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Tensor computations are increasingly prevalent numerical techniques in data science, but pose unique 
challenges for high-performance implementation. We provide novel algorithms and systems infrastructure 
which enable efficient parallel implementation of algorithms for tensor completion with generalized 
loss functions. Specifically, we consider alternating minimization, coordinate minimization, and a quasi-
Newton (generalized Gauss-Newton) method. By extending the Cyclops library, we implement all of these 
methods in high-level Python syntax. To make possible tensor completion for very sparse tensors, we 
introduce new multi-tensor primitives, for which we provide specialized parallel implementations. We 
compare these routines to pairwise contraction of sparse tensors by reduction to hypersparse matrix 
formats, and find that the multi-tensor routines are more efficient in theoretical cost and execution time 
in experiments. We provide microbenchmarking results on the Stampede2 supercomputer to demonstrate 
the efficiency of the new primitives and Cyclops functionality. We then study the performance of the 
tensor completion methods for a synthetic tensor with 10 billion nonzeros and the Netflix dataset, 
considering both least squares and Poisson loss functions.

 2022 Elsevier Inc. All rights reserved.

1. Introduction

Emerging sparse tensor methods pose new challenges for high-
performance programming languages and libraries. This paper de-
scribes new steps in making high-level productive parallel pro-
gramming for sparse tensor algebra possible. We focus specifically 
on formulation and implementation of optimization algorithms 
for tensor completion, which require management of extremely 
sparse tensors and complicated tensor operations. We provide al-
gorithms and software for tensor completion with generalized loss 
function [32]. Algorithms for the least-squares loss tensor com-

pletion have been a target of recent parallel implementation ef-
forts [35,64]. We provide new formulations of a variety of tensor 
completion algorithms for the generalized loss function based on 
a common set of basic kernels. We implement these kernels to 
provide a new programming abstraction and software infrastruc-
ture for distributed-memory sparse tensor optimization algorithms. 
By extending Cyclops [67], we provide a Python-level interface to 

* Corresponding author.
E-mail addresses: navjot2@illinois.edu (N. Singh), solomon2@illinois.edu

(E. Solomonik).

these sparse tensor kernels that achieve scalability on high perfor-
mance distributed-memory architectures.

Tensor completion [50], a generalization of the matrix comple-
tion problem, is the task of building a model to approximate a 
tensor based on a subset of observed entries. The model should ac-
curately represent observed entries, generalize effectively to unob-
served entries, have a concise representation, provide efficient pre-
diction of any tensor entry, and be possible to optimize. Low-rank 
matrix factorizations are a widely used model for matrix com-

pletion, while tensor decompositions [43], especially the canonical 
polyadic (CP) decomposition [31,43], are commonly used for ten-
sor completion [21]. The major computational challenge in tensor 
completion is the optimization of the model, i.e., computation of 
a low-rank CP decomposition that effectively approximates the ob-
served entries [35].

We consider four optimization methods for tensor completion 
with least squares loss, three of which are described in Section 2
and introduce novel algorithms for tensor completion with general 
loss functions in Section 3. Alternating minimization or alternat-
ing least squares for least squares loss (ALS) updates one factor 
matrix while keeping other factor matrices fixed for each step, 
yielding a symmetric positive definite (for convex loss functions) 
linear system of equations to be solved. Coordinate minimization 
or coordinate descent for least squares updates one column of a 
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factor matrix while keeping others fixed for each step and alter-
nates among factor matrices in a cyclic manner. Compared to ALS, 
coordinate descent performs updates with less computational cost, 
but reduces the minimization objective more slowly in each sweep 
of update. Stochastic gradient descent (SGD) randomly selects sam-

ples from the tensor at each iteration and optimizes all the factor 
matrices based on these entries with a gradient-based update.

Second-order algorithms like Newton’s method and Gauss-

Newton method for CP decomposition with least-squares loss have 
been shown to perform better than ALS when the factors are 
highly correlated and an accurate solution is required [70,2]. How-

ever, each iteration of these algorithms is expensive and naive 
approaches do not scale due to the size of linear system re-
quired to solve. For the decomposition problem, the Gauss-Newton 
method can be implemented efficiently using an implicit form of 
the Hessian for fast matrix-vector products in the Conjugate gra-
dient algorithm [70,60]. Recently, a second order (Gauss-Newton 
like) method was proposed for the generalized decomposition 
problem [77]. In [77], the structure of the Hessian of the gen-
eralized decomposition problem is explored and the method is 
shown to perform better than the gradient-based LBFGS [32] for 
beta divergence loss functions. In Section 3.3, we use tensor alge-
bra to introduce a new formulation of the Newton’s method and 
consequently a quasi-Newton method for generalized tensor com-

pletion which leverages an implicit form of the Hessian arising in 
the completion problem. Note that if the number of missing en-
tries is set to zero, the problem would become a decomposition 
problem and the implicit form of the Hessian would correspond 
to the Hessian constructed in [77]. The implicit form of the Hes-
sian can be leveraged to solve the linear system involving the large 
Hessian by use of batched conjugate gradient. We show that the 
implicit matrix-vector products can be efficiently computed with 
basic sparse tensor algebra operations and the overall method 
achieves a lower computational cost than a direct solve [77,54].

To achieve high-performance for sparse tensor completion, we 
extend the functionality for sparse tensor contractions included 
in Cyclops [66,69,68]. Since tensor completion is often done with 
extremely sparse tensor datasets [65,50], the use of CSR sparse 
matrix format for contraction of local tensor blocks becomes in-
efficient, and hypersparse matrix formats [11] are necessary. We 
add support for a CSF sparse matrix format to Cyclops (described 
in Section 4.1), which requires O (m) memory for a tensor with 
m nonzeros, and provides functionality to support contraction of 
a sparse and dense tensors (into a sparse output) using the hy-
persparse format. Support of this format in a distributed memory 
library imposes new challenges, such as the necessity to perform 
summation and distributed reduction of blocks in hypersparse for-
mat. To the best of our knowledge, Cyclops is the first distributed 
tensor library to offer this functionality.

We also identify a common generic multi-tensor routine that 
arises in tensor completion, and is likely to be very useful in gen-
eralized CP decomposition of sparse tensors as well as other appli-
cations. This routine cannot be executed efficiently by the standard 
approach of pairwise contraction of tensors which is typically used 
by Cyclops. Therefore, in Section 4.3, we introduce a program-

ming abstraction for this tensor-times-tensor-product (TTTP) rou-
tine that achieves lower cost and memory footprint via a special-
ized parallel implementation. Specifically, the TTTP routine mul-

tiplies entries of a sparse tensor with corresponding multilinear 
inner products of vectors. Alternating minimization requires com-

putation of tensor contractions with a sparse tensor along with 
solving systems on the fly to avoid overheads in memory foot-
print. To address this, we provide a programming abstraction for 
a sub-iteration of the algorithm involving specialised sparse tensor 
contractions. We develop library routines that map sparse tensor 

contractions to sparse matrix products and specialised multilinear 
operations.

We develop parallel implementations of the tensor comple-
tion methods leveraging a new Python interface to Cyclops (de-
scribed in Section 5). This interface provides routines for Einstein-
summation-like contraction of tensors, TTTP, and a multitude of 
other operations manipulating sparse and dense tensors. The func-
tionality is interfaced via Cython [6] to the C++ core of Cyclops. 
Cyclops itself uses MPI, OpenMP, and CUDA to perform tensor alge-
bra and data transformations/redistribution. A basic set of parallel 
dense linear algebra routines are made available by interfacing to 
ScaLAPACK [9]. The Python interface implements much of the basic 
functionality of numpy.ndarray, making it possible to easily trans-
form sequential Python dense tensor codes to distributed-memory-
parallel sparse tensor software.

We provide performance results on the Stampede2 supercom-
puter for redistribution, tensor contractions, TTTP, and tensor com-
pletion algorithms with Cyclops. Our results demonstrate that the 
new hypersparse representations enable contraction of tensors 
with extremely low density and that our new specialized TTTP al-
gorithm achieves much better scalability than when done by pair-
wise contraction. Finally, our tensor completion results show the 
capability of a high-level Python implementation of tensor com-
pletion methods to scale to tens of thousands of cores and 10B 
nonzeros of a highly sparse (10−5 density) tensor. As an example 
of our algorithmic and software framework for generalized tensor 
completion, we provide an implementation of tensor completion 
algorithms for least-squares loss and the first distributed memory 
implementation of tensor completion algorithms for Poisson loss 
with logarithm link function [32], and evaluate their performance 
on the Netflix dataset [7] for tensor completion.

This paper makes the following contributions:

• novel formulation of the second order algorithm for general-
ized tensor completion that uses implicit conjugate gradient 
and is easily implementable with tensor algebra kernels,

• novel algorithms for alternating minimization and coordinate 
minimization for generalized tensor completion,

• novel infrastructure in hypersparse matrix formats for parallel 
sparse tensor contractions,

• a new programming abstraction for products of sparse ten-
sors and tensor products (TTTP) and solving the linear systems 
arising in alternating minimization for generalized tensor com-
pletion (Solve Factor),

• novel support of distributed-memory sparse tensor algebra op-
erations in Python by a new interface to Cyclops,

• first parallel implementation of generalized tensor completion 
algorithms that use second order information.

2. Tensor completion background

A tensor T ∈ RI1×···×IN has order N (i.e. N modes/indices),
dimensions I1-by- . . . -by-IN and elements ti1...iN = ti where i ∈
⊗N

i=1{1, . . . , I i}. Order N tensors can be represented by N−dimen-
sional arrays. The algorithms and techniques involved in tensor 
completion do not differ significantly for tensors of order 3 or 
larger, and many tensor datasets are order 3, so we focus on this 
case for simplicity of presentation.

2.1. Tensor completion by generalized CP decomposition

The canonical polyadic (CP) decomposition [31] of an order 
three tensor T ∈ RI× J×K has the form,

ti jk =

R
∑

r=1

uirv jrwkr, (1)
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Table 1

First and second order derivative information.

Derivatives General loss function Least squares loss function (4)

∇ f (ui)
∑

( j,k)∈�i
(v j ⊙ wk)φ

′
i jk

∑

( j,k)∈�i
(v j ⊙ wk)

(

〈ui , v j , wk〉 − ti jk

)

∂ f (uir )
∂uir

∑

( j,k)∈�i
v jrwkrφ

′
i jk

∑

( j,k)∈�i
v jrwkr

(

〈ui , v j , wk〉 − ti jk

)

H f (ui)
∑

( j,k)∈�i
(v j ⊙ wk)

T φ′′
i jk

(v j ⊙ wk)
∑

( j,k)∈�i
(v j ⊙ wk)

T (v j ⊙ wk)

∂2 f (uir )

∂u2
ir

∑

( j,k)∈�i
v2
jr
w2

kr
φ′′
i jk

2
∑

j,k �̂i jkv
2
jr
w2

kr

where R is referred to as the rank of the decomposition and U , 
V , W as factor matrices. Letting 〈·, ·, ·〉 denote a trilinear inner 
product, we can rewrite the above in terms of the rows ui , v j , wk

of the factor matrices,

ti jk = 〈ui, v j, wk〉. (2)

The set of observed entries of a tensor T may be represented by 
index set � ⊂ {1, . . . , I} × {1, . . . , J } × {1, . . . , K }, so that for all 
(i, j, k) ∈ �, ti jk has been observed. The objective function that we 
seek to minimize is

f (U , V ,W ) =
∑

(i, j,k)∈�

φ(ti jk, 〈ui, v j, wk〉)

︸ ︷︷ ︸

Sum of elementwise loss function defined on observed entries

+ λ(‖U‖2F+‖V ‖2F+‖W ‖2F ).
︸ ︷︷ ︸

regularization to prevent overfitting

(3)

where φ : R × R → R is an arbitrary convex function that can be 
chosen according to the inherent data distribution. Various poten-
tial choices of these functions have been discussed in [32].

Most of the previous work for CP tensor completion is related 
to least-squares loss function, i.e., by using the following element-

wise function in the equation (3),

φ(ti jk, 〈ui, v j, wk〉) =
1

2
(ti jk − 〈ui, v j, wk〉)

2, (4)

which assumes that the error in data is normally distributed. How-

ever, many datasets that we encounter do not satisfy this assump-

tion, but may fall in a different category, for example, a dataset 
of counts might follow Poisson distribution with the elementwise 
loss function,

φ(ti jk, 〈ui, v j, wk〉) = 〈ui, v j, wk〉 − ti jk log〈ui, v j, wk〉,

where 〈ui, v j, wk〉 > 0.

For further sections, we will use a shorthand notation for the func-
tion φ(ti jk) : R → R as φi jk which assumes that the first input to 
the corresponding binary input function, φ, is ti jk . And further, we 
define

φ′
i jk =

∂φ(ti jk,mi jk)

∂mi jk

, wheremi jk = 〈ui, v j, wk〉 (5)

and φ′′
i jk

accordingly.

We review tensor completion algorithms for least squares loss 
in this section, and generalize these algorithms to introduce novel 
algorithms that use second order information for tensor comple-
tion with general loss functions in Section 3. We present a table 
of derivative information in Table 1, which is used throughout this 
section and Section 3 to formulate the algorithms. Derivations of 
these expressions are provided in the Appendix A. Note that ⊙ is 
the Hadamard/pointwise product and we omit the regularization 
term for factors which maybe trivially added.

2.2. Alternating least squares

Alternating least squares (ALS) method is a standard algorithm 
for CP decomposition with least-squares loss of tensors. Fixing all 
except one factor matrices results in a quadratic subproblem which 
can be solved with a single Newton’s step. Defining �̂i jk = 1 if 
(i, j, k) ∈ � and 0 otherwise, and taking ti jk = 0 if (i, j, k) /∈ �, and 
using Table 1 for gradient and Hessian values with an initial guess 
of zeros for each row of the factor matrix, i.e., ui = 0, the updated 
matrix U (new) can be expressed as a system of equations involving 
sparse tensor contractions,
∑

r

u
(new)
ir

(g
(i)
rs + λδrs) =

∑

j,k

v jswksti jk,

where g
(i)
rs =

∑

j,k

v jrwkr�̂i jkv jswks.

Given m = |�| observed values, solving the linear systems has cost 
O (I R3), forming the right-hand sides has cost O (mR), and com-

puting the matrices G (i) has cost O (mR2). Contracting two tensors 
at a time to form each G (i) all at once incurs additional memory 
footprint, specifically,

O (min(median(I, J , K )R2,mR) + LR2), where

L = median(|{( j,k) : (i, j,k) ∈ �}|, |{(i,k) : (i, j,k) ∈ �}|,

|{(i, j) : (i, j,k) ∈ �}|).

2.3. Coordinate descent

Coordinate descent updates a single variable of a factor matrix 
while keeping all others fixed. Each variable in a column of the fac-
tor matrix becomes independent, and therefore the whole column 
of a factor can be updated simultaneously. An iteration of coordi-
nate descent is analogous to a step of ALS with a rank R = 1 CP 
decomposition. The main advantage of coordinate descent over ALS 
is the lack of a need to solve systems of linear equations. A step of 
the algorithm can be computed using the values from Table 1,

u
(new)
ir

= uir + �uir,

�uir =

(

− λuir +
∑

( j,k)∈�i

v jrwkr

(

ti jk − 〈ui, v j, wk〉
)
)

/

(

λ +
∑

( j,k)∈�i

v2jrw
2
kr

)

.

Similar to ALS, we can use an initial guess of zeros, i.e., uir = 0 and 
define

ρ
(r)

i jk
=

{

ti jk − 〈ui, v j, wk〉 + uirv jrwkr, if (i, j,k) ∈ �

0 otherwise.

The update can be expressed with sparse tensor contractions,
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u
(new)
ir

= �uir =

(
∑

j,k

v jrwkrρ
(r)

i jk

)

/

(

λ +
∑

j,k

�̂i jkv
2
jrw

2
kr

)

.

These contractions can be performed with O (m) cost to update 
each uir for all i, and ρ(r+1)

i jk
can be obtained from ρ(r)

i jk
with O (m)

cost. Consequently, coordinate descent also requires O (mR) cost to 
update all factor matrix entries, but has less parallelism and gen-
erally makes less progress than ALS since the updates to elements 
of factor matrix rows are decoupled. Our CCD implementation al-
ternates between factor matrices for each column update, which 
corresponds to the CCD++ ordering [81].

2.4. Stochastic gradient descent

Instead of solving for a subset of variables at a time, one can 
solve for all the variables in an iteration using the first order or 
the gradient information. The simplest algorithm which uses gradi-
ent information for all the variables is gradient descent. The values 
for the derivative with respect to each element can be used from 
Table 1 yielding the following update,

u
(new)

ir
= uir − η

∂ f

∂uir

with a cost of O (mR).

Since more accurate updates with monotonic convergence guar-
antees can be obtained with similar cost via ALS or coordinate 
descent, gradient descent is generally less efficient for tensor 
completion. However, stochastic gradient descent offers a frame-

work in which the initial tensor can be sampled, leading to cost 
O (SR + (I + J + K )R) (where S is the sample size) for a sweep 
that updates all factor matrices.

For a general objective function an extra computational cost 
of O (m) (O (S) in case of stochastic gradient descent) is required 
to compute φ′

i jk
tensor to compute the gradient for each factor 

matrix. A distributed memory implementation of SGD for tensor 
decomposition with generalized loss functions was recently re-
leased [18]. Apart from stochastic gradient descent, LBFGS is an-
other gradient based method that has been explored for general-
ized tensor decomposition in [32]. We do not consider LBFGS in 
this work.

3. Algorithms using second order information for generalized 
tensor completion

In prior work, use of second order information for tensor com-

pletion with loss functions other than least squares loss is largely 
unexplored. Alternating minimization and coordinate minimization 
have been proposed for tensor decomposition with Poisson loss 
function with identity-link [25]. A parallel implementation of these 
algorithms has been investigated recently [73]. A quasi-Newton al-
gorithm for generalized tensor decomposition has been formulated 
recently [77], however the sparsity in Hessian due to missing data 
in the completion problem has not been discussed. In this sub-
section, we describe how the formulation of ALS and coordinate 
descent as Newton’s iteration can be used to derive alternating 
minimization and coordinate minimization algorithms for gener-
alized objective functions. We then introduce the Newton’s and 
quasi-Newton algorithm for generalized tensor completion which 
uses an implicit Conjugate Gradient (CG) algorithm. We explore 
the sparse tensor structure of the Hessian matrix, which allows us 
to formulate matrix vector products in the CG algorithm as sparse 
tensor contractions that can be efficiently implemented via sparse 
tensor kernels introduced in this work.

3.1. Alternating minimization

Alternating minimization works by fixing all except one fac-
tor matrix at a time and solving the optimization problem with 
respect to that factor matrix optimally. For solving the resulting 
subproblem, each row of the factor matrix can be optimized via 
Newton’s method,

u
(new)
i

= ui + �ui,

where �uiH f (ui) = −∇ f (ui).

We derive the Hessian of the generalized completion objective (3)
with respect to all the factor matrices in Appendix A. The diag-
onal blocks of this Hessian can be used to perform alternating 
minimization for general loss functions. A Newton’s iteration is 
equivalent to a sub-iteration of the alternating least squares algo-
rithm in terms of computational cost. Since the objective function 
is not quadratic, Newton’s method may take more than one step 
unlike least-squares loss. The Hessian H f (ui) and gradient ∇ f (ui)

for general loss functions with respect to each row ui is given in 
Table 1, and can be used to compute the Newton’s step. Note that 
for a general loss each step costs the same as an ALS sub-iteration 
except for the fact that φ′

i jk
and φ′′

i jk
tensors would need to be 

computed beforehand, which require O (mR) computational cost 
and O (m) memory.

3.2. Coordinate minimization

Rather than updating the whole row of a factor matrix as in 
alternating minimization, coordinate minimization updates a single 
variable at a time while keeping the others fixed. A Newton’s step 
for a single variable is given as

u
(new)
ir

= uir + �uir,

where �uir = −

∂ f
∂uir

∂2 f (uir)

∂u2
ir

.

For coordinate minimization of general loss functions, we can use 
the diagonal blocks of the Hessian used in alternating minimiza-
tion and perform the Newton’s iteration to solve for a column of 
the factor matrix. The values of derivatives for each element uir

from Table 1 can be used to compute the Newton’s step for the 
column with the same computational cost as for a CCD++ sub-
iteration by using the trilinear product 〈ui, v j, wk〉 to compute φ′

i jk

and φ′′
i jk

tensors with an additional cost of O (m) for updating both 
the tensors.

3.3. Newton’s and quasi-Newton algorithms

In the regime of optimizing all variables at once, second order 
information can be used to obtain Newton’s and quasi-Newton al-
gorithms for the generalized completion problem. To minimize the 
objective, each iteration of the algorithm updates all the factor ma-

trices by using the following update,

[U (new), V (new),W (new)] = [U , V ,W ] + [�U ,�V ,�W ],

where [�U ,�V ,�W ] = −H
−1
f

(U , V ,W )∇ f (U , V ,W ),

where H f (U , V , W ) is the Hessian or the approximated Hes-
sian and ∇ f (U , V , W ) is the gradient for the objective function 
f (U , V , W ) in equation (3) with respect to all the factor matrices.

While the gradient can be computed efficiently, explicitly 
computing the Hessian or approximated Hessian and storing 
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it is extremely expensive as it is sparsity unaware requiring 
O ((I + J + K )2R2) memory. Moreover, directly inverting the ma-

trix H f (U , V , W ) requires O ((I + J + K )3R3), which is practically 
infeasible for large scale tensors. Alternatively, we explore the im-

plicit form of the Hessian for the generalized completion problem 
to formulate Newton and quasi-Newton algorithm that use CG al-
gorithm with implicit matrix-vector products as applied in the CP 
decomposition with least-squares loss [60]. The convexity of the 
generalized tensor completion loss function ensures that the Hes-
sian is positive semi-definite. The Gauss-Newton method approx-
imates the Hessian by excluding the additional term required in 
the off-diagonal blocks of the Hessian, resulting in a quasi-Newton 
method for generalized objective function. With the implicit form 
of Hessian or approximated Hessian, the linear systems arising at 
each iteration can be solved by performing CG method with im-

plicit matrix-vector products. Tensor contractions for updating the 
first factor matrix iterate in the implicit matrix-vector product in 
CG iteration for each Newton’s iteration are
∑

s,l

h
(1,1)
ilrs

x
(1)
ls

=
∑

s

∑

( j,k)∈�i

v jrwkrφ
′′
i jkv jswksx

(1)
is

,

∑

s,l

h
(1,2)
ilrs

x
(2)
ls

=
∑

s

∑

( j,k)∈�i

v jrwkrφ
′′
i jkuiswksx

(2)
js

+
∑

( j,k)∈�i

wkrφ
′
i jkx

(2)
jr

,

∑

s,l

h
(1,3)
ilrs

x
(3)
ls

=
∑

s

∑

( j,k)∈�i

v jrwkrφ
′′
i jkuisv jsx

(3)
ks

+
∑

( j,k)∈�i

v jrφ
′
i jkx

(3)
kr

,

where 
∑3

n=1

∑

s,l h
(1,n)

ilrs
x
(n)

ls
corresponds to the first block of the 

matrix vector product of the Hessian and matrices X (1), X (2) , and 
X

(3) . The other two blocks of the matrix vector product can be 
computed similarly.

Each contraction of the type
∑

s

∑

j,k

x jr ykr t̂i jkuisv jswks,

where T̂ is a sparse tensor, can be computed in O (mR) cost by 
breaking it down into two contractions,

zi jk = t̂i jk
∑

s

uisv jswks and air =
∑

j,k

zi jkx jr ykr,

each of which costs O (mR). Therefore, a CG step for solving a sys-
tem in the quasi-Newton algorithm costs O (mR).

The computation cost of the quasi-Newton algorithm is dom-
inated by CG iterations. The number of CG iterations can be 
reduced by using the block diagonal part of the Hessian as a 
pre-conditioner [60]. However, storing the explicit inverse of the 
diagonal blocks of H f (U , V , W ) may still be a memory bottle-
neck for large tensors. Instead, the inverse of a diagonal block of 
H f (U , V , W ) can be applied with a cost identical to solving for 
the linear systems in a sub-iteration of alternating minimization 
algorithm introduced above.

4. New sparse tensor kernels

The aforementioned tensor completion algorithms require so-
phisticated support for sparse tensor operations. We extend the 
Cyclops library for tensor computations, which already includes 
support for sparse tensor contractions, reducing these to matrix 

multiplication with CSR format locally. Cyclops leverages a cyclic 
data layout on multidimensional processor grids to achieve good 
performance and load balance for sparse tensors. However, we 
observe two major bottlenecks within the sparse tensor algebra 
operations required in tensor completion that warrant extensions 
of functionality.

We describe new infrastructure for hypersparse matrix formats, 
leveraging a doubly-compressed format, which is a special case of 
the compressed sparse fiber (CSF) layout [62,63]. We apply this 
infrastructure to obtain TTM and MTTKRP implementations that re-
quire a minimal amount of memory and flops [37,46,27,5]. Further, 
we provide a specialized all-at-once implementation of MTTKRP 
that is within a factor of four of specialized MTTKRP libraries. 
Additionally, we introduce a kernel for multiplication of a sparse 
tensor with multilinear inner products of vectors (TTTP), resulting 
in an output sparse tensor of the same size. Our parallelization of 
the kernel leverages batching to achieve lower memory-footprint 
than previous work [64,35]. TTTP generalizes the sampled dense–
dense matrix multiplication (SDDMM) kernel [14,53,40], and is 
useful also for CP decomposition of sparse tensors.

We also introduce a kernel for solving linear systems on the 
fly arising in alternating minimization of the generalized objec-
tive function for CP completion (3) involving sparse tensors. For 
the special case of least squares loss, we achieve a comparable 
performance to the state of the art library for performing ALS com-
pletion [64].

4.1. Hypersparse matrix formats

Tensor contractions can be reduced to matrix multiplication 
with matrices that have the same number of sparse entries. How-

ever, while it is uncommon in sparse matrix computations for 
entire rows or columns of a sparse matrix to be zero, the sparse 
matrix–matrix products occurring by reduction from tensor com-

putations often have this property [63]. A canonical example is 
the product of a sparse tensor and a dense matrix, which can be 
used an initial step for MTTKRP, yielding an intermediate that can 
typically be reused in multiple MTTKRP operations via dimension 
trees [38] (also see [58,78,5]). In this tensor times matrix (TTM) 
operation, given an order three tensor, we seek to compute

zi jr =
∑

k

ti jkwkr,

where T is sparse and W is dense. By merging i and j into a sin-
gle index, TTM reduces to a matrix-matrix product of sparse and 
a dense matrix. For T ∈ RI× J×K , if the number of entries in T is 
less than I J , then the above matricization of T is necessarily hy-
persparse (contains rows with only zero entries), and Z is sparse. 
For many sparse tensor datasets, one of the modes is small, or the 
number of nonzeros scales with mode size, i.e., m = O (I + J + K ). 
In both cases, we may obtain a matricization that is very hyper-
sparse (most rows are zero), in which case the matricization of 
Z cannot be stored in a dense format without increasing memory 
footprint.

Cyclops represents static sparse tensor data in a COO-like for-
mat, storing a single 64-bit integer for each value to encode its 
global location in the tensor, with index-value pairs sorted locally. 
When a contraction is executed, the locally stored portion of the 
tensor is transformed into a CSF [63] sparse matrix format. In this 
format, we use CSR to encode the nonzero rows and an additional 
array is stored that maps nonzero rows to the original set of rows. 
This matrix CSF format also corresponds to the DCSR [11] format 
without the use of chunks (no AUX array). This layout requires 

(m) storage if a tensor has m nonzeros, improving on 
(I J +m)

needed for plain CSR for the TTM operation above. Multiplication 
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of a matrix by a dense matrix is easy, it suffices to multiply the 
reduced CSR matrix by the dense matrix, then generate a new CSF 
matrix to represent the sparse output, resulting in O (mR) cost.

Realizing CSF functionality for arbitrary tensor contractions also 
necessitates implementation of sparse format conversions, sum-
mation of CSF blocks, and interprocessor reduction. We provide 
kernels for each of these steps. When sparsity is involved, Cyclops 
first ensures that each index arising in the tensor contraction ex-
pression occurs in exactly two tensors. If an index occurs in only a 
single tensor, pre- or post- processing can be performed to reduce 
or map the input or output, respectively. If an index occurs in all 
three tensors (specifying a set of independent contractions), Cy-
clops duplicates the index, converting one of the sparse operands 
to a tensor of one order higher, placing the original data on the 
diagonal (e.g. ci = v iw i with sparse v is performed via c = V̂ w

where v̂ ii = v i). By ensuring that each index occurs in exactly two 
tensors, Cyclops is able to map the local part of the contraction to 
a matrix–matrix product. Cyclops puts local parts of the tensor into 
sparse matrix format by first converting to COO then to CSF ma-
trix format (for a standard sparse format, conversion to CSR works 
similarly).

Local summation of CSF matrices requires identifying which 
rows are nonzero in both matrices, which is done by comparing 
the two sets of nonzero row indices. The summation of each row 
is done by leveraging a dense array. In particular, if each local 
matrix has K columns, nonzeros in that row are accumulated to 
the corresponding entries of an array of size K , then the sparse 
sum is read back and the entries used are zeroed out. The cost of 
this operation for summing each row scales with the number of 
nonzeros in the output row, but the buffer must be allocated and 
cleared, creating a potential bottleneck if the local sparse matrices 
are very hypersparse in both rows and columns (most rows and 
most columns are entirely zero). For sparse tensor times matrix 
contractions arising in the tensor completion kernels, each column 
contains nonzeros.

Parallel reduction of CSF matrices leverages this summation 
kernel, using a butterfly collective communication approach (re-
cursive halving followed by recursive doubling [74]) that performs 
a sparse reduce-scatter followed by a sparse gather. At each step of 
the sparse reduce-scatter, hypersparse matrices with smaller over-
all dimensions but higher density are summed by each processor 
using the sparse summation kernel described above. An example 
of the reduce-scatter is displayed in Fig. 1. The sparse gather re-
combines these matrices by concatenation. The partitioning and 
recombination is done using a k-ary butterfly, where k is a pa-
rameter that we chose to be a constant.

4.2. Matricized tensor times Khatri-Rao product

While the use of hypersparse formats enables an implementa-
tion of MTTKRP that asymptotically minimizes memory footprint 
and cost, we also provide a specialized MTTKRP implementation 
that performs the operation in an all-at-once manner. In particular, 
the MTTKRP is parallelized by performing smaller local MTTKRPs 
on each processor, using the sparse tensor data stored on that pro-
cessor. This parallelization follows SPLATT [62,63] and also uses a 
reduction to accumulate results. However, the MTTKRP kernel in-
teroperates with other Cyclops functionality, redistributing factor 
matrices from an arbitrary initial layout, to a partially-replicated 
distribution necessary to compute the local MTTKRP, and the re-
sulting matrix is put into a layout that is distributed over all pro-
cessors. Locally, the sparse tensor data is kept in the usual Cyclops 
COO-like format, as opposed to the specialized CSF format. Par-
tial sums are accumulated for the local part of each tensor fiber 
along the most quickly changing index. The BLAS axpy operation 
and the MKL vector pointwise product are used to achieve vector-

Fig. 1. Depiction of 4 processor reduce-scatter of 4 × 4 hypersparse matrices stored 
in doubly compressed (CCSR) format.

ization when the MTTKRP is performed with factor matrices that 
have more than one column.

4.3. Tensor times tensor product

Efficient support for sparse tensor contractions does not suf-
fice for tensor completion algorithms. Their use entails significant 
overhead in memory footprint even to just compute the residual,

ρi jk = ti jk −

R
∑

r=1

�̂i jkuir v jrwkr,

since forming intermediate or xi jkr = �̂i jkuir increases mem-

ory footprint, while alternatively forming the dense intermediate 
yi jk =

∑R
r=1 uir v jrwkr is suboptimal in both memory footprint and 

work. Evidently, the most efficient way to perform such oper-
ations requires all-at-once contraction of multiple operands. To 
handle this operation effectively, we introduce the tensor-times-

tensor product (TTTP) operation, which takes as input a sparse 
tensor S ∈ RI1×···×IN and a list of up to N matrices A

(1) ∈

RI1×R , . . . , A(N) ∈ RIN×R and computes

xi1...iN = si1...iN

R
∑

r=1

N
∏

j=1

a
( j)

i jr
.

If fewer then N matrices are specified, the product should iter-
ate only over modes for which an input is provided. By iterating 
over m nonzero entries in S and performing the multilinear in-
ner product for each one, TTTP can be performed with cost O (mR)

and O ((I1 + · · · + IN )R +m) memory footprint. When N = 2, TTTP 
corresponds to the SDDMM operation X = S ⊙ (UV

T ).

TTTP is an integral part of the algorithms for generalized ten-
sor completion as it is used to compute φ′

i jk
(equation (5)) and 

φ′′
i jk

. For the traditional tensor completion with least squares loss, 
TTTP allows calculation of the residual in tensor completion with 
CP decomposition, by computing

�̂i jk

R
∑

r=1

uirv jrwkr .
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Fig. 2. Depiction of 8 processor parallelization of TTTP computing one of four 
smaller TTTP substeps.

Although, this residual calculation can be accelerated in ALS, it 
is explicitly necessary in the coordinate minimization algorithm. 
Further, for the Newton’s and quasi-Newton method with implicit 
conjugate gradient in Section 3.3, we use TTTP to compute updates 
via

zi jk = φ′′
i jk

∑

s

v jswksxis

︸ ︷︷ ︸

TTTP

, x
(new)

ir
=

∑

j,k

v jrwkr zi jk

︸ ︷︷ ︸

MTTKRP

.

Our parallel implementation of TTTP keeps the sparse tensor input 
S and output X local on whichever processor grid S was initially 
distributed on. The matrices A(1), . . . , A(N) are input from an arbi-
trary initial processor grid distribution. Each matrix is sliced into 
H ≤ R pieces by taking H equal-sized subsets of their columns, 
based on available memory. The computation then proceeds in H
steps, each computing a smaller TTTP involving matrices of size 
I j × (R/H). For each step, the corresponding slice of each of the 
N matrices A( j) is redistributed so that its rows are cyclically dis-
tributed over the processor grid dimension along which the jth 
mode of S is distributed (if any), and replicated over all others. 
Each of P processors can then compute a part of the smaller TTTP 
with the entries of S (and X ) it is assigned locally, performing a 
total of O (mR/P ) work overall.

This parallel TTTP algorithm is depicted in Fig. 2 for scenario 
with P = 8 processors. Assuming a I = I1 = · · · = IN and a proces-
sor grid is used of dimensions P1/N ×· · ·× P1/N , using a BSP model 
of communication [61,75], the latency cost (number of supersteps) 
is O (H), the interprocessor bandwidth cost is O (I R/P1/N ), and the 
memory footprint is O (m/P + I R/(P1/NH)). Efficient mechanisms 
for redistribution of dense matrices between arbitrary processor 
grids exist in Cyclops [68].

4.4. Solve factor

Alternating minimization for generalized CP tensor completion 
requires tensor contractions along with a solve which should be 
done on the fly to avoid a memory bottleneck. To accomplish this, 
we provide a specialized kernel, which uses a similar paralleliza-
tion strategy suggested in [64] for ALS completion. Our kernel 
takes as input a tensor S ∈ RI1×···×IN , a list of up to N matri-
ces A(1) ∈ RI1×R , . . . , A(N) ∈ RIN×R , an integer n, a right hand side 
matrix M ∈ RIn×R , and solves for the Newton’s step with respect 
to nth factor matrix as described in Section 3.1.

The left hand sides for ithn row of the factor matrix in the New-

ton’s step, G (in) , can be computed by the following contractions,

g
(in)
rs =

∑

i1...in−1,in+1...iN

( N
∏

p=1,p 
=n

aipr

)

si1...iN

( N
∏

p=1,p 
=n

aip s

)

,

which together incur a computational cost of O (mR2) and a mem-

ory footprint of O (InR
2).

Our parallel implementation follows the same strategy as 
in Section 4.3 and keeps the sparse tensor input S local on 
whichever processor grid it was initially distributed on. The matri-

ces A(1), . . . , A(N) are input from an arbitrary initial processor grid 
distribution and are redistributed as described in Section 4.3. To 
make use of BLAS-3 operations for the above mentioned contrac-
tions, the input tensor must be sorted with respect to the mode n. 
We accomplish this in the current format by performing a Count-
ing sort [17] using the indices of the nth mode as keys over the 
local data with a computational cost of O (m/P ).

Forming left hand sides for the normal equations for all the 
rows can be a memory bottleneck due to a memory footprint 
of O (I R2/P1/N). We divide the rows into b batches accord-

ing to the memory available, leading to a memory footprint of 
O (I R2/(bP1/N )) and then for computing the normal equations for 
each row, we store the hadamard products of the vectors multi-

plied with the square root of corresponding tensor entries in a 
local buffer of size K × R by using MKL for pointwise vector prod-
ucts. When the buffer is filled up or the number of entries are 
exhausted, a symmetric rank-k (SYRK) update is performed us-
ing BLAS to compute the local left hand sides. A reduce scatter 
along slice with respect to mode n of the processor grid allows us 
to scatter the computed left hand sides. The corresponding right 
hand sides are distributed and a symmetric positive definite solve 
routine in BLAS (POSV) is used to achieve a parallel solve with 
O (I R3/(bP

N+1
N )) cost for a batch of rows.

5. Python interface and implementation

Cyclops [68] provides extensive support for tensor algebra and 
tensor data manipulation in C++, leveraging BLAS [44], MPI [23], 
OpenMP, CUDA, HPTT [71], and ScaLAPACK [9]. The library sup-
ports both dense tensor formats [68] as well sparse tensor for-
mats [66], both of which leverage partitioning of the tensor data 
among all processors. Scaling, summation, and contraction are sup-
ported via a succinct programmatic Einstein summation notation. 
Cyclops also provides general kernels such as tensor transposition, 
redistribution, slicing, and permutation of tensor indices. Addition-
ally, the library supports user-defined element types and algebraic 
structures specifying their properties, as well as contractions that 
operate on tensors of different types, enabling applications such as 
graph algorithms [69].

Cyclops leverages a runtime-centric execution model, making 
data distribution and algorithmic scheduling decisions at execu-
tion time. This enables performance models to be evaluated for 
runtime-determined parameters such as problem size and proces-
sor count. We leverage this characteristic of the Cyclops system 
architecture to provide a performance-efficient Python interface to 
Cyclops. This extension enables productivity for high-performance 
implementation of tensor computations. By implementing a back-
end for high-level NumPy-style operations [76], we activate sup-
port for sparsity in tensor storage and computations, as well as 
parallel execution in distributed and shared memory. These capa-
bilities are enabled with minimal overhead to the user. For ex-
ample, by using Cyclops, sparse storage for a code based on the 
standard numpy.ndarray can be implemented simply by an ad-
ditional boolean flag in the ctf.tensor constructor. By contrast, 
the standard approach for supporting sparse matrix operations in 
Python, involves manual handling of the CSR format via SciPy [34].
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Fig. 3. Overview of Cyclops Python interface organization.

5.1. Cyclops python interface

We utilize Cython [6], which enables interoperability of Python 
and C++, to encapsulate the main functionalities of Cyclops C++ in-
terface. As shown in Fig. 3, we introduce a Python tensor class 
that wraps the C++ Cyclops tensor object via Cython and pro-
vides the core functionality. Tensor and multidimensional array 
operations are also built on C++ interface functionalities includ-
ing ctf.einsum, ctf.tensordot, ctf.transpose, and ctf.reshape. 
Functionality provided by NumPy in numpy.linalg is also sup-
ported, including QR, Cholesky, SVD, and the symmetric eigensolve. 
Boolean, integer, and floating point types of a variety of preci-
sion are supported, which are specified via numpy.ndarray.dtype. 
The C++ interface of Cyclops uses templating to support arbitrary 
types and user-defined elementwise operations, so extension of 
the Python interface to other types is possible. Dense and sparse 
distributed Cyclops tensors may be defined in a variety of ways.

Listing 1 Example Code: Tensor Initialization.

import ctf

U = ctf.tensor([5,7]) # dense zero matrix

M = ctf.random.random((4,4)) # random dense tensor

O = ctf.ones((4,3,5)) # tensor full of ones

I = ctf.eye(9) # dense identity

T = ctf.tensor([5,3,4], sp=True) # sparse tensor

T.fill_sp_random(-1.,1.,.1) # 10% density

S = ctf.speye(9) # sparse identity

For both the dense tensor and sparse tensor, NumPy-style 
indexing/slicing is provided such as A[0, 1] to extract a01 or 
A[3:5, 1:4:2] to extract a 2-by-2 matrix containing entries at the 
intersection of rows 3 and 4 and columns 1 and 3. A key differ-
ence between the Cyclops Python interface and NumPy functions 
including slice and (transpose A.T) is that Cyclops explicitly creates 
the new tensor in memory as opposed to providing a logical refer-
ence. For example with the Cyclops interface, transposition is done 
via B = A.T(), which returns a new tensor (so modifying elements 
of B will not change A).

Cyclops supports both NumPy-style Einstein summation, as well 
as an additional Einstein syntax similar to its C++ interface. For 
example, the following two lines are equivalent.

Listing 2 Example Code: Einstein Summation.

R += T - ctf.einsum("ir,jr,kr->ijk",U,V,W)

R.i("ijk") << T.i("ijk")- U.i("ir")*V.i("jr")*W.i("kr")

Expressions such as the above are passed directly to the C++ 
layer. The C++ layer then makes decisions regarding evaluation or-
dering and choice of intermediate tensors. Cyclops performs this 
by considering all possible binary trees for contraction of window 
of up to 8 tensors (contracting-away one tensor and including the 
next one given more than 8 operands), based on a heuristic model 
of computation and memory-bandwidth cost. Intermediate tensors 
are defined to be sparse if they are a contraction of two sparse 
operands or if a very sparse tensor is contracted with a dense ten-
sor (contraction corresponds to a matrix–matrix product with a 
hypersparse matrix that must have fewer than 1 in 3 rows with a 
nonzero).

5.2. TTTP interface

Cyclops does not automatically determine when to use the 
multi-tensor TTTP operation. Instead, a simple interface is provided 
for this operation. For example, the following code computes

si jkl =
∑

r

oi jkluirv jrwkr zlr, ti jkl =
∑

r

oi jkluirwkr .

Listing 3 Example code: TTTP.

O = ctf.tensor((I,J,K,L),sp=True)

U = ctf.tensor((I,R)), V = ctf.tensor((J,R))

W = ctf.tensor((K,R)), Z = ctf.tensor((L,R))

... # fill O,U,V,W,Z

S = ctf.TTTP(Omega,[U,V,W,Z])

T = ctf.TTTP(Omega,[U,None,W,None])

The routine alternatively accepts a list of vectors rather than 
matrices as the second argument. A similar routine is available via 
the C++ interface to Cyclops.

5.3. Parallel tensor completion in python

Given high-level tensor algebra primitives, we are able to im-
plement the aforementioned tensor completion algorithms without 
any explicit management of parallelism or data distribution. The 
problem of parallelization of these algorithms is reduced to ex-
pressing them with high-level tensor algebra operations.

5.4. Alternating minimization (alternating least squares) 
implementation

Alternating minimization algorithm can be implemented en-
tirely using the MTTKRP kernel for the right hand sides and the 
Solve Factor kernel for the solves. Solving for one factor matrix 
can be implemented easily via the Cyclops Python interface.

Listing 4 ALS solve for one factor matrix (U ).

rhs = ctf.tensor((I,R))

ctf.MTTKRP(T,[rhs,V,W],0) #compute right hand sides

U = ctf.tensor((I,R))

ctf.Solve_Factor(Omega,[U,V,W],rhs,0,regu) #solve for U

5.5. Coordinate minimization (coordinate descent) implementation

The coordinate minimization updates are easy to formulate via 
Einstein notation contractions and elementwise operations.

For the second expression above, Cyclops finds the right tree 
of contractions automatically (note that a tree is more efficient 
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Listing 5 Example code: CCD++ Update Rule.

a = ctf.einsum(’ijk,j,k->i’,R,V[:,r],W[:,r])

b = ctf.einsum(’ijk,j,j,k,k->i’,

Omega,V[:,r],V[:,r],W[:,r],W[:,r])

U[:,r] = a / (lmbda + b)

than contracting left-to-right given any initial order). Slicing per-
mits easy access of columns, although in our final implementation, 
we split up each factor matrix into column vectors outside of the 
CCD++ iteration loop to minimize overhead.

We also consider an implementation of CCD++ that is based on 
the MTTKRP kernel in Cyclops. This approach forgoes the need for 
tensor contractions with hypersparse matrix representations.

Listing 6 Example code: CCD++ with MTTKRP.

ctf.MTTKRP(R,[A,V[:,r],W[:,r]],0)

ctf.MTTKRP(Omega,[B,V[:,r]*V[:,r],W[:,r]*W[:,r]], 0)

5.6. Stochastic gradient descent implementation

We leverage a sampling function in the Cyclops Python inter-
face to obtain a random sample of the tensor T for each SGD 
sweep (update to each factor matrix).

Listing 7 Example code: SGD Batched Sampling.

sampled_T = T.copy()

sampled_T.sample(samprate)

sOmega = getOmega(sampled_T)

R = sampled_T - ctf.TTTP(sOmega,[U,V,W])

ctf.MTTKRP(R,[U,V,W],0)

U+= -2* step* lmbda *samprate*U

The bulk of the computation within SGD is then comprised of 
the above sparse MTTKRP, which calculates a subgradient from R
(the residual for the sampled entries). The getOmega() function 
works by reading the local nonzeros of the tensor, and writing 
them to a new sparse tensor with unit values. We also consider 
an implementation of SGD with the all-at-once Cyclops MTTKRP.

5.6.1. Quasi-Newton (Gauss-Newton) implementation

For implementing the quasi-Newton or Newton’s algorithm, 
right hand sides in each iteration can be easily computed as these 
are negative of gradient with respect to each factor matrix. For 
solving the linear system in each iteration, CG iterations require 
matrix vector products with the implicit form of the Hessian. Each 
block of contraction required for the method as described in Sec-
tion 3.3 can be implemented using TTTP and the MTTKRP kernel. 
The output of TTTP is fed into the MTTKRP kernel with the desired 
output index. The expression for (1, 2) Hessian contractions is as 
follows

Listing 8 GN implicit block (1,2) contraction.

A[0] += ctf.MTTKRP(ctf.TTTP(Omega,[U,Delta[1],W]),

[None,V,W], 0)

Preconditioning can also be easily incorporated using the Solve 
Factor kernel used in Section 5.4.

6. Experimental evaluation

We provide performance results for a range of kernels and for 
tensor completion algorithms overall.1 All benchmarks and ap-
plication code are written purely in Python using Cyclops with-
out any explicit distributed data management/communication. We 
study the scalability of redistribution routines within Cyclops for 
sparse and dense tensors by benchmarking tensor transposition 
and reshaping routines. We then consider performance of the new 
hypersparse contraction and TTTP kernels by benchmarking TTM, 
MTTKRP, TTTP, and Solve Factor. Finally, we provide a comparative 
study of the performance of all the algorithms introduced in Sec-
tion 2 for tensor completion on a model low-rank dataset and on 
a realistic large tensor (Netflix dataset [7]) with two different loss 
functions.

6.1. Benchmarking configuration

All results are collected on the Stampede2 supercomputer at 
Texas Advanced Computing Center (TACC) via XSEDE. Stampede2 
consists of 4200 Intel Knights Landing (KNL) compute nodes (each 
capable of a performance rate over 3 Teraflops/s) connected by an 
Intel Omni-Path (OPA) network with a fat-tree topology (achieving 
an injection bandwidth of 12.5 GB/sec). We use Cyclops v1.5.5 built 
with Intel ICC compiler v18.0.2 with MKL and ScaLAPACK, Intel 
MPI, HPTT v1.0.5, and -O1 level of optimization. We benchmark the 
MTTKRP in SPLATT v1.1.1 and use the ‘sc16’ branch to benchmark 
tensor completion [64], using distributed MPI variants of both. All 
experiments use 64 MPI processes per node, with 1 thread per 
process. For all benchmarks except tensor completion, we quantify 
noise by displaying estimated 95% confidence intervals. These are 
centered at the arithmetic mean and have a width of four standard 
deviations in the observed data (first/warm-up trial ignored).

6.2. Redistribution performance

Fig. 4(a) and Fig. 4(b) consider the weak scalability of tensor 
transposition and reshaping. These are commonly used as mul-
tidimensional array operations in NumPy Python code, so their 
performance is important for a range of applications. Redistribu-
tions are substantially more costly in a distributed environment 
and are often the main bottleneck in Cyclops tensor contractions 
due to the necessity of communicating data between processes to 
a new processor grid mapping. The number of nonzero elements 
is kept fixed across variants, but increased in proportion to the 
number of nodes used. Overall, we observe good scalability in end-
to-end bandwidth (computed as the number of bytes necessary to 
store the tensor divided by execution time) of the two operations. 
The reshape performance for dense tensors can be improved, as it 
converts to sparse format, leveraging preservation of global order-
ing. The performance is generally independent of tensor order or 
of the particular type of transpose/reshape.

6.3. Hypersparse representation performance

Fig. 5(a) compares variants of Cyclops tensor times matrix 
(TTM) kernels using 64 nodes of Stampede2 for various density 
of nonzeros (for a fixed nonzero count). The performance of each 
variant is plotted for problem sizes for which it does not run out 
of memory. We observe that the dense variant performs relatively 
well, but quickly runs out of memory. Using a sparse tensor rep-
resentation and a dense output representation achieves the best 

1 The tensor completion codes are available via https://github .com /cyclops -
community /Tensor _completion.
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Fig. 4. Achieved bandwidth/throughout of transpose and reshape Python functions with Cyclops (16 bytes assumed for each nonzero in a sparse tensor and 8 bytes for each 
value in a dense tensor).

Fig. 5. Execution time of TTM and MTTKRP for order 3 tensors, both averaged over three possible variants (choices of contracted and uncontracted modes, respectively).

performance, but as the number of nonzeros grows, the output 
becomes sparse and representing it in a dense format incurs an 
unmanageable memory footprint. Finally, the hypersparse variant, 
which leverages a sparse output tensor, incurs significant over-
head with respect to using a dense output, but is able to scale 
to substantially more sparse tensors. Overall, we conclude that the 
hypersparse implementation achieves the desired memory scaling, 
but at a significant constant factor overhead, due to the need for 
more sparse format conversions, indirect accesses, and sparse re-
duction.

Fig. 5(b) demonstrates the performance of MTTKRP using Cy-
clops, comparing also to the highly-optimized SPLATT implemen-
tation [62,63] (by profiling the MTTKRP within its parallel CP de-
composition). In the MTTKRP kernel, a third order tensor is con-
tracted with matrices along two modes, e.g., 

∑

i,k ti jkuirwkr . The 
given performance results are the average over the three choices 
of uncontracted modes. There are two choices for performing this 
operation via pairwise tensor contractions, either to first contract 
T and U or to first contract U and W . The latter can be faster 
if T is relatively dense, but is slower if T is sufficiently sparse. 
When the intermediate output tensor is sufficiently sparse and 
contracting with T first is estimated to take less time, Cyclops au-
tomatically leverages the hypersparse representation. Use thereof 
permits scalability to much sparser tensors. However, we observe 
that all-at-once computation of MTTKRP is much faster than pair-
wise tensor contraction.

SPLATT outperforms the Cyclops all-at-once implementation as 
the latter requires redistribution of factor matrices and does not 
use the CSF format. However, generally Cyclops is within a factor 
of four or less in performance with respect to SPLATT. Further, the 

approach used in Cyclops permits easier combination with other 
tensor operations, since the input distribution of the factor matri-
ces is not specialized for the kernel.

6.4. TTTP performance

Fig. 6(a) and Fig. 6(b) compare the performance of the new 
TTTP kernel to alternatives based on pairwise tensor contraction, 
including with the use of hypersparsity. However, even with hyper-
sparsity, the intermediates which must be formed in any pairwise 
contraction tree increase the memory usage, whenever R > 1. We 
observe that the TTTP kernel is always significantly faster and can 
scale to extremely low density. By comparison, pairwise tensor 
contraction approaches are slower even when R = 1 and are less 
memory scalable. Overall, the benefit of performing TTTP all-at-
once as opposed to via pairwise contractions is clearly evident.

6.5. Solve factor and alternating least squares performance

We compare our implementation of alternating minimization 
for least squares loss (ALS) using the Solve Factor and MTTKRP ker-
nels introduced above to the state of the art implementation of ALS 
in SPLATT [64] in Fig. 7. The SPLATT approach forms the left and 
right hand sides in a single pass over the tensor nonzero entries, 
thereby reusing Hadamard products of the rows for each nonzero 
entry. In contrast, our implementation does two passes over the 
tensor nonzeros. In Fig. 7(a), we compare the performance of one 
ALS iteration on a tensor with fixed number of observed entries 
while increasing the dimensions of the tensor dataset. SPLATT out-
performs our ALS implementation by a speed of about 2× for most 
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Fig. 6. Execution time of the described TTTP kernel (all-at-once TTTP) and implementations based on pairwise tensor contraction, with R = 1 and R = 60 tensor products.

Fig. 7. Comparison of performance of ALS approaches for a single ALS sweep for the random processes using 64 MPI processes for CTF and 64 OPENMP threads with 1 MPI 
process on a single KNL node of Stampede2.

of the cases. The speed up becomes 4.1× for the largest dimension 
because of communication among the cores in the MPI implemen-
tation, which is not needed in SPLATT’s threaded implementation. 
Moreover, we perform a redistribution of factor matrices for each 
kernel call, which also involves an overhead. In Fig. 7(b), we com-
pare the strong scaling of our implementation and SPLATT on a 
single KNL node of Stampede2 for a synthetic equidimensional 
tensor with dimension 64, 000 and approximately 140M nonze-
ros. We observe that both the implementations strong scale well 
and SPLATT ALS is approximately 2× faster than our ALS itera-
tion for each configuration. While somewhat slower than SPLATT, 
our implementation has lower memory footprint. SPLATT is unable 
to perform completion with MPI parallelization on one node for 
larger dimensions due to the memory bottleneck of forming left 
hand sides described in Section 4.4. Our implementation alleviates 
this memory overhead by using batched computation of the rows 
of the required factor matrices. SPLATT stores multiple compressed 
sparse fibre (CSF) representations of the tensor, which eliminates 
the need for sorting tensor nonzeros on the fly. CSF is faster as 
compared to Cyclops COO-like format which requires extra com-
putation to determine the indices for each nonzero. However, the 
Cyclops COO-like format is more memory efficient than SPLATT, 
as it uses only one rather than three copies of the input ten-
sor. Further, the replicated CSF approach would entail additional 
overheads for generalized loss functions as the input to the kernel 
changes for other loss functions at each sub-iteration, necessitat-
ing construction of three copies of the data at each sub-iteration. 
Our Solve Factor kernel is only about 1.7× slower than SPLATT for 
most of the cases, suggesting the overheads of using general ker-
nels is not too high.

6.6. Tensor completion with least squares loss

Fig. 8(a) studies the performance of tensor completion algo-
rithms with Cyclops on a model problem constructed from a sam-
pled function as described in Karlsson et al. [35]. The sampled 
tensor has low CP rank (we pick R = 10) and a good CP decom-
position is easily found by quadratic approximation. We observe 
that ALS requires only a few iterations to achieve full accuracy 
(RMSE proportional to the regularization used, λ = 10−5). CCD++ 
is executed with a regularization of λ = 10−5 and SGD is executed 
with sampling and learning rate of 5 · 10−3 and regularization of 
10−7 . The CCD++ and SGD approaches achieve comparable perfor-
mance, requiring less time per iteration, but making progress at a 
slower rate overall (RMSE plotted after every 20 iterations). Pre-
conditioned Gauss-Newton method also converges to full accuracy 
in a few iterations (regularization used λ = 10−3) but is consid-
erably slower than ALS execution time. Using 256 nodes of Stam-
pede2, this experiment demonstrates the scalability of our Python-
based tensor completion implementations, as they are executed on 
a problem containing 10 billion observed entries (nonzeros) with 
a density of 10−5 .

In Fig. 8(b), we consider performance for the Netflix movie 
rating dataset on 4 nodes of Stampede2 with a rank 100 CP rep-
resentation. This tensor is 480, 189 × 17, 770 × 2, 182 and con-
tains m = 100, 477, 727 nonzeros. While ALS achieves the lowest 
RMSE, the three methods that use second order information are 
relatively competitive for this tensor. ALS iterations take the least 
time followed by the CCD++ iterations, For CCD++, we traverse 
the tensor nonzeros 2R times for each CCD++ iteration as com-
pared to 2 times for each ALS iteration. Both algorithms use a 
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Fig. 8. Performance results of tensor completion methods.

regularization parameter of λ = 10−5 . Gauss-Newton with implicit 
pre-conditioned CG uses a relative tolerance of 5 · 10−3 and max 
iterations of at most 30 for CG and a regularization parameter 
λ = 10−3 . We use the Solve Factor kernel to implement block di-
agonal pre-conditioning which is essential for faster convergence 
and stability of CG iterations. The algorithm starts to take more 
time as CG iterations start to increase due to the fact that gradient 
norm decreases. Unlike the function tensor model problem, SGD 
requires fine-tuning of parameters, diverging when the learning 
rate is set to be too high. We show performance with a learn-
ing and sampling rate of 3 · 10−3 with λ = 10−5 , which resulted in 
cheap iterations and steady but slow convergence (RMSE plotted 
after every 20 iterations). The progress made by the SGD steps can 
likely be improved by strategies that vary the learning and sample 
rate, a consideration which we leave for future work.

In Fig. 8(c), we consider performance for pre-conditioned 
Gauss-Newton method and ALS for a synthetic tensor. This tensor 
is constructed with random matrices with entries sampled uni-
formly from [0, 1] with dimension s = 100 and CP rank R = 20
with 30% observed entries, i.e., the tensor has 3 · 105 observed 
entries and is relative dense. We observe that for this type of prob-
lem, pre-conditioned Gauss-Newton converges to the solution in a 
few iterations whereas ALS seems to make very little progress after 
10 iterations. This corroborates the claim in the previous work [49]
that ALS does not perform well for relatively dense tensors and 
methods like Gauss-Newton may be preferable when an exact so-
lution exists.

6.7. Tensor completion with Poisson loss

To demonstrate our algorithmic and software framework for 
generalized CP completion, we implement the above described al-

gorithms for tensor completion with Poisson loss with the loga-
rithm link function (log-link) for the Netflix tensor. Poisson loss 
for decomposing tensors with entries in the set of natural num-

bers has several qualitative advantages that have been explored in 
the previous literature [25,15]. We explore the quantitative perfor-
mance and scalability of various algorithms in a distributed setting.

Poisson loss with log-link was introduced in [32] for tensors 
with entries in the set of natural numbers. The advantage of us-
ing log-link is that it relaxes the nonnegativity constraints required 
with the identity-link and hence, we can use our framework to 
implement all the algorithms without having to account for any 
constraints. The loss function minimized here is described by set-
ting the elementwise function φ introduced in equation (3) to

φ(ti jk, 〈ui, v j, wk〉) = exp (〈ui, v j, wk〉) − ti jk〈ui, v j, wk〉.

With the elementwise function defined as above, we use values 
from Table 1 to implement all the completion algorithms described 
in Section 3 with this loss for the Netflix tensor with rank R = 10. 
We plot the normalised loss, i.e., 1

|�|

∑

i, j,k φ(ti jk, 〈ui, v j, wk〉) ver-

sus time for each algorithm in Fig. 9(a). Each point in the Fig. 9(a) 
represents an iteration, except for SGD, for which each point is 
plotted after every 20 iterations. Both the alternating minimiza-

tion and coordinate minimization inner iterations are performed 
until a relative step tolerance of 10−3 or a maximum count of 5 is 
reached. Pre-conditioned quasi-Newton has a relative tolerance of 
5 · 10−3 or a maximum iteration count of R for CG iterations for 
each system solve. Also, the regularization parameter plays a piv-
otal role for this objective function as algorithms diverge easily due 
to the exponentiation. Compared to least-squares loss, we employ 
higher values of regularization for all the algorithms to ensure that 
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Fig. 9. Tensor completion with Poisson and least squares loss function on Netflix tensor on 64 cores of Stampede2.

they do not diverge. We use a value of λ = 1 for coordinate mini-
mization, and λ = 0.1 for alternating minimization, quasi-Newton, 
and SGD.

We observe that alternating minimization is the fastest algo-
rithm to reach the least value of the objective followed by pre-
conditioned quasi-Newton method and then coordinate minimiza-
tion. While implementation of all these algorithms can be fine-
tuned to further run faster for the particular loss functions, we 
observe that SGD implementation is outperformed by other al-
gorithms indicating that the benefit of using second order infor-
mation. Our formulation of the quasi-Newton with implicit pre-
conditioned CG method not only makes the implementation feasi-
ble via tensor algebra kernels, but is also competitive with other 
algorithms in practical scenarios.

For a Poisson loss objective, we plot the Frobenius norm of the 
subtraction of input tensor and exponentiated reconstructed ten-
sor at each iteration and compare it with the ALS iterations. We 
observe that these values are equal up to 2 digits suggesting that 
the Poisson loss also minimizes the least squares loss, however, 
vice versa is not true as there may be negative values making the 
Poisson objective infeasible to calculate. Note that the Poisson loss 
completion comes at the cost of performing inner iterations, which 
results in longer running time, as observed in Fig. 9(b).

7. Related work

We review related work on parallel tensor abstractions and on 
previous parallel implementations of tensor completion. We also 
review work on sparse tensor kernels for tensor decompositions.

7.1. Parallel tensor completion

The tensor completion algorithms presented in this paper 
have commonly-used analogous in matrix completion (ALS [33], 
SGD [39], CCD [81]). These approaches, especially SGD, have 
been optimized extensively for the matrix case, which may be 
viewed as a simple two-layer neural network. In shared mem-
ory, SGD is widely used, as it can be made efficient by asyn-
chronous execution [59]. ALS, CCD, and SGD for matrix completion 
have all been target of efficient distributed-memory implementa-
tions [72,81,26,21].

Tensor completion via the CP tensor representation [21] has 
been a target of recent distributed-memory implementation ef-
forts. Karlsson et al. [35] implement ALS and CCD by replicating 
the factor matrices on each process and distributing observed en-
tries. While efficient, this approach is not scalable to very large 

factor matrices. Smith et al. [64] improve upon this method by 
distributing both the factor matrix and tensor in coherent for-
mats, similar to our parallel method for TTTP when it is done 
with a single parallel step. For generalized tensor decomposition, a 
distributed memory implementation is available [18,45] that uses 
stochastic gradient descent algorithm and uses permutation arrays 
in COO format to represent sparse tensors. Our work is the first to 
implement distributed tensor completion using high-level tensor 
operations for general tensor contractions. We reproduce previous 
work [35,64] in the observation that ALS is generally most efficient 
for distributed tensor completion.

7.2. Sparse tensor kernels

Parallel sparse matrix multiplication algorithms comprise an 
active area of research [69,42,3,4,12,24,55]. Multiplication of hy-
persparse matrices has seen considerably less study [11]. An opti-
mized doubly compressed CSR/CSC layout similar to the CSF matrix 
layout used in this paper is the standard sequential approach to 
hypersparse matrix–matrix products [11].

Effective sparse tensor layouts have been designed for TTM and 
MTTKRP operations in shared memory and distributed memory. 
The compressed sparse fiber (CSF) layout serves as an extension of 
hypersparse matrix representations and achieves efficient storage 
and TTM operations [63,62]. The hierarchical coordinate (HiCOO) 
layout is designed to further improve efficiency for TTM and MT-
TKRP [47]. The Adaptive Linearized Tensor Order (ALTO) [28] is 
another proposed sparse tensor format for shared memory archi-
tecture which is an improvement over the HiCOO and CSF. ALTO 
uses an adaptive recursive partitioning of the high dimensional 
space of the sparse tensor to map the nonzeros onto a compact 
line so that the neighbouring nonzeros are close to each other. 
The tensor algebra compiler (TACO) supports hierarchical layouts 
with compressed or uncompressed modes [40] as well as other 
optimized sparse formats [16]. These layouts can be interchanged 
and may improve upon the CSF matrix layout used in our work. 
However, our design is the first to enable arbitrary tensor contrac-
tions to be reduced to a storage-efficient layout, and to support 
distributed-memory tensor operations with hypersparse represen-
tations.

TTM and MTTKRP are standard benchmark tensor kernels [43,
48]. MTTKRP has been the target of optimization for distributed-
memory architectures with both MPI [63,37] and MapReduce [56,
10]. While TTM is a special case of a tensor contraction, MTTKRP 
involves contraction of multiple tensors and consequently presents 
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potential for further performance optimization over pairwise con-
traction by all-at-once contraction [27]. The TTTP operation intro-
duced in this paper differs significantly from MTTKRP and can be 
specially optimized via all-at-once contraction.

7.3. Tensor frameworks

Tensors and multidimensional arrays are a prevalent program-

ming abstraction that encapsulates data parallelism. Many tensor 
libraries are designed for methods in quantum chemistry. The Ten-
sor Contraction Engine (TCE) [30] provides factorization of multi-

tensor expressions into pairwise contractions. TCE generates paral-
lel tensor contraction code based on a partitioned global address-
space (PGAS) [80] language, Global Arrays [52]. Global Arrays and 
other PGAS languages such as UPC [19] provide multidimensional 
array abstractions that enable tensor programming, but generally 
do not support high-level tensor algebra operations. The Libtensor 
library [20] provides efficient shared-memory tensor contractions, 
targeted at quantum chemistry applications. Libtensor and other 
libraries [51] support block-sparse tensors. The TiledArray [57,13]

library provides distributed-memory support for block-sparse ten-
sor contractions. Outside of Cyclops, to the best of our knowledge, 
tensor contractions with arbitrary elementwise sparsity are only 
supported for single-node execution [36]. Currently, the Python 
interface of Cyclops does not support arbitrary ring operations, 
however there is recent work [29] for sparse array programming 
on single-node machines. All the efforts above theimmediate one 
leverage an Einstein notation syntax for contractions and aim at 
efficient execution of tensor contractions arising in quantum chem-

istry.

The Tensor Algebra Compiler (TACO) [40] provides support for 
sequential sparse tensor contractions and more general multi-

tensor expressions. In recent work, TACO has been improved to fac-
torize longer tensor algebra expressions and their subcomponents 
into subsequences [41], the former being a user-guided version of 
the automated factorization in Cyclops. Tensor libraries have also 
been designed for machine learning workloads, e.g., TensorFlow by 
Google [1] and Tensor Comprehensions by Facebook [79]. Both fo-
cus on task-level parallelism and GPU acceleration as opposed to 
distributed-memory data parallelism.

8. Conclusion and future work

We present new advances in parallel sparse tensor computa-

tions infrastructure and methodology, driven by its application to 
tensor completion. Specifically, we propose a new tensor algebra 
routine, TTTP, which consists of tensor contractions that may be 
significantly accelerated by an all-at-once contraction algorithm. 
Further, we provide the first distributed general sparse tensor con-
traction infrastructure that can leverage hypersparse matrix repre-
sentations, achieving scalability to massively sparse tensors.

For tensor completion, we propose a novel Newton-method-

based algorithmic framework for generalized tensor completion. 
In this framework, we introduce alternating minimization, coor-
dinate minimization and quasi-Newton algorithms which encom-

pass the ALS, CCD++ and Gauss-Newton algorithm for least squares 
loss and generalize easily for other objective functions. Our re-
sults demonstrate that these algorithms are more accurate than 
the SGD algorithm for generalized completion. By providing a high-
level Python interface to the tensor algebra operations, we are able 
to develop very concise, but massively-parallel implementations of 
these algorithms for generalized tensor completion via CP decom-

position. Moreover, we show that our distributed memory imple-

mentation of alternating minimization for least squares loss which 
uses general sparse tensor kernels is within a factor of four of the 

state of the art distributed implementation of ALS. Our experimen-
tal results demonstrate that hypersparsity, all-at-once kernels for 
MTTKRP, and the new TTTP algorithm enable generalized tensor 
completion algorithms to be executed on much larger and sparser 
tensors than possible with previously available libraries.

For the generalized objective functions, some of the link func-
tions use nonnegativity constraints [32], which are not incorpo-
rated in our current framework. While all the link functions can 
be modified to remove these constraints, the interpretation of the 
factors might change. These constraints can be incorporated with 
use of projected Newton’s algorithm [8] or using a barrier formu-
lation. All the kernels introduced in Section 4 can be optimized 
further by using specialised tensor formats like CSF coupled with 
an optimal threaded implementation for best performance. How-
ever, it is non-trivial to construct these formats optimally for each 
sub-iteration for a generalized loss functions.
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Appendix A. Generalized CP decomposition

All the algorithms for generalized CP completion introduced in 
Section 2 are based on elementwise derivatives of the generalized 
objective function [32] with respect to each variable in the factor 
matrix. In this section, we use tensor calculus to derive the neces-
sary expressions for an Nth order input tensor X ∈ RI1×···×IN . We 
assume that we have an index set � ⊂ {1, . . . , I1} ×· · ·×{1, . . . IN }, 
which represents the set of observed entries of the input tensor. If 
� consists of all the elements then the objective function would 
correspond to a decomposition problem. The objective function is

f (A(1) . . .A(N)) =
∑

i1,...,iN∈�

φ(xi1...iN ,mi1...iN ),

where mi1...iN =

R
∑

r=1

N
∏

n=1

a
(n)

inr
.

The elementwise expression for the gradient of f (A(1) . . .A(N))

with respect to dth factor matrix is

∂ f

∂a
(d)

kr

=
∑

i1,...,iN∈�

∂φ(xi1...iN ,mi1...iN )

∂mi1...iN

δidk

N
∏

n=1,n 
=d

a
(n)

inr
.
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Computing the gradient corresponds to an MTTKRP operation with 
the derivative tensor φ′

i1...iN
(5). We can differentiate the above ex-

pression for gradient further to arrive at an elementwise form of 
the Hessian matrix. This form is useful for writing algorithms that 
use second order information as these use a part of the Hessian 
matrix and/or use the implicit form of the Hessian. The derivative 
of the gradient with respect to pth factor matrix can be calculated 
by applying chain rule inductively

h
(d,p)

krlz
=

∂ f 2

∂a
(d)

kr
∂a

(p)

lz

=
∑

i1,...,iN∈�

φ′′
i1...iN

δip l

( N
∏

n=1,n 
=p

a
(n)

inz

)

δidk

( N
∏

n=1,n 
=d

a
(n)

inr

)

+ (1− δdp)
∑

i1,...,iN∈�

φ′
i1...iN

δidk

( N
∏

n=1,n 
=d,p

a
(n)

inr

)

δip lδrz,

where δi j is the Kronecker-Delta function. Newton or quasi-

Newton method requires solution to linear systems involving the 
Hessian at each iteration. Conjugate gradient method can be used 
to solve these systems of equations by making use of the im-

plicit form of the Hessian. Given current factor matrix updates 
W

(1), . . . , W (N) , the matrix-vector product with the Hessian can 
be computed by the following tensor contractions,

w
(d)(new)

kr
=

∑

p

∑

l,z

h
(d,p)

krlz
w

(p)

lz
, d ∈ {1, . . . ,N}, p ∈ {1, . . . ,N},

where W (d)(new) is the updated matrix corresponding to the dth

factor matrix. These contractions reduce to simpler contractions as 
mentioned in Section 3.3. The above form of Hessian can be used 
to derive all the methods described in Section 3.

Alternating minimization described in Section 3.1 is equiva-
lent to a block non-linear Gauss-Siedel method [22] to minimize 
the above objective function. Alternating minimization subiteration 
uses a diagonal block of the above described Hessian for optimiz-

ing a factor matrix given by

h
(d,d)

krlz
=

∑

i1,...,iN∈�

( N
∏

n=1,n 
=d

a
(n)

inz

)

δidkφ
′′
i1...iN

δidl

( N
∏

n=1,n 
=d

a
(n)

inr

)

.

Coordinate minimization subiteration described in Section 3.2 is 
equivalent to a non-linear Gauss-Seidel method, as in each subit-
eration, the method minimizes only one variable (in parallel) at a 
time. It uses the diagonal of the diagonal block of the above de-
scribed Hessian given by

h
(d,d)

kr
=

∑

i1,...,iN∈�

( N
∏

n=1,n 
=d

a
(n)

inr

)2

δidkφ
′′
i1...iN

.
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