Automated Testing of Software that Uses Machine Learning APIs

Chengcheng Wan
University of Chicago
cwan@uchicago.edu

Shicheng Liu
University of Chicago

Henry Hoffmann
University of Chicago
hankhoffmann@uchicago.edu

ABSTRACT

An increasing number of software applications incorporate machine
learning (ML) solutions for cognitive tasks that statistically mimic
human behaviors. To test such software, tremendous human effort
is needed to design image/text/audio inputs that are relevant to the
software, and to judge whether the software is processing these
inputs as most human beings do. Even when misbehavior is exposed,
it is often unclear whether the culprit is inside the cognitive ML
API or the code using the APL

This paper presents Keeper, a new testing tool for software that
uses cognitive ML APIs. Keeper designs a pseudo-inverse function
for each ML API that reverses the corresponding cognitive task in
an empirical way (e.g., an image search engine pseudo-reverses the
image-classification API), and incorporates these pseudo-inverse
functions into a symbolic execution engine to automatically gener-
ate relevant image/text/audio inputs and judge output correctness.
Once misbehavior is exposed, Keeper attempts to change how ML
APIs are used in software to alleviate the misbehavior. Our evalu-
ation on a variety of open-source applications shows that Keeper
greatly improves the branch coverage, while identifying many pre-
viously unknown bugs.

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; - Computing methodologies — Machine learning; «
Information systems — RESTful web services.

KEYWORDS

software testing, machine learning, machine learning API

ACM Reference Format:

Chengcheng Wan, Shicheng Liu, Sophie Xie, Yifan Liu, Henry Hoffmann,
Michael Maire, and Shan Lu. 2022. Automated Testing of Software that
Uses Machine Learning APIs. In 44th International Conference on Software
Engineering (ICSE °22), May 21-29, 2022, Pittsburgh, P A, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510068

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05...$15.00
https://doi.org/10.1145/3510003.3510068

Whitney Young High School
shicheng2000@uchicago.edu

Michael Maire
University of Chicago
mmaire@uchicago.edu

Yifan Liu
University of Chicago
liuyifan@uchicago.edu

Sophie Xie
sxie2@cps.edu

Shan Lu
University of Chicago
shanlu@uchicago.edu

1 INTRODUCTION
1.1 Motivation

Machine learning (ML) offers powerful solutions to cognitive tasks,
allowing computers to statistically mimic human behaviors in com-
puter vision, language, and other domains. To facilitate easy use
of these ML techniques, many cloud providers offer well-designed,
well-trained, and easy-to-use cognitive ML APIs [1-5]. Indeed,
many software applications in a variety of domains are incorpo-
rating ML APIs [6, 7]. Thus, effectively testing these applications—
which this paper refers to as ML software—has become urgent.

To better understand this testing task, consider Phoenix [8], a fire-
alarm application. As shown in the top half of Figure 1, Phoenix uses
the Google label_detection API to perform image classification
on an input photo, and then triggers an alarm if any of the top-3
classification labels returned by the API includes the keyword "fire".

This simple demo application turns out to be difficult to test.
First, random inputs work poorly, as they rarely contain fire and
hence cannot exercise the critical alarm() branch. Second, even
with carefully collected image inputs, manual checking is likely
needed to judge the execution correctness (i.e., whether an alarm
should be triggered). Finally, even after a failed test run—e.g., the
picture on the right of Figure 1 fails to trigger the alarm—it is
difficult to know whether the failure is due to the statistical nature
of label_detection, which has to be tolerated, or the application’s
incorrect use of the API, which has to be fixed. In fact, this case
belongs to the latter: the right figure actually has a top-3 label “flame’
returned by label_detection; not checking for the “flame” label,
this application may miss fire alarms in many critical situations.

5

labels = client.label_detection(image=img)

temp = label[0].desc + label[1].desc + label[2].desc | Spku?
&1 i)

if "fire" in temp:
alarm()

Top-3 labels: ["light", "world", "fire"] ["amber", "orange", "flame"]

Figure 1: An example of using ML Cloud APIs [8].

This example has demonstrated several open challenges in test-
ing ML software.

1) Infinite, yet sparse input spaces. The spaces of images, texts,
or audios —typical input forms of cognitive ML APIs—are infinitely
large, yet realistic inputs that are relevant to the software-under-test

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

are spread sparsely throughout this space. For example, only a tiny
portion of real-world images contain fire and are relevant to the
fire alarm software.

Existing input generation techniques are ineffective here. Ran-
dom input generators cannot produce realistic inputs through
random-pixel images or random-character strings. Fuzzing tech-
niques that apply perturbations (white noises [9], block replacement
[10], or mapping [11]) to seed inputs tend to produce inputs that are
either unrealistic or similar with the seed. For example, no fuzzing
can turn the left photo into the right photo in Figure 1. Symbolic ex-
ecution techniques also do not work, as it is difficult to express the
input realism as a solvable constraint. Furthermore, none of these
techniques solves the relevance challenge. To tell which images are
relevant for a fire alarm application requires both an understanding
of the software structure (i.e., knowing that a branch predicate is
about fire in the input) and the ability to perform the very cognitive
task we need to test (i.e., judging whether a photo contains fire).

2) Output correctness relying on human judgement. Cogni-
tive ML APIs are designed to statistically mimic human behaviors,
e.g., identifying the objects in an image, interpreting the emotional
sentiment in a sentence, etc. Consequently, to judge the correctness
of ML software, ideally, we want to ask many people to process
the same set of inputs and see if their decisions statistically match
with the software outputs—a process that is inherently difficult to
automate. For example, it is difficult to tell whether the fire alarm
should be triggered or not without manual inspection (Figure 1).

In traditional testing, the execution correctness often can be
checked automatically using the mathematical relationship between
the inputs and the outputs or certain invariants expected to hold
by the execution. These techniques are still useful for the non-
cognitive parts of the ML software, but cannot help the cognitive
parts. Previous work generated test oracles for domain-specific
applications, like an image dilation software [12], a blood-vessel
categorizer [13], an image region growth program [14], a biomedical
text processor [15]. Their design each targets a particular cognitive
task and cannot be applied for general ML software.

3) Probabilistic incorrectness that is difficult to diagnose.
When ML software produces outputs that differ from most human
beings’ judgement, which we refer to as an accuracy failure, de-
velopers must attribute this failure to either the ML API or the
surrounding software’s use of the ML APL This attribution is diffi-
cult as ML APIs use statistical models to emulate cognitive tasks,
and are expected to produce incorrect outputs from time to time. In
other words, developers need to distinguish failures caused by the
probabilistic nature of the ML API, which simply must be tolerated
as part of using this specific ML AP, from a misuse of the API,
which represents a bug and must be fixed by the developer.

Again, this situation is different from that in traditional software
testing, where a test failure like a crash indisputably points out
something incorrect with the software that needs to be fixed.

Note that, much recent work studies how to test [9, 16—-41] and
fix [42-45] neural networks. However, they focus on improving the
accuracy, fairness, and security of the neural network itself; e.g.,
making sure the network is robust against adversarial samples or
does not contain certain biases, etc. They do not consider how the
neural network is used in the context of an application and do not
test how well the application using the neural network functions.

C. Wan, S. Liu, S. Xie, Y. Liu, H. Hoffmann, M. Maire, and S. Lu

1.2 Contributions

This paper proposes Keeper, a testing tool designed for software
that uses cognitive machine learning APIs (ML software).

To tackle the unique input space and output oracle challenges,
Keeper designs a set of pseudo-inverse functions for cognitive ML
APIs!. For an API f that maps inputs from domain I to outputs in
domain O, its pseudo-inverse function f” reverses this mapping at
the semantic level. We make sure that the mapping by f’ has been
confirmed by many people to have high accuracy. For example, the
Bing image search engine is a pseudo-inverse function of Google’s
image classification APL

Keeper then integrates the pseudo-inverse functions with sym-
bolic execution to reach the sparse program-relevant input space.
Specifically, Keeper first uses symbolic execution to figure out what
values an ML-API output can take to fulfill branch coverage (e.g.,
“fire” == labels[@].desc in Figure 1). Keeper then automatically
generates realistic inputs that are expected to produce the desired
ML-API outputs, leveraging pseudo-inverse functions. For example,
the two images shown in Figure 1 are among the images returned
by a Bing image search with the keyword “fire”.

Keeper also makes pseudo-inverse functions a proxy of human
judgement and automatically judges the correctness of software
outputs that are related to cognitive tasks. Since our pseudo-inverse
functions are not analytically inverting ML APIs (ie., f'(f(i)) # i
is possible), a test input generated by Keeper may not cover the
targeted software branch, like the right image in Figure 1 failing
to cover the alarm branch. At the same time, since these pseudo-
inverse functions have been approved by many human beings,
Keeper reports an accuracy failure when over a threshold portion
of inputs fail to cover a particular target branch.

Of course, Keeper also monitors generic failure symptoms like
crashes during test runs, and helps expose bugs in code regions
that require specific ML inputs to exercise.

Finally, to help developers understand the root cause of an accu-
racy failure, Keeper explores alternative ways of using ML APIs and
informs the developers of any code changes that can alleviate the
accuracy failure. For the example in Figure 1, Keeper would inform
developers that comparing the returned labels with not only “fire”
but also “flame” would make the software behavior more consistent
with common human judgement.

Putting these all together, we have implemented Keeper that can
be used either through a command-line script or a plug-in inside
the VScode IDE [46]. Given a software application, Keeper first
highlights all the functions that directly or indirectly call ML APIs.
For any function that developers want to test, Keeper automatically
generates many test cases to thoroughly test every branch in the
specified function and its callees. Keeper analyzes the test runs
and reports any failures, as well as potential patches for accuracy
failures, to developers.

We evaluate Keeper on the latest version of 63 open-source
Python applications that cover different problem domains and ML
APIs. Due to the relatively young age of ML APIs, these 63 applica-
tions are mostly research projects, hackathon products, and demo
programs. Keeper achieves 91% branch coverage on average for

!The current implementation of Keeper supports Google Cloud AI APIs and can be
easily extended to support similar APIs from other service providers.

Automated Testing of Software that Uses Machine Learning APls

these applications. In total, Keeper covers 21-38% more branches
than alternative techniques that directly use machine learning train-
ing data set or random fuzzing. Keeper exposes 35 unique accuracy
and crash failures from 25 out of these 63 applications.

2 BACKGROUND AND DEFINITIONS

This section provides a brief overview of ML APIs, their inputs and
outputs, and how they are typically used in software.

ML Cloud APIs. ML APIs offered by different service providers
all cover three main categories of machine learning tasks: vision
tasks, language tasks, and speech tasks. Keeper handles all the
commonly used APIs in these three families, as shown in Table 1.
Keeper currently does not handle Video Intelligence APIs (from the
vision family), Translation APIs (from the language family), and
Speech Synthesis APIs (from the speech family), as they are used
much less frequently in open-source applications [7].

In addition to image/text/audio inputs, some ML APIs also take in
configuration parameters. For example, analyze_sentiment takes
in not only a text string, but also configurations like language, en-
coding, and input type, as shown in Figure 2. These configurations
are set to constant values, mostly the default values offered by
Google, in all of the ML software we have checked. Therefore, in
this paper, Keeper focuses on generating image/text/audio inputs.

document = {"content": text_content, "type_": Type.
PLAIN_TEXT, "language": "en"}

» response = client.analyze_sentiment(request= {'document':
document, 'encoding_type': EncodingType.UTF8}

Figure 2: An example of Google Cloud API with text input.

The output of a ML API may include multiple records, like multi-
ple classification results, multiple objects detected, and so on. Each
record typically contains a key result field often of a string or an
enum type, like the classification label of an image, the emotion
of a face, and so on, and a confidence score field, which indicates
how likely this result is correct. Unless otherwise specified, the
remaining paper refers to these key result fields as ML API output,
as summarized in Table 1. Note that, some of these APIs do output
other auxiliary information. For example the face detection API
also outputs the bounding box of each face detected in the input
image. These auxiliary result fields may be used to make control
flow decisions, although such usage has not been observed in any
of the 360 applications collected by a previous ML API study [7].

ML software. Sometimes, ML APIs are only loosely connected
with the remaining part of the software, with their output directly
printed out without further use in the software. Testing this type
of software simply needs to test ML APIs and the remaining part
of the software separately and hence is not the target of Keeper.

In some other cases, ML APIs are more closely connected, with
their results used to impact the control flow of the software exe-
cution. These cases present new challenges to software testing as
discussed in Section 1 and hence is the focus of this paper.

3 TEST INPUT GENERATION

Keeper is a testing tool for software whose control flow is influenced
by ML APIs. As shown in Figure 3, Keeper includes two major

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

Symbolic Execution
& Constraint Solving
*
&

Expected
Execution
Path

<>

synduj JN-UON

<o

-
TEST RUNS

Failure Failure ﬁ
Identification Attribution
Failure

Reports

Figure 3: An overview of Keeper.

components: test-input generation, which we present in this section,
and test-output processing, which we present in Section 4.

Keeper’s input generation is built upon an existing symbolic
execution engine, DSE [47]. Given a function F to test? and all the
function parameters represented as symbolic variables, a symbolic
path constraint is generated for every branch; solving all the path
constraints produces a test suite that offers full branch coverage.

In this section, we explain how Keeper handles cases when ML
APIs are part of the path constraints and generates inputs for ML
APIs, which are not handled by existing techniques.

A naive solution is to symbolically execute ML APIs’ imple-
mentation. Unfortunately, this is too expensive to carry out for
state-of-the-art deep neural networks (DNN). Not to mention that
the exact DNNs used by ML API providers are unknown. For exam-
ple, a state of the art image classification network, EfficientNet-L2
[48], has 480 million parameters. It takes in a 224 x 224 pixel image
and generates the output after about 50 billion floating point oper-
ations. Solving a path constraint that involves this network with
more than 50,000 (224 x 224) symbolic variables would take days.

Keeper decomposes the problem of generating inputs for ML
APIs into two parts: first, it identifies the ML-API outputs that are
needed to satisfy path constraints using symbolic execution (Section
3.1); and then synthesizes the ML-API inputs that are expected to
produce those outputs using carefully designed pseudo-inverse
functions (Section 3.2). As we will see, this decomposition not only
avoids the complexity of directly applying symbolic execution to
DNNS, but also help judge the execution correctness (Section 4).

3.1 Identifying relevant ML outputs

To identify the desired ML-API outputs, Keeper makes its symbolic
execution skip any statement that calls an ML API and instead
marks API output that is used by following code as symbolic. This
way, the output, instead of input, of ML APIs will be part of the
path constraints, and by solving the constraints, Keeper obtains
the API-output values that are needed to exercise corresponding
branches.

The only tweak Keeper makes here is to have the symbolic exe-
cution engine sometimes generating one path constraint for each
branch sub-condition, instead of the whole branch. Specifically,
a common code pattern that we have observed is to decide the

2Users of Keeper can choose any function to test, including the main function.

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

C. Wan, S. Liu, S. Xie, Y. Liu, H. Hoffmann, M. Maire, and S. Lu

ML Task Main Output

Constraint Example

Pseudo-inverse Function

Image classification
Object detection
Face detection

Text detection

image class
object name
face emotion
extracted text

Vision

class=="fire" [8]
object=="tableware" [49]
emotion =="joy" [50]
text=="3923-6625" [51]

Search on internet, keyword: [image class]

Search on internet, keyword: [object name]

Search on internet, keyword: [emotion] + "human face"
Print [extracted text] on an image

Document classification | document class
Language Sentiment detection score, magnitude
Entity detection entity name, type

class=="food" [52]
score< 0 [53]
type=="Person" [55]

Search on internet, keyword: [document class]
Select tweets from Sentiment140 dataset [54]
Use text generation technique, seed: [name] or [type]

Speech Speech recognition transcript

text=="turn on the light" [56]

Use speech synthesize technique on [transcript]

Table 1: Different ML APIs handled by Keeper and their pseudo-inverse functions.

1 def smart_can(img):
labels = client.label_detection(image=img)

classes = [x.desc for x in labels]
for ¢ in classes:
if ¢ == "food":
return "organic"
if ¢ == "paper" or c == "aluminum":

return "recyclable"
return "non-recyclable

Figure 4: A smart can application, Heap-Sort-Cypher [57]

execution path based on whether or not an ML API outputs a la-
bel that belongs to a pre-defined set. For example, the smart-can
application in Figure 4 executes the recyclable path when the
output of label_detection contains a label that is either paper
or aluminum. Since different labels often represent different types
of real-world inputs, Keeper will generate one path constraint for
every condition clause, instead of one for the whole branch. For
example, for the line-7 branch in Figure 4, Keeper generates two con-
straints (“paper” € classes) and (“aluminum” € classes), which
then prompts Keeper to generate two separate sets of images to
satisfy these two constraints.

In our implementation, this is accomplished by enabling a corre-
sponding feature of the underlying symbolic execution engine. For
example, for a branch condition “A or B or C”, four constraints will
be formed representing (1) A is True, (2) B is True, (3) C is True,
and (4) none of A, B, C is True. Solving these constraints leads to
four inputs or input sets that satisfy these constraints separately.

3.2 Identifying ML API inputs

Given an ML API f and an output o, Keeper aims to automatically
generate a set of inputs I so that f(i),i € I is expected to produce
o0 according to common human judgement. For example, the two
images in Figure 1 are expected to make label_detection output
“fire” and the images in every column of Figure 5 are expected to
make label_detection output the corresponding column-header.

To achieve this, Keeper designs a pseudo-inverse function f” for
every API f, so that f’(o0) will produce the input set I for f. We
want f” to have the following properties.

First, f’ is not an analytical inversion of f. Ideally, f” should be
built independently from f (e.g., not based on the same training
data set), so that f’ can help not only input generation but also
failure identification in a way similar to N-version programming.

Second, f’ should be a semantic inverse of f, reversing the cog-
nitive task performed by f in a way that is consistent with most

c=="food" c=="aluminum" Other

c=="paper"

Figure 5: Keeper-generated test cases for Figure 4

human beings. This way, test inputs generated by Keeper can ex-
pect to cover most of the software branches, unless the ML API is
unsuitable for the software or is used incorrectly.

Third, f’ should produce more than one output for each input it
takes in. This will allow Keeper to generate multiple inputs for f to
exercise a corresponding branch, and get a statistically meaningful
test result given the probabilistic nature of ML APIs.

With these goals in mind, we have designed three types of
pseudo-inverse functions as summarized in Table 1.

3.2.1 Search-based pseudo inversion. For many vision and lan-
guage APIs, search engines offer effective pseudo inversion: they
take in a keyword and return a set of realistic images/texts that
reflect the keyword. Search engines have several properties that
serve Keeper’s testing purposes. First, they offer great semantic in-
version, as there are multiple search engines that have been used by
hundreds of millions of users for many years with high satisfaction
[58]. Their top search results typically match the common human
judgement. Second, they are not an analytical inversion of ML APIs,
and we will use non-Google engines to minimize potential correla-
tions. Third, they accept a wide range of search words and produce
many ranked results, which means a large number of high-quality
test inputs for Keeper. Specifically, Keeper uses different engines
and search keywords for different ML APIs:

Vision tasks. Image-classification and object-detection APIs
return string labels that describe the image and the objects inside the
image, respectively. For both APIs, Keeper uses the Bing [59] image
search engine and uses the desired label description or object name
as the search keyword. For example, the images in each column
of Figure 5 were the top-3 search results returned by Bing using

Automated Testing of Software that Uses Machine Learning APls

the keywords listed atop. The only exception is the last column:
when there is no specific keyword requirement (like ¢ != food
and c!= paper and c != aluminum), Keeper uses a blank image
and images generated by a random-image generator [60].

The face-detection API detects human faces in an image. Some
ML software uses the returned emotion string associated with each
face (e.g., “joy”, “sorrow”, etc.) to decide execution path. To generate
corresponding images, Keeper uses “[emotion] human face” as a
keyword to search the Bing image.

Language tasks. Document-classification APIs process a doc-
ument and return categories based on the document content, like
“pets”, “health”, “sports”, and others. Keeper uses the desired cat-
egory name as keyword and searches it at (1) knowledge graph
websites, Wikipedia [61] and Britannica [62]; and (2) Bing web
search engines. Keeper then uses the text extracted out from each
returned web page as the ML API input.

3.2.2 Synthesis-based pseudo inversion. The semantic inversion of
some ML APIs does not match the functionality of search engines.
Fortunately, we find ways to synthesize inputs for them.

The text-detection API extracts printed or handwritten text
from an image. Unfortunately, image search engines tend to return
images whose content reflects the search keyword, instead of im-
ages that contain the keyword as text within the image. Therefore,
given a text string, Keeper prints it on a background image using
the Python pillow library [63]. Keeper adopts both printed and
hand-writing fonts; different font settings produce different test
images. To decide the background image, Keeper checks whether
the text-detection API shares its input image with another vi-
sion APL If so, the test images Keeper generated for the other API
will be used as the background; otherwise, a blank image and some
random images will be used. Figure 6 shows some of the test images
that Keeper generates for application wanderStub [64], which has
a branch checking if the input image contains "Total".

Figure 6: Test inputs generated for wanderStub [64].

The entity-detection API inspects the input sentence for known
entities—there are in total 13 entities, such as ADDRESS, DATE, etc.
Since the search engines usually return long documents, Keeper
instead uses a popular language model GPT-2 [65] to synthesize
any number of sentences that start with a pre-defined word/phrase
that corresponds to the desired entity type.

The speech-recognition API transcribes the input audio clip
and outputs the transcript. Keeper uses speech synthesis tools,
particularly the pyttsx3 [66] Python library, to generate the desired
audio clips based on a given transcript. Keeper generates multiple
audio clips using different voice settings supported by this library.

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

3.2.3 ML benchmarks for pseudo inversion. The sentiment detec-
tion API presents two challenges. First, although this API aims to
identify the prevailing emotional opinion within the text, it does not
directly output a categorical result. Instead, it returns two floating-
point numbers, score and magnitude, for developers to derive
emotion categories from. There is no perceivable way to generate
text that can offer the exact score or magnitude. Second, even if
we just hope to generate text that contains positive or negative
emotion, no search engine or synthesizer can accomplish this.

Facing these challenges, Keeper resorts to the Sentiment140
dataset [54], which contains 1,600,000 tweets, manually labelled as
positive, negative, and neutral. Keeper randomly samples the same
number of positive, negative, and neutral tweets as test inputs for
any sentiment-detection API called inside an ML software, with
the expectation that these tweets will help cover different branches
in the software that are designed for different emotions.

Note that, we treat ML benchmarks as the last resort for multiple
reasons. First, the labels associated with data inside ML benchmarks
either have few categories or have limited quality. For example,
ImageNet [67] contains 1000 manually labeled image categories,
which is too few compared with the 20,000 labels of Google Vision
Al On the contrary, Openlmage has 9 million images with 20,000
labels. However 89% of the labels are generated by DNNs, and 53% of
the human-verified ones are incorrect [68]. Second, ML benchmarks
are built with pre-processed real-world data. Such "clean" data has
less variety, as they share similar size, resolution, and encoding
format. Third, some benchmarks may be part of the training data
set of Google ML APIs, which makes the test inputs biased towards
the ones APIs can perform well on and hence less likely to reveal
problems. Finally, Generative Adversarial Network synthesizes new
data following the distribution of the training set [69]. It covers
different domains, including generating images from text [70]. We
do not use it, as this approach requires much training data and ends
up generating non-real-world data that has similar distribution
with the training set, whose limitations we discussed earlier.

3.3 Putting everything together

Overall, Keeper generates test inputs for any function F in the
following steps. First, its symbolic execution (Section 3.1) generates
a set of inputs I that offer full branch coverage unless some path
constraints are un-satisfiable. If no branch in F or its callees depends
on the output of an ML API, the input generation is done. Otherwise,
if there is such an ML-dependent branch b, those inputs that are
expected to cover b, denoted as I, C I, contain fields that represent
the desired outputs of ML APIs and require further processing.
Next, for each desired output o of an ML API f, Keeper applies
f’s pseudo-inverse function f’ on o to generate a set of image/tex-
t/audio inputs for f (Section 3.2). If f’s input is exactly an input
of the function under test F (i.e., it is not derived from an input of
F through pre-processing), the input generation is done. Keeper
updates every input in I, with the image/text/audio information. If
there were k inputs in I, Keeper now gets k X Nj, inputs, with N,
being the number of image/text/audio inputs Keeper generated for
the ML API f to exercise b. Developers can configure Nj, or the to-
tal number of test inputs to generate. Keeper will then compute Np,

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

so that every ML-dependent branch (sub-)condition gets exercised
by about the same number of inputs.

If f’s input is derived from an input of function F through pre-
processing, Keeper runs symbolic execution on that pre-processing
code to figure out the desired input of F and finishes the input
generation. For example, if a function deletes the first character of
a string parameter and feeds the resulting string to an ML API f,
Keeper will add a character to the beginning of every input gener-
ated for f to get the string parameter of this function. The symbolic
execution engine used by Keeper can handle pre-processing re-
lated to text (i.e. strings), but not those related to images or audio,
such as image/audio clipping. Future work can extend Keeper with
common image/audio transformation routines.

Finally, these test inputs generated by Keeper are ready to be
executed. Particularly, in order for a software to consume a test
image or audio file file generated by Keeper, Keeper changes the
file path embedded in the software to a path that points to file.

4 TEST OUTPUT PROCESSING

Once all the test inputs are generated and executed, Keeper works
on failure identification and attribution.

4.1 Failure identification

Keeper looks for three types of failure symptoms: (1) low accuracy,
(2) dead code, and (3) generic failures like crashes.

4.1.1 Low-accuracy failures. When software incorporates cogni-
tive ML APIs in its computation, judging the output’s correctness
becomes challenging: (1) by definition of cognitive tasks, this output
needs to be checked with many people to see if it matches with com-
mon human judgement; (2) due to the probabilistic nature of ML
APIs, an occasional mismatch is expected. Of course, frequent mis-
matches are un-acceptable and severely hurt user experience, like
not triggering fire alarms when needed (Figure 1) or consistently
categorizing garbage incorrectly (Figure 4).

To tackle the first challenge, Keeper uses pseudo-inverse func-
tions as an approximation of common human judgement; to tackle
the second challenge, Keeper considers the software to suffer from
a low-accuracy failure, or an accuracy failure for short, only when
over a threshold portion of inputs of a particular type have produced
outputs that are inconsistent with common human judgement.

Specifically, for all the inputs I, that are generated to cover a
branch b, Keeper checks which of them exercise b at run time,
denoted as]IZ“CC and calculates the recall of b (i.e., %). If the
recall drops below a threshold «, 75% by default. Keeper reports an
accuracy failure associated with b. The setting of & can be adjusted,
but should not be 100%, as ML APIs are probabilistic and pseudo-
inverse functions cannot guarantee to be correct all the time.

For the fire-alarm example in Figure 1, Keeper identifies an ac-
curacy failure associated with the “fire” branch, as its recall is
41%; for the smart-can example in Figure 4, Keeper identifies an
accuracy failure as the recall of the recyclable branch is only 13%.

For abranch b that depends on the output of a sentiment-detection
API, Keeper identifies failures slightly differently as inputs are
generated for sentiment-detection API differently as discussed in
Section 3.2.3. During test runs, Keeper checks all the inputs that

C. Wan, S. Liu, S. Xie, Y. Liu, H. Hoffmann, M. Maire, and S. Lu

1 labels = client.label_detection(image=img)
2 temp = label[@].desc + label[1].desc + label[2].desc

5 if "fire" in temp or "flame" in temp or "ash" in temp:
4 alarm()

Figure 7: A fixed version of Figure 1 suggested by Keeper.

exercise b to see what portion of them are labeled as having positive
emotion and what portion are labeled as negative. If both go above a
threshold, indicating that branch b is not accurately differentiating
inputs with different emotions, Keeper reports an accuracy failure.

Root causes of accuracy failures. Note that, these accuracy
failures are not equivalent with low precision or low recall of the
ML API itself. The latter is just one of the possible root causes of
the former. Keeper intentionally does not calculate the precision or
recall of any ML API, but instead focuses on the overall software.

One possible cause is that developers missed some related labels
in a branch condition, which we refer to as an incomplete label
problem. For example, the 1abel_detection API does not return
“fire” as a top-3 label for many top fire images returned by the Bing
image search. This by itself is not considered a failure by Keeper. If
the software uses the API properly, like raising a fire alarm upon
not only a “fire” label but also a “flame” label and an “ash” label
as shown in Figure 7, no accuracy failure would be reported, as
the recall of the alarm-related branch is as high as 85% and the
precision is 100% in our experiments.

Another possible cause is that developers used a non-existing
label, which does not exist in the API’s label set and can never be
the output. This is not a surprise as the labels that can be output by
Google Vision API are too many (19,985) for developers to memo-
rize. For example, an application compares the label_detection
output with “clothes” and “pants” [57], which are non-existing
labels. Instead, “clothing” and “trousers” are valid labels.

4.1.2 Dead-code failures. These occur when a branch is not cov-
ered after all the testing runs. They happen under two scenarios.

One scenario is that Keeper generates a set of test inputs [}, ex-
pected to cover a branch b, and yet b is not exercised by any input in
I. Such an extreme case of low branch recall (i.e., 0) is often caused
by the branch comparing a ML API output with a non-existing
label. If this comparison is one of multiple branch sub-conditions,
an accuracy failure would likely occurr (i.e., a low but non-zero
recall); if it is the only condition clause, a deadcode failure occurs.
For example, a smart photo application FESMKMITL [71] checks
the output of label_detection against the string “face". Unfortu-
nately, among the 20,000 category labels that could be output by
this API, none of them is “face”. Instead, “human face” is one of the
valid labels for this API, which the developers should have used.

The other scenario is that Keeper fails to generate any inputs
to cover a branch, which triggers a dead-code failure report before
any test runs. Sometimes, this is caused by a typo in the branch
condition. For example, Keeper exposes such a failure in Verlan [72].
Verlan uses object-detection to judge whether an image contains
an animal or not. Unfortunately, it wrongly uses "animal" instead
of obj.name == “animal” in its branch condition, making the
if-statement always True. It will regard every image that contains
at least one object as an animal image!

Automated Testing of Software that Uses Machine Learning APls

object = client.object_detection(image=img)
2 for obj in objects:
if obj.name=="dog" or "animal":
4 do_A ()

Figure 8: Dead-code bugs in Verlan [72]

4.1.3 Generic failures. These have symptoms like crashes that do
not require special techniques to observe. Comparing with tradi-
tional testing techniques, Keeper offers extra benefit in two sce-
narios. (1) The failures are caused by bugs located on a path that
requires specific ML API inputs to trigger. Keeper contributes by
generating the needed ML API inputs to exercise the path. (2) The
failures are directly related to the corner cases of ML API inputs,
such as blank images that cause label_detection to return no
labels. An example of such a bug exposed by Keeper is illustrated
in Figure 9.

text = client.text_detection(image=img)
» labels = text[0@].description.split('\n")
5 for label in labels:
4 do_something ()

Figure 9: Crash failure in FortniteKillfeed [73]: a blank image
returns an empty array text and trigger an index-out-of-range.

4.2 Failure attribution

To help developers understand and tackle accuracy failures, Keeper
attempts to automatically patch the software by changing how ML
APIs’ output is used. Keeper suggests the change to developers and
if all attempts failed, Keeper suggests developers to consider using a
different, more accurate ML API, or adding extra input screening or
pre-processing. Specifically, Keeper attempts two types of changes
to the branch b where the failure is associated with.

Label changes. When branch b compares a ML API output with
a set of labels, Keeper tries to expand the set of labels with three
goals in mind. (1) Recall goal: more test inputs that are expected to
exercise b can now satisfy b’s condition; (2) Precision goal: most
inputs that are not expected to exercise b should continue to fail
the condition of b; (3) Semantic goal: the added labels are related to
the original label(s) in b in terms of natural language semantics.

Without loss of generality, imagine that b takes the form of if
o == label®, with o being the output of an ML API f. Keeper first
collects the set of labels L output by f for every input in I[gaﬂ, the
set of inputs that are expected to exercise b but fail to do so.

Then, considering the semantic goal, Keeper filters out every
label in L that is neither adjacent to nor sharing a common neighbor
with label® in the wikidata knowledge graph [74]. For example,
“amber” is pruned out by Keeper while processing the accuracy fail-
ure in Figure 1, because it is far away from “fire” in the knowledge
graph. Instead, “flame” and “ash” both remain, as they are both
adjacent to “fire” on the graph.

Next, Keeper uses a greedy algorithm to iteratively expand the
set of labels compared with o in b. Every time, Keeper adds to
the set a label 1 € L so that 1 offers the biggest improvement in
b’s recall without reducing b’s F1-score (i.e., the harmonic mean
of the precision and the recall). Here, the precision of branch b is

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

u[succl

computed as I]IhS”CI :among all the inputs that exercise b, how many

of them are expected to do so. This procedure continues until the
recall of b goes above the accuracy failure threshold or when there
is no eligible candidate label remaining in L.

Exactly through this process, Keeper suggests to the developers
that the alarm branch in Figure 1 should check more labels like
that in Figure 7, as by checking more labels the branch’s recall can
increase from 40% to 85% on those test cases generated by Keeper.
This suggestion is proposed through a text description instead of a
code patch—"If you additionally check flame and ash in the branch
condition on Line 3, your program will agree with most human
beings’ judgement for 85% of test inputs, an improvement from 40%
of your original code".

Threshold changes. As discussed earlier, an accuracy failure is
reported when a branch b, which checks the score and/or magnitude
output of a sentiment-detection API, gets exercised by many inputs
labeled as having positive emotions and also many inputs labeled
as having negative emotions. Keeper applies logistic regression to
these input texts, with the {score, magnitude} output of each input
as feature vectors and the labeled emotion as a class. Keeper then
suggests the linear formula of logistic regression as a new branch
checking threshold to developers, letting them know that this new
formula can better differentiate text inputs with different emotions.

5 IMPLEMENTATION

We have implemented Keeper for Python applications that use
Google Cloud AI APIs [1], the most popular cloud Al services on
Github [7]. The core algorithm of Keeper is general to other lan-
guages and ML Cloud APIs. Keeper uses dynamic symbolic execu-
tion framework PyExZ3 [47], which implements the DSE algorithm,
and uses CVC4 [75] for constraint solving. Keeper uses Python built-
in trace back tool [76] to check branch coverage, and Pyan [77] and
Jedi [78] for call graph and program dependency analysis. Keeper
uses Python scikit-learn[79] library for linear regression models.

 RELEVANT FILES AND CODES % jacket.p:

~ @ jacket.py from google.cloud import language
D is_jacket TestThis Function from google.cloud. language import enums

from google.cloud import vision
Failure Type: Accuracy Failure

Description: Your program suffers from accuracy problems: ts judgement differs
human beings for 40% of the test inputs on line [17->18, 18->19, . For example, i
~ FUNCTIONS WITH FAILURES think these inputs are [image of [Jacket]], and yet your program does not.

v s Crash Failures 9
Fix St jestion:
v & Accuracy Failures 10 uggestit

@ is_jacket: Your program suff...
5 12 with most human beings' judgement for 91% of the test inputs, an improvemer
v #& Dead Code Failures 13 62% of your original code.

1 « If you replace this branch condition with [Jacket OR Outerwear], your program

x
15 Bug Triggering Input

16 Click here to see image input 1

17 Click here to see image input 2

18 if 'Jacket' in label.description:
19 return True

- COMMAND PANEL

Refresh functions that can be tested

Detect relevant functions 2l
22

Then, choose the function you want 23 if _pame__ == '__main__':
to test from above, click on the 24 print(is_jacket("test_img.jpg"))

return False

Figure 10: Keeper IDE plugin interface

We have implemented an IDE plugin for visualized interaction
with Keeper, as the debugging and fixing of accuracy failures par-
ticularly requires developers’ participation, as illustrated in Figure
10. The plugin is an extension in Visual Studio Code [46], a pop-
ular code editor supporting multiple languages. For any Python
software, Keeper first identifies all functions that invoke ML APIs

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

C. Wan, S. Liu, S. Xie, Y. Liu, H. Hoffmann, M. Maire, and S. Lu

Failure type Root Cause Related ML Task Keeper RReal RReal+Noise Fuzz.
Out-of-bound accesses Text detection, entity detection 6 5 5 4
Crash failures Missing input validation® Document classification 1 - - -
Missing type conversion - 1 1 1 1
Improper labels Image classi., object detect., document classi. 9 - - -
Accuracy failures API limitations Image classification, object detection 6 - - -
Improper threshold Sentiment detection 9 - - -
Dead-code failures Typos o Image class%ﬁcat%on, text detection 2 - - -
Non-existing label Image classification 1 - - -

Table 2: Unique failures exposed by Keeper. (*: This crash disappeared later with the most recent version of Google APL)

directly or indirectly through callees, and displays them on the side
bar, under “RELEVANT FILES AND CODES” in Figure 10. From that
list, developers can select the function to test. Once they have made
the selection, they will be asked to provide type information of func-
tion parameters, as Python is a dynamically typed language. Keeper
will then start the testing. At the end of the testing, which usually
takes 1-2 minutes, any execution failure that has been exposed is
listed in the side bar, right under “FUNCTIONS WITH FAILURES”
in the figure. Source code related to each failure is highlighted,
together with a hovering window that offers detailed information
like failure description, triggering inputs, and patch suggestions. A
demo of the Keeper plugin can be found at our artifact [80].

6 EVALUATION

Our evaluation aims to answer several questions:

(1) Does Keeper help improve the branch coverage in testing?
(2) Is Keeper able to find bugs during its testing?
(3) Is Keeper able to suggest fixes for accuracy failures?

6.1 Methodology

6.1.1 Applications. We evaluate Keeper using 63 Python appli-
cations that are from two sources. 1) From the 360 open-source
applications assembled by a previous study of ML APIs [7], we
found 45 Python applications that use ML APIs in a non-trivial way
(i.e., the API output affects control flow). 2) We additionally checked
about 100 random Python applications on GitHub that use ML APIs
and found 18 applications that use ML APIs in a non-trivial way.

These 63 applications use a range of ML APIs, including Vision
(32 apps), Language (23 apps), and Speech (8). Their sizes range
from 54 lines of code to more than 100,000 lines of code, with 582
lines of code being the median®. They have a median age of 18
months at the time of our study (Apr. 1st, 2021). Among these 63
applications, 16 applications have received 1 or multiple stars on
Github; the other 47 applications have not received any stars. The
details of each application, including the link to each Github code
repository, are included in Table 4.

Despite our best effort in application collection, unfortunately,
most of these 63 applications seem to be research projects, hackathon
products, or demo programs, based on their limited popularity in
Github. This is probably due to the young age of ML APIs. Con-
sequently, our evaluation results may not generalize to mature
software that has a solid user base.

3Files from templates, frameworks, and libraries are not included in the LoC counting.

Vision App. | Language App. | Speech App.
Keeper 91.9% 91.5% 89.7%
Random-Real 74.5% 85.0% 54.3%
Random-Real-Noise 73.0% 65.2% 54.3%
Fuzzing 44.4% 74.0% 24.9%

Table 3: Average branch coverage across 63 applications.

For more than half of the applications (35), we simply specify
main as the function to test. In other cases, the function under test
is the entry function to the software feature related to ML APIs.
The average number of branches in these functions-to-test is 13.

6.1.2 Baselines. We compare Keeper with 3 other techniques. Each
technique generates 100 test inputs for each function under test.

(1) Random Real: we randomly pick inputs from well established
data sets, including ImageNet [67] that contains 14 million images,
Twitter US Airline Sentiment [81] that contains 15,000 tweets, and
a set of audio clips synthesized for 115 daily sentences [82].

(2) Random Real + Noise: we add random noise to inputs picked
by Random Real. For an image, we randomly added noises follow-
ing Gaussian distribution; for an text input, we randomly decide
whether to add noise and if so, randomly changed the word orders.
For audio input, we do not add noise here, as we found that adding
small noises does not affect ML API and yet adding big noises would
turn the audio clip into what the third approach will generate.

(3) Fuzzing: we use a coverage-based fuzzing tool pythonfuzz
[83] to generate images, text, and audio. For every image input, we
use an integer list to fill its RGB matrix in a repeated way. For every
text inputs, we generates ASCII character sequences. For audio
inputs, we directly generates the audio data.

6.2 Software testing evaluation

6.2.1 Branch coverage. For each of the 63 functions specified to test,
each from one application in our benchmark suite, we compute the
accumulative branch coverage achieved by the 100 inputs generated
by each testing technique. Table 3 shows the overall results.
Across different types of applications, Keeper consistently achieves

high branch coverage, around 90% on average. The uncovered
branches are either related to dead-code failures that Keeper dis-
covers, or related to code that our underlying symbolic execution
engine cannot handle. In comparison, the fuzzing technique per-
formed the worst, covering less than 50% of the branches for vision
and speech applications, confirming our intuition that it is impor-
tant to use realistic inputs to test ML APIs.

Automated Testing of Software that Uses Machine Learning APls

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

LocC l

Branch Coverage

l

Keeper Exposed Failures

l

Application w/ link Description Stars | #Branches | Keeper RReal Rreal+Noise Fuzz | Accuracy Crash Dead-code |
selfmailbot Telegram bot 114 911 10 90% 70% 10% 10%

FortniteKillfeed Game assistant 5 1440 28 100% 0% 0% 0% 1
FB_MMHM Meme inspector 3 2850 34 94% 88% 91% 53%

Audio-SentenceSplit Audio splitter 3 304 4 100% 50% 50% 50%

calbot Nutrition tracker 2 653 8 100% 100% 100% 25%

Hapi Produce analyzer 2 261 12 100% 100% 92% 92%

stockmine Investment helper 2 1079 10 90% 80% 70% 50% 1

Tone Smart music player 2 12709 4 100% 100% 25% 25% 1
UOttaHack-2019 Speech emotion detector 2 107 6 100% 100% 83% 83% 1
BlindHandAssistance Blind assistant 2 708 22 27% 18% 18% 14%

IngredientPrediction Recipe recommender 1 142 12 100% 58% 58% 58% 3
recipeGO Recipe recommender 1 22457 4 100% 100% 100% 25%

devfest Public opinion analyzer 1 206 10 100% 80% 50% 80% 1
Klassroom Note taker 1 17250 14 100% 100% 100% 86%

uofthacks6 News summerizer 1 495 48 96% 79% 79% 75% 1
HackThe6ix Insurance manager 1 65944 46 87% 72% 70% 63%

Average branch coverage / Total failures exposed by Keeper 93% 75% 62% 49% 7 2 0
Aander-ETL Smart album 0 471 16 81% 75% 81% 63% 3

Alpr License recognization 0 89 4 100% 75% 75% 50%

artificial_intelligence Calorie calculator 0 401 26 81% 35% 35% 4%

emotion2music Smart music player 0 777 10 100% 70% 70% 10%

Experiments Product info analyzer 0 2500 18 100% 100% 100% 6%

FESMKMITL Emotion tagger 0 1024 8 63% 63% 63% 63% 1
heapsortcypher Garbage classifier 0 85 12 100% 83% 92% 75% 3
Image-analyzer-chat-bot Chat bot 0 163 12 100% 100% 92% 33%

ns_online_toolkit Game assistant 0 9907 8 100% 88% 88% 25%

Phoenix Fire alarm 0 284 6 100% 83% 83% 83% 1
ResearchSpring2019 Prescription reader 0 131065 62 35% 0% 0% 0% 1
SeeFarBeyond Coin finder 0 280 54 70% 39% 39% 39% 2 2
smart_can Garbage classifier 0 1750 14 100% 100% 100% 79%

SnapCal Smart calendar 0 233 4 75% 75% 75% 50%

twimage-search Landmark recognizer 0 107 26 100% 100% 88% 46%

WanderStub Exchange convertor 0 54 2 100% 0% 0% 0% 1
Verlan Animal finder 0 73 4 75% 75% 75% 25% 1
thgml Calorie calculator 0 76476 8 100% 38% 38% 13%

SBHacks2021 Smart camera 0 234 10 100% 100% 100% 70%

flood_depths Flood monitor 0 203 4 100% 100% 100% 50%

image_tagging Fruit checker 0 749 4 100% 100% 100% 100%

shecodes-hack Clothes checker 0 7052 4 100% 75% 100% 75%

SunHacks2019 Blind assistant 0 40071 14 100% 100% 79% 7% 1
SnapTrack_HACK112 Nutrition tracker 0 1096 4 100% 100% 100% 100% 1
lahacks-quaranteen Image checker 0 4080 2 100% 100% 50% 50%

plant-watcher Plant manager 0 183 8 75% 75% 75% 75% 1
senior-project Smart album 0 582 10 90% 90% 90% 70%

animal_analysis Image sharing platform 0 355 10 90% 80% 60% 50%

calhacksv2 Movie review analyzer 0 17105 10 100% 100% 90% 80%
carbon-hack-sentiment Public opinion analyzer 0 222 8 100% 100% 88% 88% 1
Cloud-Computing Food delivery 0 26914 4 100% 100% 25% 100% 1
EC601_twitter_keyword Investment helper 0 2563 6 100% 100% 83% 83% 1
ElectionSentimentAnalysis ~ Tweet analyzer 0 1801 8 100% 100% 88% 100%

GeoScholar Scholar database 0 268 4 100% 100% 100% 100% 1
JournalBot Journel manager 0 295 6 100% 100% 83% 100% 1
noteScript Note taker 0 886 16 88% 44% 44% 44% 1 1
Sarcatchtic-MakeSPP19 Text tone checker 0 259 8 100% 100% 100% 88% 1
Twitter_Mining_GAE Disaster news analyzer 0 822 6 67% 67% 67% 67%

BadGIF Discord bot 0 19747 4 100% 50% 50% 75%
Mind_Reading_Journal Journel manager 0 558 6 100% 100% 67% 83%

newsChronicle Timeline generator 0 346 4 100% 100% 100% 100%

ocr-contratos Contract analyzer 0 22931 6 83% 83% 67% 67%
most_anoying_app_ever Smart music player 0 176 8 100% 63% 63% 38%

PottyPot Swear remover 0 135 14 100% 71% 71% 14%

ReadingMachine Book reader 0 209 4 100% 75% 75% 25%

SwearRemoval Swear remover 0 203 10 100% 30% 30% 20%

TRANSLATOR Consecutive interpreter 0 10700 14 100% 57% 57% 29%

Average branch coverage / Total failures exposed by Keeper 93% 78% 72% 55% 17 6 3

Table 4: Information and results of 63 applications. (Each application name contains a hyper link to its GitHub repository; the LOC
numbers refer only to the actual application code, not libraries, templates, or other files in the repository; #Branches: the number of branches
in the function under test; 0% coverage: all test cases crash the program execution before reaching any branches.)

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

Random Real performs better than fuzzing, but still fails to cover
about a quarter of branches in vision applications and half of the
branches in speech applications. Adding random noises to random
realistic inputs does not help. Keeper covers 23% and 59% more
branches than Random-Real for vision and speech applications,
respectively, as Keeper leverages symbolic execution and pseudo-
inverse functions to generate inputs targeting different branches.

Applications that use language APIs appear to be the easiest
to cover—even fuzzing achieves 74% coverage. This is probably
because language APIs’ output, like document type or entity name,
has much less variation than that of vision and speech APIs.

Table 4 shows the exact branch coverage offered by each tech-
nique for each benchmark application. As we can see, Keeper offers
the highest branch coverage for all 63 applications.

6.2.2 Failure exposing and attribution. As shown in Table 2, Keeper
exposed many failures by running those 100 test inputs it generated:
35 failures from the latest version of 25 applications. These failures
cover a range of symptoms and root causes. Except for one failure
caused by missing type conversion, the others are all related to
different types of cognitive ML tasks, as shown in the table.

In comparison, alternative testing techniques missed 2-3 crash
failures caught by Keeper. Furthermore, unlike Keeper, they cannot
automatically recognize accuracy failures and dead-code failures.

Accuracy failures. Among the 24 accuracy failures exposed
by Keeper, 15 of them are related to label checking for vision APIs
and document-classification API, and 9 are related to threshold
checking for the sentiment detection API.

For all of the 9 failures related to sentiment detection, Keeper
manages to suggest better checking threshold that fixes the failure.

There are 9 accuracy failures that Keeper manages to fix by
making the failure branch check for 1-3 extra labels. The failure in
Figure 1 is one such example. As another example, one application
checks if the output of 1abel_ detection contains either “building”
or “estate” or “mansion”. This branch’s recall is very low: 33%.
Keeper suggests adding “house”, “architecture”, and “window” to
the label set, which would improve the recall to be above 75%.

For the remaining 6 vision-related accuracy failures, code changes
by Keeper can alleviate the problem but cannot push the recall of
the related branch to be above 75%, suggesting fundamental API
limitations. Two of these cases actually involve non-existing labels.
For example, the “aluminum” in line 7 of Figure 4 is actually a non-
existing label. Keeper suggests checking “metal” instead, which
increases the branch’s recall to close to 40%, but still below 75%.

Deadcode failures occurred in 3 applications. One of them is
due to non-existing labels. Two are because of typos in branches
that process ML API output, like the one in Figure 8.

Crash failures are mainly caused by out-of-bound accesses to
lists returned by ML APIs, as shown in Figure 9. One crash is caused
by buggy code inside a branch body that handles images with coins
inside. This failure cannot be exposed by other testing techniques,
as they did not produce images with coins inside.

False positives. Keeper has two false positives in total (they are
not included in Table 2). One application tries to detect sensitive
document by checking if any output of the document-classification
API contains a “ensitive” sub-string. Keeper feeds its pseudo-inverse
function with “ensitive” and fails to get any test inputs, and hence

C. Wan, S. Liu, S. Xie, Y. Liu, H. Hoffmann, M. Maire, and S. Lu

End-User Preference on Two Versions of Application

Text App 2

Text App 1

Image App 2

Image App 1
| I | 0
0% 20% 40% 60% 80% 100%
I Prefer Fixed (Ours) Same B Prefer Original

Figure 11: End-user preference: Original vs. Keeper version.

incorrectly reports a dead-code failure. The other application has a
branch that gets covered only when an ML API generates a specific
output with low confidence. Keeper is not effective at generating
low-confidence inputs and wrongly reports an accuracy failure.
Threshold setting. As discussed in Section 4.1, the recall thresh-
old « is set to 0.75 by default when detecting accuracy failures. Nat-
urally, more failures would be reported when « is larger. Increasing
a to 0.95, which is unreasonably high, would creates 5 more failure
reports; decreasing a to 0.6 would have 2 fewer failure reports.
Results across applications. As shown in Table 4, the 35 fail-
ures exposed by Keeper are from 25 different applications. These
include both applications that have received stars on Github and
those that have not; both the smallest application in our benchmark
suite, WanderStub, and the largest one, ResearchSpring2019.

6.3 User studies

To better evaluate the accuracy failures and the code changes sug-
gested by Keeper, we recruited 100 participants on Amazon Mechan-
ical Turk (Mturk) for a software-user survey. The survey includes 4
applications from our benchmark suites: 2 image-related applica-
tions and 2 text-related applications. On each survey page, a brief
description is given for an application and user-study participants
are told to review how two versions of this application perform
on a set of inputs. Then, the web page displays a number of input
images/text and the corresponding outputs of application version-1
and application version-2. These two versions are the original ap-
plication and the application with suggested code changes from
Keeper (referred to as fixed in Figure 11); we randomly decide which
one of them is version-1 and which is version-2 on each survey
page to reduce potential bias. Each participant is asked to answer
questions about (1) for each input, which version’s output they
prefer; and (2) which version they think is better with everything
considered. Participants were compensated $5 after the survey.

A summary of the user study results is shown in Figure 11. As
we can see, in all cases, a dominate portion of end-users prefer
the version with changes suggested by Keeper over the original
version, supporting Keeper’s judgement about accuracy failures and
Keeper’s attempt in fixing the accuracy problems. At the same time,
we also noticed that there are 20-26% of user-study participants
who prefer the original software and 12-27% who feel the two
versions are about the same. These results confirm the fact that
cognitive tasks are inherently subjective—even human beings often
do not agree with each other on these tasks.

Automated Testing of Software that Uses Machine Learning APls

7 THREATS TO VALIDITY

Internal threats to validity. Keeper assumes that search engines’
top results are mostly consistent with human judgement, which
could be incorrect. The failure identification and fixing attempts
in Keeper are inherently probabilistic. The recall that Keeper cal-
culated for each branch could vary depending on the test inputs.
More test inputs would make the testing procedure more robust.

Some inputs generated by Keeper may not be the inputs that
the software aims to handle, like the image being a photo taken
indoor and yet the software meant to be used outdoor. When Keeper
expands a branch’s comparison label set, the increase of the recall
sometimes comes with the decrease of the precision (i.e., more
inputs not expected to exercise the branch does exercise). Although
Keeper uses the F1-score to balance precision and recall, ultimately
developers need to make the code change decision. We implemented
Keeper IDE plug-in, aiming to help developers make informed
decision about how their software uses ML APIs.

When an input expected by Keeper to cover a branch b fails to
do so, this input may cover another branch b’ whose body conducts
the same computation as b. This would confuse Keeper’s failure
identification, although we have not observed such situations.

External threats to validity. Most of applications in our bench-
mark suite, including those used as examples in the paper, are
research applications, hackathon projects, or demo programs. Con-
sequently, observations and results obtained from them might not
generalize to more widely used, real-world applications. Our tool
is only tested with python applications using Google Al not other
ML Cloud API services.

8 RELATED WORK

ML-related software. Prior work studied development phases
[5, 84-87] of software that contains machine learning components.
They do not look at how to test such software.

A recent study manually identified anti-patterns [7] from soft-
ware that uses ML APIs. Keeper differs from this study by proposing
testing techniques that can automatically expose failures and at-
tribute failure causes. On the contrary, this recent study obtained
all its anti-patterns through manual code inspection. It managed
to build automated detectors for some performance-related anti-
patterns, like repeatedly calling a ML API with a constant input,
but does not have automated bug detection or testing solutions
for any correctness-related anti-patterns. Furthermore, due to the
different design goals, the type of failure root causes covered by
Keeper also differs from the previous study. In the 45 applications
that are evaluated both by Keeper and the previous study, Keeper
automatically exposed 32 failures, among which only 3 were also
identified by the previous study.

Another line of work [88-91] studies testing autonomous sys-
tems. They are tailored for the characteristics of autonomous driv-
ing and spatial-temporal data, and thus not applicable to most ML
software targeted by Keeper.

ML-related testing. Much research has been done for testing [9,
17-41, 92] and fixing [42-45] neural networks, in terms of accuracy,
fairness, and security. Other work studies implementation bugs of
neural network architectures [93, 94] and other machine learning
models [95, 96]. They are orthogonal to Keeper.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

As discussed in Section 1, some previous work looked at how to
test specific software that contains ML components [12-15]. Un-
fortunately, their solutions do not apply to general ML software.
For example, one work trained a SVM classifier to judge the cor-
rectness of an image dilation program, leveraging the fact that the
input image and the output image should contain the same objects
[12]. To test a blood-vessel image categorizer, previous work [13]
generates blood-vessel images with certain density, branches, and
other features, and use these features to generate output ground
truth. Previous work [14, 15] uses metamorphic approaches to test
entity detection and image region growth programs. They require
application-specific rules about inputs and outputs relationship
(e.g., after we concatenate inputs of entity detection, the output
becomes the concatenation of individual outputs [15]).

Prior work studies automatic testing and bug detection of ma-
chine learning APIs, including frameworks for implementing neural
networks [97-103] and REST APIs that provide machine learning
solutions [104-106]. They focus on the implementation inside ML
APIs, not how they interact with other software components.

Test generation using search engines. Previous work [107,
108] explored using search engines to generate string inputs for
software under test. Specifically, when a program identifier corre-
sponds to a common concept, such as emailAddress, this identifier
can be used as a keyword to search for related web pages. The
resulting web pages can then be processed to help generate related
string inputs (e.g., a realistic email address). Clearly, Keeper tackles
fundamentally different problems from previous work, although
Keeper also leverages search engines.

9 CONCLUSION

It is challenging to efficiently and effectively test software contain-
ing machine learning components. We present Keeper, an auto-
mated coverage-guided testing framework that helps developers
to detect bugs and provide fixing suggestions for their software
implementation. Keeper automatically generates test cases via a
novel two-stage symbolic execution and Keeper-designed ML in-
verse functions. We evaluate Keeper with a variety of open-source
machine learning applications and achieve high code coverage with
a small set of test cases. It identifies bugs that leads to software
crash, lower inference accuracy, or dead code.

10 DATA AVAILABILITY

We release our benchmarks, the tool source code, experimental
results, and user study results online [80].

ACKNOWLEDGEMENT

We thank the reviewers for their insightful feedback. The authors’
research is supported by NSF (CNS1764039, CNS1956180, CCF1837120,
CCF2119184, CNS1952050, CCF1823032), ARO (W911NF1920321),
and a DOE Early Career Award (grant DESC0014195 0003). Ad-
ditional support comes from the CERES Center for Unstoppable
Computing, CDAC Summer Lab, the Marian and Stuart Rice Re-
search Award, Microsoft research dissertation grant, UChicago
College Research Fellow Grant, and research gifts from Facebook.

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

REFERENCES

(1]

[13]

[14

[15]

Google, “Google cloud ai” Online document https://cloud.google.com/products/
ai, 2020.

Amazon, “Amazon artificial intelligence service.” Online document https://aws.
amazon.com/machine-learning/ai-services, 2020.

Microsoft, “Microsoft azure cognitive services.” Online document https://azure.
microsoft.com/en-us/services/cognitive-services, 2020.

IBM, “Ibm watson.” Online document https://www.ibm.com/watson, 2020.

S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi,
and T. Zimmermann, “Software engineering for machine learning: A case study,”
in ICSE-SEIP, pp. 291-300, IEEE, 2019.

K. Das and R. N. Behera, “A survey on machine learning: concept, algorithms
and applications,” International Journal of Innovative Research in Computer and
Communication Engineering, vol. 5, no. 2, pp. 1301-1309, 2017.

C. Wan, S. Liu, H. Hoffmann, M. Maire, and S. Lu, “Are machine learning cloud
apis used correctly?,” in 43th International Conference on Software Engineering
(ICSE’21), 2021.

Phoenix, “A fire-detection application.” https://github.com/yunusemreemik/
Phoenix.

A. Odena, C. Olsson, D. Andersen, and 1. Goodfellow, “Tensorfuzz: Debugging
neural networks with coverage-guided fuzzing,” in ICML, 2019.

X. Xie, L. Ma, F. Juefei-Xu, H. Chen, M. Xue, B. Li, Y. Liu, J. Zhao, J. Yin, and
S. See, “Deephunter: Hunting deep neural network defects via coverage-guided
fuzzing,” arXiv preprint arXiv:1809.01266, 2018.

P. Ma, S. Wang, and J. Liu, “Metamorphic testing and certified mitigation of
fairness violations in nlp models.,” in IJCAL pp. 458-465, 2020.

T. Jameel, L. Mengxiang, and L. Chao, “Automatic test oracle for image process-
ing applications using support vector machines,” in 2015 6th IEEE International
Conference on Software Engineering and Service Science (ICSESS), pp. 1110-1113,
IEEE, 2015.

M. C. Junior, R. A. Oliveira, M. A. Valverde, M. P. Jackowski, F. L. Nunes, and M. E.
Delamaro, “Feature-based test oracles to categorize synthetic 3d and 2d images
of blood vessels,” in Proceedings of the 2nd Brazilian Symposium on Systematic
and Automated Software Testing, pp. 1-6, 2017.

C.Jiang, S. Huang, and Z. Hui, “Metamorphic testing of image region growth pro-
grams in image processing applications,” in 2018 IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C), 2018.

M. Srinivasan, M. P. Shahri, I. Kahanda, and U. Kanewala, “Quality assurance of
bioinformatics software: a case study of testing a biomedical text processing
tool using metamorphic testing,” in Proceedings of the 3rd International Workshop
on Metamorphic Testing, pp. 26-33, 2018.

[16] J. Wang, G. Dong, J. Sun, X. Wang, and P. Zhang, “Adversarial sample detection

[17]
(18]

[19]

[20]

[21]

[27

[28

[29]

[30

for deep neural network through model mutation testing,” in ICSE, 2019.

K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox testing of
deep learning systems,” in ASPLOS, 2017.

Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of deep-neural-
network-driven autonomous cars,” in ICSE, 2018.

X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao, B. Li, J. Yin, and
S. See, “Deephunter: A coverage-guided fuzz testing framework for deep neural
networks,” in ISSTA, pp. 146-157, 2019.

S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama, “Mode: automated neural
network model debugging via state differential analysis and input selection,” in
ESEC/FSE, 2018.

S. Ma, Y. Aafer, Z. Xu, W.-C. Lee, J. Zhai, Y. Liu, and X. Zhang, “Lamp: data
provenance for graph based machine learning algorithms through derivative
computation,” in FSE, 2017.

N. D. Bui, Y. Yu, and L. Jiang, “Autofocus: interpreting attention-based neural
networks by code perturbation,” in ASE, 2019.

R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing vision-based
control systems using learnable evolutionary algorithms,” in ICSE, 2018.

L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y. Liu, J. Zhao,
et al., “Deepmutation: Mutation testing of deep learning systems,” in ISSRE, 2018.
M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad: Gan-based
metamorphic testing and input validation framework for autonomous driving
systems,” in ASE, 2018.

A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R. J. C. Bose, N. Dubash, and
S. Podder, “Identifying implementation bugs in machine learning based image
classifiers using metamorphic testing,” in ISSTA, 2018.

S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: testing software for
discrimination,” in FSE, 2017.

R. Angell, B. Johnson, Y. Brun, and A. Meliou, “Themis: Automatically testing
software for discrimination,” in ESEC/FSE, 2018.

S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh, “Model-
tracker: Redesigning performance analysis tools for machine learning,” in CHI,
2015.

S.Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, and X. Zhang, “Correlations between
deep neural network model coverage criteria and model quality,” in ESEC/FSE,

C. Wan, S. Liu, S. Xie, Y. Liu, H. Hoffmann, M. Maire, and S. Lu

[31

[32

[33

[34

[35

[36

[37

[38

[39]

[40

[41]
[42]
[43]
[44]
[45]

[46

[47]

[48]
[49

[50]
[51]
[52]

[53

[54]

[55
[56

[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]

[65

[66
[67]

[68]

[69]

2020.

F. Zhang, S. P. Chowdhury, and M. Christakis, “Deepsearch: A simple and
effective blackbox attack for deep neural networks,” in ESEC/FSE, 2020.

F. Harel-Canada, L. Wang, M. A. Gulzar, Q. Gu, and M. Kim, “Is neuron coverage
a meaningful measure for testing deep neural networks?,” in ESEC/FSE, 2020.
V. Riccio and P. Tonella, “Model-based exploration of the frontier of behaviours
for deep learning system testing,” in ESEC/FSE, 2020.

S. Gerasimou, H. F. Eniser, A. Sen, and A. Cakan, “Importance-driven deep
learning system testing,” in ICSE, 2020.

B. Paulsen, J. Wang, and C. Wang, “Reludiff: Differential verification of deep
neural networks,” in ICSE, 2020.

X. Zhang, X. Xie, L. Ma, X. Du, Q. Hu, Y. Liu, J. Zhao, and M. Sun, “Towards
characterizing adversarial defects of deep learning software from the lens of
uncertainty,” in ICSE, 2020.

D. Berend, X. Xie, L. Ma, L. Zhou, Y. Liu, C. Xu, and J. Zhao, “Cats are not fish:
Deep learning testing calls for out-of-distribution awareness,” in FSE, 2020.

Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “Deepgini: prioritizing
massive tests to enhance the robustness of deep neural networks,” in ISSTA,
2020.

S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic, “Detecting
flaky tests in probabilistic and machine learning applications,” in ISSTA, 2020.
S. Lee, S. Cha, D. Lee, and H. Oh, “Effective white-box testing of deep neural
networks with adaptive neuron-selection strategy,” in ISSTA, 2020.

A. Sharma and H. Wehrheim, “Higher income, larger loan? monotonicity testing
of machine learning models,” in ISSTA, 2020.

H. Zhang and W. Chan, “Apricot: a weight-adaptation approach to fixing deep
learning models,” in ASE, 2019.

Z.Li, X. Ma, C. Xu, J. Xu, C. Cao, and J. Lii, “Operational calibration: Debugging
confidence errors for dnns in the field,” in ESEC/FSE, 2020.

Z.Sun, J. M. Zhang, M. Harman, M. Papadakis, and L. Zhang, “Automatic testing
and improvement of machine translation,” in ICSE, 2020.

M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing deep neural networks:
Fix patterns and challenges,” in ICSE, 2020.

Microsoft, “Visual studio code.” Online document https://code.visualstudio.com/,
2021.

M. Irlbeck et al., “Deconstructing dynamic symbolic execution,” Dependable
Software Systems Engineering, vol. 40, p. 26, 2015.

H. Pham, Z. Dai, Q. Xie, and Q. V. Le, “Meta pseudo labels,” in CVPR, 2021.
recipeGo, “A recipe recommendation application.” https://github.com/Reckonzz/
recipeGO.

emotion2music, “A smart music player application” https://github.com/
varnachandar/emotion2music.

NsTool, “A monitor application” https://github.com/clarkwkw/ns_online_
toolkit.

noteScript, “A lecture note application.”
noteScript.

stockmine, “A stock prediction application.” https://github.com/nicholasadamou/
stockmine.

A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using distant
supervision,” CS224N project report, Stanford, vol. 1, no. 12, p. 2009, 2009.
Klassroom, “A lecture note application.” https://github.com/dev5151/Klassroom.
TRANSLATOR, “A smart light application” https://github.com/mubeenafatima/
TRANSLATOR.

HeapSortCypher, “A garbage classification application.” https://github.com/
matthew-chu/heapsortcypher.

D. Chaffey, “Search engine marketing statistics 2020.” https://www.smartinsights.
com/search-engine-marketing/search-engine- statistics/.

M. Bing, “Bing image search.” https://www.bing.com/images/trending?FORM=
ILPTRD.

“Lorem picsum.” https://picsum.photos.

“Wikipedia”” https://en.m.wikipedia.org/.

“Encyclopedia britannica.” https://www.britannica.com/.

“Pillow: Python imaging library”” https://pypi.org/project/Pillow/.
WanderStub, “An exchange conversion application” https://github.com/
richardjpark26/WanderStub.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and L. Sutskever, “Language
models are unsupervised multitask learners,” OpenAl blog, vol. 1, no. 8, p. 9,
2019.

“pyttsx3: Text-to-speech library for python.” https://pypi.org/project/pyttsx3/.
J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in CVPR, 2009.

A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Ka-
mali, S. Popov, M. Malloci, A. Kolesnikov, et al., “The open images dataset v4,”
International Journal of Computer Vision, pp. 1-26, 2020.

J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative adversarial
networks: Algorithms, theory, and applications,” arXiv preprint arXiv:2001.06937,
2020.

https://github.com/GalenWong/

Automated Testing of Software that Uses Machine Learning APls

(70]

[71]

[72]
(73]

[74]
(75]

[76]
[77]
(78]
[79]
[80]
[81]
[82]
(83]
(84]

[85]

(87]

(88]
(89]

[90]

[o1]

[92]

(93]

[95]

[96

[97]

[98

[99]

[100]
[101]

[102]

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,
and L Sutskever, “Zero-shot text-to-image generation,” arXiv preprint
arXiv:2102.12092, 2021.

FESMKMITL, “A smart camera application.” https://github.com/matthewjmc/
FESMKMITL.

Verlan, “A pet application.” https://github.com/sarvesh-tech/Verlan.
FortniteKillfeed, “A real time tracker application.” https://github.com/Godsinred/
FortniteKillfeed.

“Wikipedia.” https://www.wikidata.org/.

C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli, “CVC4,” in Computer Aided Verification - 23rd Inter-
national Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings
(G. Gopalakrishnan and S. Qadeer, eds.), vol. 6806 of Lecture Notes in Computer
Science, pp. 171-177, Springer, 2011.

“Python system-specific parameters and functions” https://docs.python.org/3/
library/sys.html#sys.settrace.

D. Marby and N. Yonskai, “Pyan3: Offline call graph generator for python 3”
https://github.com/davidfraser/pyan.

D. Halter, “Jedi: an awesome auto-completion, static analysis and refactoring
library for python” Online document https://jedi.readthedocs.io.

“scikit-learn: Machine learning in python” https://scikit-learn.org/stable/.

C. Wan, S. Liu, S. Xie, Y. Liu, H. Hoffmann, M. Maire, and S. Lu, “Project Webpage:
Accurate Learning for EneRgy and Timeliness in Software System.” https://alert.
cs.uchicago.edu/#release.

Kaggle, “Twitter us airline sentiment.” https://www.kaggle.com/crowdflower/
twitter-airline- sentiment.

“100 english daily sentences for daily use.” https://englishspeakingcourse.net/
100-english- sentences-for-daily-use/.

Fuzzit.dev, “Pythonfuzz: coverage-guided fuzz testing for python.” https://gitlab.
com/gitlab-org/security-products/analyzers/fuzzers/pythonfuzz.

C. Hill, R. Bellamy, T. Erickson, and M. Burnett, “Trials and tribulations of
developers of intelligent systems: A field study,” in VL/HCC, 2016.

M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “The emerging role of data
scientists on software development teams,” in ICSE, 2016.

M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data scientists in software
teams: State of the art and challenges,” TSE, 2017.

X. Zhao and X. Gao, “An ai software test method based on scene deductive
approach,” in 2018 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), pp. 14-20, IEEE, 2018.

P. Helle, W. Schamai, and C. Strobel, “Testing of autonomous systems-challenges
and current state-of-the-art,” in INCOSE international symposium, 2016.

T. Linz, “Testing autonomous systems,” in The Future of Software Quality Assur-
ance, pp. 61-75, Springer, Cham, 2020.

M. Lindvall, A. Porter, G. Magnusson, and C. Schulze, “Metamorphic model-
based testing of autonomous systems,” in 2017 IEEE/ACM 2nd International
Workshop on Metamorphic Testing (MET), 2017.

H. Khosrowjerdi and K. Meinke, “Learning-based testing for autonomous sys-
tems using spatial and temporal requirements,” in Proceedings of the 1st Inter-
national Workshop on Machine Learning and Software Engineering in Symbiosis,
2018.

H. Zhu, D. Liu, L. Bayley, R. Harrison, and F. Cuzzolin, “Datamorphic testing: A
method for testing intelligent applications,” in 2019 IEEE International Conference
On Artificial Intelligence Testing (AlTest), 2019.

Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.-C. Cheung, and T. Xie, “Detecting nu-
merical bugs in neural network architectures,” in ESEC/FSE, 2020.

G. Jahangirova, N. Humbatova, G. Bavota, V. Riccio, A. Stocco, and P. Tonella,
“Taxonomy of real faults in deep learning systems,” in ICSE, 2020.

Y. Tao, S. Tang, Y. Liu, Z. Xu, and S. Qin, “How do api selections affect the
runtime performance of data analytics tasks?,” in ASE, 2019.

D. Cheng, C. Cao, C. Xu, and X. Ma, “Manifesting bugs in machine learning
code: An explorative study with mutation testing,” in 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS), pp. 313-324, IEEE,
2018.

H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: cross-backend validation to
detect and localize bugs in deep learning libraries,” in ICSE, 2019.

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Nic-
ulae, P. Prettenhofer, A. Gramfort, J. Grobler, et al., “Api design for machine
learning software: experiences from the scikit-learn project,” arXiv preprint
arXiv:1309.0238, 2013.

E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzalez, M. J.
Franklin, M. L. Jordan, and T. Kraska, “Mli: An api for distributed machine
learning,” in ICDM, 2013.

S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Comparative study
of deep learning software frameworks,” arXiv preprint arXiv:1511.06435, 2015.
M. Nejadgholi and J. Yang, “A study of oracle approximations in testing deep
learning libraries,” in ASE, 2019.

Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, L. Xiaohong, and C. Shen, “Audee:
Automated testing for deep learning frameworks,” in FSE, 2020.

[103]

[104]

[105]

[106]

[107]

[108]

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

S. Tizpaz-Niari, P. Cerny, and A. Trivedi, “Detecting and understanding real-
world differential performance bugs in machine learning libraries,” in ISSTA,
2020.

F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc, “Are rest apis for cloud com-
puting well-designed? an exploratory study,” in ICSOC, pp. 157-170, Springer,
2016.

E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain, F. Rose, E. Zurek, J. Carrete,
N. Mingo, A. Tropsha, et al., “Aflow-ml: A restful api for machine-learning
predictions of materials properties,” Computational Materials Science, 2018.

P. Godefroid, D. Lehmann, and M. Polishchuk, “Differential regression testing
for rest apis,” in ISSTA, 2020.

P. McMinn, M. Shahbaz, and M. Stevenson, “Search-based test input generation
for string data types using the results of web queries,” in 2012 IEEE Fifth Inter-
national Conference on Software Testing, Verification and Validation, pp. 141-150,
IEEE, 2012.

M. Shahbaz, P. McMinn, and M. Stevenson, “Automatic generation of valid and
invalid test data for string validation routines using web searches and regular
expressions,” Science of Computer Programming, vol. 97, pp. 405-425, 2015.

