. (f̃ni (xi)−xi)

ni
→ v

}
.

We recall some basic properties of ρ. The following are easy consequences of the 
definition:

(1) For p ∈ Z2 and n ∈ Z, we have

ρ(f̃n + p) = nρ(f̃) + p

(2) For any lift g̃ of an isotopically trivial torus homeomorphism, we have

ρ(g̃f̃ g̃−1) = ρ(f̃),

and
(3) For any matrix A ∈ SL2(Z), we have

ρ(Af̃A−1) = A(ρ(f̃)).

Another important and much less trivial property is the result of Misiurewicz and 
Ziemian [35] that ρ(f̃) is compact, convex, and equal to the convex hull of the pointwise 
rotation set

ρp(f̃) :=
{
v ∈ R2 : ∃x ∈ R2, ni → ∞ s.t. (f̃ni (x)−x)

ni
→ v

}
.
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Thus, ρ(f̃) is either a point, a closed interval, or has non-empty interior. These, and 
many other properties of interest (for example, the property of containing a point with 
rational coordinates) are invariant under integer translations and therefore independent 
of the lift of f chosen. When considering such questions, we will often abuse notation 
and simply write ρ(f), rather than ρ(f̃), thinking of ρ(f) as a set well defined up to 
translation by Z2.

As a byproduct of the proof of the convexity of the rotation set, Misiurewicz and 
Ziemian obtained the following result that we will need. Fix a fundamental domain 
D ⊂ R2. For any integer n > 0, let

1
n
f̃n(D) =

{
f̃n(x)
n

: x ∈ D

}
.

Lemma 2.10 (Misiurewicz-Ziemian [35]). The sequence of compact subsets ( 1
n f̃

n(D))
converges to ρ(f̃) in the Hausdorff topology.

As mentioned in the introduction, there is a rich and well-developed theory relating the 
dynamics of torus homeomorphisms to the geometric and topological properties of their 
rotation sets. A general introduction can be found in the original work of Misiurewicz 
and Ziemian [35], and a more detailed description of recent developments in the survey 
[3] (in French). We will need the following two important results.

Theorem 2.11 (Franks [17]). If (a/q, b/q) is a point with rational coordinates in the 
interior of ρ(f̃), then f has a periodic point of period q.

Theorem 2.12 (Llibre–MacKay, [30]). Suppose f ∈ Homeo0(T ) has rotation set with 
non-empty interior. Then there exists a finite f -invariant set P such that the restriction 
of f to T − P is a pseudo-Anosov mapping class.

The existence of the finite set P comes from Franks’s theorem quoted above. Llibre–
Mackay’s insight was to show that the orbits of any three periodic points with non-
collinear rational rotation vectors gives the desired set P with the pseudo-Anosov 
property.

2.4. Dehn twists

As discussed in [15], homeomorphisms of T isotopic to a Dehn twist map also have a 
rotation set relative to the direction of the twist. We explain this now.

Definition 2.13. Let α be a curve of T . We say a homeomorphism f of T is a Dehn twist 
map around α when the following hold

(1) the support of f is contained in an embedded annulus A ⊂ T which contains α, and
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(2) there exists a chart ϕ : A → R/Z ×[0, 1] which sends α to R/Z ×{1/2} and r ∈ Z \{0}
such that ϕf|Aϕ−1 = τ r, where

τ : R/Z× [0, 1] → R/Z× [0, 1]
(x, y) �→ (x + y, y)

.

Fix a simple (oriented) essential loop α and let Ť denote the associated cyclic cover 
of T . We fix an identification of Ť with R/Z ×R, with deck group equal to the integral 
translations in the second coordinate, oriented so that a lift of α is oriented in the 
positive direction. Let f ∈ Homeo(T ) be isotopic to a Dehn twist map around α, and 
let f̌ : Ť → Ť be a lift of f . Let p2 : Ť = R/Z ×R → R be the projection to the second 
co-ordinate, and

t : Ť → Ť

(x, y) �→ (x, y + 1)
.

Definition 2.14. [15] The rotation set ρα(f̌) of the lift f̌ is the subset of R consisting of 
accumulation points of{

p2(f̌n(x̌)) − p2(x̌)
n

: n ≥ 1 and x̌ ∈ Ť

}
.

This set is a segment of R. Similarly to the case of homeomorphisms isotopic to the 
identity, it follows from the definition that ρα(f) = ρgα(gfg−1) for any homeomorphism 
g of T , and for any integers p and q, we have

ρ(tpf̌q) = qρ(f̌) + p.

Thus, two lifts of f to Ť have rotation sets which differ by an integral translation of R, 
and so we use ρα(f) (and occasionally ρ(f) when α is understood), rather than ρα(f̌) to 
mean the rotation set of any fixed lift when we wish to speak of properties independent 
of choice of lift.

3. Asymptotic translation length

In this section we prove continuity of asymptotic translation length. As a direct conse-
quence, one may conclude that hyperbolicity for the action on C†(S) is an open condition 
on Homeo(S). Before embarking on the proof, we take a brief detour to discuss the con-
trasting results that there are hyperbolic elements arbitrarily close to the identity, as 
well as open sets of elliptic elements.

Here, and for the remainder of the paper, | · | always denotes asymptotic translation 
length on the curve graph C†(S).
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Lemma 3.1. For any closed surface S of genus at least 1, any C0 neighbourhood of the 
identity contains homeomorphisms acting hyperbolically on C†(S).

Proof. First assume that S has genus at least 2. Recall that a filling loop γ means that 
every loop homotopic to γ intersects every essential simple closed curve on S. Let p ∈ S

be a point, and let γ : [0, 1] → S be a smooth, filling loop based at p, with transverse 
self-intersections.

Next, choose times 0 = t0 < . . . < tn = 1 so that γ|[ti,ti+1] has length at most ε. By 
possibly adding more times before self-intersection points, we may assume that γ can be 
covered with disks D1, . . . , D2k so that

(1) Each Di has diameter < ε,
(2) Di ∩Dj = ∅ if i − j is even, and
(3) γ|[ti,ti+1] ⊂ Di for all i.

We let G0 (respectively, G1) be the endpoint of the isotopy supported in the union of 
all Di for i even (respectively, odd) and in each such Di slides γ(ti) to γ(ti+1) along 
γ|[ti,ti+1]. By choosing ε small enough,

F = G1 ◦G0

is arbitrarily close to the identity. We claim that F acts on C†(S) hyperbolically. To this 
end, it suffices to show that some power of F does. Observe that F k is a homeomorphism 
of S fixing p, and (by composing the isotopies defining G0, G1), there is an isotopy from 
F k to id whose trace of the point p is exactly the loop γ. This implies that the isotopy 
class [F k] lies in the kernel of the forgetful map

1 → π1(S, p) → Mcg(S − p) → Mcg(S) → 1

and corresponds exactly to the loop γ ∈ π1(S, p) (compare [16, Section 4.2] for this 
Birman exact sequence). Since γ is filling, Kra’s theorem [26] implies that the mapping 
class [F k] ∈ Mcg(S − p) is pseudo-Anosov. Theorem 2.5 then implies that F k (hence F ) 
acts hyperbolically on C†(S).

If S = T is the torus, we need to choose γ to be filling in T \ {q} for some point q (as 
the Birman exact sequence requires at least one puncture in the case of the torus), and 
argue analogously. �
Remark 3.2. We emphasise that the construction in Lemma 3.1 is flexible – the choice 
of the filling loop γ is arbitrary, and we can construct a root of the corresponding point-
pushing pseudo-Anosov.

The following gives a general construction of open sets of elliptic elements which can 
be taken arbitrarily close to (though not containing) the identity.

Created with 
GogoPdf.com



12 J. Bowden et al. / Advances in Mathematics 408 (2022) 108579

Construction 3.3 (Open sets of elliptics). Let A ⊂ S be an embedded essential, closed 
annulus, and f : S → S a homeomorphism isotopic to the identity and sending A into 
the interior of A. Let α denote a boundary curve of A. There exists a neighbourhood of 
f in Homeo0(S) consisting of homeomorphisms which send A into the interior of A. Any 
such homeomorphism g will satisfy that gN (α) ∩ α = ∅, giving a bounded orbit.

3.1. Proof of Theorem 1.2

We now prove the following result.

Theorem 3.4. Let fm → f in the C0-topology on Homeo(S). Then

|fm| → |f |.

In particular, the set of homeomorphisms acting hyperbolically on C†(S) is an open set 
in the C0-topology.

This is the main technical content of Theorem 1.2 stated in the introduction, indeed 
we have:

Proof of Theorem 1.2 given Theorem 3.4. Openness of hyperbolicity is immediate from 
the continuity of asymptotic translation length. What remains to show is that all pos-
itive real values are realized. In [7], it is shown that taking powers of elements which 
act as pseudo-Anosov homeomorphisms relative to a fixed finite set produces elements 
with arbitrarily large translation length. Since Homeo0(S) is connected, this implies all 
positive real values are attained. �

The proof of Theorem 3.4 will occupy the rest of the section. We begin with the 
following elementary lemma.

Lemma 3.5. Suppose that gm is a sequence of homeomorphisms converging to a homeo-
morphism g in the C0-topology, and let α be an essential simple closed curve. Then, for 
all m large enough, we have

d†(gmα, gα) ≤ 2.

Proof. Let C be a small collar neighbourhood of gα, so that the boundary of C consists 
of two simple closed curves disjoint from gα. Then, for all m large enough, we have

gmα ⊂ int(C),

which implies the claim. �
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We now pick a sequence fm with limit f as in Theorem 3.4.

Lemma 3.6. Given any n ∈ N and essential simple closed curve α, for all sufficiently 
large m we have

n|fm| = |fn
m| ≤ d†(α, fnα) + 2.

Proof. The first equality is immediate from the definition of asymptotic translation 
length. For the inequality, we have

|fn
m| ≤ d†(α, fn

mα) ≤ d†(α, fnα) + d†(fnα, fn
mα),

and since fn
m → fn as m → ∞, we invoke Lemma 3.5, which shows that d†(fnα, fn

mα) ≤ 2
for sufficiently large m, and we are done. �

As a consequence of this lemma we have

lim sup
m→∞

|fm| ≤ |f |

In particular, if |f | = 0, we have limm→∞ |fm| = 0 = |f | and we are done. Hence, we 
may from now on assume that |f | > 0 and we aim to prove that lim infm→∞ |fm| ≥ |f |.

Let δ be a hyperbolicity constant for C†(S), so that any geodesic triangle in C†(S) is 
δ–slim, and any geodesic quadrilateral is 2δ–slim.

The first step will be to choose a convenient curve α to serve as a basepoint.

Lemma 3.7. There is α ∈ C†(S) and N ∈ N such that for all n ≥ N we have

d†(α, [f−nα, fnα]) ≤ 2δ,

and furthermore, for sufficiently large m,

d†(α, [f−N
m α, fN

mα]) ≤ 2δ.

Proof. Start with any β ∈ C†(S). Then the sequence (fnβ)n is a C-quasi-geodesic for 
some C > 0. By [11, Theorem III.H.1.7.] (quasi-geodesics fellow travel geodesics) there 
exists a constant B = B(δ, C) such that any geodesic segment [f iβ, f jβ] lies within 
Hausdorff distance B of (fkβ)i≤k≤j .

Take any N ∈ N satisfying

N > max
{

3B + 3δ
|f | ,

2δ + B + 4
|f |

}
and choose α to be a closest-point projection of β to [f−Nβ, fNβ]. We have that 
d†(β, α) ≤ B. Fix n > N and consider a geodesic segment [f−nα, fnα] with n ≥ N . 
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Fig. 1. The situation in the proof of Lemma 3.7 (left) and 3.8 (right).

Now we study the geodesic quadrilateral given by the aforementioned two geodesics 
together with [f−Nβ, f−nα] and [fNβ, fnα], as indicated in the left side of Fig. 1.

Since quadrilaterals are 2δ–slim, the point α ∈ [f−Nβ, fNβ] has distance at most 2δ
to one of the other three sides. To prove the lemma we want to show that α is not in the 
2δ-neighbourhood of [f−Nβ, f−nα] or of [fNβ, fnα].

So, suppose for contradiction that α is within 2δ of [fNβ, fnα] (the other case is 
analogous). Since d†(α, β) ≤ B, we have

[fNβ, fnα] ⊂ NB+δ([fNβ, fnβ])

Therefore, [fNβ, fnα] is in a (2B+δ)-neighbourhood of (f iβ)N≤i≤n. Since α is within 2δ
of [fNβ, fnα], this shows that β has distance at most 3B+3δ to a point in (f iβ)N≤i≤n. 
This contradicts the first lower bound in our choice of N , since |i| · |f | ≤ d†(f iβ, β) ≤
3B + 3δ, but on the other hand we have N ≤ i by definition of i.

Now we tackle the last claim of the lemma, using the fact that

N >
2δ + B + 4

|f | .

Pick α as before. Then for sufficiently large m for i ∈ {−N, N} we have that 
d†(f i

mα, f iα) ≤ 2. We consider the geodesic quadrilateral with vertices f−N
m α, f−Nβ, 

fNβ, and fN
mα. Recall that α lies on the geodesic [f−Nβ, fNβ]. As before, if α is within 

2δ of [fNβ, fN
mα], then α is within 2δ + B + 4 of fNα, which is a contradiction. �

Lemma 3.8. If N is chosen large enough, and m is sufficiently large (depending on N), 
then for all n ∈ N and i with −n ≤ i ≤ n, we have that (fN

m )iα is within 4δ of 
[(fN

m )−nα, (fN
m )nα].

Proof. Here, we require in addition to the constraints of the previous proof that N >
8δ+2
|f | .
Given n ∈ N, fix a geodesic segment [(fN

m )−nα, (fN
m )nα] and let i be an index with 

−n ≤ i ≤ n such that z := (fN
m )iα maximises distance to [(fN

m )−nα, (fN
m )nα]. Let D

denote the distance from z to [(fN
m )−nα, (fN

m )nα].
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Let x := (fN
m )i−1α and let y := (fN

m )i+1α. Let z′, x′ and y′ be choices of closest-point 
projections of z, x and y, respectively, to [(fN

m )−nα, (fN
m )nα]. Finally, let z be a closest 

point projection of z to [x, y], and recall that z is within 2δ of [x, y] by Lemma 3.7.
Now consider the geodesic quadrilateral [x, y], [y, y′], [y′, x′], [x′, x]. By 2δ–slimness, 

z ∈ [x, y] is 2δ–close to one of the other three sides. To finish the proof, what we need 
to show is that the distance from z to [x′, y′] is at most 2δ. Similarly to the previous 
lemma, we proceed by using a proof by contradiction to show that z cannot be close to 
one of the other two sides.

So, for contradiction, assume that z is 2δ–close to a point y ∈ [y, y′] (the case of [x, x′]
is analogous). The set-up is illustrated in the right side of Fig. 1.

We then have

D = d(z, [(fN
m )−nα, (fN

m )nα]) ≤ 4δ + d(y, [(fN
m )−nα, (fN

m )nα])),

and therefore

d†(y, [(fN
m )−nα, (fN

m )nα])) ≥ D − 4δ.

On the other hand, because our choice of z was a point that maximised distance to 
[(fN

m )−nα, (fN
m )nα], we have that

d†(y, [(fN
m )−nα, (fN

m )nα])) ≤ D,

hence

d†(y, y) ≤ 4δ.

Thus we obtain in total that

d†((fN
m )iα, (fN

m )i+1α) = d(z, y) ≤ 8δ,

hence

d†(α, fNα) ≤ 8δ + 2.

This contradicts N > 8δ+2
|f | , completing the proof. �

Remark 3.9. Observe that the proof of Lemma 3.8 also shows that for any large enough 
N , the closest-point projections of the (fN

m )iα for −n ≤ i ≤ n on the geodesic 
[(fN

m )−nα, (fN
m )nα] are monotonic.

Lemma 3.10. For all sufficiently large N , and sufficiently large m (depending on N), for 
all n ∈ N we have
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2n(|fN | − 2 − 8δ) ≤ d†((fN
m )−nα, (fN

m )nα).

Therefore, |fm| ≥ |f | − 2+8δ
N .

Proof. Divide the segments of a geodesic [(fN
m )−nα, (fN

m )nα] into 2n disjoint pieces by 
taking closest-point projections of the points (fN

m )iα to the geodesic (by the monotonicity 
of projections guaranteed by Remark 3.9). Each piece has length at least |fN | − 2 − 8δ
by Lemma 3.8 and Lemma 3.6 so we obtain the first inequality. The second inequality 
follows by rearranging the first inequality and taking the limit of this quantity over n as 
n tends to ∞. �

As a consequence of the above lemma, we obtain

lim inf
m→∞

|fm| ≥ |f | − 2 + 8δ
N

for all sufficiently large N . This shows that lim infm→∞ |fm| ≥ |f |, and Theorem 3.4
follows. �
4. Distance estimates

In this section, we provide key results which allow us to connect the geometry of C†(S)
to the topology of curves on S and their lifts to specific covers.

Our first criterion, Lemma 4.1 below, works for all surfaces S of genus g ≥ 2, and uses 
covering spaces. One can think of this as a C†(S)–version of the criterion introduced by 
Hempel in [23, Section 2]. To state it, we need to introduce some vocabulary and basic 
observations. If π : S′ → S is a (possibly branched) cover, and α ⊂ S is an essential 
simple closed curve (disjoint from the branch points), then we say that an elevation of 
α is a connected component of π−1(α). The following two properties are obvious, yet 
important:

(1) Elevations of simple closed curves are simple. If the cover has finite degree, an ele-
vation of such a curve is also closed.

(2) Any two elevations of disjoint simple closed curves are disjoint.

Lemma 4.1. Let S be a surface of genus g ≥ 2. If α and β are two curves with d†(α, β) =
2, then there is a degree 2 cover X → S such that α and β admit disjoint elevations 
in X.

Proof. Since d†(α, β) = 2, there is a curve γ which is disjoint from both α and β. 
The following argument shows that we may take such a curve to be non-separating. 
Since d†(α, β) �= 1, the curves intersect, and so if γ were separating, then α, β would be 
contained in the same complementary component of γ. Thus, we could replace γ with 
any non-separating curve in the other complementary component.
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Taking the mod-2 intersection number with γ gives a homomorphism π1(S) → Z/2Z; 
let X be the associated degree 2 cover. We claim that X has the desired property, and 
in fact α, β even admit disjoint lifts to X. Let γ1 and γ2 denote the two elevations of γ
to X. Then

X − (γ1 ∪ γ2) = X1 ∪X2

where X1 and X2 are the two preimages of S − γ. Now, the desired elevations can be 
obtained by lifting of α into X1, and β into X2. �

Iterating Lemma 4.1 immediately yields the following.

Corollary 4.2. If S is a surface of genus g ≥ 2 and α, β ∈ C†(S) with d†(α, β) ≤ n, then 
there is a cover of S of degree at most 2n to which α, β admit disjoint elevations.

As a consequence, we have the following criterion that we will frequently apply later.

Lemma 4.3. Let S be a surface of genus g ≥ 2 and let K ≥ 0. There is a finite-sheeted 
cover X → S (depending only on K) such that any two curves α and β on S satisfying 
d†(α, β) ≤ K admit disjoint elevations to X.

Proof. Let Γ < π1(S) be the intersection of the finite index subgroups of degree at most 
2K in π1(S). It is a well-known fact that a finitely generated group has only finitely 
many subgroups a given index (e.g. since an index n subgroup H of G is determined by 
the action of G on the cosets of H, and there are only finitely many homomorphisms 
of a finitely generated group to the symmetric group of n elements). Thus, Γ also has 
finite index in π1(S). By covering space theory, the subgroup Γ determines a finite cover 
X → S of degree equal to the index of Γ. We claim this cover has the desired property. 
Indeed, by Corollary 4.2, any pair of curves α and β satisfying d†(α, β) ≤ K will admit 
disjoint elevations to some cover X ′, where X ′ → S has degree at most 2K . By definition 
of Γ, we have Γ < π1(X ′) < π1(S), and hence X → S factors through X → X ′ → S. 
Disjoint elevations stay disjoint in further covers, hence α and β have disjoint elevations 
to X as required. �
4.1. A crossing number estimate

We also develop an upper bound on distance in C†(T ) (Lemma 4.5, below) specifically 
for the torus. This will be used in our work on rotation sets in the next section.

Definition 4.4. Let α and β be essential simple closed curves on the torus T = S1 × S1. 
Interpret β as a map β : [0, 1] → T and denote by β̃ : [0, 1] → T̃ = R2 a lift.

We define the α-crossing number Cα(β) as the number of distinct elevations of α
which β̃ intersects.
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Fig. 2. Crossing number via annuli.

When α and β are homotopic essential simple closed curves, there is a useful alterna-
tive way to describe Cα(β). Namely, let A be the annular covering of T corresponding 
to the cyclic subgroup generated by α. We can identify A with S1 × R so that the lifts 
α̂m of α are the circles S1 × {m}, m ∈ Z.

Then the crossing number Cαβ is equal to the cardinality of

{α̂m : β̂ ∩ α̂m �= ∅},

where β̂ is an elevation of β. In other words, the number of lifts of α which β̂ inter-
sects (compare Fig. 2). Observe that this last characterisation is independent of the 
identification of the annulus with S1 ×R.

Lemma 4.5. If α and β are isotopic simple closed curves on T , then

Cα(β) + 1 ≥ d†(α, β).

Proof. We will perform a surgery replacing α with a homotopic curve α′ such that 
i(α, α′) = 0 and Cα′(β) ≤ Cα(β) − 1. By induction, this is enough to prove the lemma.

To this end, we fix the cover A and a lift β̂ as in the discussion before the lemma, 
and keep the notation α̂m = S1 × {m} for the lifts of α. Choose a < b ∈ Z with b − a

minimal, so that β̂ ⊂ S1 × [a, b]. Note that, if β̂ intersects α̂b = S1 × {b}, then we may 
replace α with a nearby parallel copy of itself α′ avoiding these finitely many points 
or intervals of intersection, and decreasing crossing number, thus already satisfying our 
desired outcome. Thus, we may assume β̂ does not intersect S1 × {b}. Consider the 
intersection of β̂ with S1 × [b − 1, ∞). This is a collection of arcs b1, . . . , bk with each arc 
intersecting α̂b−1 only in its endpoints. Choose disjoint, closed disks B1, . . . , Br with the 
following properties:

(1) Each Bi is bounded by a segment contained in α̂b−1, and one of the bj .
(2) Each bj is contained in one of the Bi.
(3) All Bi are disjoint from α̂i, i �= b − 1.

By the third property, the Bi map to disjoint, embedded disks in T under the covering 
map.

We let α′ be the curve obtained from surgery of α at all bj which appear as boundary 
segments of Bi. Since this surgery can be done on A, α′ is homotopic to α. Since all bj
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Fig. 3. Surgery of α along arcs of β.

approach α̂b−1 from the same side, the surgered curve α′ can be chosen to be disjoint 
from α. Hence, the cover defined by α′ is still A. The lifts α̂′

i are obtained from α̂i by 
surgering at deck group translates of the Bi (see Fig. 3).

Thus, the lift β̂ can only intersect α̂′
i if it also intersects α̂i. By property 2, β̂ does not 

intersect α̂′
b−1. Thus, we have Cα′(β) ≤ Cα(β) − 1 by the description of crossing number 

before the lemma. �
Remark 4.6. One could define a version of crossing number also for surfaces of higher 
genus by using the Bass–Serre tree of the cyclic splitting of the fundamental group 
determined by α. In this case the diameter of the projection to the Bass–Serre tree will 
provide an upper bound on distance, the idea of the proof is the same. However, since 
we do not need this for our intended applications, we do not pursue this here.

5. Hyperbolic elements

In this section, we will study homeomorphisms isotopic to the identity acting hyper-
bolically on C† and prove Theorem 1.3 from the introduction.

5.1. Proof of Theorem 1.3

Recall that Theorem 1.3 asserts the equivalence of the following statements for f ∈
Homeo0(T ):

(1) f acts hyperbolically on C†(T ),
(2) the rotation set ρ(f) of f has non-empty interior, and
(3) there is a finite f -invariant set P ⊂ T such that f represents a pseudo-Anosov 

mapping class of T − P .

For the proof, we will need the following consequence of Lemma 4.5.

Lemma 5.1. If f acts hyperbolically on C†(T ) then for any curve α ∈ C†(T ) and for all 
n > 0 we have

Cα(fn(α)) ≥ |f | · n− 1.
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Proof. Using Lemma 4.5 we have for all n > 0

|f | · n ≤ d†(α, fn(α)) ≤ Cα(fn(α)) + 1. �
Proof of Theorem 1.3. The assertion (2) ⇒ (3) is Theorem 2.12 of Llibre–MacKay [30], 
and (3) ⇒ (1) is Theorem 2.5. Thus, we need only show the implication (1) ⇒ (2).

Suppose f acts hyperbolically on C†(T ). Identify T with R2/Z2, and let α be the 
simple closed curve whose lifts to R2 are the horizontal lines in R2 with integer second 
co-ordinates. Let f̃ be a lift of f to R2.

By Lemma 5.1 we have

Cα(fn(α)) ≥ |f | · n− 1.

This means that for any n, lifts of fn(α) intersect at least |f | ·n −1 distinct horizontal lines 
(with integer second co-ordinate) in the plane R2. In other words, there are sequences of 
points zn and z′n (on the same horizontal line) so that, for each n ∈ N the points f̃n(zn)
and f̃n(z′n) have y-coordinate differing by at least |f | · n − 1, hence the displacements 
dn := fn(zn) −zn and d′n := fn(z′n) −z′n have y-coordinates differing by at least |f | ·n −1. 
This implies that the projection of ρ(f) to the y-axis has diameter at least |f |.

Since rotation sets are convex and compact, we need only now rule out the possibility 
that ρ(f) is a line segment. Suppose for contradiction that ρ(f) were a line segment, 
�. If � has rational slope, then we may find A ∈ SL2(Z) such that A(�) is a subset of 
the x-axis. As discussed in Section 2.3, we have ρ(AfA−1) = Aρ(f). Since asymptotic 
translation length is a conjugacy invariant, we have |AfA−1| = |f |, so we may apply the 
same argument as above to conclude that projection of ρ(AfA−1) = Aρ(f) to the y-axis 
has diameter at least |f |, a contradiction. If the slope of � is irrational, we can again find 
A ∈ SL2(Z) such that A(�) has projection to the y-axis a set of diameter less than |f |: in 
fact, with a process similar to Euclid’s algorithm, one may apply elementary matrices to 
make the projection of the length of the segment � arbitrarily small, again contradicting 
the lower bound. This concludes the proof. �

In the following proposition we bound the area of the rotation set from below by a 
constant multiple of the square of the asymptotic translation length on C†(S). There is 
no analogous upper bound because there are rotation sets with arbitrarily large area but 
of bounded height, and height bounds the translation length from above by Lemma 5.1.

Proposition 5.2. Let f ∈ Homeo0(T ) act hyperbolically on C†(T ). Then

Areaρ(f) ≥
√

3
8 |f |2.

Proof. First note that ρ(f) is compact, and has non-empty interior by Theorem 1.3, so 
we may pick a maximal area parallelogram P ⊂ ρ(f). Now find A ∈ SL2(R) such that 
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the diagonals of the parallelogram A ·P are horizontal/vertical, and of the same length. 
Thus A · P is equal to a closed r-ball in the L1 norm centred at the intersection of the 
diagonals Q. Since A ·ρ(f) is also convex, and A ·P ⊂ A ·ρ(f) has maximal area, we must 
have that A · ρ(f) is contained within the closed r-ball in the L∞ norm with the same 
centre Q. This in turn is contained in a disk D of radius 

√
2r. Thus AreaD = πAreaP . It 

suffices to bound the diameter of D from below to establish a lower bound on Areaρ(f).
After post composing by a rotation, we may assume that (h, 0) ∈ A ·Z2 is a non-zero 

vector of smallest length and h > 0. It is well known that h2 ≤ 2√
3 . Let (k, v) ∈ A · Z2

be a smallest length vector outside the span of (h, 0). Then we must have v = 1
h because 

A is area preserving. Now D contains A · ρ(f), so by Lemma 5.1 the projection of 
D to the second co-ordinate is at least 1

h · |f |. This gives the desired lower bound on 
AreaD = πAreaP and hence Areaρ(f) as required. �
5.2. General characterisation of hyperbolic isometries

In this section we prove the following extensions of Theorem 1.3.

Theorem 5.3 (Characterisation of hyperbolic homeomorphisms). Let f be an orientation 
preserving homeomorphism of T . Then f acts hyperbolically on C†(T ) if and only if f
satisfies one of the following (mutually exclusive) conditions.

(1) The homeomorphism f is isotopic to an Anosov homeomorphism of T ,
(2) a finite power of f is isotopic to a Dehn twist map about some simple closed curve 

α, and its rotation set ρα has non-empty interior, or
(3) a finite power of f is isotopic to the identity and its rotation set has non-empty 

interior.

Of course, if a homeomorphism f of T reverses the orientation, f acts hyperbolically 
on C†(T ) if and only if the orientation-preserving homeomorphism f2 does so. We hence 
have a complete characterisation of elements of Homeo(T ) which act hyperbolically on 
C†(T ).

Proof. For the first statement, it is a special (and easy) case of the Nielsen–Thurston 
classification theorem that any orientation-preserving homeomorphism of T either is 
isotopic to an Anosov homeomorphism of T , or has a power isotopic to a Dehn twist 
map of T , or has a power isotopic to the identity. In the first case, it acts hyperbolically 
on C†(T ) since it acts hyperbolically on the Farey graph C(T ), and there is a 1-coarsely 
Lipschitz map C†(T ) → C(T ) via sending α to its isotopy class [α]. In the third case, 
Theorem 1.3 states that f acts hyperbolically if and only if its rotation set has nonempty 
interior. Thus, we need only understand the case where f is isotopic to a Dehn twist.

To this end, suppose f is isotopic to a Dehn twist around the essential simple closed 
curve α. Assume first that ρα(f) has non-empty interior. Then, by a theorem by Doeff 
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(see [15, Theorem 6.5]), f is isotopic to a pseudo-Anosov homeomorphism relative to a 
finite subset P of T . By Theorem 2.5, this implies that f acts hyperbolically on C†(T ).

Now, suppose that ρα(f) has empty interior, in which case it is a singleton. With 
the same methods as for homeomorphisms isotopic to the identity, we will prove that 
f cannot act hyperbolically on C†(T ). Denote by Ť the cyclic covering associated to 
α. Take any lift α̌ of the loop α to Ť and fix a lift f̌ : Ť → Ť of f . We identify Ť
with R/Z × R, where the group of deck transformations of the covering map Ť → T

is the group of integral translations of R/Z × R. Let p2 : Ť = R/Z × R → R be the 
projection. For any n ≥ 0, denote by Dn the diameter of p2(f̌n(α̌)) and observe that 
�Dn� ≤ Cα(fn(α)) ≤ �Dn� + 1.

As the rotation set of f is a singleton,

lim
n→+∞

Dn

n
= 0

so

lim
n→+∞

Cα(fn(α))
n

= 0.

Hence, by Lemma 4.5,

lim
n→+∞

d†(α, fn(α))
n

= 0

and f does not act hyperbolically, concluding the proof of Theorem 5.3. �
6. Parabolic and elliptic elements

Given Theorem 1.3, one might naïvely hope for a similar characterisation of elliptic 
and parabolic isometries of C†(T ) in terms of their rotation sets. In this section we show 
this naïve hope is too optimistic, giving sufficient dynamical criteria for elliptic and 
parabolic actions on the torus, then showing why these cannot be necessary. Finally, we 
return from the torus to surfaces of higher genus and complete the proof of Theorem 1.1.

6.1. Sufficient dynamical criteria

Recall Theorem 1.4 is the claim that, for f ∈ Homeo0(T ),

(1) if ρ(f) is an irrational slope segment, then f acts on C†(T ) as a parabolic isometry, 
and

(2) if ρ(f) is a rational slope segment through a rational point, then the action of f
is elliptic.

Created with 
GogoPdf.com



J. Bowden et al. / Advances in Mathematics 408 (2022) 108579 23

Proof of Theorem 1.4, rational slope through rational point case. This case follows from 
work of Dávalos [14] and our crossing number estimates. Suppose that f is isotopic to 
the identity and the rotation set ρ(f) is a rational slope segment through a rational 
point. By Theorem A in [14], f is annular, which means that there is some v ∈ Z2 so 
that for any lift F of f to R2 we have

|〈Fn(x) − x, v〉| ≤ M

for some M and all x ∈ R2. This implies that the crossing numbers Cα(fnα) (as in 
Section 4) are bounded for suitable α, and thus f acts elliptically, as desired. �
Remark 6.1. A similar argument can be applied to homeomorphisms isotopic to a Dehn 
twist map around an essential simple closed curve α whose rotation set consists of a 
single rational point. Denote by Ť the cyclic cover associated to α, by f̌ : Ť → Ť a lift of 
f to this cyclic cover and, by t a positive generator of the group of deck transformations 
of Ť → T . Then, if the rotation set of f̌ is 

{
p
q

}
, by a theorem by Addas-Zanata, Garcia 

and Tal (see [1, Theorem 2]), the homeomorphism t−pf̌q has a compact invariant set 
which separates Ť . Hence f acts elliptically on C†(T ).

To treat the case of irrational slope, we use the following construction.

Construction 6.2. For n ∈ N, let Tn → T be the cover of the torus defined by reducing 
mod n in homology:

π1(T ) → (Z/nZ)2

We equip T with the usual flat metric inherited from T = R2/Z2, and we equip Tn with 
the metric obtained by pulling back the metric of T to Tn, and rescaling by 1/n. Observe 
that T and Tn are isometric, but not via the covering map.

The following lemma says that this covering behaves nicely with respect to the asso-
ciated curve graphs:

Lemma 6.3. Suppose that α and β are adjacent in C†(T ). Then any choice of lifts of α
and β in Tn are adjacent in C†(Tn).

Proof. Let α′ and β′ be any choice of lifts in Tn of α and β. If α and β were disjoint 
then it is immediate that α′ and β′ are disjoint. On the other hand if |α ∩ β| = 1 then, 
after applying a homeomorphism of T (which lifts to the characteristic cover Tn), we 
can suppose that α and β are the standard generators of the fundamental group of 
T = R2/Z2. Then it is immediate that lifts α and β to Tn have only one intersection 
point and are thus adjacent in C†(Tn). �
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We also need the following consequence of Lemma 4.3.

Lemma 6.4. Given any K ≥ 0 there exists a translation surface X = X(K) with the 
following property:

For any n and any p ∈ Tn, there is a cover f : X → Tn branched only over p so that:

(1) If α and β are curves on Tn disjoint from p with

d†(α, β) ≤ K + 1,

then α, β admit disjoint elevations in the branched cover f .
(2) The branched cover f is a local isometry at each nonsingular point.

We emphasise that in the lemma, the covering map f may depend on p, but the 
geometry of the translation surface X does not. In addition, the geometry of X does not 
depend on n.

Proof. First, we show that given K and p ∈ Tn, there is a translation surface X(K, p)
which has the desired properties for Tn, we then show independence from n and p.

To prove this, begin by observing that there is a 3-fold branched cover f1 : Y → Tn, 
branched only at p, where Y has genus 2. Suppose that d†(α, β) ≤ K + 1, and let α′

and β′ be any choice of elevations of α and β to Y . Observe that d†(α′, β′) ≤ 2K + 2
in C†(Y ). This is because any choice of elevations of adjacent curves in Tn to Y will 
intersect at most three times, and therefore have distance at most 2 in C†(Y ). Now we 
may apply Lemma 4.3 to find a finite-sheeted cover f2 : X → Y , which only depends 
on K (and Y ), such that any α′ and β′ as above admit disjoint elevations to X. The 
branched cover fp = f1 ◦f2 : X(K, p) → Tn then has (1). By pulling back the translation 
surface structure from Tn to X(K, p), we can also satisfy (2).

Now if p′ is any other point, observe that there is an isometry ι : Tn → Tn mapping p to 
p′. Then fp′ = ι ◦ f1 ◦ f2 : X(K, p) → Tn has the desired property (1) for curves disjoint 
from the point p′. Since ι is an isometry, fp′ also satisfies (2). Hence, the translation 
surface X(K, p) can be chosen not to depend on p. Since all Tn are isometric, the surface 
X(K) can also be chosen to be the same for all Tn. �

Finally, we use the following observation, likely well known to experts. We include a 
short proof for completeness.

Lemma 6.5. Let X be a compact square-tiled translation surface and λ /∈ Q. Then there 
exists L > 0 such that any straight line of length L and slope λ that is disjoint from the 
singularities of X will intersect all horizontal curves on X.

Proof. Since λ is irrational, every half-leaf of the foliation with slope λ is dense in X. 
Supposing for contradiction that we can find a sequence of segments Ln of length �n → ∞
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so that each Ln misses some horizontal curve cn. We parametrize the segments Ln by 
arclength so that we see the segments Ln as continuous maps [−�n/2, �n/2] → X. After 
possibly taking a subsequence, we can assume that these Ln converge uniformly on any 
segment of R to an infinite leaf μ of slope λ.

Since μ is dense and of constant slope, some compact subinterval μ′ ⊂ μ will intersect 
all horizontal curves, and we may find such a μ′ which does not contain any singularity 
of X. Thus, by compactness, there exists ε > 0 such that the ε-neighbourhood N of μ′

is disjoint from the singularities of X. Since the Ln converge to μ locally on compact 
subintervals, the intersection Ln ∩ N is non-empty for sufficiently large n. Now any 
connected component of Ln ∩ N which does not contain the endpoints of Ln is also 
a line of slope λ, and must intersect all horizontal curves because μ′ can be isotoped 
along horizontal lines to a subset of Ln ∩ N . But this contradicts the definition of Ln, 
completing the proof. �
Proof of Theorem 1.4, irrational slope case. Suppose ρ(f) is a line segment of irrational 
slope λ and length � > 0. By Theorem 1.3, the homeomorphism f is not hyperbolic, as 
the rotation set has empty interior. Thus, to prove the theorem, it suffices to show f is 
not elliptic. Let α be the standard horizontal curve on T . Supposing for contradiction 
that f is elliptic, there exists some K such that d†(α, fnα) ≤ K for every n.

Consider the finite-sheeted covers Tn → T and metrics as described above. Let D =
[0, 1] × [0, 1] denote the standard fundamental domain for T = R2/Z2. We also view Tn

as the standard quotient R2/Z2 because Tn is isometric to T . We choose Dn to be the 
subset [0, 1/n] × [0, 1/n] in R2. Fix a lift f̃ : R2 → R2 of f : T → T . Now we may also 
construct f̃n : R2 → R2 defined by

f̃n(x) = 1
n
f̃(nx),

which descends to a map f̂n : Tn → Tn, which is a lift of f .
Let L > 0 be the length guaranteed by Lemma 6.5 applied to the surface X = X(K)

guaranteed by Lemma 6.4 and slope λ, i.e. any straight line on X of slope λ and length 
L must intersect every horizontal curve on X.

Now fix some k ∈ N such that k� > L. By Lemma 2.10 we have that 1
n f̃

n(D)
converges to ρ(f) in the Hausdorff topology as n → ∞. By definition we have that 
f̃kn
n (Dn) = 1

n f̃
kn(D), and hence f̃kn

n (Dn) also converges to kρ(f). Let kρn ⊂ Tn denote 
the projection of kρ(f), where we drop f from the notation for convenience.

We claim now that for each n there is a straight line an in T (disjoint from the standard 
horizontal curve α), with lift ân in Tn, such that the Hausdorff distance between f̂kn

n (ân)
and kρn tends to 0 as n tends to ∞. To find such a straight line, pick two points qn and 
q′n in f̂kn

n (Dn) which are close to the two ends of kρn. Then take as ân the straight line 
of Dn which joins the points f̂−kn(qn) and f̂−kn(q′n), and an its projection to T .

Now define simple closed curves αn on T such that αn contains an but is also isotopic 
to and disjoint from the standard horizontal curve α. For large enough n we have that 
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the Hausdorff distance between f̂kn
n (Dn) and kρn on Tn tends to 0 as n tends to ∞. 

Write α̂n for the lift of αn to Tn that contains ân, and let α̂ be an arbitrary lift of α
to Tn.

By our initial assumption on f we have d†(α, fknαn) ≤ K + 1 for every n > 0. By 
Lemma 6.3 we also have d†(α̂, f̂kn

n α̂n) ≤ K + 1 for all n > 0 in C†(Tn). For any point p
disjoint from both α̂ and f̂kn

n α̂n, applying Lemma 6.4, we find that there are branched 
covers πn : X → Tn, so that α̂ and f̂kn

n α̂n admit disjoint lifts to X.
By our choices, there is a lift of f̂kn

n ân to X which is disjoint from some horizontal curve 
in X for each n. But f̂kn

n ân converges to kρ(f), which has slope λ and length k� > L. 
By choosing the branch point p outside a small embedded regular neighbourhood of 
kρ(f), we can guarantee that lifts of f̂kn

n ân to X contain segments which converge to a 
segment with slope λ and length k� > L as well. For sufficiently large n this contradicts 
Lemma 6.5. �
6.2. Parabolics with a singleton rotation set

It is easy to produce examples of elliptic isometries with a given singleton rotation 
vector. Given (a, b), the translation (x, y) �→ (x + a, y + b) is a lift of a torus map 
with rotation set {(a, b)}. There are many dynamically more interesting examples as 
well. For instance, Koropecki and Tal constructed a homeomorphism of the torus whose 
rotation set is reduced to {(0, 0)} but which has unbounded orbits in every direction 
in the universal cover (see [25]). Similar examples can be constructed with any rational 
one-point rotation set. We believe that their example acts as a parabolic isometry of 
C†(S).

In this section we give a construction that produces parabolic isometries with singleton 
rotation sets.

Proposition 6.6. There are homeomorphisms f that act parabolically on C†(T ) with 
ρ(f) = {(0, 0)}.

As we remark later, a small modification of the construction can be used to produce 
singleton rotation sets other than {(0, 0)}. We first give the construction, then prove it 
is parabolic.

Construction 6.7. Start with a standard Denjoy counterexample map D : S1 → S1 with 
irrational rotation number α, produced by blowing up a single orbit of a standard irra-
tional rotation. See [19] for an introduction to these examples. We interpret T = S1×S1

as the mapping torus of D, and let ϕt be the suspension flow. The time-1–map ϕ1 of 
this flow preserves the foliation of T into circles, acting with rotation number α on each 
of them. We think of the circles as being horizontal, and the flow lines as being vertical.

Let K be the suspension of the minimal invariant Cantor set of D; the set K is 
invariant under the flow ϕt. Denote by λ the suspension of the boundary points. Now let 
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J denote a closed interval in a horizontal circle whose interior J̊ is a wandering interval 
for the Denjoy circle map. Then we obtain an embedding Φ: U = J̊ × R → T given 
by flowing this transverse segment, whose complement is exactly the suspension of the 
invariant Cantor set of D. We denote the coordinates given by this map by (x, t). We 
now define a map preserving flow lines of U via the map

(x, t) �−→ (x, t + η(x)e−|t|)

where η(x) < 1 is a bump function supported on J that is strictly positive on the interior. 
This map extends to continuously over K as the identity. We call the resulting map f . 
We will prove that it is the desired counterexample. Note that f preserves flow lines of 
ϕt, moving along lines monotonically and with exponentially decreasing speed as one 
approaches the set K.

Proposition 6.6 will be a consequence of the following two claims:

Claim 6.8. The rotation set of f is {(0, 0)}.

Claim 6.9. The homeomorphism f acts parabolically on C†(T ).

Proof of Claim 6.8. Denote by ϕ̃t, f̃ respective lifts of ϕt, f to the universal cover R2 of 
T . For any p = (x̃, t) ∈ R2 in (a lift of) U we have using growth condition (∗) above that

lim
i→∞

f̃ni(p) − p

ni
< lim

i→∞

f̃ni(pk) − p

ni
= lim

i→∞

f̃ni(pk) − pk
ni

< e−tk → 0,

where pk = f̃k(p) = (x̃, tk) denotes an iterate of p so that tk → ∞ and the claim 
follows. �
Proof of Claim 6.9. Given Claim 6.8 and Theorem 1.3, it follows that the homeomor-
phism is not hyperbolic.

We thus have to exclude the case that it is elliptic. To this end, suppose that it 
were. Let γ be a horizontal curve on T containing the segment J from property (4). By 
hypothesis, the sequence (d†(γ, fn(γ)))n is bounded.

By Lemma 6.4, there exists a translation surface X and a finite cover X → T of 
bounded order, branched at a single point p (independent of n), so that, for any n, the 
curves γ, fn(γ) admit disjoint lifts γ̃ and β̃n to X and the cover is locally isometric. Note 
that we are free to pick p outside γ and J ×R.

By Lemma 6.5, there is a number L > 0 so that any segment of slope α and length 
greater than L of X intersects every horizontal curve.

Claim 6.9 will be a consequence of the following technical claim.

Claim 6.10. There exists a sequence kn → +∞ of integers and a sequence (Ln) of straight 
segments of T of slope α such that
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(1) for any n ≥ 0, there exists a subsegment σn of fkn(J×{0}) such that dHausdorff (Ln,

σn) → 0,
(2) the length of Ln tends to +∞,
(3) for any n ≥ 0, the segment Ln does not meet the singularity p.

Before proving this claim, let us use it to prove Claim 6.9. For any n ≥ 0, let σ̃n be the 
lift of σn to X which is contained in β̃n, L̃n be the lift of Ln which is close to σ̃n. Taking 
a subsequence if necessary, the sequence L̃n converges (on compact subsegments) to a 
straight line L̃∞ of infinite length (like in the proof of Lemma 6.5). Take a subsegment 
L′
∞ of L∞ which does not meet the singularities of the covering map and whose length 

is greater than L. Take ε > 0 such that the ε-neighbourhood of L′
∞ does not meet the 

singularities of the covering map and such that any connected set at Hausdorff distance 
at most ε from L′

∞ meets any horizontal curve.
For n ≥ 0 sufficiently large, some connected subset σ̃′

n of σn is at Hausdorff distance 
at most ε from L′

∞ and hence meets any horizontal curve. But this is not possible as, by 
definition of X, σ̃n ⊂ β̃n is disjoint from the horizontal curve γ̃. �
Proof of Claim 6.10. Fix n ≥ 0. Let Cn = [an, bn] = [Dn(a0), Dn(b0)] be the connected 
component of the complement in S1×{0} of the minimal Cantor set of D which contains 
J × {n}. As the Cn’s are pairwise disjoint and S1 × {0} has finite length, the diameter 
of Cn tends to 0 as n → +∞.

Let D̃ : R → R be a lift of D to the universal cover of S1 = R/Z. Recall that the 
rotation number of D is α. Then it is standard that, for any n,

D̃n(ã0) = nα̃ + Bn,

where (Bn) is a bounded sequence and ã0 and α̃ are respective lifts of a0 and α to R (see 
[19, Section 5]). Take a sequence (k′n)n of integers such that the sequence (Bk′

n
) converges 

and k′n+1−k′n → +∞. Observe that the sequence (Dk′
n+1(a0) −Dk′

n(a0) − (k′n+1−k′n)α)
converges to 0.

Take kn sufficiently large so that the set fkn(J × {0}) meets J × [k′n+1, +∞). Let L̃n

be the line of the universal cover R2 of T which joins (ak′
n
, k′n) to (ak′

n+1
, k′n+1) and L̃n

be either the line which joins (ak′
n
, k′n) to (ak′

n
+ (k′n+1 − k′n)α, k′n+1) or a tiny translate 

of this line if it meets some lift of the point p. Denote by Ln and Ln the respective 
projections of L̃n and L̃n to T .

As the sequence (Dk′
n+1(a0) −Dk′

n(a0) − (kn+1 − kn)α) converges to 0, the Hausdorff 
distance between Ln and Ln tends to 0. As the set fkn(J × {0}) meets both J × {0}
and J ×

{
k′n+1

}
and is contained in J × R, there exists a connected component σn of 

fkn(J×{0}) ∩J× [k′n, k′n+1] which meets both J×{k′n} and J×
{
k′n+1

}
. As the diameter 

of Cn tends to 0 as n tends to +∞, the Hausdorff distance between Ln and σn tends to 
0. Finally, the Hausdorff distance between Ln and σn tends to 0. �
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One can alternatively show the map f from Construction 6.7 is parabolic with the 
following argument using bicorns.

Alternative proof of Claim 6.9. Recall we have identified T with [0, 1] × [0, 1] with the 
top and bottom edges identified by the Denjoy map D, and the left and right by rigid 
translation. Let γ = [0, 1] ×{0} be the standard horizontal curve on T , let J ⊂ γ be the 
interval used in the definition of f ; we may parametrize γ so that the left endpoint of J
is 0. Choose a horizontal curve γ′ = [0, 1] × {ε′} slightly above γ so that γ′ is transverse 
to each curve fn(γ) (each iterate will have only countably many points tangent to a 
horizontal curve, so we may find such a γ′ as close as we wish to γ).

Let J ′ = [0, ε] ⊂ J be a subinterval on which the bump function in the construction 
of f is monotone increasing. For each n > 0 large enough that fn(J ′) intersects γ in 
at least two points, let jn ⊂ fn(J ′) be the subarc bounded by the leftmost intersection 
point on γ of fn(J ′) ∩ γ′ (which by construction lies in [0, ε] × {ε′}), and the rightmost 
intersection point of fn(J ′) ∩ γ′ on γ′. Let cn be the union of jn and the short segment 
of γ′ containing 0 which connects them. This is a closed curve. The isotopy class [cn]
represents a vertex in C(T ); which is simply the Farey graph with vertex set Q ∪ {∞}
each point representing the slope of the curve. By construction, as n → ∞, the average 
slope of jn, and hence cn, approaches α. Thus, necessarily [cn] eventually leaves each 
compact set of C(T ).

We now show that this means f cannot act elliptically on C†(T ). Suppose for 
contradiction that it did, i.e. d†(γ, fn(γ)) ≤ K for some constant K ≥ 0. Then 
d†(γ′, fn(γ)) ≤ K + 1. Let Pn be a finite set of points so that each complementary 
region of γ′∩ fn(γ) contains at least one point of Pn. Then γn and fn(γ) are in minimal 
position in T − Pn, so by [7, Lemma 3.4] the distance in Cs(T − P ) between [γn]T−Pn

and [fn(γ)]T−Pn
is at most K + 1 also.

Since cn is a union of a subarc of γ′ and of fn(γ) and these are in minimal position in 
T −Pn, the class [cn]T−Pn

is a bicorn of [γ′]T−Pn
and [fn(γ)]T−Pn

. In [36] A. Rasmussen 
proves that the set of bicorns between two curves in the nonseparating curve graph of 
any finite-type surface satisfies the criterion of Masur–Schleimer [34, Theorem 3.5]. In 
fact any bicorn will be a uniformly bounded distance L ≥ 0 away from a geodesic [9, 
Proposition 3.1]. Therefore the distance between [cn]T−Pn

and [γ′]T−Pn
is bounded by at 

most K +L +1, a bound independent of n. However, there is a 1-coarsely Lipschitz map 
of the (nonseparating) curve graph of T −Pn to the Farey graph, simply by considering 
isotopy classes in T . This contradicts our earlier observation that the sequence [cn] is 
unbounded in C(T ), a contradiction. We conclude that f acts parabolically on C†(T ). �
Remark 6.11. A modification of the construction (by post-composing with the time t0-
map ϕt0 of the flow the homeomorphism f) can be used to show that for any irrational 
α and any t0 �= 0 there is a homeomorphism acting parabolically with rotation set 
{(t0α, t0)}.
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Remark 6.12 (Parabolics with irrational slope). A further variation yields homeomor-
phisms whose rotation sets is a segment of irrational slope through the origin. Simply let 
χ : T → [0, 1] be a continuous bump function that is surjective and vanishes precisely on 
the suspension of the invariant Cantor C of the Denjoy map. Then consider the time-1
map of the reparametrized Denjoy flow ϕs(p) given by setting s(t, p) = t(1 − χ(p)).

This flow has fixed points and agrees with the Denjoy flow on C. Hence one obtains 
points (0, 0) and (1, α) in the rotation set. Since f preserves flow lines it is easy to see 
that all other elements of the rotation set are (positive) multiples of (1, α) and hence 
ρ(f) is a segment of irrational slope.

6.3. Proof of Theorem 1.1

A similar construction can also be used to build homeomorphisms of higher genus 
surfaces S which act parabolically on C†(S), proving Theorem 1.1. We give the details 
now, and discuss alternative constructions below.

Proof of Theorem 1.1, first construction. Let S be a surface of genus g ≥ 2, fix a hyper-
bolic structure on S, and let Λ be a minimal filling geodesic lamination on S. Let X be 
a vector field supported on the complement of Λ, so that the flow of X pushes points 
into the cusps of the lamination. This may be defined explicitly on each complementary 
region of Λ, modelled on a vertical flow supported on a standard ideal hyperbolic triangle 
with one vertex at infinity in the upper half plane. Let f be the time-one map of this 
flow. Note that by cutting off the support of the flow, we may view f as a C0-limit of 
homeomorphisms supported on disks.

Let Ŝ → S be a finite cover of S. Via pullback, Ŝ inherits a hyperbolic structure from 
S, and the preimage Λ̂ is a minimal filling geodesic lamination of Ŝ. We may lift our flow 
described above to Ŝ and write f̂ for the time-one map. The minimality of Λ̂ ensures 
the following: for any simple closed curves γ and γ′ of Ŝ, there exists N such that for 
any n > N we have that f̂nγ intersects γ′. This is because γ intersects the support of f̂
(every half-leaf is dense in Λ̂), moreover there is some subarc c of γ inside the support 
that connects different half-leaves of Λ̂. Deeper into the cusp, there is a subarc c′ of γ′

likewise connecting different half-leaves. By definition of f̂ , eventually f̂nc intersects c′

for sufficiently large n.
It thus follows from Lemma 4.3 that any f -orbit in C†(S) has infinite diameter and so 

f is not elliptic. On the other hand, f is the C0-limit of disk-supported maps. Since such 
maps act elliptically on C†(S), C0-continuity of the asymptotic translation length (The-
orem 1.2) shows that f also has translation length 0. This shows that it is parabolic. �
Proof of Theorem 1.1, second construction. Start with an abelian differential on S and 
pick a slope λ that defines a minimal (oriented) foliation Fλ. The abelian differential 
endows S with a translation surface structure, in particular a metric with zero curvature 
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off the singularities, which we normalise with unit area. For simplicity we will assume 
that there are no saddle connections of slope λ.

Consider a smooth vector field on S with direction λ with zeroes occurring only at 
the singularities of the abelian differential. Let f be the time-1 map of the flow along 
the vector field.

We now prove that f does not act hyperbolically on C†(S). To do this, we will find for 
any n ∈ N a curve α such that d†(α, fnα) ≤ 2. Given n ∈ N, pick a (small) closed interval 
J perpendicular to the slope λ, such that ∪t∈[0,n]φtJ is disjoint from the singularities, 
and such that the φtJ are pairwise disjoint. The existence of such an interval follows from 
the fact that Fλ contains an infinite leaf. Choose α to be a simple closed curve which 
is a union of an interval of slope λ, and a subinterval of J (which is possible because 
there is a half-leaf of slope λ through J which is dense). Observe that the complement 
of α ∪ fnα consists of two regions, one of which is a rectangle, foliated by the φtJ . It 
must be the case that the other region carries an essential simple closed curve disjoint 
from α ∪ fnα, and so we conclude that d†(α, fnα) ≤ 2 and thus f is not hyperbolic.

To finish the proof we now prove that f is not elliptic, by considering a curve containing 
a horizontal segment adjacent to a singularity. For concreteness, define a curve α on S
by starting at a singularity x, following a line of slope λ until one intersects a horizontal 
through the same singularity, then following that horizontal to x in order to close the 
curve. Thus, α is the union of a horizontal segment τ , and a segment of slope λ each of 
which have one endpoint at x. We claim that d†(α, fnα) is unbounded. To show this, 
suppose for contradiction that d†(α, fnα) ≤ K, for all n ∈ Z. By Lemma 4.3 there is a 
finite-sheeted cover Ŝ of S such that α and fnα admit disjoint elevations, for any n ∈ Z.

Let μ be the half-leaf of Fλ emanating from x. Note that every lift of μ to S is dense 
in S. As n increases, fn(τ) converges on compact sets to μ. For n sufficiently large, 
any elevation of fn(τ) to S will intersect every horizontal segment of fixed length, and 
thus intersects any elevation of τ . This contradicts that α and fnα should have disjoint 
elevations, concluding the proof. �
Acknowledgments

Bowden and Hensel greatly acknowledge the support of the Special Priority Pro-
gramme SPP 2026 Geometry at Infinity funded by the DFG. Mann was partially sup-
ported by NSF CAREER grant DMS 1844516 and Sloan Fellowship SRF12376. Militon 
was supported by the ANR project Gromeov ANR-19-CE40-0007. Webb was supported 
by an EPSRC Fellowship EP/N019644/2.

References

[1] S. Addas-Zanata, F.A. Tal, B.A. Garcia, Dynamics of homeomorphisms of the torus homotopic to 
Dehn twists, Ergod. Theory Dyn. Syst. 34 (2) (2014) 409–422.

[2] J. Bavard, Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros groupe modulaire, 
Geom. Topol. 20 (1) (2016) 491–535.

Created with 
GogoPdf.com

http://refhub.elsevier.com/S0001-8708(22)00396-6/bibF9612E5B5B0B042DD4D57DBB0692FC0As1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibF9612E5B5B0B042DD4D57DBB0692FC0As1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib5264A1B258A4BA91F8C9432F96B4A393s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib5264A1B258A4BA91F8C9432F96B4A393s1


32 J. Bowden et al. / Advances in Mathematics 408 (2022) 108579

[3] F. Beguin, Ensembles de rotations des homéomorphismes du tore T2, 2007.
[4] J. Behrstock, B. Kleiner, Y. Minsky, L. Mosher, Geometry and rigidity of mapping class groups, 

Geom. Topol. 16 (2) (2012) 781–888.
[5] J.A. Behrstock, Y.N. Minsky, Dimension and rank for mapping class groups, Ann. Math. (2) 167 (3) 

(2008) 1055–1077.
[6] M. Bestvina, K. Bromberg, K. Fujiwara, Constructing group actions on quasi-trees and applications 

to mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 1–64.
[7] J. Bowden, S.W. Hensel, R. Webb, Quasi-morphisms on surface diffeomorphism groups, J. Am. 

Math. Soc. 35 (1) (2021) 211–231.
[8] B.H. Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2) (2008) 281–300.
[9] B.H. Bowditch, Uniform hyperbolicity of the curve graphs, Pac. J. Math. 269 (2) (2014) 269–280.

[10] P. Boyland, Transitivity of surface dynamics lifted to abelian covers, Ergod. Theory Dyn. Syst. 
29 (5) (2009) 1417–1449.

[11] M.R. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematis-
chen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 319, Springer-Verlag, 
Berlin, 1999.

[12] D. Burago, S. Ivanov, L. Polterovich, Conjugation-invariant norms on groups of geometric origin, 
in: Groups of Diffeomorphisms, in: Adv. Stud. Pure Math., vol. 52, Math. Soc. Japan, Tokyo, 2008, 
pp. 221–250.

[13] F. Dahmani, V. Guirardel, D. Osin, Hyperbolically Embedded Subgroups and Rotating Families in 
Groups Acting on Hyperbolic Spaces, Mem. Amer. Math. Soc., vol. 245(1156), 2017, v+152.

[14] P. Davalos, On annular maps of the torus and sublinear diffusion, J. Inst. Math. Jussieu 17 (4) 
(2018) 913–978.

[15] H.E. Doeff, Rotation measures for homeomorphisms of the torus homotopic to a Dehn twist, Ergod. 
Theory Dyn. Syst. 17 (3) (1997) 575–591.

[16] B. Farb, M. Dan, A Primer on Mapping Class Groups, Princeton Mathematical Series, vol. 49, 
Princeton University Press, Princeton, NJ, 2012.

[17] J. Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Am. Math. Soc. 311 (1) 
(1989) 107–115.

[18] J. Franks, M.Misiurewicz, Rotation sets of toral flows, Proc. Am. Math. Soc. 109 (1) (1990) 243–249.
[19] É. Ghys, Groups acting on the circle, Enseign. Math. (2) 47 (3–4) (2001) 329–407.
[20] M. Gromov, Hyperbolic groups, in: Essays in Group Theory, in: Math. Sci. Res. Inst. Publ., vol. 8, 

Springer, New York, 1987, pp. 75–263.
[21] P.-A. Guihéneuf, E. Militon, Homotopic rotation sets for higher genus surfaces, https://arxiv .org /

abs /2201 .08593, 2022.
[22] M. Handel, Periodic point free homeomorphism of T 2, Proc. Am. Math. Soc. 107 (2) (1989) 511–515.
[23] J. Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (3) (2001) 631–657.
[24] C. Horbez, Y. Qing, K. Rafi, Big mapping class groups with hyperbolic actions: classification and 

applications, J. Inst. Math. Jussieu (2021) 1–32.
[25] A. Koropecki, F.A. Tal, Area-preserving irrotational diffeomorphisms of the torus with sublinear 

diffusion, Proc. Am. Math. Soc. 142 (10) (2014) 3483–3490.
[26] I. Kra, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math. 

146 (3–4) (1981) 231–270.
[27] J.M. Kwapisz, Rotation sets and entropy, Thesis (Ph.D.)–State University of New York at Stony 

Brook, ProQuest LLC, Ann Arbor, MI, 1995.
[28] J. Kwapisz, A toral flow with a pointwise rotation set that is not closed, Nonlinearity 20 (9) (2007) 

2047–2060.
[29] P. Le Calvez, F.A. Tal, Forcing theory for transverse trajectories of surface homeomorphisms, Invent. 

Math. 212 (2) (2018) 619–729.
[30] J. Llibre, R.S. Mackay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to 

the identity, Ergod. Theory Dyn. Syst. 11 (1) (1991) 115–128.
[31] J. Maher, Random walks on the mapping class group, Duke Math. J. 156 (3) (2011) 429–468.
[32] H.A. Masur, Y.N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 

138 (1) (1999) 103–149.
[33] H.A. Masur, Y.N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. 

Funct. Anal. 10 (4) (2000) 902–974.
[34] H. Masur, S. Schleimer, The geometry of the disk complex, J. Am. Math. Soc. 26 (1) (2013) 1–62.

Created with 
GogoPdf.com

http://refhub.elsevier.com/S0001-8708(22)00396-6/bib08129E3CCD61DE999BAFE0B0AE938F57s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib08129E3CCD61DE999BAFE0B0AE938F57s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibF91C25FE7AC575FB05324A33AC23E222s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibF91C25FE7AC575FB05324A33AC23E222s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibA6578B1D95742DEFE6D4B4ACF2330505s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibA6578B1D95742DEFE6D4B4ACF2330505s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibF2D1C1ED4205CAE4DD69226BC1C035B0s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibF2D1C1ED4205CAE4DD69226BC1C035B0s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib71BF08F46E11F69291D63D7D6D3A8495s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib65DA19E32827BBA2F570B15A89B13B70s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib3A8A1A34D8DB4796A258E575D464E7ACs1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib3A8A1A34D8DB4796A258E575D464E7ACs1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib1BAA5A77AEFF33338948C1E0C4466462s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib1BAA5A77AEFF33338948C1E0C4466462s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib1BAA5A77AEFF33338948C1E0C4466462s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib87CFFC34D3AB6DA0259468FC352D0A8Cs1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib87CFFC34D3AB6DA0259468FC352D0A8Cs1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib87CFFC34D3AB6DA0259468FC352D0A8Cs1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibDBB6C7144DAE5D7FDE336F1BEE4345E3s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibDBB6C7144DAE5D7FDE336F1BEE4345E3s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibC2B44232AC0A4987E5D6265AECD29378s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibC2B44232AC0A4987E5D6265AECD29378s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib2145E6B2B6DC32FBAF390CDAD3F4E17As1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib2145E6B2B6DC32FBAF390CDAD3F4E17As1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibDD152B9C02BB725F7AF5038F5B1649ACs1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibDD152B9C02BB725F7AF5038F5B1649ACs1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibDE126ED2FBB3C37C08208DFB1A473998s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibDE126ED2FBB3C37C08208DFB1A473998s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibDC7ADE654712C86628269AEE8B793AD4s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibE24842EA352E990122BC7C06B541BE2As1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib9CC81E513BD0D126893BEC745FFB3241s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib9CC81E513BD0D126893BEC745FFB3241s1
https://arxiv.org/abs/2201.08593
https://arxiv.org/abs/2201.08593
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib73E02F060460BF53B30D35BFB70CC952s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib8F3B3C8253CE547614FF4B00E6718755s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib5F555FB7B3A38F18758B2920F2D1F2BCs1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib5F555FB7B3A38F18758B2920F2D1F2BCs1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibDD867A684CC8CD9EE15EF8A3280DFB1As1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibDD867A684CC8CD9EE15EF8A3280DFB1As1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib9404E5AFE315CD317FAB33BF4710F0B8s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib9404E5AFE315CD317FAB33BF4710F0B8s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib4D36F6FCA708333410B017AF0520A2A1s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib4D36F6FCA708333410B017AF0520A2A1s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib1406F59758FAD0C2352E385237C2E126s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib1406F59758FAD0C2352E385237C2E126s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib4ADCE8BC7086D2477911275EEE50B677s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib4ADCE8BC7086D2477911275EEE50B677s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibDFD5B430BC4DB2C2836D0227AD9AC0C4s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibDFD5B430BC4DB2C2836D0227AD9AC0C4s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib4C3A09309A98179D46555488EBBA94BCs1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib771E3FFD69449715FAB1722E2AC09F5Fs1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib771E3FFD69449715FAB1722E2AC09F5Fs1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibFB3B139B71BDBD4B573EBCA1756F0960s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibFB3B139B71BDBD4B573EBCA1756F0960s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib7A663CAEA1B722A63DC2868158ED584Ds1


J. Bowden et al. / Advances in Mathematics 408 (2022) 108579 33

[35] M. Misiurewicz, K. Ziemian, Rotation sets for maps of tori, J. Lond. Math. Soc. (2) 40 (3) (1989) 
490–506.

[36] A.J. Rasmussen, Uniform hyperbolicity of the graphs of nonseparating curves via bicorn curves, 
Proc. Am. Math. Soc. 148 (6) (2020) 2345–2357.

[37] W.P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Am. Math. 
Soc. (N.S.) 19 (2) (1988) 417–431.

Created with 
GogoPdf.com

http://refhub.elsevier.com/S0001-8708(22)00396-6/bibAC6AD5D9B99757C3A878F2D275ACE198s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibAC6AD5D9B99757C3A878F2D275ACE198s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib6EA6C0A95627D298471F7D7553AC0F77s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bib6EA6C0A95627D298471F7D7553AC0F77s1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibA8252D135D35133BF1E0AC0CBF48D00As1
http://refhub.elsevier.com/S0001-8708(22)00396-6/bibA8252D135D35133BF1E0AC0CBF48D00As1

	Rotation sets and actions on curves
	1 Introduction
	1.1 General results
	1.2 Torus homeomorphisms and rotation sets
	1.3 Further questions
	1.4 Outline

	2 Background
	2.1 Hyperbolic spaces and their isometries
	2.2 Surfaces and curves
	2.3 Rotation sets for torus homeomorphisms
	2.4 Dehn twists

	3 Asymptotic translation length
	3.1 Proof of Theorem 1.2

	4 Distance estimates
	4.1 A crossing number estimate

	5 Hyperbolic elements
	5.1 Proof of Theorem 1.3
	5.2 General characterisation of hyperbolic isometries

	6 Parabolic and elliptic elements
	6.1 Sufficient dynamical criteria
	6.2 Parabolics with a singleton rotation set
	6.3 Proof of Theorem 1.1

	Acknowledgments
	References


