Journal of Parallel and Distributed Computing 169 (2022) 269-285

Contents lists available at ScienceDirect
PARALLELAND
DISTRIBUTED
COMPUTING

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Distributed-memory tensor completion for generalized loss functions)

in python using new sparse tensor kernels

Check for
updates

Navjot Singh *, Zecheng Zhang, Xiaoxiao Wu, Naijing Zhang, Siyuan Zhang,
Edgar Solomonik

Department of Computer Science, University of lllinois at Urbana-Champaign, Urbana, USA

ARTICLE INFO ABSTRACT

Article history:

Received 2 February 2022

Received in revised form 3 July 2022
Accepted 7 July 2022

Available online 21 July 2022

Tensor computations are increasingly prevalent numerical techniques in data science, but pose unique
challenges for high-performance implementation. We provide novel algorithms and systems infrastructure
which enable efficient parallel implementation of algorithms for tensor completion with generalized
loss functions. Specifically, we consider alternating minimization, coordinate minimization, and a quasi-
Newton (generalized Gauss-Newton) method. By extending the Cyclops library, we implement all of these
methods in high-level Python syntax. To make possible tensor completion for very sparse tensors, we
introduce new multi-tensor primitives, for which we provide specialized parallel implementations. We
compare these routines to pairwise contraction of sparse tensors by reduction to hypersparse matrix
formats, and find that the multi-tensor routines are more efficient in theoretical cost and execution time
in experiments. We provide microbenchmarking results on the Stampede2 supercomputer to demonstrate
the efficiency of the new primitives and Cyclops functionality. We then study the performance of the
tensor completion methods for a synthetic tensor with 10 billion nonzeros and the Netflix dataset,
considering both least squares and Poisson loss functions.

Keywords:

CP decomposition

Tensor completion
Cyclops tensor framework

© 2022 Elsevier Inc. All rights reserved.

1. Introduction these sparse tensor kernels that achieve scalability on high perfor-
mance distributed-memory architectures.

Tensor completion [50], a generalization of the matrix comple-
tion problem, is the task of building a model to approximate a
tensor based on a subset of observed entries. The model should ac-
curately represent observed entries, generalize effectively to unob-
served entries, have a concise representation, provide efficient pre-
diction of any tensor entry, and be possible to optimize. Low-rank
matrix factorizations are a widely used model for matrix com-
pletion, while tensor decompositions [43], especially the canonical
polyadic (CP) decomposition [31,43], are commonly used for ten-
sor completion [21]. The major computational challenge in tensor
completion is the optimization of the model, i.e., computation of
a low-rank CP decomposition that effectively approximates the ob-
served entries [35].

Emerging sparse tensor methods pose new challenges for high-
performance programming languages and libraries. This paper de-
scribes new steps in making high-level productive parallel pro-
gramming for sparse tensor algebra possible. We focus specifically
on formulation and implementation of optimization algorithms
for tensor completion, which require management of extremely
sparse tensors and complicated tensor operations. We provide al-
gorithms and software for tensor completion with generalized loss
function [32]. Algorithms for the least-squares loss tensor com-
pletion have been a target of recent parallel implementation ef-
forts [35,64]. We provide new formulations of a variety of tensor
completion algorithms for the generalized loss function based on

a common set of basic kernels. We implement these kernels to
provide a new programming abstraction and software infrastruc-
ture for distributed-memory sparse tensor optimization algorithms.
By extending Cyclops [67], we provide a Python-level interface to

* Corresponding author.
E-mail addresses: navjot2@illinois.edu (N. Singh), solomon2@illinois.edu
(E. Solomonik).

https://doi.org/10.1016/j.jpdc.2022.07.005
0743-7315/© 2022 Elsevier Inc. All rights reserved.

We consider four optimization methods for tensor completion
with least squares loss, three of which are described in Section 2
and introduce novel algorithms for tensor completion with general
loss functions in Section 3. Alternating minimization or alternat-
ing least squares for least squares loss (ALS) updates one factor
matrix while keeping other factor matrices fixed for each step,
yielding a symmetric positive definite (for convex loss functions)
linear system of equations to be solved. Coordinate minimization
or coordinate descent for least squares updates one column of a

N. Singh, Z. Zhang, X. Wu et al.

factor matrix while keeping others fixed for each step and alter-
nates among factor matrices in a cyclic manner. Compared to ALS,
coordinate descent performs updates with less computational cost,
but reduces the minimization objective more slowly in each sweep
of update. Stochastic gradient descent (SGD) randomly selects sam-
ples from the tensor at each iteration and optimizes all the factor
matrices based on these entries with a gradient-based update.

Second-order algorithms like Newton’s method and Gauss-
Newton method for CP decomposition with least-squares loss have
been shown to perform better than ALS when the factors are
highly correlated and an accurate solution is required [70,2]. How-
ever, each iteration of these algorithms is expensive and naive
approaches do not scale due to the size of linear system re-
quired to solve. For the decomposition problem, the Gauss-Newton
method can be implemented efficiently using an implicit form of
the Hessian for fast matrix-vector products in the Conjugate gra-
dient algorithm [70,60]. Recently, a second order (Gauss-Newton
like) method was proposed for the generalized decomposition
problem [77]. In [77], the structure of the Hessian of the gen-
eralized decomposition problem is explored and the method is
shown to perform better than the gradient-based LBFGS [32] for
beta divergence loss functions. In Section 3.3, we use tensor alge-
bra to introduce a new formulation of the Newton’s method and
consequently a quasi-Newton method for generalized tensor com-
pletion which leverages an implicit form of the Hessian arising in
the completion problem. Note that if the number of missing en-
tries is set to zero, the problem would become a decomposition
problem and the implicit form of the Hessian would correspond
to the Hessian constructed in [77]. The implicit form of the Hes-
sian can be leveraged to solve the linear system involving the large
Hessian by use of batched conjugate gradient. We show that the
implicit matrix-vector products can be efficiently computed with
basic sparse tensor algebra operations and the overall method
achieves a lower computational cost than a direct solve [77,54].

To achieve high-performance for sparse tensor completion, we
extend the functionality for sparse tensor contractions included
in Cyclops [66,69,68]. Since tensor completion is often done with
extremely sparse tensor datasets [65,50], the use of CSR sparse
matrix format for contraction of local tensor blocks becomes in-
efficient, and hypersparse matrix formats [11] are necessary. We
add support for a CSF sparse matrix format to Cyclops (described
in Section 4.1), which requires O(m) memory for a tensor with
m nonzeros, and provides functionality to support contraction of
a sparse and dense tensors (into a sparse output) using the hy-
persparse format. Support of this format in a distributed memory
library imposes new challenges, such as the necessity to perform
summation and distributed reduction of blocks in hypersparse for-
mat. To the best of our knowledge, Cyclops is the first distributed
tensor library to offer this functionality.

We also identify a common generic multi-tensor routine that
arises in tensor completion, and is likely to be very useful in gen-
eralized CP decomposition of sparse tensors as well as other appli-
cations. This routine cannot be executed efficiently by the standard
approach of pairwise contraction of tensors which is typically used
by Cyclops. Therefore, in Section 4.3, we introduce a program-
ming abstraction for this tensor-times-tensor-product (TTTP) rou-
tine that achieves lower cost and memory footprint via a special-
ized parallel implementation. Specifically, the TTTP routine mul-
tiplies entries of a sparse tensor with corresponding multilinear
inner products of vectors. Alternating minimization requires com-
putation of tensor contractions with a sparse tensor along with
solving systems on the fly to avoid overheads in memory foot-
print. To address this, we provide a programming abstraction for
a sub-iteration of the algorithm involving specialised sparse tensor
contractions. We develop library routines that map sparse tensor

270

Journal of Parallel and Distributed Computing 169 (2022) 269-285

contractions to sparse matrix products and specialised multilinear
operations.

We develop parallel implementations of the tensor comple-
tion methods leveraging a new Python interface to Cyclops (de-
scribed in Section 5). This interface provides routines for Einstein-
summation-like contraction of tensors, TTTP, and a multitude of
other operations manipulating sparse and dense tensors. The func-
tionality is interfaced via Cython [6] to the C++ core of Cyclops.
Cyclops itself uses MPI, OpenMP, and CUDA to perform tensor alge-
bra and data transformations/redistribution. A basic set of parallel
dense linear algebra routines are made available by interfacing to
ScaLAPACK [9]. The Python interface implements much of the basic
functionality of numpy.ndarray, making it possible to easily trans-
form sequential Python dense tensor codes to distributed-memory-
parallel sparse tensor software.

We provide performance results on the Stampede2 supercom-
puter for redistribution, tensor contractions, TTTP, and tensor com-
pletion algorithms with Cyclops. Our results demonstrate that the
new hypersparse representations enable contraction of tensors
with extremely low density and that our new specialized TTTP al-
gorithm achieves much better scalability than when done by pair-
wise contraction. Finally, our tensor completion results show the
capability of a high-level Python implementation of tensor com-
pletion methods to scale to tens of thousands of cores and 10B
nonzeros of a highly sparse (10~ density) tensor. As an example
of our algorithmic and software framework for generalized tensor
completion, we provide an implementation of tensor completion
algorithms for least-squares loss and the first distributed memory
implementation of tensor completion algorithms for Poisson loss
with logarithm link function [32], and evaluate their performance
on the Netflix dataset [7] for tensor completion.

This paper makes the following contributions:

novel formulation of the second order algorithm for general-
ized tensor completion that uses implicit conjugate gradient
and is easily implementable with tensor algebra kernels,
novel algorithms for alternating minimization and coordinate
minimization for generalized tensor completion,

novel infrastructure in hypersparse matrix formats for parallel
sparse tensor contractions,

a new programming abstraction for products of sparse ten-
sors and tensor products (TTTP) and solving the linear systems
arising in alternating minimization for generalized tensor com-
pletion (Solve Factor),

novel support of distributed-memory sparse tensor algebra op-
erations in Python by a new interface to Cyclops,

first parallel implementation of generalized tensor completion
algorithms that use second order information.

2. Tensor completion background

A tensor 7 € R/ >IN has order N (ie. N modes/indices),
dimensions [1-by-...-by-Iy and elements ¢; ;, =t; where i €
®f’:1 {1, ..., I;}. Order N tensors can be represented by N—dimen-
sional arrays. The algorithms and techniques involved in tensor
completion do not differ significantly for tensors of order 3 or
larger, and many tensor datasets are order 3, so we focus on this
case for simplicity of presentation.

2.1. Tensor completion by generalized CP decomposition

The canonical polyadic (CP) decomposition [31] of an order
three tensor 7~ € R!*J*K has the form,

R

tijk = Z UirV jrWir,
r=1

(1)

N. Singh, Z. Zhang, X. Wu et al.

Table 1
First and second order derivative information.

Journal of Parallel and Distributed Computing 169 (2022) 269-285

Derivatives General loss function Least squares loss function (4)

Vv f(ui) Y ijbee; (Vi © Wi, Yken; (Vi © Wk)((“f, Vi, wg) — fijk)
k) Yo heey VirWirdi 2 Gioes erWkr<<"i~, v, Wi) — fijk)
Hj(u;) Yikea ViOWO LW OwWY) X eq, (Vi O W) (v; O wy)

% X iaen; Vi Wi Pl 23 v wi,

where R is referred to as the rank of the decomposition and U,
V, W as factor matrices. Letting (-,-,-) denote a trilinear inner
product, we can rewrite the above in terms of the rows u;, v;, wy
of the factor matrices,
tijk = (Ui, Vj, Wg).

(2)

The set of observed entries of a tensor 7~ may be represented by
index set Q Cc {1,...,I} x {1,..., J} x {1,..., K}, so that for all
(i, j, k) € 2, tjjx has been observed. The objective function that we
seek to minimize is
fU. V. W)= D bt (Ui vy, wi))

(i,j,k)eQ

Sum of elementwise loss function defined on observed entries

+ AUIEHIVIE+HIW). 3)

regularization to prevent overfitting

where ¢ : R x R — R is an arbitrary convex function that can be
chosen according to the inherent data distribution. Various poten-
tial choices of these functions have been discussed in [32].

Most of the previous work for CP tensor completion is related
to least-squares loss function, i.e., by using the following element-
wise function in the equation (3),

1 2
& (Lijie, (Wi, Vi, Wi)) = E(tijk — (Ui, vj, wi)<, (4)
which assumes that the error in data is normally distributed. How-
ever, many datasets that we encounter do not satisfy this assump-
tion, but may fall in a different category, for example, a dataset
of counts might follow Poisson distribution with the elementwise
loss function,

& (Lijk, (Wi, Vi, Wi)) = (Ui, vj, Wy) — tijelogug, v, wi),
where (u;, vj, wy) > 0.

For further sections, we will use a shorthand notation for the func-
tion ¢i®) : R — R as ¢jjx which assumes that the first input to
the corresponding binary input function, ¢, is tjj.. And further, we
define

;0@ (tijk, Miji)

L= , where mjj; = (u;, vi, wy)
¢1]k 8mijk ij i» Vj,

(5)
and qblf]’.k accordingly.

We review tensor completion algorithms for least squares loss
in this section, and generalize these algorithms to introduce novel
algorithms that use second order information for tensor comple-
tion with general loss functions in Section 3. We present a table
of derivative information in Table 1, which is used throughout this
section and Section 3 to formulate the algorithms. Derivations of
these expressions are provided in the Appendix A. Note that © is
the Hadamard/pointwise product and we omit the regularization
term for factors which maybe trivially added.

271

2.2. Alternating least squares

Alternating least squares (ALS) method is a standard algorithm
for CP decomposition with least-squares loss of tensors. Fixing all
except one factor matrices results in a quadratic subproblem which
can be solved with a single Newton’s step. Defining Qijk =1if
(i, j, k) € Q and 0 otherwise, and taking t;;, =0 if (i, j, k) ¢ €2, and
using Table 1 for gradient and Hessian values with an initial guess
of zeros for each row of the factor matrix, i.e., u; =0, the updated
matrix U™ can be expressed as a system of equations involving
sparse tensor contractions,

new i
Zugr N8 +26r5) = ZVjkustijka
r j.k
where g = Z V jr Wir Qi V js Ws-
j.k

Given m = |2| observed values, solving the linear systems has cost
O(IR?), forming the right-hand sides has cost O(mR), and com-
puting the matrices G® has cost O (mR2). Contracting two tensors
at a time to form each G® all at once incurs additional memory
footprint, specifically,

O (min(median(l, J, K)R?, mR) + LR?), where
L =median(|{(j, k) : (i, j, k) € Q}|, [{(i, k) : (i, j, k) € 2},
@,) -, 5, k) € Q})).

2.3. Coordinate descent

Coordinate descent updates a single variable of a factor matrix
while keeping all others fixed. Each variable in a column of the fac-
tor matrix becomes independent, and therefore the whole column
of a factor can be updated simultaneously. An iteration of coordi-
nate descent is analogous to a step of ALS with a rank R =1 CP
decomposition. The main advantage of coordinate descent over ALS
is the lack of a need to solve systems of linear equations. A step of
the algorithm can be computed using the values from Table 1,

u(_new)

i =Uir + Aujr,
Aujr = (— Aljr + Z Vjr Wi (tijk — (Ui, v, Wk)))/
(j,k)e;

2.2
<A+ K jrwkr).

(J,k)eQ;

Similar to ALS, we can use an initial guess of zeros, i.e., uj; =0 and
define

The update can be expressed with sparse tensor contractions,

if(i,j,k)eQ
otherwise.

tijk — (Wi, Vj, Wi) + UirV jr Wy,
0

r) _
ik =

N. Singh, Z. Zhang, X. Wu et al.

Aujr = (Z erWkrpi(jr12>/<)‘ + Z Qiﬂ<v?rwlzr>'

j.k j.k

These contractions can be performed with O(m) cost to update
each u; for all i, and pi(ﬁ:q) can be obtained from pi(jrlg with O (m)
cost. Consequently, coordinate descent also requires O (mR) cost to
update all factor matrix entries, but has less parallelism and gen-
erally makes less progress than ALS since the updates to elements
of factor matrix rows are decoupled. Our CCD implementation al-
ternates between factor matrices for each column update, which
corresponds to the CCD++ ordering [81].

(new) __

uir -

2.4. Stochastic gradient descent

Instead of solving for a subset of variables at a time, one can
solve for all the variables in an iteration using the first order or
the gradient information. The simplest algorithm which uses gradi-
ent information for all the variables is gradient descent. The values
for the derivative with respect to each element can be used from
Table 1 yielding the following update,

af

oujr

(new) _
ir =1u

u ir—1

with a cost of O(mR).

Since more accurate updates with monotonic convergence guar-
antees can be obtained with similar cost via ALS or coordinate
descent, gradient descent is generally less efficient for tensor
completion. However, stochastic gradient descent offers a frame-
work in which the initial tensor can be sampled, leading to cost
O(SR+ (I + J + K)R) (where S is the sample size) for a sweep
that updates all factor matrices.

For a general objective function an extra computational cost
of O(m) (O(S) in case of stochastic gradient descent) is required
to compute ¢{jk tensor to compute the gradient for each factor
matrix. A distributed memory implementation of SGD for tensor
decomposition with generalized loss functions was recently re-
leased [18]. Apart from stochastic gradient descent, LBFGS is an-
other gradient based method that has been explored for general-
ized tensor decomposition in [32]. We do not consider LBFGS in
this work.

3. Algorithms using second order information for generalized
tensor completion

In prior work, use of second order information for tensor com-
pletion with loss functions other than least squares loss is largely
unexplored. Alternating minimization and coordinate minimization
have been proposed for tensor decomposition with Poisson loss
function with identity-link [25]. A parallel implementation of these
algorithms has been investigated recently [73]. A quasi-Newton al-
gorithm for generalized tensor decomposition has been formulated
recently [77], however the sparsity in Hessian due to missing data
in the completion problem has not been discussed. In this sub-
section, we describe how the formulation of ALS and coordinate
descent as Newton’s iteration can be used to derive alternating
minimization and coordinate minimization algorithms for gener-
alized objective functions. We then introduce the Newton’s and
quasi-Newton algorithm for generalized tensor completion which
uses an implicit Conjugate Gradient (CG) algorithm. We explore
the sparse tensor structure of the Hessian matrix, which allows us
to formulate matrix vector products in the CG algorithm as sparse
tensor contractions that can be efficiently implemented via sparse
tensor kernels introduced in this work.

272

Journal of Parallel and Distributed Computing 169 (2022) 269-285

3.1. Alternating minimization

Alternating minimization works by fixing all except one fac-
tor matrix at a time and solving the optimization problem with
respect to that factor matrix optimally. For solving the resulting
subproblem, each row of the factor matrix can be optimized via
Newton’s method,

ugnew)

where Au;H(u;) = -V f(u;).

=u; + Au;,

We derive the Hessian of the generalized completion objective (3)
with respect to all the factor matrices in Appendix A. The diag-
onal blocks of this Hessian can be used to perform alternating
minimization for general loss functions. A Newton’s iteration is
equivalent to a sub-iteration of the alternating least squares algo-
rithm in terms of computational cost. Since the objective function
is not quadratic, Newton’s method may take more than one step
unlike least-squares loss. The Hessian H f(u;) and gradient V f (u;)
for general loss functions with respect to each row u; is given in
Table 1, and can be used to compute the Newton's step. Note that
for a general loss each step costs the same as an ALS sub-iteration
except for the fact that q}{jk and ¢{J/ tensors would need to be
computed beforehand, which require O(mR) computational cost
and O(m) memory.

3.2. Coordinate minimization

Rather than updating the whole row of a factor matrix as in
alternating minimization, coordinate minimization updates a single
variable at a time while keeping the others fixed. A Newton’s step
for a single variable is given as

new
Ugr = Uir + Air,
of
au;
where Auj = — T,
" 92 f (uir)
T

For coordinate minimization of general loss functions, we can use
the diagonal blocks of the Hessian used in alternating minimiza-
tion and perform the Newton’s iteration to solve for a column of
the factor matrix. The values of derivatives for each element u;,
from Table 1 can be used to compute the Newton’s step for the
column with the same computational cost as for a CCD++ sub-
iteration by using the trilinear product (u;, vj, wy) to compute qblfjk
and ¢,f]fk tensors with an additional cost of O (m) for updating both
the tensors.

3.3. Newton’s and quasi-Newton algorithms

In the regime of optimizing all variables at once, second order
information can be used to obtain Newton’s and quasi-Newton al-
gorithms for the generalized completion problem. To minimize the
objective, each iteration of the algorithm updates all the factor ma-
trices by using the following update,

[U®ew) |y (ew) [y (eW)| — [y, vV, W]+ [AU, AV, AW],
where [AU,AV, AW]= —H}l(U, V.W)VfU,V,W),

where Hy(U,V,W) is the Hessian or the approximated Hes-
sian and V f(U,V, W) is the gradient for the objective function
fU,V,W) in equation (3) with respect to all the factor matrices.

While the gradient can be computed efficiently, explicitly
computing the Hessian or approximated Hessian and storing

N. Singh, Z. Zhang, X. Wu et al.

it is extremely expensive as it is sparsity unaware requiring
O((I + J + K)?R?) memory. Moreover, directly inverting the ma-
trix Hy (U, V, W) requires O((I + J + K)3R®), which is practically
infeasible for large scale tensors. Alternatively, we explore the im-
plicit form of the Hessian for the generalized completion problem
to formulate Newton and quasi-Newton algorithm that use CG al-
gorithm with implicit matrix-vector products as applied in the CP
decomposition with least-squares loss [60]. The convexity of the
generalized tensor completion loss function ensures that the Hes-
sian is positive semi-definite. The Gauss-Newton method approx-
imates the Hessian by excluding the additional term required in
the off-diagonal blocks of the Hessian, resulting in a quasi-Newton
method for generalized objective function. With the implicit form
of Hessian or approximated Hessian, the linear systems arising at
each iteration can be solved by performing CG method with im-
plicit matrix-vector products. Tensor contractions for updating the
first factor matrix iterate in the implicit matrix-vector product in
CG iteration for each Newton’s iteration are

an.a _ , e,
Zhilrs s —Z Z VjrWir®ijiV js WksXis
s,l s (ke
1,2),(2) _ i "o, (2)
Zhilrs Xis _Z Z V]err(PijkukaSst
s s (e
7 ,(2)
+ Z Wl<r¢,‘jkxjr7
(J. k)€
1,3),0) _ , v B
Zhilrs s —Z Z VjrWkr®jjilisV jsXjes
51 S Gidoee,
o 53)
+ D Vi
(ke
where 331 3" h{"x™ corresponds to the first block of the

matrix vector product of the Hessian and matrices X, X® and
X®. The other two blocks of the matrix vector product can be
computed similarly.

Each contraction of the type

Z Z XjrYirtijkUisV jsWks,

s jk

where 7 is a sparse tensor, can be computed in O(mR) cost by
breaking it down into two contractions,

Zijk = tijk Z UjsV jsWis and a;r = Z ZijkXjr Ykrs
s j.k

each of which costs O (mR). Therefore, a CG step for solving a sys-
tem in the quasi-Newton algorithm costs O (mR).

The computation cost of the quasi-Newton algorithm is dom-
inated by CG iterations. The number of CG iterations can be
reduced by using the block diagonal part of the Hessian as a
pre-conditioner [60]. However, storing the explicit inverse of the
diagonal blocks of Hf(U,V,W) may still be a memory bottle-
neck for large tensors. Instead, the inverse of a diagonal block of
Hf(U,V,W) can be applied with a cost identical to solving for
the linear systems in a sub-iteration of alternating minimization
algorithm introduced above.

4. New sparse tensor kernels

The aforementioned tensor completion algorithms require so-
phisticated support for sparse tensor operations. We extend the
Cyclops library for tensor computations, which already includes
support for sparse tensor contractions, reducing these to matrix

273

Journal of Parallel and Distributed Computing 169 (2022) 269-285

multiplication with CSR format locally. Cyclops leverages a cyclic
data layout on multidimensional processor grids to achieve good
performance and load balance for sparse tensors. However, we
observe two major bottlenecks within the sparse tensor algebra
operations required in tensor completion that warrant extensions
of functionality.

We describe new infrastructure for hypersparse matrix formats,
leveraging a doubly-compressed format, which is a special case of
the compressed sparse fiber (CSF) layout [62,63]. We apply this
infrastructure to obtain TTM and MTTKRP implementations that re-
quire a minimal amount of memory and flops [37,46,27,5]. Further,
we provide a specialized all-at-once implementation of MTTKRP
that is within a factor of four of specialized MTTKRP libraries.
Additionally, we introduce a kernel for multiplication of a sparse
tensor with multilinear inner products of vectors (TTTP), resulting
in an output sparse tensor of the same size. Our parallelization of
the kernel leverages batching to achieve lower memory-footprint
than previous work [64,35]. TTTP generalizes the sampled dense-
dense matrix multiplication (SDDMM) kernel [14,53,40], and is
useful also for CP decomposition of sparse tensors.

We also introduce a kernel for solving linear systems on the
fly arising in alternating minimization of the generalized objec-
tive function for CP completion (3) involving sparse tensors. For
the special case of least squares loss, we achieve a comparable
performance to the state of the art library for performing ALS com-
pletion [64].

4.1. Hypersparse matrix formats

Tensor contractions can be reduced to matrix multiplication
with matrices that have the same number of sparse entries. How-
ever, while it is uncommon in sparse matrix computations for
entire rows or columns of a sparse matrix to be zero, the sparse
matrix-matrix products occurring by reduction from tensor com-
putations often have this property [63]. A canonical example is
the product of a sparse tensor and a dense matrix, which can be
used an initial step for MTTKRP, yielding an intermediate that can
typically be reused in multiple MTTKRP operations via dimension
trees [38] (also see [58,78,5]). In this tensor times matrix (TTM)
operation, given an order three tensor, we seek to compute

Zijr = Ztijkwkrs
K

where 7T is sparse and W is dense. By merging i and j into a sin-
gle index, TTM reduces to a matrix-matrix product of sparse and
a dense matrix. For 7 € R/*/*K if the number of entries in 7T is
less than I], then the above matricization of 7~ is necessarily hy-
persparse (contains rows with only zero entries), and Z is sparse.
For many sparse tensor datasets, one of the modes is small, or the
number of nonzeros scales with mode size, i.e, m= 0+ J + K).
In both cases, we may obtain a matricization that is very hyper-
sparse (most rows are zero), in which case the matricization of
Z cannot be stored in a dense format without increasing memory
footprint.

Cyclops represents static sparse tensor data in a COO-like for-
mat, storing a single 64-bit integer for each value to encode its
global location in the tensor, with index-value pairs sorted locally.
When a contraction is executed, the locally stored portion of the
tensor is transformed into a CSF [63] sparse matrix format. In this
format, we use CSR to encode the nonzero rows and an additional
array is stored that maps nonzero rows to the original set of rows.
This matrix CSF format also corresponds to the DCSR [11] format
without the use of chunks (no AUX array). This layout requires
®(m) storage if a tensor has m nonzeros, improving on (I J +m)
needed for plain CSR for the TTM operation above. Multiplication

N. Singh, Z. Zhang, X. Wu et al.

of a matrix by a dense matrix is easy, it suffices to multiply the
reduced CSR matrix by the dense matrix, then generate a new CSF
matrix to represent the sparse output, resulting in O (mR) cost.

Realizing CSF functionality for arbitrary tensor contractions also
necessitates implementation of sparse format conversions, sum-
mation of CSF blocks, and interprocessor reduction. We provide
kernels for each of these steps. When sparsity is involved, Cyclops
first ensures that each index arising in the tensor contraction ex-
pression occurs in exactly two tensors. If an index occurs in only a
single tensor, pre- or post- processing can be performed to reduce
or map the input or output, respectively. If an index occurs in all
three tensors (specifying a set of independent contractions), Cy-
clops duplicates the index, converting one of the sparse operands
to a tensor of one order higher, placing the original data on the
diagonal (e.g. ¢c; = vijw; with sparse v is performed via ¢ = Vw
where 7j; = v;). By ensuring that each index occurs in exactly two
tensors, Cyclops is able to map the local part of the contraction to
a matrix-matrix product. Cyclops puts local parts of the tensor into
sparse matrix format by first converting to COO then to CSF ma-
trix format (for a standard sparse format, conversion to CSR works
similarly).

Local summation of CSF matrices requires identifying which
rows are nonzero in both matrices, which is done by comparing
the two sets of nonzero row indices. The summation of each row
is done by leveraging a dense array. In particular, if each local
matrix has K columns, nonzeros in that row are accumulated to
the corresponding entries of an array of size K, then the sparse
sum is read back and the entries used are zeroed out. The cost of
this operation for summing each row scales with the number of
nonzeros in the output row, but the buffer must be allocated and
cleared, creating a potential bottleneck if the local sparse matrices
are very hypersparse in both rows and columns (most rows and
most columns are entirely zero). For sparse tensor times matrix
contractions arising in the tensor completion kernels, each column
contains nonzeros.

Parallel reduction of CSF matrices leverages this summation
kernel, using a butterfly collective communication approach (re-
cursive halving followed by recursive doubling [74]) that performs
a sparse reduce-scatter followed by a sparse gather. At each step of
the sparse reduce-scatter, hypersparse matrices with smaller over-
all dimensions but higher density are summed by each processor
using the sparse summation kernel described above. An example
of the reduce-scatter is displayed in Fig. 1. The sparse gather re-
combines these matrices by concatenation. The partitioning and
recombination is done using a k-ary butterfly, where k is a pa-
rameter that we chose to be a constant.

4.2. Matricized tensor times Khatri-Rao product

While the use of hypersparse formats enables an implementa-
tion of MTTKRP that asymptotically minimizes memory footprint
and cost, we also provide a specialized MTTKRP implementation
that performs the operation in an all-at-once manner. In particular,
the MTTKRP is parallelized by performing smaller local MTTKRPs
on each processor, using the sparse tensor data stored on that pro-
cessor. This parallelization follows SPLATT [62,63] and also uses a
reduction to accumulate results. However, the MTTKRP kernel in-
teroperates with other Cyclops functionality, redistributing factor
matrices from an arbitrary initial layout, to a partially-replicated
distribution necessary to compute the local MTTKRP, and the re-
sulting matrix is put into a layout that is distributed over all pro-
cessors. Locally, the sparse tensor data is kept in the usual Cyclops
COO-like format, as opposed to the specialized CSF format. Par-
tial sums are accumulated for the local part of each tensor fiber
along the most quickly changing index. The BLAS axpy operation
and the MKL vector pointwise product are used to achieve vector-

274

Journal of Parallel and Distributed Computing 169 (2022) 269-285

wx| [wx] w]

/A
=

\@

)

\
/\

A
7
Ui

4

T e el
g v[[v @ =
v|y o [y fwy] w]]

\
\

éb

.
/] 5

Fig. 1. Depiction of 4 processor reduce-scatter of 4 x 4 hypersparse matrices stored
in doubly compressed (CCSR) format.

ization when the MTTKRP is performed with factor matrices that
have more than one column.

4.3. Tensor times tensor product

Efficient support for sparse tensor contractions does not suf-
fice for tensor completion algorithms. Their use entails significant
overhead in memory footprint even to just compute the residual,

R
Pijk = tijk — Z QijklirV jr Wi,

r=1
since forming intermediate or Xy, = Qijkuir increases mem-
ory footprint, while alternatively forming the dense intermediate
Yijk = 25:1 UjrV jrWyr is suboptimal in both memory footprint and
work. Evidently, the most efficient way to perform such oper-
ations requires all-at-once contraction of multiple operands. To
handle this operation effectively, we introduce the tensor-times-
tensor product (TTTP) operation, which takes as input a sparse
tensor & € RI"xIv and a list of up to N matrices AD e

RI<R AN e RIN<R and computes
R N
L —e (€)]
Xiq...iy = Siq...in Z Haijr'
r=1 j=1

If fewer then N matrices are specified, the product should iter-
ate only over modes for which an input is provided. By iterating
over m nonzero entries in & and performing the multilinear in-
ner product for each one, TTTP can be performed with cost O (mR)
and O((I; +---+ IN)R +m) memory footprint. When N = 2, TTTP
corresponds to the SDDMM operation X =S © (UVT).

TTTP is an integral part of the algorithms for generalized ten-
sor completion as it is used to compute qblfjk (equation (5)) and
¢l.’]’.k. For the traditional tensor completion with least squares loss,
TTTP allows calculation of the residual in tensor completion with
CP decomposition, by computing

R
Qijk Z UirV jr Wi

r=1

N. Singh, Z. Zhang, X. Wu et al.

N A

Fig. 2. Depiction of 8 processor parallelization of TTTP computing one of four
smaller TTTP substeps.

Although, this residual calculation can be accelerated in ALS, it
is explicitly necessary in the coordinate minimization algorithm.
Further, for the Newton’s and quasi-Newton method with implicit
conjugate gradient in Section 3.3, we use TTTP to compute updates
via

Zjjk = ¢{}k Z V js WisXis, Xf: ew)

= Z VjrWirZijk -
S j.k

TTTP MTTKRP

Our parallel implementation of TTTP keeps the sparse tensor input
S and output X local on whichever processor grid & was initially
distributed on. The matrices A, ..., A™ are input from an arbi-
trary initial processor grid distribution. Each matrix is sliced into
H < R pieces by taking H equal-sized subsets of their columns,
based on available memory. The computation then proceeds in H
steps, each computing a smaller TTTP involving matrices of size
Ij x (R/H). For each step, the corresponding slice of each of the
N matrices AW is redistributed so that its rows are cyclically dis-
tributed over the processor grid dimension along which the jth
mode of & is distributed (if any), and replicated over all others.
Each of P processors can then compute a part of the smaller TTTP
with the entries of S (and X’) it is assigned locally, performing a
total of O(mR/P) work overall.

This parallel TTTP algorithm is depicted in Fig. 2 for scenario
with P =8 processors. Assuming a [=11 =---=1Iy and a proces-
sor grid is used of dimensions P1/N x ... x P1/N using a BSP model
of communication [61,75], the latency cost (number of supersteps)
is O (H), the interprocessor bandwidth cost is O (IR/P1/N), and the
memory footprint is O (m/P + IR/(PV/NH)). Efficient mechanisms
for redistribution of dense matrices between arbitrary processor
grids exist in Cyclops [68].

4.4. Solve factor

Alternating minimization for generalized CP tensor completion
requires tensor contractions along with a solve which should be
done on the fly to avoid a memory bottleneck. To accomplish this,
we provide a specialized kernel, which uses a similar paralleliza-
tion strategy suggested in [64] for ALS completion. Our kernel
takes as input a tensor S € RI"**IN 3 list of up to N matri-
ces AD e RI*R AN ¢ RINXR ap integer n, a right hand side
matrix M € R"*Rand solves for the Newton’s step with respect
to n® factor matrix as described in Section 3.1.

The left hand sides for it" row of the factor matrix in the New-
ton’s step, G, can be computed by the following contractions,

275

Journal of Parallel and Distributed Computing 169 (2022) 269-285

N N
(in)
g = Z (l_[aipr>5i1...iN< 1_[aips>,
i1...in—1,ip+1...IN "~ p=1,p#n p=1,p#n

which together incur a computational cost of O (mR?) and a mem-
ory footprint of O (I,R?).

Our parallel implementation follows the same strategy as
in Section 4.3 and keeps the sparse tensor input & local on
whichever processor grid it was initially distributed on. The matri-
ces AV . A™ are input from an arbitrary initial processor grid
distribution and are redistributed as described in Section 4.3. To
make use of BLAS-3 operations for the above mentioned contrac-
tions, the input tensor must be sorted with respect to the mode n.
We accomplish this in the current format by performing a Count-
ing sort [17] using the indices of the n™ mode as keys over the
local data with a computational cost of O (m/P).

Forming left hand sides for the normal equations for all the
rows can be a memory bottleneck due to a memory footprint
of O(IR?/P'/N), We divide the rows into b batches accord-
ing to the memory available, leading to a memory footprint of
O (IR%/(bP'/N)) and then for computing the normal equations for
each row, we store the hadamard products of the vectors multi-
plied with the square root of corresponding tensor entries in a
local buffer of size K x R by using MKL for pointwise vector prod-
ucts. When the buffer is filled up or the number of entries are
exhausted, a symmetric rank-k (SYRK) update is performed us-
ing BLAS to compute the local left hand sides. A reduce scatter
along slice with respect to mode n of the processor grid allows us
to scatter the computed left hand sides. The corresponding right
hand sides are distributed and a symmetric positive definite solve
routine in BLAS (POSV) is used to achieve a parallel solve with

O(IR3/(bP%)) cost for a batch of rows.
5. Python interface and implementation

Cyclops [68] provides extensive support for tensor algebra and
tensor data manipulation in C++, leveraging BLAS [44], MPI [23],
OpenMP, CUDA, HPTT [71], and ScalLAPACK [9]. The library sup-
ports both dense tensor formats [68] as well sparse tensor for-
mats [66], both of which leverage partitioning of the tensor data
among all processors. Scaling, summation, and contraction are sup-
ported via a succinct programmatic Einstein summation notation.
Cyclops also provides general kernels such as tensor transposition,
redistribution, slicing, and permutation of tensor indices. Addition-
ally, the library supports user-defined element types and algebraic
structures specifying their properties, as well as contractions that
operate on tensors of different types, enabling applications such as
graph algorithms [69].

Cyclops leverages a runtime-centric execution model, making
data distribution and algorithmic scheduling decisions at execu-
tion time. This enables performance models to be evaluated for
runtime-determined parameters such as problem size and proces-
sor count. We leverage this characteristic of the Cyclops system
architecture to provide a performance-efficient Python interface to
Cyclops. This extension enables productivity for high-performance
implementation of tensor computations. By implementing a back-
end for high-level NumPy-style operations [76], we activate sup-
port for sparsity in tensor storage and computations, as well as
parallel execution in distributed and shared memory. These capa-
bilities are enabled with minimal overhead to the user. For ex-
ample, by using Cyclops, sparse storage for a code based on the
standard numpy.ndarray can be implemented simply by an ad-
ditional boolean flag in the ctf.tensor constructor. By contrast,
the standard approach for supporting sparse matrix operations in
Python, involves manual handling of the CSR format via SciPy [34].

N. Singh, Z. Zhang, X. Wu et al.

einsum, slicing, linear algebra, reordering, reshaping...

I
numpy.ndarray](—)[ctf.tensor H scipy.sparse

[OpenMP] Cuda
I I I

Supercomputer

Fig. 3. Overview of Cyclops Python interface organization.

5.1. Cyclops python interface

We utilize Cython [6], which enables interoperability of Python
and C++, to encapsulate the main functionalities of Cyclops C++ in-
terface. As shown in Fig. 3, we introduce a Python tensor class
that wraps the C++ Cyclops tensor object via Cython and pro-
vides the core functionality. Tensor and multidimensional array
operations are also built on C++ interface functionalities includ-
ing ctf.einsum, ctf.tensordot, ctf.transpose, and ctf.reshape.
Functionality provided by NumPy in numpy.linalg is also sup-
ported, including QR, Cholesky, SVD, and the symmetric eigensolve.
Boolean, integer, and floating point types of a variety of preci-
sion are supported, which are specified via numpy.ndarray.dtype.
The C++ interface of Cyclops uses templating to support arbitrary
types and user-defined elementwise operations, so extension of
the Python interface to other types is possible. Dense and sparse
distributed Cyclops tensors may be defined in a variety of ways.

Listing 1 Example Code: Tensor Initialization.

import ctf

ctf.tensor([5,7]) # dense zero matrix
ctf.random.random((4,4)) # random dense tensor
ctf.ones((4,3,5)) # tensor full of ones
ctf.eye(9) # dense identity
ctf.tensor([5,3,4], sp=True) # sparse tensor
.fill sp random(-1.,1.,.1) # 10% density

S = ctf.speye(9) # sparse identity

HHHORCG
won w onn

For both the dense tensor and sparse tensor, NumPy-style
indexing/slicing is provided such as afo, 11 to extract agp; or
A[3:5, 1:4:2] to extract a 2-by-2 matrix containing entries at the
intersection of rows 3 and 4 and columns 1 and 3. A key differ-
ence between the Cyclops Python interface and NumPy functions
including slice and (transpose a.t) is that Cyclops explicitly creates
the new tensor in memory as opposed to providing a logical refer-
ence. For example with the Cyclops interface, transposition is done
via B = a.T(), which returns a new tensor (so modifying elements
of B will not change A).

Cyclops supports both NumPy-style Einstein summation, as well
as an additional Einstein syntax similar to its C++ interface. For
example, the following two lines are equivalent.

Listing 2 Example Code: Einstein Summation.

R += T - ctf.einsum("ir,jr,kr->ijk",U,V,W)
R.i("ijk") << T.i("ijk")- U.i("ir")*V.i("jr")*W.i("kr")

276

Journal of Parallel and Distributed Computing 169 (2022) 269-285

Expressions such as the above are passed directly to the C++
layer. The C++ layer then makes decisions regarding evaluation or-
dering and choice of intermediate tensors. Cyclops performs this
by considering all possible binary trees for contraction of window
of up to 8 tensors (contracting-away one tensor and including the
next one given more than 8 operands), based on a heuristic model
of computation and memory-bandwidth cost. Intermediate tensors
are defined to be sparse if they are a contraction of two sparse
operands or if a very sparse tensor is contracted with a dense ten-
sor (contraction corresponds to a matrix-matrix product with a
hypersparse matrix that must have fewer than 1 in 3 rows with a
nonzero).

5.2. TTTP interface

Cyclops does not automatically determine when to use the
multi-tensor TTTP operation. Instead, a simple interface is provided
for this operation. For example, the following code computes

Sijkl = Zoijkluirvjrwkrzlr» tijki = Zoijkluirwkr~
r r

Listing 3 Example code: TTTP.

O = ctf.tensor((I,J,K,L),sp=True)

U = ctf.tensor((I,R)), V = ctf.tensor((J,R))
W = ctf.tensor((K,R)), Z = ctf.tensor((L,R))
... # £ill o,U,V,W,2Z

S = ctf.TTTP(Omega, [U,V,W,Z2])

T = ctf.TTTP (Omega, [U, None,W,None])

The routine alternatively accepts a list of vectors rather than
matrices as the second argument. A similar routine is available via
the C++ interface to Cyclops.

5.3. Parallel tensor completion in python

Given high-level tensor algebra primitives, we are able to im-
plement the aforementioned tensor completion algorithms without
any explicit management of parallelism or data distribution. The
problem of parallelization of these algorithms is reduced to ex-
pressing them with high-level tensor algebra operations.

5.4. Alternating minimization (alternating least squares)
implementation

Alternating minimization algorithm can be implemented en-
tirely using the MTTKRP kernel for the right hand sides and the
Solve Factor kernel for the solves. Solving for one factor matrix
can be implemented easily via the Cyclops Python interface.

Listing 4 ALS solve for one factor matrix (U).

rhs = ctf.tensor ((I,R))

ctf .MTTKRP (T, [rhs,V,W],0) #compute right hand sides

U = ctf.tensor((I,R))

ctf.Solve Factor (Omega, [U,V,W],rhs,0,regu) #solve for U

5.5. Coordinate minimization (coordinate descent) implementation

The coordinate minimization updates are easy to formulate via
Einstein notation contractions and elementwise operations.

For the second expression above, Cyclops finds the right tree
of contractions automatically (note that a tree is more efficient

N. Singh, Z. Zhang, X. Wu et al.

Listing 5 Example code: CCD++ Update Rule.

a ctf.einsum(’ijk,j,k->i’,R,V[:,r],W[:,r])
b ctf.einsum(’ijk,j,j, k, k->1i",
Omega,V([:,r],V[:,r],W[:,r],W[:,r])

Ul:,r] = a / (lmbda + b)

than contracting left-to-right given any initial order). Slicing per-
mits easy access of columns, although in our final implementation,
we split up each factor matrix into column vectors outside of the
CCD++ iteration loop to minimize overhead.

We also consider an implementation of CCD++ that is based on
the MTTKRP kernel in Cyclops. This approach forgoes the need for
tensor contractions with hypersparse matrix representations.

Listing 6 Example code: CCD++ with MTTKRP.

ctf .MTTKRP (R, [A,V[:,xr] ,W[:,xr]],0)
ctf .MTTKRP (Omega, [B,V[:,r]*V[:,r] ,W[:,xr]*W[:,xr]], 0)

5.6. Stochastic gradient descent implementation

We leverage a sampling function in the Cyclops Python inter-
face to obtain a random sample of the tensor 7 for each SGD
sweep (update to each factor matrix).

Listing 7 Example code: SGD Batched Sampling.

sampled T = T.copy ()

sampled T.sample (samprate)

sOmega = getOmega (sampled T)

R = sampled T - ctf.TTTP(sOmega, [U,V,W])
ctf.MTTKRP (R, [U,V,W],0)

U+= -2* step* lmbda *samprate*U

The bulk of the computation within SGD is then comprised of
the above sparse MTTKRP, which calculates a subgradient from R
(the residual for the sampled entries). The getomega() function
works by reading the local nonzeros of the tensor, and writing
them to a new sparse tensor with unit values. We also consider
an implementation of SGD with the all-at-once Cyclops MTTKRP.

5.6.1. Quasi-Newton (Gauss-Newton) implementation

For implementing the quasi-Newton or Newton’s algorithm,
right hand sides in each iteration can be easily computed as these
are negative of gradient with respect to each factor matrix. For
solving the linear system in each iteration, CG iterations require
matrix vector products with the implicit form of the Hessian. Each
block of contraction required for the method as described in Sec-
tion 3.3 can be implemented using TTTP and the MTTKRP kernel.
The output of TTTP is fed into the MTTKRP kernel with the desired
output index. The expression for (1,2) Hessian contractions is as
follows

Listing 8 GN implicit block (1,2) contraction.

A[0] += ctf.MTTKRP(ctf.TTTP(Omega, [U,Deltall]l,W]),
[None,V,W], 0)

Preconditioning can also be easily incorporated using the Solve
Factor kernel used in Section 5.4.

277

Journal of Parallel and Distributed Computing 169 (2022) 269-285

6. Experimental evaluation

We provide performance results for a range of kernels and for
tensor completion algorithms overall.! All benchmarks and ap-
plication code are written purely in Python using Cyclops with-
out any explicit distributed data management/communication. We
study the scalability of redistribution routines within Cyclops for
sparse and dense tensors by benchmarking tensor transposition
and reshaping routines. We then consider performance of the new
hypersparse contraction and TTTP kernels by benchmarking TTM,
MTTKRP, TTTP, and Solve Factor. Finally, we provide a comparative
study of the performance of all the algorithms introduced in Sec-
tion 2 for tensor completion on a model low-rank dataset and on
a realistic large tensor (Netflix dataset [7]) with two different loss
functions.

6.1. Benchmarking configuration

All results are collected on the Stampede2 supercomputer at
Texas Advanced Computing Center (TACC) via XSEDE. Stampede2
consists of 4200 Intel Knights Landing (KNL) compute nodes (each
capable of a performance rate over 3 Teraflops/s) connected by an
Intel Omni-Path (OPA) network with a fat-tree topology (achieving
an injection bandwidth of 12.5 GB/sec). We use Cyclops v1.5.5 built
with Intel ICC compiler v18.0.2 with MKL and ScalLAPACK, Intel
MPI, HPTT v1.0.5, and -O1 level of optimization. We benchmark the
MTTKRP in SPLATT v1.1.1 and use the ‘sc16’ branch to benchmark
tensor completion [64], using distributed MPI variants of both. All
experiments use 64 MPI processes per node, with 1 thread per
process. For all benchmarks except tensor completion, we quantify
noise by displaying estimated 95% confidence intervals. These are
centered at the arithmetic mean and have a width of four standard
deviations in the observed data (first/warm-up trial ignored).

6.2. Redistribution performance

Fig. 4(a) and Fig. 4(b) consider the weak scalability of tensor
transposition and reshaping. These are commonly used as mul-
tidimensional array operations in NumPy Python code, so their
performance is important for a range of applications. Redistribu-
tions are substantially more costly in a distributed environment
and are often the main bottleneck in Cyclops tensor contractions
due to the necessity of communicating data between processes to
a new processor grid mapping. The number of nonzero elements
is kept fixed across variants, but increased in proportion to the
number of nodes used. Overall, we observe good scalability in end-
to-end bandwidth (computed as the number of bytes necessary to
store the tensor divided by execution time) of the two operations.
The reshape performance for dense tensors can be improved, as it
converts to sparse format, leveraging preservation of global order-
ing. The performance is generally independent of tensor order or
of the particular type of transpose/reshape.

6.3. Hypersparse representation performance

Fig. 5(a) compares variants of Cyclops tensor times matrix
(TTM) kernels using 64 nodes of Stampede2 for various density
of nonzeros (for a fixed nonzero count). The performance of each
variant is plotted for problem sizes for which it does not run out
of memory. We observe that the dense variant performs relatively
well, but quickly runs out of memory. Using a sparse tensor rep-
resentation and a dense output representation achieves the best

! The tensor completion codes are available via https://github.com/cyclops-
community/Tensor_completion.

N. Singh, Z. Zhang, X. Wu et al.

Cyclops Transpose Weak Scaling

Nonzero Count (Millions)

100 200 400 800 1600 3200 6400 12800
262144 T T T T T T
dense F—+—i
—~ 65536 102 density
§ 10 density F=%=-
o 16384 10°® density * -+ T
= e B
< 4096 B
k]
2 1024]
C
©
o 256 4
64 1 1 1 1 1 1
64 128 256 512 1024 2048 4096 8192
Core Count

(a) Tensor Transposition with Cyclops

Bandwidth (MB/sec)

Journal of Parallel and Distributed Computing 169 (2022) 269-285

Cyclops Reshape Weak Scaling

Nonzero Count (Millions)

100 200 400 800 1600 3200 6400 12800
262144 T T T T T T
dense F—+—
65536 |- 102 density A
10 density F=d=- o
16384 | 10°® density +--=--2 - ="
SR
4096 |- Lo :
e
1024 s
256 s
64 1 1 1 1 1 1
64 128 256 512 1024 2048 4096 8192
Core Count

(b) Tensor Reshape with Cyclops

Fig. 4. Achieved bandwidth/throughout of transpose and reshape Python functions with Cyclops (16 bytes assumed for each nonzero in a sparse tensor and 8 bytes for each

value in a dense tensor).

Cyclops TTM with m=125M, R=60 on 4096 Cores of Stampede2
Negative Log Density -log2(m/(I*J*K))

3 9 15 21 27
256 T . T T T T
ypersparse s 4
64 | sparse = -e- = /,
- denseH—!_/._________._,-
© 16 — g
2 -
8 / 'l
3 4 :]
@ .
£ 1 P h
= PO
0.25 i
0.0625 L . . L
1000 4000 16000 64000 256000

Tensor Dimension (I=J=K)

(a) Tensor-Times-Matrix (TTM) with Cyclops

Time (seconds)

Cyclops MTTKRP with m=125M, R=60 on 4096 Cores of Stampede:
Negative Log Density -log2(m/(I*J*K))

3 9 15 21 27
256 T T T
hypersparse = - 1
64 sparse - - - - ST
dense F——i 7/
16 £ all-at-once : E
SPLATT - B - =
4k o .
1E o 3
B
[Xoct Bl
0.25 fyprit " e
0.0625 | @__E__E__g——a]
g - -2
0.015625 - -B ‘ : ; e
1000 4000 16000 64000 256000

Tensor Dimension (I=J=K)

(b) MTTKRP with Cyclops

Fig. 5. Execution time of TTM and MTTKRP for order 3 tensors, both averaged over three possible variants (choices of contracted and uncontracted modes, respectively).

performance, but as the number of nonzeros grows, the output
becomes sparse and representing it in a dense format incurs an
unmanageable memory footprint. Finally, the hypersparse variant,
which leverages a sparse output tensor, incurs significant over-
head with respect to using a dense output, but is able to scale
to substantially more sparse tensors. Overall, we conclude that the
hypersparse implementation achieves the desired memory scaling,
but at a significant constant factor overhead, due to the need for
more sparse format conversions, indirect accesses, and sparse re-
duction.

Fig. 5(b) demonstrates the performance of MTTKRP using Cy-
clops, comparing also to the highly-optimized SPLATT implemen-
tation [62,63] (by profiling the MTTKRP within its parallel CP de-
composition). In the MTTKRP kernel, a third order tensor is con-
tracted with matrices along two modes, e.g., Zi’k tijilirWir. The
given performance results are the average over the three choices
of uncontracted modes. There are two choices for performing this
operation via pairwise tensor contractions, either to first contract
T and U or to first contract U and W. The latter can be faster
if T is relatively dense, but is slower if 7 is sufficiently sparse.
When the intermediate output tensor is sufficiently sparse and
contracting with 7 first is estimated to take less time, Cyclops au-
tomatically leverages the hypersparse representation. Use thereof
permits scalability to much sparser tensors. However, we observe
that all-at-once computation of MTTKRP is much faster than pair-
wise tensor contraction.

SPLATT outperforms the Cyclops all-at-once implementation as
the latter requires redistribution of factor matrices and does not
use the CSF format. However, generally Cyclops is within a factor
of four or less in performance with respect to SPLATT. Further, the

278

approach used in Cyclops permits easier combination with other
tensor operations, since the input distribution of the factor matri-
ces is not specialized for the kernel.

6.4. TTTP performance

Fig. 6(a) and Fig. 6(b) compare the performance of the new
TTTP kernel to alternatives based on pairwise tensor contraction,
including with the use of hypersparsity. However, even with hyper-
sparsity, the intermediates which must be formed in any pairwise
contraction tree increase the memory usage, whenever R > 1. We
observe that the TTTP kernel is always significantly faster and can
scale to extremely low density. By comparison, pairwise tensor
contraction approaches are slower even when R =1 and are less
memory scalable. Overall, the benefit of performing TTTP all-at-
once as opposed to via pairwise contractions is clearly evident.

6.5. Solve factor and alternating least squares performance

We compare our implementation of alternating minimization
for least squares loss (ALS) using the Solve Factor and MTTKRP ker-
nels introduced above to the state of the art implementation of ALS
in SPLATT [64] in Fig. 7. The SPLATT approach forms the left and
right hand sides in a single pass over the tensor nonzero entries,
thereby reusing Hadamard products of the rows for each nonzero
entry. In contrast, our implementation does two passes over the
tensor nonzeros. In Fig. 7(a), we compare the performance of one
ALS iteration on a tensor with fixed number of observed entries
while increasing the dimensions of the tensor dataset. SPLATT out-
performs our ALS implementation by a speed of about 2x for most

N. Singh, Z. Zhang, X. Wu et al.

Cyclops TTTP with m=125M, R=1 on 4096 Cores of Stampede2
Negative Log Density -log2(m/(I*J*K))

3 9 15 21 27
256 7 T T- T T
TTTP by sparse contraction = =e- =
64 | all-at-once TTTP 4
)
g 16 .]
< .
§ 4!""""'"-4----4 .
@
£ T]
= 025 |-]
0.0625 b ‘ 1
1000 4000 16000 64000 256000

Tensor Dimension (I=J=K)

(a) TTTPwith R =1

Time (seconds)

Journal of Parallel and Distributed Computing 169 (2022) 269-285

Cyclops TTTP with m=1B, R=60 on 4096 Cores of Stampede2
Negative Log Density -log2(m/(I*J*K))

0 3 6 9 12 15 18 21
r TT+P by den‘se comrac‘tion |—n—‘| ‘ ‘
o L all-at-once TTTP i
1k]
0.5 |-]
0.25 -]
0.125]
0.0625 4 L L L L L L
1000 2000 4000 8000 16000 32000 64000 128000

Tensor Dimension (I=J=K)

(b) TTTP with R = 60

Fig. 6. Execution time of the described TTTP kernel (all-at-once TTTP) and implementations based on pairwise tensor contraction, with R =1 and R =60 tensor products.

Average Time for ALS Sweep with m=125M, R=60 on 64 Cores of Stampede
Negative Log Density -log2(m/(I*J*K))

3 9 15 21 27
! CTFALS (MPl) = 1 !
CTF Solve Factor (MPI) * - e- -
64 - SPLATT (OpenMP) —x—i :
-
et

Time (seconds)

4000 16000

Tensor Dimension (I=J=K)

64000 256000

Strong scaling for ALS sweep with m= 140M, R=60 on 1 node of Stampede2

CTF ALS (MPI)
—e- CTF Solve Factor (MPI)
SPLATT (OpenMP)

29

28

Time (seconds)
N N
> %
s s

N
'

N
2
'

T v
23 24
Number of processes

21

Fig. 7. Comparison of performance of ALS approaches for a single ALS sweep for the random processes using 64 MPI processes for CTF and 64 OPENMP threads with 1 MPI

process on a single KNL node of Stampede2.

of the cases. The speed up becomes 4.1x for the largest dimension
because of communication among the cores in the MPI implemen-
tation, which is not needed in SPLATT’s threaded implementation.
Moreover, we perform a redistribution of factor matrices for each
kernel call, which also involves an overhead. In Fig. 7(b), we com-
pare the strong scaling of our implementation and SPLATT on a
single KNL node of Stampede2 for a synthetic equidimensional
tensor with dimension 64,000 and approximately 140M nonze-
ros. We observe that both the implementations strong scale well
and SPLATT ALS is approximately 2x faster than our ALS itera-
tion for each configuration. While somewhat slower than SPLATT,
our implementation has lower memory footprint. SPLATT is unable
to perform completion with MPI parallelization on one node for
larger dimensions due to the memory bottleneck of forming left
hand sides described in Section 4.4. Our implementation alleviates
this memory overhead by using batched computation of the rows
of the required factor matrices. SPLATT stores multiple compressed
sparse fibre (CSF) representations of the tensor, which eliminates
the need for sorting tensor nonzeros on the fly. CSF is faster as
compared to Cyclops COO-like format which requires extra com-
putation to determine the indices for each nonzero. However, the
Cyclops COO-like format is more memory efficient than SPLATT,
as it uses only one rather than three copies of the input ten-
sor. Further, the replicated CSF approach would entail additional
overheads for generalized loss functions as the input to the kernel
changes for other loss functions at each sub-iteration, necessitat-
ing construction of three copies of the data at each sub-iteration.
Our Solve Factor kernel is only about 1.7 x slower than SPLATT for
most of the cases, suggesting the overheads of using general ker-
nels is not too high.

279

6.6. Tensor completion with least squares loss

Fig. 8(a) studies the performance of tensor completion algo-
rithms with Cyclops on a model problem constructed from a sam-
pled function as described in Karlsson et al. [35]. The sampled
tensor has low CP rank (we pick R = 10) and a good CP decom-
position is easily found by quadratic approximation. We observe
that ALS requires only a few iterations to achieve full accuracy
(RMSE proportional to the regularization used, A = 1072). CCD++
is executed with a regularization of A = 10~ and SGD is executed
with sampling and learning rate of 5-10~3 and regularization of
10~7. The CCD++ and SGD approaches achieve comparable perfor-
mance, requiring less time per iteration, but making progress at a
slower rate overall (RMSE plotted after every 20 iterations). Pre-
conditioned Gauss-Newton method also converges to full accuracy
in a few iterations (regularization used A = 10~3) but is consid-
erably slower than ALS execution time. Using 256 nodes of Stam-
pede2, this experiment demonstrates the scalability of our Python-
based tensor completion implementations, as they are executed on
a problem containing 10 billion observed entries (nonzeros) with
a density of 10>.

In Fig. 8(b), we consider performance for the Netflix movie
rating dataset on 4 nodes of Stampede2 with a rank 100 CP rep-
resentation. This tensor is 480,189 x 17,770 x 2,182 and con-
tains m = 100, 477, 727 nonzeros. While ALS achieves the lowest
RMSE, the three methods that use second order information are
relatively competitive for this tensor. ALS iterations take the least
time followed by the CCD++ iterations, For CCD++, we traverse
the tensor nonzeros 2R times for each CCD++ iteration as com-
pared to 2 times for each ALS iteration. Both algorithms use a

N. Singh, Z. Zhang, X. Wu et al.

Rank 10 Completion of 100K-by-100K-by-100K Tensor with 10B nonzeros

= 1004 %
it
£ | é?""w-n_x....x-n
5] : ey KK X X e i e HKe e K - M X e K e DX
o -1 4 Aea o
% 10 : s .»g\.\. L D D T e VST Pras Y
£ : e
8107241 S~
£ 1 w
> 1 N,
I 1 A
€ 10-3 | \.
1074 4 S
o 1 AN
g |)
g 1074 i X ST
1
2 ! M —x- SGD
w
210754 --de- CCD++
o & =4~ pre-cond GN

T T T T T T T T
100 200 300 400 500 600 700 800

Execution Time (seconds) on 16K Cores of Stampede2

(a) Tensor Completion for Function Tensor Model Problem

Journal of Parallel and Distributed Computing 169 (2022) 269-285

Rank 100 least squares completion of Netflix tensor with 100M nonzeros

-=- ALS
SGD
CCD++

—¢- pre-cond GN

— =

ke

RMSE

T T T T
200 400 600 800

Execution time (seconds) on 512 cores of Stampede2

(b) Tensor completion for Netflix Dataset

Random tensor w/ s=100, R=20 & density =0.3

ALS
—-4- pre-cond GN

¢
H
100 4
h
1
RO
| | “‘
10714 N MY
])
= 1
= ‘.
1072 Y
1
1
1
1
1073 4 i
1
¢

T

10

T

20

T T T

30 40 50

iterations

(c) Tensor completion for tensor constructed from positive

random matrices

Fig. 8. Performance results of tensor completion methods.

regularization parameter of A = 107>, Gauss-Newton with implicit
pre-conditioned CG uses a relative tolerance of 5-10~3 and max
iterations of at most 30 for CG and a regularization parameter
A =103, We use the Solve Factor kernel to implement block di-
agonal pre-conditioning which is essential for faster convergence
and stability of CG iterations. The algorithm starts to take more
time as CG iterations start to increase due to the fact that gradient
norm decreases. Unlike the function tensor model problem, SGD
requires fine-tuning of parameters, diverging when the learning
rate is set to be too high. We show performance with a learn-
ing and sampling rate of 3-10~3 with A = 10~2, which resulted in
cheap iterations and steady but slow convergence (RMSE plotted
after every 20 iterations). The progress made by the SGD steps can
likely be improved by strategies that vary the learning and sample
rate, a consideration which we leave for future work.

In Fig. 8(c), we consider performance for pre-conditioned
Gauss-Newton method and ALS for a synthetic tensor. This tensor
is constructed with random matrices with entries sampled uni-
formly from [0, 1] with dimension s = 100 and CP rank R = 20
with 30% observed entries, i.e., the tensor has 3 - 10> observed
entries and is relative dense. We observe that for this type of prob-
lem, pre-conditioned Gauss-Newton converges to the solution in a
few iterations whereas ALS seems to make very little progress after
10 iterations. This corroborates the claim in the previous work [49]
that ALS does not perform well for relatively dense tensors and
methods like Gauss-Newton may be preferable when an exact so-
lution exists.

6.7. Tensor completion with Poisson loss

To demonstrate our algorithmic and software framework for
generalized CP completion, we implement the above described al-

280

gorithms for tensor completion with Poisson loss with the loga-
rithm link function (log-link) for the Netflix tensor. Poisson loss
for decomposing tensors with entries in the set of natural num-
bers has several qualitative advantages that have been explored in
the previous literature [25,15]. We explore the quantitative perfor-
mance and scalability of various algorithms in a distributed setting.
Poisson loss with log-link was introduced in [32] for tensors
with entries in the set of natural numbers. The advantage of us-
ing log-link is that it relaxes the nonnegativity constraints required
with the identity-link and hence, we can use our framework to
implement all the algorithms without having to account for any
constraints. The loss function minimized here is described by set-
ting the elementwise function ¢ introduced in equation (3) to

o (tijk, (Wi, Vj, Wi)) = exp ((Uj, vj, Wi)) — tiji (Ui, Vi, Wi).

With the elementwise function defined as above, we use values
from Table 1 to implement all the completion algorithms described
in Section 3 with this loss for the Netflix tensor with rank R = 10.
We plot the normalised loss, i.e., Ilﬁl Zi,j’kqb(t,-jk, (uj, vj, wy)) ver-
sus time for each algorithm in Fig. 9(a). Each point in the Fig. 9(a)
represents an iteration, except for SGD, for which each point is
plotted after every 20 iterations. Both the alternating minimiza-
tion and coordinate minimization inner iterations are performed
until a relative step tolerance of 10~ or a maximum count of 5 is
reached. Pre-conditioned quasi-Newton has a relative tolerance of
5.10~3 or a maximum iteration count of R for CG iterations for
each system solve. Also, the regularization parameter plays a piv-
otal role for this objective function as algorithms diverge easily due
to the exponentiation. Compared to least-squares loss, we employ
higher values of regularization for all the algorithms to ensure that

N. Singh, Z. Zhang, X. Wu et al.

Rank 10 Poisson completion of Netflix tensor with 100M nonzeros

—0.6 1 * —®- Alternating min
: ‘ —- SGD
‘ --&- Coordinate min
¢ —0.7 1 ‘ —4- pre-cond quasi-Newton
B i
2 y
g -o08{ M
- nl
9] n:
= u‘l
]] 1 i
ET09T mix
S o
z Wy K
-1.0 1 Wl ,&
L S~ oo
o e Y ST Y VT, Y VR, [TP A
1.1 e

T T T T T T T
200 400 600 800 1000 1200 1400

Execution time (seconds) on 64 cores of Stampede2

T
0

Journal of Parallel and Distributed Computing 169 (2022) 269-285

Rank 10 tensor completion of Netflix tensor with 100M nonzeros

*. —M- ALS on least squares loss
2.04 “ \‘\ —- Alternating min on Poisson loss
\ 3
\ N
JoN,
\ N,
| N
@ 107 .y —m ———
2 ..m g P e e —
o B
0.5 4
0.25 T T T T T
0 50 100 150 200

Execution time (seconds) on 64 cores of Stampede2

(a) Comparison of performance of different Poisson tensor com- (b) Comparison of performance of alternating minimization on dif-

pletion algorithms

ferent loss functions

Fig. 9. Tensor completion with Poisson and least squares loss function on Netflix tensor on 64 cores of Stampede2.

they do not diverge. We use a value of A =1 for coordinate mini-
mization, and A = 0.1 for alternating minimization, quasi-Newton,
and SGD.

We observe that alternating minimization is the fastest algo-
rithm to reach the least value of the objective followed by pre-
conditioned quasi-Newton method and then coordinate minimiza-
tion. While implementation of all these algorithms can be fine-
tuned to further run faster for the particular loss functions, we
observe that SGD implementation is outperformed by other al-
gorithms indicating that the benefit of using second order infor-
mation. Our formulation of the quasi-Newton with implicit pre-
conditioned CG method not only makes the implementation feasi-
ble via tensor algebra kernels, but is also competitive with other
algorithms in practical scenarios.

For a Poisson loss objective, we plot the Frobenius norm of the
subtraction of input tensor and exponentiated reconstructed ten-
sor at each iteration and compare it with the ALS iterations. We
observe that these values are equal up to 2 digits suggesting that
the Poisson loss also minimizes the least squares loss, however,
vice versa is not true as there may be negative values making the
Poisson objective infeasible to calculate. Note that the Poisson loss
completion comes at the cost of performing inner iterations, which
results in longer running time, as observed in Fig. 9(b).

7. Related work

We review related work on parallel tensor abstractions and on
previous parallel implementations of tensor completion. We also
review work on sparse tensor kernels for tensor decompositions.

7.1. Parallel tensor completion

The tensor completion algorithms presented in this paper
have commonly-used analogous in matrix completion (ALS [33],
SGD [39], CCD [81]). These approaches, especially SGD, have
been optimized extensively for the matrix case, which may be
viewed as a simple two-layer neural network. In shared mem-
ory, SGD is widely used, as it can be made efficient by asyn-
chronous execution [59]. ALS, CCD, and SGD for matrix completion
have all been target of efficient distributed-memory implementa-
tions [72,81,26,21].

Tensor completion via the CP tensor representation [21] has
been a target of recent distributed-memory implementation ef-
forts. Karlsson et al. [35] implement ALS and CCD by replicating
the factor matrices on each process and distributing observed en-
tries. While efficient, this approach is not scalable to very large

281

factor matrices. Smith et al. [64] improve upon this method by
distributing both the factor matrix and tensor in coherent for-
mats, similar to our parallel method for TTTP when it is done
with a single parallel step. For generalized tensor decomposition, a
distributed memory implementation is available [18,45] that uses
stochastic gradient descent algorithm and uses permutation arrays
in COO format to represent sparse tensors. Our work is the first to
implement distributed tensor completion using high-level tensor
operations for general tensor contractions. We reproduce previous
work [35,64] in the observation that ALS is generally most efficient
for distributed tensor completion.

7.2. Sparse tensor kernels

Parallel sparse matrix multiplication algorithms comprise an
active area of research [69,42,3,4,12,24,55]. Multiplication of hy-
persparse matrices has seen considerably less study [11]. An opti-
mized doubly compressed CSR/CSC layout similar to the CSF matrix
layout used in this paper is the standard sequential approach to
hypersparse matrix-matrix products [11].

Effective sparse tensor layouts have been designed for TTM and
MTTKRP operations in shared memory and distributed memory.
The compressed sparse fiber (CSF) layout serves as an extension of
hypersparse matrix representations and achieves efficient storage
and TTM operations [63,62]. The hierarchical coordinate (HiCOO)
layout is designed to further improve efficiency for TTM and MT-
TKRP [47]. The Adaptive Linearized Tensor Order (ALTO) [28] is
another proposed sparse tensor format for shared memory archi-
tecture which is an improvement over the HiCOO and CSF. ALTO
uses an adaptive recursive partitioning of the high dimensional
space of the sparse tensor to map the nonzeros onto a compact
line so that the neighbouring nonzeros are close to each other.
The tensor algebra compiler (TACO) supports hierarchical layouts
with compressed or uncompressed modes [40] as well as other
optimized sparse formats [16]. These layouts can be interchanged
and may improve upon the CSF matrix layout used in our work.
However, our design is the first to enable arbitrary tensor contrac-
tions to be reduced to a storage-efficient layout, and to support
distributed-memory tensor operations with hypersparse represen-
tations.

TTM and MTTKRP are standard benchmark tensor kernels [43,
48]. MTTKRP has been the target of optimization for distributed-
memory architectures with both MPI [63,37] and MapReduce [56,
10]. While TTM is a special case of a tensor contraction, MTTKRP
involves contraction of multiple tensors and consequently presents

N. Singh, Z. Zhang, X. Wu et al.

potential for further performance optimization over pairwise con-
traction by all-at-once contraction [27]. The TTTP operation intro-
duced in this paper differs significantly from MTTKRP and can be
specially optimized via all-at-once contraction.

7.3. Tensor frameworks

Tensors and multidimensional arrays are a prevalent program-
ming abstraction that encapsulates data parallelism. Many tensor
libraries are designed for methods in quantum chemistry. The Ten-
sor Contraction Engine (TCE) [30] provides factorization of multi-
tensor expressions into pairwise contractions. TCE generates paral-
lel tensor contraction code based on a partitioned global address-
space (PGAS) [80] language, Global Arrays [52]. Global Arrays and
other PGAS languages such as UPC [19] provide multidimensional
array abstractions that enable tensor programming, but generally
do not support high-level tensor algebra operations. The Libtensor
library [20] provides efficient shared-memory tensor contractions,
targeted at quantum chemistry applications. Libtensor and other
libraries [51] support block-sparse tensors. The TiledArray [57,13]
library provides distributed-memory support for block-sparse ten-
sor contractions. Outside of Cyclops, to the best of our knowledge,
tensor contractions with arbitrary elementwise sparsity are only
supported for single-node execution [36]. Currently, the Python
interface of Cyclops does not support arbitrary ring operations,
however there is recent work [29] for sparse array programming
on single-node machines. All the efforts above theimmediate one
leverage an Einstein notation syntax for contractions and aim at
efficient execution of tensor contractions arising in quantum chem-
istry.

The Tensor Algebra Compiler (TACO) [40] provides support for
sequential sparse tensor contractions and more general multi-
tensor expressions. In recent work, TACO has been improved to fac-
torize longer tensor algebra expressions and their subcomponents
into subsequences [41], the former being a user-guided version of
the automated factorization in Cyclops. Tensor libraries have also
been designed for machine learning workloads, e.g., TensorFlow by
Google [1] and Tensor Comprehensions by Facebook [79]. Both fo-
cus on task-level parallelism and GPU acceleration as opposed to
distributed-memory data parallelism.

8. Conclusion and future work

We present new advances in parallel sparse tensor computa-
tions infrastructure and methodology, driven by its application to
tensor completion. Specifically, we propose a new tensor algebra
routine, TTTP, which consists of tensor contractions that may be
significantly accelerated by an all-at-once contraction algorithm.
Further, we provide the first distributed general sparse tensor con-
traction infrastructure that can leverage hypersparse matrix repre-
sentations, achieving scalability to massively sparse tensors.

For tensor completion, we propose a novel Newton-method-
based algorithmic framework for generalized tensor completion.
In this framework, we introduce alternating minimization, coor-
dinate minimization and quasi-Newton algorithms which encom-
pass the ALS, CCD++ and Gauss-Newton algorithm for least squares
loss and generalize easily for other objective functions. Our re-
sults demonstrate that these algorithms are more accurate than
the SGD algorithm for generalized completion. By providing a high-
level Python interface to the tensor algebra operations, we are able
to develop very concise, but massively-parallel implementations of
these algorithms for generalized tensor completion via CP decom-
position. Moreover, we show that our distributed memory imple-
mentation of alternating minimization for least squares loss which
uses general sparse tensor kernels is within a factor of four of the

282

Journal of Parallel and Distributed Computing 169 (2022) 269-285

state of the art distributed implementation of ALS. Our experimen-
tal results demonstrate that hypersparsity, all-at-once kernels for
MTTKRP, and the new TTTP algorithm enable generalized tensor
completion algorithms to be executed on much larger and sparser
tensors than possible with previously available libraries.

For the generalized objective functions, some of the link func-
tions use nonnegativity constraints [32], which are not incorpo-
rated in our current framework. While all the link functions can
be modified to remove these constraints, the interpretation of the
factors might change. These constraints can be incorporated with
use of projected Newton'’s algorithm [8] or using a barrier formu-
lation. All the kernels introduced in Section 4 can be optimized
further by using specialised tensor formats like CSF coupled with
an optimal threaded implementation for best performance. How-
ever, it is non-trivial to construct these formats optimally for each
sub-iteration for a generalized loss functions.

CRediT authorship contribution statement

Navjot Singh: Conceptualization, Methodology, Data curation,
Software, Writing, Validation, Visualization, Investigation. Zecheng
Zhang: Software, Data Curation, Investigation, Writing. Xiaoxiao
Wu: Software, Resources, Data curation, Writing. Naijing Zhang:
Resources, Data curation, Writing. Siyuan Zhang: Resources, Data
curation, Writing. Edgar Solomonik: Conceptualization, Methodol-
ogy, Software, Writing, Supervision, Project administration, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work used the Extreme Science and Engineering Discov-
ery Environment (XSEDE), which is supported by National Science
Foundation grant number ACI-1548562. Via XSEDE, the authors
made use of the TACC Stampede2 supercomputer. The research was
supported by the US NSF OAC via award No. 1942995.

Appendix A. Generalized CP decomposition

All the algorithms for generalized CP completion introduced in
Section 2 are based on elementwise derivatives of the generalized
objective function [32] with respect to each variable in the factor
matrix. In this section, we use tensor calculus to derive the neces-
sary expressions for an N™ order input tensor X € R/1>*IN_we
assume that we have an index set Q C {1,...,I1} x--- x{1,...In},
which represents the set of observed entries of the input tensor. If
Q consists of all the elements then the objective function would
correspond to a decomposition problem. The objective function is

i
R N

where m;, i, = Z H al(:r).
r=1n=1

The elementwise expression for the gradient of f(A(M...AMN)
with respect to d factor matrix is

N
af ad)(xil...iNsmi]...iN) (n)
90 @ > M S [o
Ay i1,...,iN€ER 1.-IN n=1,n#d

N. Singh, Z. Zhang, X. Wu et al.

Computing the gradient corresponds to an MTTKRP operation with
the derivative tensor ¢i’1.,.iN (5). We can differentiate the above ex-
pression for gradient further to arrive at an elementwise form of
the Hessian matrix. This form is useful for writing algorithms that
use second order information as these use a part of the Hessian
matrix and/or use the implicit form of the Hessian. The derivative
of the gradient with respect to pt™® factor matrix can be calculated
by applying chain rule inductively

dpy_ 97 a2
krlz 9a (d)aa(p)
N N
” n) (n)
Z ¢i1-‘.iN8ip’< l_[alnz>8idk< l_[lnf>
i1,...,iN€EQ n=1,n#p n=1,n#d
N
+A=8g) Y. ¢,-’1..,,-N8,-dk< I1 a"”)slplarz,
i1,...,iINEQ n=1,n#d,p

where §;; is the Kronecker-Delta function. Newton or quasi-
Newton method requires solution to linear systems involving the
Hessian at each iteration. Conjugate gradient method can be used
to solve these systems of equations by making use of the im-
plicit form of the Hessian. Given current factor matrix updates

w®_ . W®N the matrix-vector product with the Hessian can
be computed by the following tensor contractions,
wlP defl,...,N} 1,...,N
Iz > N}, pefl, |3

(d)(new) d,p)
Z Z hkrlz
p

where W@®eW) s the updated matrix corresponding to the dt®
factor matrix. These contractions reduce to simpler contractions as
mentioned in Section 3.3. The above form of Hessian can be used
to derive all the methods described in Section 3.

Alternating minimization described in Section 3.1 is equiva-
lent to a block non-linear Gauss-Siedel method [22] to minimize
the above objective function. Alternating minimization subiteration
uses a diagonal block of the above described Hessian for optimiz-
ing a factor matrix given by

N N
(d,d) _ (") (n)
i = X (T o)ouset s TT a2).
i1,...iN€Q “n=1,n#d n=1,n#d

Coordinate minimization subiteration described in Section 3.2 is
equivalent to a non-linear Gauss-Seidel method, as in each subit-
eration, the method minimizes only one variable (in parallel) at a
time. It uses the diagonal of the diagonal block of the above de-
scribed Hessian given by

N

(dd)

0= ¥ (T1) .
i1,...,iN€éQ “n=1,n#d

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,]J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B.
Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, Tensor-
flow: a system for large-scale machine learning, in: 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), USENIX Associa-
tion, Savannah, GA, 2016, pp. 265-283.

E. Acar, D.M. Dunlavy, T.G. Kolda, A scalable optimization approach for fitting
canonical tensor decompositions, J. Chemom. 25 (2) (2011) 67-86.

G. Ballard, A. Buluc, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz, S. Toledo,
Communication optimal parallel multiplication of sparse random matrices,
in: Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA '13, ACM, New York, NY, USA, 2013,
pp. 222-231.

[2

[3

283

Journal of Parallel and Distributed Computing 169 (2022) 269-285

[4] G. Ballard, A. Druinsky, N. Knight, O. Schwartz, Brief announcement: hyper-
graph partitioning for parallel sparse matrix-matrix multiplication, in: Proceed-
ings of the 27th ACM Symposium on Parallelism in Algorithms and Architec-
tures, ACM, 2015, pp. 86-88.

[5] G. Ballard, N. Knight, K. Rouse, Communication lower bounds for matricized
tensor times Khatri-Rao product, in: 2018 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), IEEE, 2018, pp. 557-567.

[6] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Seljebotn, K. Smith, Cython: the
best of both worlds, Comput. Sci. Eng. 13 (2) (2011) 31-39.

[7] J. Bennett, S. Lanning, et al., The Netflix prize, in: Proceedings of KDD Cup and
Workshop, New York, NY, USA, vol. 2007, 2007, p. 35.

[8] D.P. Bertsekas, Projected Newton methods for optimization problems with sim-
ple constraints, SIAM J. Control Optim. 20 (2) (1982) 221-246.

[9] LS. Blackford, J. Choi, A. Cleary, E. D'Azeuedo,]. Demmel, 1. Dhillon, S. Hammar-
ling, G. Henry, A. Petitet, K. Stanley, D. Walker, R.C. Whaley, ScaLAPACK User's
Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
1997.

[10] Z. Blanco, B. Liu, M.M. Dehnavi, CSTF: large-scale sparse tensor factorizations
on distributed platforms, in: Proceedings of the 47th International Conference
on Parallel Processing, ACM, 2018, p. 21.

[11] A. Buluc, J.R. Gilbert, On the representation and multiplication of hypersparse
matrices, in: 2008 IEEE International Symposium on Parallel and Distributed
Processing, IEEE, 2008, pp. 1-11.

[12] A. Bulug, J.R. Gilbert, Parallel sparse matrix-matrix multiplication and index-
ing: implementation and experiments, SIAM]. Sci. Comput. 34 (4) (2012)
C170-C191.

[13] J.A. Calvin, CA. Lewis, E.F. Valeev, Scalable task-based algorithm for multipli-
cation of block-rank-sparse matrices, in: Proceedings of the 5th Workshop on
Irregular Applications: Architectures and Algorithms, ACM, 2015, p. 4.

[14]]. Canny, H. Zhao, Big data analytics with small footprint: squaring the cloud,
in: Proceedings of the 19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ACM, 2013, pp. 95-103.

[15] E.C. Chi, T.G. Kolda, On tensors, sparsity, and nonnegative factorizations, SIAM
J. Matrix Anal. Appl. 33 (4) (2012) 1272-1299.

[16] S. Chou, F. Kjolstad, S. Amarasinghe, Format abstraction for sparse tensor alge-
bra compilers, Proceedings of the ACM on Programming Languages 2 (October
2018).

[17] T.H. Cormen, CE. Leiserson, R.L. Rivest, C. Stein, 8.2 counting sort, in: Intro-
duction to Algorithms, Mit Press and Mcgraw-Hill, 2001, pp. 636-640, ISBN
262032937.

[18] K.D. Devine, G. Ballard, Gentenmpi: Distributed memory sparse tensor decom-
position, https://doi.org/10.2172/1656940.

[19] T. El-Ghazawi, W. Carlson, T. Sterling, K. Yelick, UPC: Distributed Shared Mem-
ory Programming, vol. 40, John Wiley & Sons, 2005.

[20] E. Epifanovsky, M. Wormit, T. Ku$, A. Landau, D. Zuev, K. Khistyaev, P. Manohar,
I. Kaliman, A. Dreuw, A.L. Krylov, New implementation of high-level correlated
methods using a general block-tensor library for high-performance electronic
structure calculations, J. Comput. Chem. (2013).

[21] R. Gemulla, E. Nijkamp, PJ. Haas, Y. Sismanis, Large-scale matrix factorization
with distributed stochastic gradient descent, in: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
ACM, 2011, pp. 69-77.

[22] L. Grippo, M. Sciandrone, On the convergence of the block nonlinear Gauss—
Seidel method under convex constraints, Oper. Res. Lett. 26 (3) (2000)
127-136.

[23] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with
the Message-Passing Interface, MIT Press, Cambridge, MA, USA, 1994.

[24] F.G. Gustavson, Two fast algorithms for sparse matrices: multiplication and per-
muted transposition, ACM Trans. Math. Softw. 4 (3) (1978) 250-269.

[25] S. Hansen, T. Plantenga, T.G. Kolda, Newton-based optimization for Kullback-
Leibler nonnegative tensor factorizations, Optim. Methods Softw. 30 (5) (2015)
1002-1029.

[26] T. Hastie, R. Mazumder,].D. Lee, R. Zadeh, Matrix completion and low-rank SVD
via fast alternating least squares, J. Mach. Learn. Res. 16 (1) (2015) 3367-3402.

[27] K. Hayashi, G. Ballard, Y. Jiang, M,J. Tobia, Shared-Memory Parallelization
of MTTKRP for Dense Tensors, ACM SIGPLAN Notices, vol. 53, ACM, 2018,
pp. 393-394.

[28] A.E. Helal, J. Laukemann, F. Checconi,]J. Tithi, T. Ranadive, F. Petrini, J. Choi,
Alto: adaptive linearized storage of sparse tensors, in: Proceedings of the ACM
International Conference on Supercomputing, 2021, pp. 404-416.

[29] R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, F. Kjolstad,
Compilation of sparse array programming models, Proceedings of the ACM on
Programming Languages 5 (OOPSLA) (2021) 1-29.

[30] S. Hirata, Tensor contraction engine: abstraction and automated parallel imple-
mentation of configuration-interaction, coupled-cluster, and many-body pertur-
bation theories, J. Phys. Chem. A 107 (46) (2003) 9887-9897.

[31] EL. Hitchcock, The expression of a tensor or a polyadic as a sum of products,
Stud. Appl. Math. 6 (1-4) (1927) 164-189.

[32] D. Hong, T.G. Kolda, J.A. Duersch, Generalized canonical polyadic tensor decom-
position, SIAM Rev. 62 (1) (2020) 133-163.

N. Singh, Z. Zhang, X. Wu et al.

[33] P. Jain, P. Netrapalli, S. Sanghavi, Low-rank matrix completion using alternating
minimization, in: Proceedings of the Forty-Fifth Annual ACM Symposium on
Theory of Computing, ACM, 2013, pp. 665-674.

[34] E. Jones, T. Oliphant, P. Peterson, SciPy: Open source scientific tools for Python,
2014.

[35] L. Karlsson, D. Kressner, A. Uschmajew, Parallel algorithms for tensor comple-
tion in the CP format, Parallel Comput. 57 (2016) 222-234.

[36] D. Kats, ER. Manby, Sparse tensor framework for implementation of general
local correlation methods, J. Chem. Phys. 138 (14) (2013).

[37] O. Kaya, B. Ugar, Scalable sparse tensor decompositions in distributed memory
systems, in: SC'15: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, IEEE, 2015, pp. 1-11.

[38] O. Kaya, B. Ucar, Parallel CANDECOMP/PARAFAC decomposition of sparse ten-
sors using dimension trees, SIAM J. Sci. Comput. 40 (1) (2018) C99-C130.

[39] R.H. Keshavan, A. Montanari, S. Oh, Matrix completion from noisy entries, J.
Mach. Learn. Res. 11 (Jul 2010) 2057-2078.

[40] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, S. Amarasinghe, The tensor alge-
bra compiler, Proceedings of the ACM on Programming Languages 1 (OOPSLA)
(2017) 77.

[41] F. Kjolstad, P. Ahrens, S. Kamil, S. Amarasinghe, Tensor algebra compilation with
workspaces, International Symposium on Code Generation and Optimization,
February 2019.

[42] P. Koanantakool, A. Azad, A. Bulug, D. Morozov, S.-Y. Oh, L. Oliker, K. Yelick,
Communication-avoiding parallel sparse-dense matrix-matrix multiplication,
in: Parallel and Distributed Processing Symposium, 2016 IEEE International,
IEEE, 2016, pp. 842-853.

[43] T. Kolda, B. Bader, Tensor decompositions and applications, SIAM Rev. 51 (3)
(2009) 455-500.

[44] C.L. Lawson, RJ. Hanson, D.R. Kincaid, ET. Krogh, Basic linear algebra subpro-
grams for fortran usage, ACM Trans. Math. Softw. 5 (3) (1979) 308-323.

[45] C. Lewis, E.T. Phipps, T.G. Kolda, Distributed generalized canonical polyadic
decomposition, Tech. Rep., Sandia National Lab. (SNL-NM), Albuquerque, NM
(United States), 2021.

[46]]. Li, J. Choi, L. Perros, J. Sun, R. Vuduc, Model-driven sparse CP decomposition
for higher-order tensors, in: 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), IEEE, 2017, pp. 1048-1057.

[47] J. Li,]. Sun, R. Vuduc, HiCOO: hierarchical storage of sparse tensors, in: SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, 2018, pp. 238-252.

[48] J. Li, Y. Ma, X. Wu, A. Li, K. Barker, PASTA: a parallel sparse tensor algorithm
benchmark suite, preprint, arXiv:1902.03317, 2019.

[49] A. Liu, A. Moitra, Tensor completion made practical, preprint, arXiv:2006.03134,
2020.

[50] J. Liu, P. Musialski, P. Wonka, J. Ye, Tensor completion for estimating miss-
ing values in visual data, IEEE Trans. Pattern Anal. Mach. Intell. 35 (1) (2012)
208-220.

[51] E. Mutlu, K. Kowalski, S. Krishnamoorthy, Toward generalized tensor algebra
for ab initio quantum chemistry methods, in: Proceedings of the 6th ACM SIG-
PLAN International Workshop on Libraries, Languages and Compilers for Array
Programming, ACM, 2019, pp. 46-56.

[52]]. Nieplocha, RJ. Harrison, RJ. Littlefield, Global arrays: a nonuniform memory
access programming model for high-performance computers, J. Supercomput.
10 (1996) 169-189.

[53] I Nisa, A. Sukumaran-Rajam, S.E. Kurt, C. Hong, P. Sadayappan, Sampled dense
matrix multiplication for high-performance machine learning, in: 2018 IEEE
25th International Conference on High Performance Computing (HiPC), IEEE,
2018, pp. 32-41.

[54] P. Paatero, A weighted non-negative least squares algorithm for three-way
‘parafac’ factor analysis, Chemom. Intell. Lab. Syst. 38 (2) (1997) 223-242.

[55] R. Pagh, M. Stockel, The input/output complexity of sparse matrix multiplica-
tion, in: A.S. Schulz, D. Wagner (Eds.), Algorithms - ESA 2014, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014, pp. 750-761.

[56] N. Park, B. Jeon, J. Lee, U. Kang, Bigtensor: mining billion-scale tensor made
easy, in: Proceedings of the 25th ACM International on Conference on Informa-
tion and Knowledge Management, ACM, 2016, pp. 2457-2460.

[57] C. Peng, J.A. Calvin, F. Pavosevic,]. Zhang, E.F. Valeev, Massively parallel im-
plementation of explicitly correlated coupled-cluster singles and doubles using
TiledArray framework, J. Phys. Chem. A 120 (51) (2016) 10231-10244.

[58] A.-H. Phan, P. Tichavsky, A. Cichocki, Fast alternating LS algorithms for high
order CANDECOMP/PARAFAC tensor factorizations, IEEE Trans. Signal Process.
61 (19) (2013) 4834-4846.

[59] B. Recht, C. Re, S. Wright, F. Niu, Hogwild: a lock-free approach to paralleliz-
ing stochastic gradient descent, in: Advances in Neural Information Processing
Systems, 2011, pp. 693-701.

[60] N. Singh, L. Ma, H. Yang, E. Solomonik, Comparison of accuracy and scalability
of Gauss-Newton and alternating least squares for cp decomposition, preprint,
arXiv:1910.12331, 2019.

[61] D.B. Skillicorn, J. Hill, W.E. McColl, Questions and answers about BSP, Sci. Pro-
gram. 6 (3) (1997) 249-274.

284

Journal of Parallel and Distributed Computing 169 (2022) 269-285

[62] S. Smith, G. Karypis, Tensor-matrix products with a compressed sparse tensor,
in: Proceedings of the 5th Workshop on Irregular Applications: Architectures
and Algorithms, ACM, 2015, p. 5.

[63] S. Smith, N. Ravindran, N.D. Sidiropoulos, G. Karypis, SPLATT: efficient and par-
allel sparse tensor-matrix multiplication, in: 2015 IEEE International Parallel
and Distributed Processing Symposium, IEEE, 2015, pp. 61-70.

[64] S. Smith,]. Park, G. Karypis, An exploration of optimization algorithms for high
performance tensor completion, in: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, SC
'16, IEEE Press, Piscataway, NJ, USA, 2016, pp. 31:1-31:13.

[65] S. Smith, JW. Choi, J. Li, R. Vuduc, J. Park, X. Liu, G. Karypis, FROSTT: the
formidable repository of open sparse tensors and tools, 2017.

[66] E. Solomonik, T. Hoefler, Sparse tensor algebra as a parallel programming
model, preprint, arXiv:1512.00066, 2015.

[67] E. Solomonik, D. Matthews, J. Hammond, J. Demmel, Cyclops tensor framework:

reducing communication and eliminating load imbalance in massively parallel

contractions, in: 2013 IEEE 27th International Symposium on Parallel and Dis-

tributed Processing, IEEE, 2013, pp. 813-824.

E. Solomonik, D. Matthews, J.R. Hammond, J.F. Stanton, J. Demmel, A massively

parallel tensor contraction framework for coupled-cluster computations, J. Par-

allel Distrib. Comput. 74 (12) (2014) 3176-3190.

E. Solomonik, M. Besta, F. Vella, T. Hoefler, Scaling betweenness centrality using

communication-efficient sparse matrix multiplication, in: Proceedings of the

International Conference for High Performance Computing, Networking, Storage

and Analysis, SC "17, ACM, New York, NY, USA, 2017, pp. 47:1-47:14.

L. Sorber, M. Van Barel, L. De Lathauwer, Optimization-based algorithms for

tensor decompositions: canonical polyadic decomposition, decomposition in

rank-(_r,L_r, 1) terms, and a new generalization, SIAM]. Optim. 23 (2) (2013)

695-720.

P. Springer, T. Su, P. Bientinesi, HPTT: a high-performance tensor transposition

C++ library, in: Proceedings of the 4th ACM SIGPLAN International Workshop

on Libraries, Languages, and Compilers for Array Programming, ACM, 2017,

pp. 56-62.

[72] C. Teflioudi, F. Makari, R. Gemulla, Distributed matrix completion, in: 2012 leee
12th International Conference on Data Mining, IEEE, 2012, pp. 655-664.

[73] K. Teranishi, D.M. Dunlavy, .M. Myers, RF. Barrett, Sparten: leveraging Kokkos
for on-node parallelism in a second-order method for fitting canonical polyadic
tensor models to Poisson data, in: 2020 IEEE High Performance Extreme Com-
puting Conference (HPEC), IEEE, 2020, pp. 1-7.

[74] R. Thakur, R. Rabenseifner, W. Gropp, Optimization of collective communication
operations in mpich, Int. J. High Perform. Comput. Appl. 19 (1) (2005) 49-66.

[75] L.G. Valiant, A bridging model for parallel computation, Commun. ACM 33 (8)
(1990) 103-111.

[76] S. Van Der Walt, S.C. Colbert, G. Varoquaux, The NumPy array: a structure for
efficient numerical computation, Comput. Sci. Eng. 13 (2) (2011) 22.

[77] M. Vandecappelle, N. Vervliet, L.D. Lathauwer, A second-order method for fit-
ting the canonical polyadic decomposition with non-least-squares cost, IEEE
Trans. Signal Process. 68 (2020) 4454-4465.

[78] N. Vannieuwenhoven, K. Meerbergen, R. Vandebril, Computing the gradient in

optimization algorithms for the CP decomposition in constant memory through

tensor blocking, SIAM J. Sci. Comput. 37 (3) (2015) C415-C438.

N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W.S. Moses, S.

Verdoolaege, A. Adams, A. Cohen, Tensor comprehensions: framework-agnostic

high-performance machine learning abstractions, preprint, arXiv:1802.04730,

2018.

K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S.L. Graham, P.

Hargrove, P. Hilfinger, P. Husbands, et al., Productivity and performance using

partitioned global address space languages, in: Proceedings of the 2007 Inter-

national Workshop on Parallel Symbolic Computation, ACM, 2007, pp. 24-32.

H.-F. Yu, C.-]. Hsieh, S. Si, I. Dhillon, Scalable coordinate descent approaches

to parallel matrix factorization for recommender systems, in: 2012 IEEE 12th

International Conference on Data Mining, IEEE, 2012, pp. 765-774.

(68]

[69]

[70]

[71]

[79]

(80]

(81]

Navjot Singh received his M.S. in Applied Mathe-
matics in 2020 from University of Illinois at Urbana-
Champaign and is currently a Ph.D. student in the
Computer Science department at University of Illinois
at Urbana-Champaign. His current research interests
include numerical linear algebra, high performance
computing, and tensor decompositions.

Zecheng Zhang is a founding engineer at Kumo.ai
Inc. He received his M.S. in Computer Science at Stan-
ford University in 2021 and B.S. in Computer Science
at University of Illinois at Urbana-Champaign in 2019.
He has research interests in machine learning with
graphs and data mining.

N. Singh, Z. Zhang, X. Wu et al.

Xiaoxiao Wu received her Bachelors degree in
Mathematics and Computer Science from University
of Illinois at Urbana-Champaign in 2019. She received
her M.S. in Computational Finance from Carnegie Mel-
lon University in 2021.

Naijing Zhang received his B.S. in Computer Sci-
ence from University of Illinois at Urbana-Champaign
in 2019. He received his M.Eng. in Computer Science
from University of California, Berkley in 2020.

285

Journal of Parallel and Distributed Computing 169 (2022) 269-285

Siyuan Zhang received his B.S. in Computer Sci-
ence from University of Illinois at Urbana-Champaign
in 2019. He received his M.S. in Computer Science
from University of Illinois at Urbana-Champaign in
2021.

Edgar Solomonik is an Assistant Professor in the
Computer Science Department at University of Illinois
at Urbana-Champaign. He received his Ph.D. from Uni-
versity of California, Berkeley in 2014. His research in-
terests include numerical linear algebra, parallel algo-
rithms, tensor networks, tensor decompositions, high
performance computing. He received the Alston S.
Householder Prize XX for the best dissertation in nu-
merical linear algebra, SIAM Activity Group on Super-

computing Early Career Prize, and the NSF CAREER Award.

	Distributed-memory tensor completion for generalized loss functions in python using new sparse tensor kernels
	1 Introduction
	2 Tensor completion background
	2.1 Tensor completion by generalized CP decomposition
	2.2 Alternating least squares
	2.3 Coordinate descent
	2.4 Stochastic gradient descent

	3 Algorithms using second order information for generalized tensor completion
	3.1 Alternating minimization
	3.2 Coordinate minimization
	3.3 Newton’s and quasi-Newton algorithms

	4 New sparse tensor kernels
	4.1 Hypersparse matrix formats
	4.2 Matricized tensor times Khatri-Rao product
	4.3 Tensor times tensor product
	4.4 Solve factor

	5 Python interface and implementation
	5.1 Cyclops python interface
	5.2 TTTP interface
	5.3 Parallel tensor completion in python
	5.4 Alternating minimization (alternating least squares) implementation
	5.5 Coordinate minimization (coordinate descent) implementation
	5.6 Stochastic gradient descent implementation
	5.6.1 Quasi-Newton (Gauss-Newton) implementation

	6 Experimental evaluation
	6.1 Benchmarking configuration
	6.2 Redistribution performance
	6.3 Hypersparse representation performance
	6.4 TTTP performance
	6.5 Solve factor and alternating least squares performance
	6.6 Tensor completion with least squares loss
	6.7 Tensor completion with Poisson loss

	7 Related work
	7.1 Parallel tensor completion
	7.2 Sparse tensor kernels
	7.3 Tensor frameworks

	8 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Generalized CP decomposition
	References

