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Abstract
This paper is concerned with the design of two different classes of Galerkin boundary
element methods for the solution of high-frequency sound-hard scattering problems
in the exterior of two-dimensional smooth convex scatterers. We prove in this paper
that both methods require a small increase (in the order of kε for any ε > 0) in
the number of degrees of freedom to guarantee frequency independent precisions
with increasing wavenumber k. In addition, the accuracy of the numerical solutions
are independent of frequency provided sufficiently many terms in the asymptotic
expansion are incorporated into the integral equation formulation. Numerical results
validating O(kε) algorithms are presented.
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1 Introduction

Wavepropagation simulations at high frequencies require appropriate design of numer-
ical methods. Generally speaking, classical approaches based on finite elements [5,
22, 34], integral equations [2, 4, 8, 11, 50], and finite differences [46, 48, 49] demand
discretization in the order of the wavelength which produce very large linear sys-
tems for high wavenumbers. Therefore they are not suitable in the high frequency
regime because of the required computational cost. This is the main reason why
several research projects geared towards the design and analysis of high-frequency
simulation strategies were initiated. For instance, in the case of sound-soft scatter-
ing problems, several methods were introduced in the context of single and multiple
scattering configurations [7, 9, 10, 23–26, 31, 38]. Most of these methods were mate-
rialized thanks to the high-frequency asymptotic expansion (ansatz) of the normal
derivative of the total field, derived by Melrose and Taylor in the well known paper
[45], for the Dirichlet boundary value problem. Using the asymptotic expansion of the
total field corresponding to the Neumann problem, also given in the paper [45], here
we propose new high-frequencyGalerkin boundarymethods for sound-hard scattering
problems for smooth convex obstacles.

For the Dirichlet boundary value problem, most of the aforementioned techniques
use the Melrose–Taylor ansatz. These include the localized integration based Nys-
tröm scheme proposed for single [9, 10] and multiple scattering problems [7] (for the
derivation of multiple scattering ansatz see [3, 27]), collocation technique depending
on the numerical steepest descent method [38], and the Galerkin boundary element
methods [23, 25, 26]. The algorithms developed in [7, 9, 10, 38] are not supported
with convergence analyses, and those in [7, 9, 10, 23, 38] approximate the solution
by zero in the deep shadow region which, as is well known, is true only in the high-
frequency limit. In the case of the Dirichlet problem, this approximation does not
effectively impair the accuracy of the numerical solution as it rapidly decays with
increasing wavenumber in that region. However, numerical simulations show that the
solution related to the Neumann case decays comparatively slower than the one for
the Dirichlet problem (see Figs. 1 and 2), and therefore they may also loose accuracy
for moderate frequencies. The Galerkin boundary element methods proposed in [25,
26] address this problem. For both algorithms, an increase of O(kε) (for any ε > 0)
in the number of degrees of freedom is sufficient to fix the approximation error with
increasing wavenumber k.

In the last decades substantial interest has grown towards high-frequency problems
in the fields of mathematical and numerical analysis [13, 14, 16–19, 23, 25, 26, 32,
33, 35–38, 40]. Indeed, as emphasized above, the design of numerical methods for
these problems is based on the use of the ansatz directly in the numerical scheme.
This ansatz, derived analytically using several mathematical tools such as pseudo-
differential operators and asymptotic analysis, has a complicated form. This gives rise
to challenging difficulties mainly related to the development of stable and convergent
numerical algorithms. The aim of this paper is the design and analysis of newGalerkin
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boundary element methods for the solution of high-frequency sound-hard scattering
problems. From an analytical point of view, this requires a careful analysis of the
Melrose-Taylor ansatz for theNeumann boundary value problemwhich is significantly
more complicated than its Dirichlet counterpart. The derivation of the latter is provided
in complete detail in [45] which is not the case for the Neumann problem. Therefore,
for the sake of our analysis, here in this paper we complete the missing parts in this
derivation, and also explain how the ansatz extends over the entire boundary of the
scatterers.

The design and numerical analysis of the Galerkin boundary element methods
proposed in this paper are based on a careful analysis of the asymptotic properties
of the unknown total field η posed on the boundary of the scattering obstacle. More
precisely, assuming a plane wave incidence with direction α, the design and numerical
analysis of high frequencymethods is reduced to the study of the asymptotic expansion
(ansatz) provided by Melrose and Taylor [45]

ηslow(α, x, k) ∼
∑

p,q,r≥0
�≤−1

ap,q,r ,�(α, x, k) (1)

where ηslow(α, x, k) = e−ik α·x η(α, x, k) (see Theorems 1 and 8 below). In that
connection, we first determine the Hörmander classes and obtain wavenumber explicit
estimates on the derivatives of the terms ap,q,r ,�. Then, with the aid of this analysis,
we derive sharp wavenumber explicit estimates on the derivatives of the envelope
ηslow. Finally, we use these estimates in the optimal design and numerical analysis
of two different classes Galerkin boundary element methods. As we will show, these
methods are capable of delivering prescribed accuracieswith the utilization of numbers
of degrees of freedom that need to increase in the order of kε (for any ε > 0) with
increasing wavenumber, and are therefore almost frequency independent.

It is proved in this paper that if an adequate number of terms ap,q,r ,� in the ansatz
is explicitly known, then the methods designed here are frequency independent. Cur-
rently, however, these coefficients are not explicitly known, and therefore the numerical
implementations presented here in this paper demand an O(kε) increase in the num-
ber of degrees of freedom to maintain accuracy with increasing k. In this connection,
let us mention that the error estimates for the Galerkin boundary element methods
developed for the Dirichlet [23, 25, 26] and the Neumann problem in this paper use
Céa’s lemma [12] which leads to an important factor expressed as a function of the

wavenumber. In the Dirichlet case, this factor was shown to be O(k
1
3 ) as k → ∞

for the combined field and star combined integral equations [29, 30] (see also [24,
25]), and therefore the Galerkin approximations are bound to degrade with increasing
frequency; this problem was addressed in [24] where, in the context of the combined
field and star combined integral equations, it is shown that incorporation of the leading
order term in the Dirichlet ansatz is sufficient to render the methods [25, 26] frequency
independent. As we will see, the same approach applied to the Neumann problem will
lead to similar observations and results.

In the context of the sound hard scattering problems considered in this paper, a coer-
cive formulation for planar screens was developed in [15]. Moreover, for the problem
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of scattering by smooth convex obstacles considered herein, a coercive formulation in
indirect form was proposed in [6]. These suggest that this kind of formulation can also
be derived in direct form for scattering from smooth obstacles. Assuming the existence
of such formulations, we rigorously determine the minimal number of terms in the
Neumann ansatz (1) that must be incorporated into the integral equation in order to
cancel the effect of the aforementioned factor when Céa’s lemma is used. To achieve
this, we show the existence of an increasing sequence {Fβ}β≥0 of finite sets of indices
(p, q, r , �) such that if

σ slow
β :=

∑

(p,q,r ,�)∈Fβ

ap,q,r ,� (2)

is known, then the wavenumber explicit estimates on the derivatives of all orders of
the new unknown

ρslow
β := ηslow − σ slow

β (3)

grow the slowest (with respect to the choice of the sets Fβ ) as a function of k with
increasing k; seeRemark 2,Theorems2 and3. Following this,wedesign twonumerical
methods, namely the frequency-adapted β-asymptotic Galerkin boundary element
method and the β-asymptotic Galerkin boundary element method based on frequency
dependent changes of variables, that incorporate the “β-asymptotic” term σ slow

β (2)
into any given appropriate integral equation formulation and thereby improve the error
estimates by the factor k−β/3. Let us note that β = 0 corresponds to the case, as at
present, where no term ap,q,r ,� in the ansatz (1) is explicitly known. In this case,
F0 = ∅ and we use the convention that an empty sum is zero so that ρslow

0 = ηslow.
Although the numerical methods we develop in this paper use the same construc-

tions as in their sound-soft versions proposed in [26] and [25] respectively (see also
[24]), the analyses are significantly different. The former method resolves the bound-
ary layers around the shadow boundaries by adequate utilization of subregions in these
regions with respect to the frequency. On each subregion, the method uses algebraic
polynomials weighted by the oscillations in the incident field of radiation as in the
Dirichlet case [26]. Similarly, as in [25], the lattermethod utilizes frequency dependent
changes of variables to resolve the boundary layers around the shadow boundaries.
In addition, we show that, for β = 0 (which means no term ap,q,r ,� in the ansatz is
incorporated into the integral equation formulation) both methods require only a small
increase (of sizeO(kε) for any ε > 0) in the number of degrees of freedom tomaintain
accuracy with increasing k. Moreover, as mentioned above, we demonstrate that the
methods are frequency independent when sufficiently many terms in the ansatz are
appropriately used in the integral equation formulations.

The paper is organized as follows. In Sect. 2, we introduce the sound-hard scatter-
ing problem, and discuss the similarities and differences between the Neumann and
Dirichlet high-frequency solutions. In Sect. 3, we determine the Hörmander classes
of the terms ap,q,r ,� in the ansatz (1) and the envelopes ρslow

β in (3), and derive sharp
wavenumber dependent estimates on their derivatives. We use these estimates in the
construction and numerical analysis of the frequency-adapted β-asymptotic Galerkin
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boundary element method and the β-asymptotic Galerkin boundary element method
based on frequency dependent changes of variables in Sect. 4. We present numerical
results confirming our theoretical findings in Sect. 5. Finally, the derivation of the
ansatz is presented in Appendix 1 where we also show how it extends to the entire
boundary of the scatterers.

2 Problem statement

We consider the sound-hard scattering problem in the exterior of a smooth, compact
and strictly convex obstacle K ⊂ R

2 illuminated by a plane wave incidence uinc(x) =
eikα·x with direction α, |α| = 1 and k > 0. The unknown scattered field u satisfies
[14, 20]

⎧
⎨

⎩

(Δ + k2)u = 0 in R
2\K ,

∂νu = −∂νuinc on ∂K ,

limr→∞
√

r
(

∂u
∂r − iku

) = 0, r = |x |,
(4)

where ν is the exterior unit normal to ∂K .
The direct approach in high-frequency integral equation formulations transforms

the scattering problem (4) into the computation of the (unknown) total field η :=
u +uinc on ∂K . Indeed, as a radiating solution to the Helmholz equation, the scattered
field satisfies [14, 20]

u(α, x, k) =
∫

∂K

(
∂Gk(x, y)

∂ν(y)
u(α, y, k) − ∂u(α, y, k)

∂ν(y)
Gk(x, y)

)
ds(y) (5)

for all x in the exterior region R
2 \ K , where

Gk(x, y) = i

4
H (1)
0 (k|x − y|)

is the outgoing Green’s function for the Helmholtz equation and H (1)
0 is the Hankel

function of the first kind and of order zero. Moreover, Green’s theorem applied to uinc

and Gk(x, ·) gives, in the exterior region,

0 =
∫

∂K

(
∂Gk(x, y)

∂ν(y)
uinc(α, y, k) − ∂uinc(α, y, k)

∂ν(y)
Gk(x, y)

)
ds(y). (6)

Adding (5) and (6) and using the Neumann boundary condition ∂νu = −∂νuinc shows
that the scattered field can be expressed as the double-layer potential

u(α, x, k) =
∫

∂K

∂Gk(x, y)

∂ν(y)
η(α, y, k) ds(y). (7)
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Fig. 1 Plots of the real and imaginary parts of the total field (top row) and the slow envelope (bottom row)
for the sound-hard scattering problem in the case of a plane wave incidence with direction α = (1, 0)
impinging on the unit circle (cos t, sin t) for k = 50, 100, 200, 400, 800

Fig. 2 Plots of the real and imaginary parts of the normal derivative of the total field modulated by k (top
row) and the slow envelope modulated by k2/3 and k (bottom row) for the sound-soft scattering problem in
the case of a plane wave incidence with direction α = (1, 0) impinging on the unit circle (cos t, sin t) for
k = 50, 100, 200, 400, 800
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One of the primary motivations for using direct formulations is the observation that
η is amenable to phase extraction

η(α, x, k) = eikα·x ηslow(α, x, k) (8)

as it is the case for theDirichlet boundary value problemwhere the unknown represents
the normal derivative of the total field (see Figs. 1 and 2). In this paper, we develop
efficient Galerkin boundary element methods by using the asymptotic behavior (as
k → ∞) of the envelope ηslow in the construction of Galerkin approximation spaces.
This approach is similar to the one used for the sound-soft scattering problem. In
Figs. 1 and 2, we display the total field and the normal derivative of the total field
respectively for the Neumann and Dirichlet boundary value problems. As we can
see, these densities have similar asymptotic characteristics. Specifically, they both
posses boundary layers around the shadow boundaries, and decay rapidly in the deep
shadow region with increasing wavenumber. From a numerical perspective, however,
approximating the density related to the Neumann problem is more challenging since
its slow part (ηslow) oscillates more strongly around the shadow boundaries and decays
indubitably slower in the shadow region as displayed in the simulations in Figs. 1 and
2. Consequently, obtaining highly accurate numerical approximations to the Neumann
problem is significantly more challenging when compared to the Dirichlet case.

3 Hörmander classes and wavenumber explicit derivative estimates

This section is dedicated to the study of the asymptotic expansion of the envelope
ηslow defined in (8). We first observe that the incident plane wave uinc(x) = eikα·x
determines the illuminated and shadow regions, and the shadow boundaries on ∂K as

∂K I L = {x ∈ ∂K : α · ν(x) < 0}
∂K S R = {x ∈ ∂K : α · ν(x) > 0}
∂K SB = {x ∈ ∂K : α · ν(x) = 0}.

We let 2P = |∂K |, and we choose γ as the 2P-periodic arc length parameterization of
the boundary ∂K in the counterclockwise direction such that the shadow boundaries
∂K SB = γ ({t1, t2}) are determined by the parameters 0 < t1 < t2 < 2P satisfying
t1+t2 = 2P , and the illuminated and shadow regions are given by ∂K I L = γ ((t1, t2))
and= ∂K S R = γ ((0, t1) ∪ (t2, 2P)). Inwhat followswe shallwrite ∂K SB for {t1, t2},
∂K I L for (t1, t2), and ∂K S R for (0, t1)∪(t2, 2P). For convenience, we shall also write
η(s, k), ηslow(s, k), ν(s), etc. rather than η(α, γ (s), k), ηslow(α, γ (s), k), ν(γ (s)), etc.
where α is eliminated and γ (s) is replaced by s. In the next theorem, we present the
asymptotic behavior of ηslow in a two-dimensional setting while a general version is
given in Theorem 8 of Appendix 1.

Theorem 1 The envelope ηslow belongs to the Hörmander class S0
2
3 , 13

([0, 2P] ×
(0,∞)) and admits the asymptotic expansion
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ηslow(s, k) ∼
∑

p,q,r∈Z+
�∈−N

ap,q,r ,�(s, k) (9)

with

ap,q,r ,�(s, k) = k− 1+2p+3q+r+�
3 +(�+1)− bp,q,r ,�(s) (Ψ r ,�)(p)(k

1
3 Z(s)) (10)

where Z+ is the set of non-negative integers, t− = min{t, 0}, bp,q,r ,� are 2P-periodic
complex-valued C∞ functions, Z is a 2P-periodic real-valued C∞ function that is
positive on the illuminated region ∂K IL, negative on the shadow region ∂K SR, and
vanishes precisely to first order at the shadow boundary ∂K SR. Finally Ψ r ,� are
complex-valued C∞ functions which admit the asymptotic expansions

Ψ r ,�(τ ) ∼
∑

j∈Z+
αr ,�, jτ

1+�−2r−3 j as τ → +∞

and rapidly decrease in the sense of Schwarz as τ → −∞.

For concise definitions of Hörmander classes and asymptotic expansions we refer to
[27,§2.2].

In this section, we study the asymptotic behavior of the terms ap,q,r ,� appear-
ing in the expansion (9), and first show that they belong to the Hörmander class
Sϑ(p,q,r ,�)

2
3 , 13

([0, 2P] × (0,∞)) where

ϑ(p, q, r , �) := −1 + 2p + 3q + r + �

3
(11)

+(� + 1)− +
{
0, 1 + � − 2r − p < 0,
1+�−2r−p

3 , 1 + � − 2r − p ≥ 0.

We then use this result to carry out a similar study for the expressions ρslow
β which we

now define.

Definition 1 Given β ∈ Z+, we define

σ slow
β :=

∑

(p,q,r ,�)∈Fβ

ap,q,r ,� and ρslow
β := ηslow − σ slow

β (12)

where

Fβ :=
{
(p, q, r , �) ∈ Z+ × Z+ × Z+ × (−N) : ϑ(p, q, r , �) > −β

3

}
. (13)

We also set

σβ := eik α·γ σ slow
β and ρβ := η − σβ = eik α·γ ρslow

β . (14)
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Throughout the text, we use the standard convention that an empty sum is zero. In
particular (since ϑ(p, q, r , �) ≤ 0 for any (p, q, r , �) ∈ Z+ × Z+ × Z+ × (−N))
F0 = ∅ so that σ slow

0 = 0 and σ0 = 0, and therefore ρslow
0 = ηslow and ρ0 = η.

As mentioned in the introduction, the use of Céa’s lemma gives rise to a factor
depending on the wavenumber which effectively means the need for higher number of
degrees freedom with increasing k. The goal of the previous definition is to eliminate
this factor by incorporating sufficiently many terms in the asymptotic expansion into
any given continuous and coercive integral equation formulation. Indeed, as shown
in the following analysis, the definition of σ slow

β (12) is optimal in the sense that it

leads to the balancing factor k−β/3 subject to a minimum number of terms ap,q,r ,�

incorporated into the integral equation (see Remark 2, and Theorems 2 and 3). This
represents a very important step in the design of Galerkin approximation spaces which
can provide prescribed error tolerances with the utilization of frequency independent
numbers of degrees of freedom.

Let us begin our analysis by giving the following result which is immediate from
the asymptotic behavior of Ψ r ,� described in Theorem 1.

Lemma 1 For all p, r ∈ Z+ and � ∈ Z, there exists a positive constant C such that

|(Ψ r ,�)(p)(τ )| ≤ C

{
(1 + |τ |)γr ,�−p, if p > 1 + � − 2r ≥ 0,
(1 + |τ |)1+�−2r−p, otherwise,

(15)

holds for all τ ∈ R where

1 + � − 2r ≡ γr ,� mod 3 with γr ,� ∈ {−3,−2,−1}.

Remark 1 In the rest of the paper, the notation A � B will mean 0 ≤ A ≤ cB for
the range of values of the wavenumber k relevant to the context where c is a positive
constant independent of k (which might, however, depend on the geometry of the
scattering obstacle, the direction of incidence, and all the other parameters in the
context). Additionally, the notation A � B will mean A � B and B � A.

With the aid of Theorem 1, Lemma 1, and Lemma 8 in Appendix 1, we now char-
acterize the Hörmander classes of ap,q,r ,� and derive wavenumber explicit estimates
on their derivatives.

Lemma 2 [Hörmander classes of ap,q,r ,�] For any p, q, r ∈ Z+ and � ∈ Z, ap,q,r ,�

belongs to the Hörmander class Sϑ(p,q,r ,�)
2
3 , 13

([0, 2P] × (0,∞)).

Proof Given n, m, p, q, r ∈ Z+ and � ∈ Z, an application of Lemma 8 to ap,q,r ,� (10)
entails

|Dn
s Dm

k ap,q,r ,�(s, k)| � k− 1+2p+3q+r+�
3 +(�+1)−−m

×
∑

0≤ j≤n+m

k
j
3 |(Ψ r ,�)(p+ j)(k

1
3 Z(s))| (16)

for all (s, k) ∈ [0, 2P] × (0,∞).
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When 1 + � − 2r < 0, use of (15) in (16) implies

|Dn
s Dm

k ap,q,r ,�(s, k)| � k− 1+2p+3q+r+�
3 +(�+1)−−m

×
∑

0≤ j≤n+m

k
j
3 (1 + k

1
3 |Z(s)|)1+�−2r−p− j

� k− 1+2p+3q+r+�
3 +(�+1)−−m

∑

0≤ j≤n+m

k
j
3

� k− 1+2p+3q+r+�
3 +(�+1)−+ n

3− 2m
3

and this, in turn, implies that ap,q,r ,l ∈ Sϑ(p,q,r ,�)
2
3 , 13

([0, 2P] × (0,∞)).

When 1 + � − 2r ≥ 0, use of (15) in (16) gives

|Dn
s Dm

k ap,q,r ,�(s, k)| � k− 1+2p+3q+r+�
3 +(�+1)−−m

×
{ ∑

0≤ j≤n+m
j≤1+�−2r−p

k
j
3 (1 + k

1
3 |Z(s)|)1+�−2r−p− j

+
∑

0≤ j≤n+m
j>1+�−2r−p

k
j
3 (1 + k

1
3 |Z(s)|)γr ,�−p− j

}
. (17)

If 1 + � − 2r − p < 0, (17) reduces to

|Dn
s Dm

k ap,q,r ,�(s, k)| � k− 1+2p+3q+r+�
3 +(�+1)−−m

×
∑

0≤ j≤n+m

k
j
3 (1 + k

1
3 |Z(s)|)γr ,�−p− j

� k− 1+2p+3q+r+�
3 +(�+1)−−m

∑

0≤ j≤n+m

k
j
3

� k− 1+2p+3q+r+�
3 +(�+1)−−m k

n+m
3

� k− 1+2p+3q+r+�
3 +(�+1)−+ n

3− 2m
3

� kϑ(p,q,r ,�)+ n
3− 2m

3

so that ap,q,r ,l ∈ Sϑ(p,q,r ,�)
2
3 , 13

([0, 2P] × (0,∞)). If 1 + � − 2r − p ≥ 0, setting

J = min{n + m, 1 + � − 2r − p}, (17) takes on the form

|Dn
s Dm

k ap,q,r ,�(s, k)|
� k− 1+2p+3q+r+�

3 +(�+1)−−m
{ ∑

0≤ j≤J

k
j
3 (1 + k

1
3 |Z(s)|)1+�−2r−p− j
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+
∑

J< j≤n+m

k
j
3 (1 + k

1
3 |Z(s)|)γr ,�−p− j

}

� k− 1+2p+3q+r+�
3 +(�+1)−−m

{ ∑

0≤ j≤J

k
j
3 k

1+�−2r−p− j
3 +

∑

J< j≤n+m

k
j
3

}

� k− 1+2p+3q+r+�
3 +(�+1)−−m

{
k

1+�−2r−p
3 +

∑

J< j≤n+m

k
j
3

}
.

This entails, when 0 ≤ 1 + � − 2r − p < n + m

|Dn
s Dm

k ap,q,r ,�(s, k)| � k− 1+2p+3q+r+�
3 +(�+1)−−m

{
k

1+�−2r−p
3 + k

n+m
3

}

� k− 1+2p+3q+r+�
3 +(�+1)−−m k

n+m
3

� k− 1+2p+3q+r+�
3 +(�+1)−+ n

3− 2m
3

� kϑ(p,q,r ,�)+ n
3− 2m

3 ,

and when n + m ≤ 1 + � − 2r − p

|Dn
s Dm

k ap,q,r ,�(s, k)| � k− 1+2p+3q+r+�
3 +(�+1)−−mk

1+�−2r−p
3

� kϑ(p,q,r ,�)−m � kϑ(p,q,r ,�)+ n
3− 2m

3 .

These show that ap,q,r ,l ∈ Sϑ(p,q,r ,�)
2
3 , 13

([0, 2P] × (0,∞)) when 1 + � − 2r − p ≥ 0.

Therefore the proof is complete. 
�
For the developments that follow, we define

W (s, k) := k− 1
3 + |ω(s)| with ω(s) := (s − t1)(t2 − s) (18)

for any k > 0.

Lemma 3 (Wavenumber explicit estimates on the derivatives of ap,q,r ,�) Given k0 > 0
and n, p, q, r ∈ Z+ and � ∈ Z, the estimate

|Dn
s ap,q,r ,�(s, k)| � k− 1+2p+3q+r+�

3 +(�+1)− ×
{ ∑

0≤ j≤n
W (s, k)− j , 1 + � − 2r − p < 0,

λp,r ,�,n(s, k), 1 + � − 2r − p ≥ 0,

(19)

holds for all (s, k) ∈ [0, 2P] × [k0,∞) where

λp,r ,�,n(s, k) := k
1+�−2r−p

3 +
∑

1+�−2r−p< j≤n

W (s, k)− j .

123



814 F. Ecevit et al.

Proof Given n, p, q, r ∈ Z+ and � ∈ Z, use of Lemma 8 entails for the derivatives of
ap,q,r ,� (10)

|Dn
s ap,q,r ,�(s, k)| � k− 1+2p+3q+r+�

3 +(�+1)−
∑

0≤ j≤n

k
j
3 |(Ψ r ,�)(p+ j)(k

1
3 Z(s))| (20)

for all (s, k) ∈ [0, 2P] × (0,∞).
When 1 + � − 2r < 0, use of (15) in (20) implies

|Dn
s ap,q,r ,�(s, k)| � k− 1+2p+3q+r+�

3 +(�+1)−
∑

0≤ j≤n

k
j
3 (1 + k

1
3 |Z(s)|)1+�−2r−p− j

� k− 1+2p+3q+r+�
3 +(�+1)−

∑

0≤ j≤n

k
j
3 (1 + k

1
3 |ω(s)|)1+�−2r−p− j

� k− 1+2p+3q+r+�
3 +(�+1)−

∑

0≤ j≤n

k
j
3 (1 + k

1
3 |ω(s)|)− j

� k− 1+2p+3q+r+�
3 +(�+1)−

∑

0≤ j≤n

(k− 1
3 + |ω(s)|)− j .

When 1 + � − 2r ≥ 0, use of (15) in (20) gives

|Dn
s ap,q,r ,�(s, k)|
� k− 1+2p+3q+r+�

3 +(�+1)−
{ ∑

0≤ j≤n
j≤1+�−2r−p

k
j
3 (1 + k

1
3 |Z(s)|)1+�−2r−p− j

+
∑

0≤ j≤n
j>1+�−2r−p

k
j
3 (1 + k

1
3 |Z(s)|)γr ,�−p− j

}
. (21)

If 1 + � − 2r − p < 0, (21) reduces to

|Dn
s ap,q,r ,�(s, k)| � k− 1+2p+3q+r+�

3 +(�+1)−
∑

0≤ j≤n

k
j
3 (1 + k

1
3 |Z(s)|)γr ,�−p− j

� k− 1+2p+3q+r+�
3 +(�+1)−

∑

0≤ j≤n

k
j
3 (1 + k

1
3 |Z(s)|)− j

� k− 1+2p+3q+r+�
3 +(�+1)−

∑

0≤ j≤n

k
j
3 (1 + k

1
3 |ω(s)|)− j

= k− 1+2p+3q+r+�
3 +(�+1)−

∑

0≤ j≤n

(k− 1
3 + |ω(s)|)− j .

If 1 + � − 2r − p ≥ 0, setting J = min{n, 1 + � − 2r − p}, (21) becomes

|Dn
s ap,q,r ,�(s, k)|
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� k− 1+2p+3q+r+�
3 +(�+1)−

{ ∑

0≤ j≤J

k
j
3 (1 + k

1
3 |Z(s)|)1+�−2r−p− j

+
∑

J< j≤n

k
j
3 (1 + k

1
3 |Z(s)|)γr ,�−p− j

}

� k− 1+2p+3q+r+�
3 +(�+1)−

{ ∑

0≤ j≤J

k
j
3 k

1+�−2r−p− j
3

+
∑

J< j≤n

k
j
3 (1 + k

1
3 |ω(s)|)γr ,�−p− j

}

� k− 1+2p+3q+r+�
3 +(�+1)−

{
k

1+�−2r−p
3 +

∑

J< j≤n

k
j
3 (1 + k

1
3 |ω(s)|)− j

}

= k− 1+2p+3q+r+�
3 +(�+1)−

{
k

1+�−2r−p
3 +

n∑

j=J+1

(k− 1
3 + |ω(s)|)− j

}
.

Thus the result follows. 
�

Using Lemma 3, we can obtain the following.

Corollary 1 (Simplified wavenumber explicit estimates on the derivatives of ap,q,r ,�)
Given k0 > 0 and n, p, q, r ∈ Z+ and � ∈ Z, the estimate

|Dn
s ap,q,r ,�(s, k)| � kϑ(p,q,r ,�) W (s, k)−n (22)

holds for all (s, k) ∈ [0, 2P] × [k0,∞).

We now make use of Lemma 2 and Corollary 1 to characterize the Hörmander
classes and derive wavenumber explicit estimates on the derivatives of the envelopes
ρslow
F we introduce next.

Definition 2 Given a finite set F ⊂ Z+ × Z+ × Z+ × (−N), we define

ρslow
F := ηslow − σ slow

F

where

σ slow
F :=

∑

(p,q,r ,�)∈F
ap,q,r ,�.

We also set

ϑ(F) := max{ϑ(p, q, r , �) : (p, q, r , �) ∈ Z+ × Z+ × Z+ × (−N)\F}.
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Remark 2 As is apparent from (13), for any β ∈ Z+, the smallest finite set F ⊂
Z+ × Z+ × Z+ × (−N) having ϑ(F) = −β

3 is precisely Fβ , and the sets Fβ are
increasing with increasing β. Moreover, comparing Definitions 1 and 2, we see that

σ slow
β = σ slow

Fβ
and ρslow

β = ρslow
Fβ

.

The next theorem thus clarifies the optimality of the sets Fβ in connection with the
wavenumber explicit derivative estimates.

Theorem 2 Given a finite set F ⊂ Z+ ×Z+ ×Z+ ×(−N), the envelope ρslow
F belongs

to Sϑ(F)
2
3 , 13

([0, 2P] × (0,∞)). Moreover, given k0 > 1 and n ∈ Z+, the estimate

|Dn
s ρslow

F (s, k)| � kϑ(F) W (s, k)−n (23)

holds for all (s, k) ∈ [0, 2P] × [k0,∞).

Proof First note that the definition of ϑ(p, q, r , �) (see (11)) implies

{ϑ(p, q, r , �) : (p, q, r , �) ∈ Z+ × Z+ × Z+ × (−N)} = −1

3
Z+.

Thus, in light of Theorem 1 (specifically ηslow ∈ S0
2
3 , 13

and (9)) and Lemma 2, the

definitions of Hörmander classes and asymptotic expansions (see e.g. [27,§2]) imply
ρslow
F ∈ Sϑ(F)

2
3 , 13

.

Given n ∈ Z+, let

Fn :=
{
(p, q, r , �) ∈ Z+ × Z+ × Z+ × (−N) : ϑ(p, q, r , �) ≥ m(F) − n

3

}

where

m(F) := min {ϑ(p, q, r , �) : (p, q, r , �) ∈ F ∪ {(0, 0, 0,−1)}} .

Then F ⊂ Fn so that

σ slow
Fn

= σ slow
F + σ slow

Fn\F ,

and therefore

ρslow
F = ρslow

Fn
+ σ slow

Fn\F . (24)

A second appeal to Theorem 1 (specifically ηslow ∈ S0
2
3 , 13

and (9)) and Lemma 2

implies through the definitions of Hörmander classes and asymptotic expansions that

ρslow
Fn

∈ Sϑ(Fn)
2
3 , 13

. (25)
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The very definition of Fn entails ϑ(Fn) = m(F) − n + 1

3
so that, by definition of

Hörmander classes, (25) gives

|Dn
s ρslow

Fn
(s, k)| � (1 + k)m(F)− n+1

3 + n
3 � (1 + k)m(F)− 1

3 W (s, k)−n . (26)

On the other hand, Corollary 1 yields

|Dn
s ρslow

Fn\F (s, k)| �
∑

(p,q,r ,�)∈Fn\F
kϑ(p,q,r ,�) W (s, k)−n

� kmax{ϑ(p,q,r ,�):(p,q,r ,�)∈Fn\F} W (s, k)−n . (27)

Using (26) and (27) in (24), we therefore deduce

|Dn
s ρslow

F (s, k)| �
[
(1 + k)m(F)− 1

3 + kmax{ϑ(p,q,r ,�):(p,q,r ,�)∈Fn\F}] W (s, k)−n

� kmax{ϑ(p,q,r ,�):(p,q,r ,�)∈Fn\F} W (s, k)−n .

Accordingly, since

max{ϑ(p, q, r , �) : (p, q, r , �) ∈ Fn\F}
= max{ϑ(p, q, r , �) : (p, q, r , �) ∈ Z+ × Z+ × Z+ × (−N)\F} = ϑ(F),

(23) follows. 
�
The design and analysis of the Galerkin boundary element methods presented in

Sect. 4 are based on the following theorem which is immediate from Remark 2 and
Theorem 2.

Theorem 3 Given β ∈ Z+, the smallest finite set F ⊂ Z+ ×Z+ ×Z+ × (−N) having
ϑ(F) = −β

3 is precisely Fβ as defined in (13). Moreover ρslow
β (12) belongs to the

Hörmander class S
− β

3
2
3 , 13

([0, 2P] × (0,∞)) and, for any given k0 > 1 and n ∈ Z+, the

estimate

|Dn
s ρslow

β (s, k)| � k− β
3 W (s, k)−n

holds for all (s, k) ∈ [0, 2P] × [k0,∞).

4 Galerkin boundary element methods and convergence analyses

Throughout this section we assume that an integral equation formulation

Rkη = f (28)

123



818 F. Ecevit et al.

is given to deal with the problem (4) where Rk : L2(∂K ) → L2(∂K ) is continuous
and coercive for all k ≥ k0 for some k0 > 1, with continuity and coercivity constants
Ck and ck . We also assume that σ slow

β (12) is available for some β ∈ Z+. This amounts

to assuming that the terms ap,q,r ,� in the asymptotic expansion of ηslow appearing
in the definition of σ slow

β are explicitly known throughout the entire boundary ∂K .
This, in turn, means that a few of the terms in the asymptotic expansions of the
“reflection” and the “diffraction” terms are explicitly known on the corresponding
parts of the boundary. In this case, (28) can be re-written in terms of the new unknown
ρβ = η − σβ as

Rkρβ = fβ (29)

where fβ = f − Rkσβ . Note that ρβ = η and fβ = f when β = 0.

Definition 3 We define the β -asymptotic Galerkin approximation η̂β to η associated
with a finite dimensional subspace G of L2(∂K ) as

η̂β := σβ + ρ̂β ∈ σβ + G (30)

where ρ̂β ∈ G is the unique solution to the Galerkin formulation

〈μ̂,Rk ρ̂β〉 = 〈μ̂, fβ〉, for all μ̂ ∈ G, (31)

of the integral equation (29).

In virtue of (30) and Definition 1, we observe that η − η̂β = ρβ − ρ̂β . Accordingly,
the Galerkin approximation spaces defined in the form

G = eik α·γGslow

capture the oscillations in ρβ = eik α·γ ρslow
β exactly. This, in turn, reduces the problem

to the design of approximation spaces Gslow so as to effectively resolve the boundary
layers of ρslow

β , as implied by Theorem 3, around the shadow boundaries with increas-
ing k. In Sects. 4.1 and Sect. 4.2, we introduce two different Galerkin approximation
spaces that are designed to effectively resolve the aforementioned boundary layers,
and where their convergence analyses are also presented. In particular, these analyses
reveal that the explicit knowledge of σβ implies that, provided the stability constant
Ck/ck grows like k� as k → ∞ for some � > 0, then it can be controlled by k−β/3

choosing β > 3�.
The design of frequency-adapted β-asymptotic Galerkin approximation space in

Sect. 4.1 and the β-asymptotic Galerkin approximation space based on frequency
dependent changes of variables in Sect. 4.2, replicate those proposed for solution
of the corresponding Dirichlet problem in [26] and [25] respectively. However, the
convergence analyses have non-trivial technicalities due to the differences between
the wavenumber dependent estimates on the derivatives of the densities (total field for
the Neumann problem and normal derivative of total field for the Dirichlet problem).
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Fig. 3 Parameterized regions for a plane-wave with direction α = (1, 0) on a circle

For the sake of presentation, we refer to [25, 26] for additional details on the proofs if
needed.

4.1 Frequency-adaptedˇ-asymptotic Galerkin boundary element method

For the construction of β-asymptotic frequency-adapted Galerkin approximation
spaces, given k ≥ 1, a natural number m, real numbers ε1, . . . , εm with 0 <

εm < εm−1 < · · · < ε1 < 1
3 , and positive real numbers ξ1, ξ2, ζ1, ζ2 satisfying

t1 − ξ1 < t2 − ξ2 and t2 + ζ2 < 2P + t1 − ζ1, the illuminated region (I L), illuminated
transitions (I T1 and I T2), shadow transitions (ST1 and ST2), shadow boundaries (SB1
and SB2), and shadow region (S R), in the parameter domain are defined as

I L := [t1 + ξ1k− 1
3+ε1 , t2 − ξ2k− 1

3+ε1 ],
I T1 := [t1 + ξ1k− 1

3+εm , t1 + ξ1k− 1
3+ε1],

I T2 := [t2 − ξ2k− 1
3+ε1 , t2 − ξ2k− 1

3+εm ],
SB1 := [t1 − ζ1k− 1

3+εm , t1 + ξ1k− 1
3+εm ],

SB2 := [t2 − ξ1k− 1
3+εm , t2 + ζ2k− 1

3+εm ],
ST1 := [t1 − ζ1k− 1

3+ε1 , t1 − ζ1k− 1
3+εm ],

ST2 := [t2 + ζ2k− 1
3+εm , t2 + ζ2k− 1

3+ε1 ],
S R := [t2 + ζ2k− 1

3+ε1, 2P + t1 − ζ1k− 1
3+ε1 ];

see Fig. 3 for sample illustrations of these regions.
Note that as k → ∞ the illuminated and shadow regions cover the entire boundary in

the parameter domain, and the remaining regions collapse to the shadow boundaries.
In order to resolve the singularities of ρslow

β in vicinities of shadow boundaries as
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implied by the wavenumber explicit derivative estimates in Theorem 3, for m > 1, we
partition each one of the four transition regions into m − 1 subregions as

I T j
1 := [t1 + ξ1k− 1

3+ε j+1 , t1 + ξ1k− 1
3+ε j ],

I T j
2 := [t2 − ξ2k− 1

3+ε j , t2 − ξ2k− 1
3+ε j+1],

ST j
1 := [t1 − ζ1k− 1

3+ε j , t1 − ζ1k− 1
3+ε j+1],

ST j
2 := [t2 + ζ2k− 1

3+ε j+1 , t2 + ζ2k− 1
3+ε j ],

for j = 1, . . . , m − 1. These result in a total of 4m regions

R j := [a j , b j ] :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I T j
1 , j = 1, . . . , m − 1,

I T j−m
2 , j = m + 1, . . . , 2m − 1,

ST j−2m
1 , j = 2m + 1, . . . , 3m − 1,

ST j−3m
2 , j = 3m + 1, . . . , 4m − 1,

and

Rm := I L, R2m := S R, R3m := SB1, R4m := SB2,

with the transition regions being redundant when m = 1. Identifying the spaces
L2 (∂K ) and L2(∪4m

j=1R j ) through the parameterization γ , we now define theGalerkin
approximation spaces, and the associated asymptotic Galerkin solutions.

Definition 4 For m ∈ N and d = (d1, . . . , d4m) ∈ Z
4m+ , the 4m + |d| dimensional

frequency-adapted Galerkin approximation space in L2(∂K ) is defined as the direct
sum

Gd := eik α·γ Gslow
d := eik α·γ

4m⊕

j=1

1R j Pd j (32)

where 1R is the characteristic function, and Pd is the space of polynomials of degree
at most d.

Definition 5 For m ∈ N and d = (d1, . . . , d4m) ∈ Z
4m+ , the β-asymptotic frequency-

adapted Galerkin approximation η̂β to η is defined as

η̂β := σβ + ρ̂β ∈ σβ + Gd

where σβ is as given in (12), and ρ̂β = eik α·γ ρ̂slow
β ∈ Gd is the unique solution of the

Galerkin formulation

〈μ̂,Rk ρ̂β〉 = 〈μ̂, fβ〉, for all μ̂ ∈ Gd,

of the integral equation (29).
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The approximation properties of the β-asymptotic frequency-adapted Galerkin
method are given in the following.

Theorem 4 Given m ∈ N and (n1, . . . , n4m) ∈ Z
4m+ , for k ≥ k0 and all d =

(d1, . . . , d4m) ∈ N
4m with d j ≥ n j − 1, we have

‖η − η̂β‖L2(∂K ) � Ck

ck
k− β

3

4m∑

j=1

1 + E(k, j)
(
d j

)n j
(33)

for the β-asymptotic frequency-adapted Galerkin approximation η̂β ∈ σβ + Gd to η.
On the transition regions (with j ′ = j mod m and j ′ ∈ {1, . . . , m − 1})

E(k, j) := k− 1−3ε j ′+1
6 (k

ε j ′ −ε j ′+1
2 )n j , j ∈ {1, . . . , 4m}\{m, 2m, 3m, 4m},

on the illuminated and shadow regions

E(k, j) := δn j ,1
√
log k + H [n j − 2]k− 1−3ε1

6 (k
1−3ε1

6 )n j , j = m, 2m,

where δ and H are the Kronecker delta and Heaviside functions, and on the shadow
boundaries

E(k, j) := k− 1
6
(
kεm

)n j , j = 3m, 4m.

Proof Writing ρ̂β = eik α·γ ρ̂slow
β for the unique solution of (31), we have

η − η̂β = (σβ + ρβ) − (σβ + ρ̂β ) = ρβ − ρ̂β = eik α·γ
4m∑

j=1

1R j (ρ
slow
β − ρ̂slow

β ). (34)

Accordingly, when G = Gd, using Céa’s lemma, we obtain

‖η − η̂β‖ = ‖
4m∑

j=1

1R j (ρ
slow
β − ρ̂slow

β )‖

≤ Ck

ck
inf{‖

4m∑

j=1

1R j (ρ
slow
β − p j )‖ : (p1, . . . , p4m) ∈ Pd1 × . . . × Pd4m }

≤ Ck

ck

4m∑

j=1

inf
p j ∈Pd j

‖ρslow
β − p j‖L2([a j ,b j ]).

Therefore, by Theorem 3 above and Theorem 9 in Appendix 1, we have

‖η − η̂β‖ � Ck

ck
k− β

3

4m∑

j=1

W(k; n j ; a j , b j )

(d j )
n j
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for all positive integers d j ≥ n j − 1 ( j = 1, . . . , 4m) where

W(k; n; a, b) :=
[∫ b

a

(s − a)n (b − s)n

W (s, k)2n
ds

] 1
2

. (35)

This inequality when combined with the next lemma gives the desired result. 
�
Lemma 4 For all n ∈ Z+ and all k ≥ 1, we have:

(i) Illuminated and shadow regions: If 0 < ε < 1
3 , a = t1 + ξ1k− 1

3+ε and b =
t2 − ξ2k− 1

3+ε , or a = t2 + ζ2k− 1
3+ε and b = 2P + t1 − ζ1k− 1

3+ε , then

W(k; n; a, b) � 1 + δn,1
√
log k + H [n − 2]k 1−3ε

6 (n−1). (36)

(ii) Illuminated and shadow transitions: If 0 < δ < ε < 1
3 , a = t1 + ξ1k− 1

3+δ and

b = t1+ξ1k− 1
3+ε , or a = t1−ζ1k− 1

3+ε and b = t1−ζ1k− 1
3+δ , or a = t2+ζ2k− 1

3+δ

and b = t2 + ζ2k− 1
3+ε , or a = t2 − ξ2k− 1

3+ε and b = t2 − ξ2k− 1
3+δ , then

W(k; n; a, b) � 1 + k− 1−3δ
6 k

ε−δ
2 n . (37)

(iii) Shadow boundaries: If 0 ≤ ε, δ < 1
3 , a = t1 − ζ1k− 1

3+δ and b = t1 + ξ1k− 1
3+ε ,

or a = t2 − ξ1k− 1
3+ε and b = t2 + ζ2k− 1

3+δ , then

W(k; n; a, b) � 1 + k− 1
6 k

ε+δ
2 n . (38)

Proof In each of the three cases, the analyses leading into the given estimates are
similar for each of the given pairs of parameters a and b, so we present the proof for
only the very first pairs.

In any case, we have

W(k; 0; a, b) = (b − a)
1
2 � 1, (39)

so we assume n ≥ 1. When 1 ≤ k ≤ k0 for some k0 > 1, we clearly have

W(k; n; a, b) � 1, (40)

and thereforewe can assume that k is sufficiently large. In this case, forW (s, k) defined
in (18), we have

W (s, k) =
{

(s − cI ) (dI − s), s ∈ [t1, t2],
(cS − s) (dS − s), s ∈ [0, 2P]\[t1, t2], (41)

where

cI := P −
√

T 2 + k− 1
3 , dI := P +

√
T 2 + k− 1

3 ,
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and

cS := P −
√

T 2 − k− 1
3 , dS := P +

√
T 2 − k− 1

3 ,

wherein T := t2−t1
2 .

For (i) and (ii), we use (41) in Lemma 9 in Appendix 1 to obtain

W(k; n; a, b)2 =
∑

0≤p,q≤n
1≤ j≤2n

(
4n − j − 1

2n − j

)(
n

p

)(
n

q

)

(−1)n F(a, b; a, b; cI , dI ; n, p, q; j)

(dI − cI )4n− j
(42)

where for 2n − (p + q + j) = −1

F(a, b; a, b; cI , dI ; n, p, q; j) = (cI − a)p (cI − b)q log

(
b − cI

a − cI

)

+ (a − dI )
p (b − dI )

q log

(
dI − a

dI − b

)
,

and for 2n − (p + q + j) �= −1

F(a, b; a, b; cI , dI ; n, p, q; j)

= (cI − a)p (cI − b)q

2n − (p + q + j) + 1

[
(b − cI )

2n−(p+q+ j)+1 − (a − cI )
2n−(p+q+ j)+1

]

+ (a − dI )
p (b − dI )

q

2n − (p + q + j) + 1

[
(dI − a)2n−(p+q+ j)+1 − (dI − b)2n−(p+q+ j)+1

]
.

For (i), as k → ∞, we have a − cI � k− 1
3+ε , b − cI � 1, dI − a � 1, and

dI − b � k− 1
3+ε (see Remark 1 for the notation �). Accordingly, for 0 ≤ p, q ≤ n

and 1 ≤ j ≤ 2n, we get

|F(a, b; a, b; cI , dI ; n, p, q; j)| � 1 + (k− 1
3+ε)p log k + (k− 1

3+ε)q log k

� 1 + log k

for 2n − (p + q + j) = −1, and

|F(a, b; a, b; cI , dI ; n, p, q; j)| � 1 + (k− 1
3+ε)2n−(q+ j)+1 + (k− 1

3+ε)2n−(p+ j)+1

� 1 + (k
1
3−ε)n−1
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for 2n − (p + q + j) �= −1. Using these estimates in (42), and upon noting that
dI − cI � 1 as k → ∞, we obtain

W(k; n; a, b)2 � 1 + δn,1 log k + H [n − 2] (k
1
3−ε)n−1,

and therefore (36) follows.
For (ii), as k → ∞, we have a − cI � k− 1

3+δ , b − cI � k− 1
3+ε , dI − a � 1, and

dI − b � 1 so that, for 0 ≤ p, q ≤ n and 1 ≤ j ≤ 2n, we get

|F(a, b; a, b; cI , dI ; n, p, q; j)| � 1 + (k− 1
3+δ)p(k− 1

3+ε)q log k � 1

when 2n − (p + q + j) = −1, and

|F(a, b; a, b; cI , dI ; n, p, q; j)|
� 1 + (k− 1

3+δ)p (k− 1
3+ε)q [(k− 1

3+δ)2n−(p+q+ j)+1 + (k− 1
3+ε)2n−(p+q+ j)+1]

� 1 + (k− 1
3+δ)2n− j+1 (kε−δ)q + (k− 1

3+ε)2n− j+1 (kδ−ε)q

� 1 + k− 1
3+δ (kε−δ)n + k− 1

3+ε

� 1 + k− 1
3+δ (kε−δ)n

when 2n − (p + q + j) �= −1. Using these two estimates in (42) and recalling
dI − cI � 1 as k → ∞, we therefore obtain

W(k; n; a, b)2 � 1 + H [n − 2] k− 1
3+δ (kε−δ)n

from which (37) follows.
As for (iii), Lemma 9 in Appendix 1 entails

W(k; n; a, b)2 =
∑

0≤p,q≤n
1≤ j≤2n

(
4n − j − 1

2n − j

)(
n

p

)(
n

q

)
(−1)n

×
{F(a, t1; a, b; cS, dS; n, p, q; j)

(dS − cS)4n− j
+ F(t1, b; a, b; cI , dI ; n, p, q; j)

(dI − cI )4n− j

}
, (43)

and we need to estimate F(a, t1; a, b; cS, dS; n, p, q, j) along with the term
F(t1, b; a, b; cI , dI ; n, p, q; j). Considering the former, we have

F(a, t1; a, b; cS, dS; n, p, q, j) = (cS − a)p(cS − b)q log
( t1 − cS

a − cS

)

+ (a − dS)p(b − dS)q log
( dS − a

dS − t1

)
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for 2n − (p + q + j) = −1, and

F(a, t1; a, b; cS, dS; n, p, q, j)

= (cS − a)p(cS − b)q

2n − (p + q + j) + 1

[
(t1 − cS)2n−(p+q+ j)+1 − (a − cS)2n−(p+q+ j)+1

]

+ (a − dS)p(b − dS)q

2n − (p + q + j) + 1

[
(dS − a)2n−(p+q+ j)+1 − (dS − t1)

2n−(p+q+ j)+1
]

for 2n − (p +q + j) �= −1. Since cS −a � k− 1
3+δ , |cS −b| � k− 1

3+ε , cS − t1 � k− 1
3 ,

dS − a � 1, dS − b � 1, dS − t1 � 1, and dS − cS � 1 so that, for 0 ≤ p, q ≤ n and
1 ≤ j ≤ 2n, we get

F(a, t1; a, b; cS, dS; n, p, q, j) � 1 + (k− 1
3+δ)p(k− 1

3+ε)q log k � 1

for 2n − (p + q + j) = −1, and

F(a,t1; a, b; cS, dS; n, p, q, j)

� 1 + (k− 1
3+δ)p(k− 1

3+ε)q
[
(k− 1

3 )2n−(p+q+ j)+1 + (k− 1
3+δ)2n−(p+q+ j)+1

]

� 1 + (k− 1
3 )2n− j+1(kδ)p(kε)q + (k− 1

3+δ)2n− j+1(kε−δ)q

� 1 + k− 1
3 (kε+δ)n + k− 1

3+δ (kε−δ)n

� 1 + k− 1
3 (kε+δ)n

for 2n − (p + q + j) �= −1. The same estimates hold also for the relevant term
F(t1, b; a, b; cI , dI ; n, p, q; j). Accordingly (43) implies

W(k; n; a, b)2 � 1 + k− 1
3 (kε+δ)n,

and this yields (38). 
�
In Theorem 4, for a given n ∈ Z+, taking n1 = . . . = n4m = n and setting

d1 = . . . = d4m = d for any positive integer d ≥ n − 1, we see that in order to
balance the errors in all the 4m regions uniformly for all n (cf. (33)), we must have

1 − 3ε1
6

= εm = ε j − ε j+1

2
, j = 1, . . . , m − 1.

This system of equations can be explicitly solved to yield the following.

Corollary 2 Given n ∈ Z+ and m ∈ N, if ε j are chosen as

ε j := 1

3

2m − 2 j + 1

2m + 1
, j = 1, . . . , m, (44)
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then, for all k ≥ k0 and d := (d, . . . , d) ∈ N
4m with d ≥ n − 1, we have

‖η − η̂β‖L2(∂K ) � Ck

ck
k− β

3 m
1 + δn,1

√
log k + H [n − 2] (k

1
6m+3 )n−1

dn
(45)

for the β-asymptotic frequency-adapted Galerkin approximation η̂β ∈ σβ + Gd to η.

To our knowledge, explicit analytical representations of the terms ap,q,r ,� in the
ansatz (9) are not available and this corresponds to β = 0. However, when the num-

ber of subregions m is chosen to increase proportional to log(k
1
6 ) (which is clearly

proportional to log(k)), we observe that k
1

6m+3 is bounded and therefore (45) implies

‖η − η̂β‖L2(∂K ) � Ck

ck
log(k)

1 + δn,1
√
log(k)

dn
. (46)

Moreover, as k → ∞, if the stability constant Ck
ck

grows proportional to k�1 for some
�1 > 0, and d is chosen to grow as k�2 for some �2 > 0, then

Ck

ck
log(k)

1 + δn,1
√
log(k)

dn
� k�1

(log(k))
3
2

kn�2
� 1

for all sufficiently large n. Since (46) is valid for all n, we therefore deduce that the
convergence of the method is spectral and requires an increase of onlyO(kε) (for any
ε > 0) in the total number of degrees of freedom to maintain accuracy for higher
values of k.

One of the most important aspects of this method consists of incorporating suf-
ficiently many terms ap,q,r ,� in the ansatz (9) into the integral equation in order to
obtain a frequency independent method. Indeed, when β ∈ Z+ is chosen so that
Ck
ck

k− β
3 (log k)

3
2 � 1 as k → ∞, then

‖η − η̂β‖L2(∂K ) � 1

dn
.

This shows that the method is not only spectral but also independent of frequency
in the sense that prescribed accuracies can be attained with the utilization of fixed
numbers of degrees of freedom.

4.2 ˇ-asymptotic Galerkin boundary elementmethod based on frequency
dependent changes of variables

For the construction of β-asymptotic Galerkin approximation spaces based on fre-
quency dependent changes of variables, given positive constants ξ j , ξ

′
j , ζ j , ζ

′
j , j =

1, 2, satisfying

t1 + ξ1 ≤ t1 + ξ ′
1 = t2 − ξ ′

2 ≤ t2 − ξ2,
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Fig. 4 Parametrized regions for a plane-wave with direction α = (1, 0) on a circle

t2 + ζ2 ≤ t2 + ζ ′
2 = 2P + t1 − ζ ′

1 ≤ 2P + t1 − ζ1,

we define, for any wavenumber k > 1, the illuminated transition regions as

I1 := [a1, b1] := [t1 + ξ1k− 1
3 , t1 + ξ ′

1], I2 := [a2, b2] := [t2 − ξ ′
2, t2 − ξ2k− 1

3 ],

shadow transition regions as

I3 := [a3, b3] := [t1 − ζ ′
1, t1 − ζ1k− 1

3 ], I4 := [a4, b4] := [t2 + ζ2k− 1
3 , t2 + ζ ′

2],

and the shadow boundary regions as

I5 := [a5, b5] := [t1 − ζ1k− 1
3 , t1 + ξ1k− 1

3 ],
I6 := [a6, b6] := [t2 − ξ2k− 1

3 , t2 + ζ2k− 1
3 ];

see Fig. 4 for a sample illustration of these regions.
In what follows we identifty L2 (∂K ) and L2(∪6

j=1I j ) through the parametrization
γ .

In order to capture the boundary layers of ρβ in the transition regions as implied by
Theorem 3, we introduce the frequency dependent changes of variables φ j : I j → I j

by setting

φ1(s) := t1 + ϕ1 (s) kψ1(s), φ2(s) := t2 − ϕ2 (s) kψ2(s),

φ3(s) := t1 − ϕ3 (s) kψ3(s), φ4(s) := t2 + ϕ4 (s) kψ4(s),

φ5(s) := s, φ6(s) := s.
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828 F. Ecevit et al.

Here ψ j are constructed so as to linearly increase from − 1
3 to 0 as one moves away

from the shadow boundaries, and ϕ j are linear functions chosen to ensure that the
maps φ j : I j → I j are bijective. They are defined explicitly as

ψ1(s) := −1

3

b1 − s

b1 − a1
, ϕ1(s) := ξ1 + (

ξ ′
1 − ξ1

) s − a1
b1 − a1

,

ψ2(s) := −1

3

s − a2
b2 − a2

, ϕ2(s) := ξ ′
2 + (

ξ2 − ξ ′
2

) s − a2
b2 − a2

,

ψ3(s) := −1

3

s − a3
b3 − a3

, ϕ3(s) := ζ ′
1 + (

ζ1 − ζ ′
1

) s − a3
b3 − a3

,

ψ4(s) := −1

3

b4 − s

b4 − a4
, ϕ4(s) := ζ2 + (

ζ ′
2 − ζ2

) s − a4
b4 − a4

.

With these definitions, we are now ready to introduce the Galerkin approximation
spaces and the associated asymptotic solutions.

Definition 6 For d = (d1, . . . , d6) ∈ Z
6+, the Galerkin approximation space based on

frequency dependent changes of variables of dimension 6+ |d| in L2(∂K ) is defined
as

Cd := eik α·γ Cslowd := eik α·γ
6⊕

j=1

1I j Pd j ◦ φ−1
j . (47)

Definition 7 Given β ∈ Z+, the β-asymptotic Galerkin approximation η̂β to η based
on frequency dependent changes of variables is defined as

η̂β := σβ + ρ̂β ∈ σβ + Cd (48)

where ρ̂β := eik α·γ ρ̂slow
β ∈ Cd is the unique solution to the Galerkin formulation

〈μ̂,Rk ρ̂β〉 = 〈μ̂, fβ〉, for all μ̂ ∈ Cd,

of the integral equation (29).

The convergence properties of the β-asymptotic Galerkin approximations η̂β to η

based on frequency dependent changes of variables are as summarized in the next
theorem.

Theorem 5 Given (n1, . . . , n6) ∈ Z
6+, for all k ≥ k0 and d := (d1, . . . , d6) ∈ N

6

with d j ≥ n j − 1, we have

‖η − η̂β‖ � Ck

ck
k− β

3
√
log k

( 4∑

j=1

(log k)n j (d j )
−n j +

6∑

j=5

(d j )
−n j

)

for the β-asymptotic Galerkin approximation η̂β ∈ σβ + Cd to η based on frequency
dependent changes of variables.
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Proof Arguing as in the proof of Theorem 4 and then changing variables, we obtain

‖η − η̂β‖ ≤ Ck

ck

6∑

j=1

inf
p j ∈Pd j

‖ρslow
β − p j ◦ φ−1

j ‖L2(I j )

= Ck

ck

6∑

j=1

inf
p j ∈Pd j

‖(ρslow
β ◦ φ j − p j )

√
φ′

j‖L2(I j )
.

Next we observe that 0 < φ′
j � log k on I j for j = 1, 2, 3, 4. For instance, for j = 1,

upon noting that b1 − a1 � 1 (cf. Remark 1), ψ1 ≤ 0 on I1, and 0 < ξ1 ≤ ξ ′
1, this

follows from the identity

φ′
1(s) = 1

b1 − a1

[
ξ ′
1 − ξ1 + 1

3

(
ξ1 + (ξ ′

1 − ξ1)
s − a1
b1 − a1

)
log k

]
kψ1(s).

Further, we clearly have φ′
j = 1 on I j for j = 4, 5. Accordingly,

‖η − η̂β‖ � Ck

ck

√
log k

6∑

j=1

inf
p j ∈Pd j

‖ρslow
β ◦ φ j − p j‖L2(I j )

.

Theorem 9 in Appendix 1 therefore gives

‖η − η̂β‖ � Ck

ck

√
log k

6∑

j=1

[∫ b j
a j

|Dn j
s (ρslow

β ◦ φ j )(s)|2(s − a j )
n j (b j − s)n j ds

] 1
2

(d j )
n j

.

Accordingly, since b j − a j � 1 (cf. Remark 1) for j = 1, 2, 3, 4, and φ5 and φ6
are identity maps, the next lemma yields

‖η − η̂β‖ � Ck

ck
k− β

3
√
log k

( 4∑

j=1

(log k)n j

(d j )
n j

+
6∑

j=5

W(k; n j ; a j , b j )

(d j )
n j

)

where W is as defined in (35). Thus the result follows from part (iii) of Lemma 4. 
�
Lemma 5 Given k ≥ k0 and n ∈ N, the estimates

|Dn
s (ρslow

β ◦ φ j )| � k− β
3

{
(log k)n, j = 1, 2, 3, 4,
W (·, k)−n, j = 5, 6,

(49)

hold on I j .
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Proof For n = 0, the result is immediate from Theorem 3, so we assume n ≥ 1. For
j = 1, . . . , 4, we utilize Faá Di Bruno’s formula for the derivatives of a composition
[39] to estimate

|Dn
s (ρslow

β ◦ φ j )| �
∑

(m1,...,mn)∈Fn

|(Dm
s ρslow

β )(φ j )|
n∏

�=1

|D�
s φ j |m�

where Fn = {(m1, . . . , mn) ∈ Z
n+ : n = ∑n

�=1 �m�} and m = ∑n
�=1 m�. Since

[25,Proposition 4.3]

|D�
s φ j | � (log k)�kψ j ,

we therefore obtain

|Dn
s (ρslow

β ◦ φ j )| � (log k)n
∑

(m1,...,mn)∈Fn

|(Dm
s ρslow

β )(φ j )|kmψ j

� (log k)n
n∑

m=0

|(Dm
s ρslow

β )(φ j )|kmψ j

� k− β
3 (log k)n

n∑

m=0

W (φ j , k)−mkmψ j , (50)

where the last inequality is a consequence of Theorem 3. Note that, since

W (φ j , k) = k− 1
3 + |ω(φ j )| > |ω(φ j )| = |(φ j − t1)(t2 − φ j )|

and

φ1 − t1 = ϕ1kψ1 ≥ ϕ1(a1)k
ψ1 = ξ1kψ1 , t2 − φ1 ≥ t2 − φ1(b1) = ξ ′

2 on I1,
φ2 − t1 ≥ φ2(a2) − t1 = ξ ′

1, t2 − φ2 = ϕ2kψ2 ≥ ϕ2(a2)k
ψ2 = ξ ′

2kψ2 on I2,
t1 − φ3 = ϕ3kψ3 ≥ ϕ3(b3)k

ψ3 = ζ1kψ3 , t2 − φ3 > t2 − t1 on I3,
φ4 − t1 > t2 − t1, φ4 − t2 = ϕ4kψ4 ≥ ϕ4(a4)k

ψ4 = ζ ′
2kψ4 on I4,

setting ξ = min{ξ1ξ ′
1, ξ

′
1ξ

′
2, ζ1(t2 − t1), ζ ′

2(t2 − t1)}, we have

W (φ j , k)−1kψ j ≤ 1

ξ2
on I j (51)

for j = 1, 2, 3, 4. Use of (51) in (50) therefore proves (49) for j = 1, 2, 3, 4. Note that
(49) is immediate from Theorem 3 for j = 5, 6 since, in this case, φ j is the identity
map on I j . This finishes the proof. 
�

Assigning the same local polynomial degree d to each interval I j , we obtain the
following.
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Corollary 3 Given n ∈ Z+, for all k ≥ k0 and d := (d, . . . , d) ∈ N
6 with d ≥ n − 1,

we have

‖η − η̂β‖
L2(∂K )

� Ck

ck
k− β

3
(log k)n+ 1

2

dn
(52)

for the β-asymptotic Galerkin approximation η̂β ∈ σβ + Cd to η based on frequency
dependent changes of variables.

In the case that the stability constant Ck/ck grows algebraically (that is Ck/ck � kδ

for some δ > 0) as k → ∞, Corollary 3 implies the followings. First, recall that β = 0
means no term ap,q,r ,� in the ansatz (9) is incorporated into the integral equation (28).
Still, even in this case, estimate (52) clearly implies that themethod is not only spectral
for each fixed k, but also increasing the number of degrees of freedom proportional
to kε (for any ε > 0) is sufficient to fix the approximation error with increasing k. In
other words, the method is spectral and almost frequency independent. When β > 0 is
chosen so that δ −β/3 < 0, the method is still spectral for each fixed k, and moreover
it is frequency independent in the sense that prescribed accuracies can be attained
with the utilization of frequency independent numbers of degrees of freedom with
increasing k.

5 Numerical results

In this section, we present numerical results validating the theoretical developments on
the β-asymptotic Galerkin boundary element method based on frequency dependent
changes of variables (GBemCV) described in Sect. 4.2. Since the explicit forms of
the terms ap,q,r ,� in the asymptotic expansion (9) are not available over the entire
boundary ∂K , we take β = 0. The numerical results obtained using the frequency-
adapted β-asymptotic Galerkin boundary element method detailed in Sect. 4.1 are
entirely similar, and therefore not presented.

Several integral equations can be used to solve the Neumann problem (4), and they
are expressed in the general form

Rkη = fk on ∂K (53)

where η is the total field [21]. Using standard techniques, the operator Rk and the
right hand side fk can be taken as

Rk := I − 2Kk, fk := 2uinc (54)

Rk := Tk, fk := ∂νuinc

Rk := I − 2(Kk + iμTk), fk := 2(uinc − iμ∂νuinc)
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Fig. 5 Configurations used in the numerical tests

whereμ is a real coupling parameter, and the double layer and hyper-singular operators
are given respectively by

Kkφ(x) :=
∫

∂K

∂Gk(x, y)

∂ν(y)
φ(y) ds(y),

and

Tkφ(x) := ∂

∂ν(x)

∫

∂K

∂Gk(x, y)

∂ν(y)
φ(y) ds(y).

For the numerical tests performed here, we choose to implement the integral equation
(53) using (54) owing to the fact that it contains only integral operators with weakly
singular kernels. We discretize the operator Rk through use of the trapezoidal rule
and the Nyström method [20] utilizing 10 to 12 points per wavelength. Regarding the
implementation, we refer to [25, 26] since it is similar to its Dirichlet version.

We consider two different single-scattering configurations consisting of the unit
circle {(cos t, sin t) : t ∈ [0, 2π ]}, and the ellipse {( 32 cos t, 1

2 sin t) : t ∈ [0, 2π ]}
rotated by π

6 radians in the counterclockwise direction. In both cases, the illumination
is coming in from the left as depicted in Fig. 5.

The unit circle is the standard test case since the analytical solution can be derived
with the aid of Fourier analysis and Jacobi-Anger expansion [20]. For a circle of radius
r , switching to polar coordinates, the analytical solution for the Neumann boundary
value problem is expressed as

η(θ) = eikr cos θ +
∑

m∈Z
im+2 (Jm(kr))′

(H (1)
m (kr))′

eimθ H (1)
m (kr) (55)

where Jm and H (1)
m are, respectively, the Bessel and Hankel functions of the first kind

and order m [1]. We display in Figure 6 the real and imaginary parts of the analytical
solution η along with those of the envelope ηslow for k = 50, 100, 200, 400, 800.
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We observe that the oscillations in the solution η are increasing with increasing fre-
quency. In addition, as the asymptotic theory predicts, ηslow is non-oscillatory in the
illuminated region, admits boundary layers around the shadow boundaries, and decays
exponentially with increasing frequency in the deep shadow region. In order to vali-
date the accuracy of the approximations, we compare in Fig. 7 the exact value and the
numerical approximation of η for k = 400. We can see that the GBemCV solution
successfully approximates the exact solution over the entire boundary.

We analyze now the error produced by the use of theGBemCVmethod. The strategy
resides in evaluating the error with respect to increasing values of the local polynomial
degree d (see Corollary 3). In Fig. 9 (left), we plot the logarithmic L2-errors

log10(‖η − η̂β‖L2) (56)

for d = 4, 8, 12, 16, 20 and k = 50, 100, 200, 400, 800. Let us mention that η̂β is
defined in (48), and η represents the analytical solution in (55). In our numerical tests,
we have constructed the Galerkin approximation spaces Cd in (47) utilizing the same
local polynomial degree d on each of the six direct summands which generates the
total number of degrees of freedom 6(d + 1). The results in Fig. 9 (left) show that,
for any fixed value of k, the accuracy increases with increasing values of d, and the
method is frequency independent.

For the elliptical configuration displayed in Fig. 5, since the analytical solution is
not available, we first start by displaying in Fig. 8 the numerical solutions obtained
by the GBemCV method (for β = 0). We can observe that η and ηslow exhibit prop-
erties similar to the circle case. More precisely, with increasing wavenumber, ηslow is
non-oscillatory in the illuminated region, admits boundary layers around the shadow
boundaries, and it decays exponentially in the deep shadow region. Concerning the
error analysis, we plot in Fig. 9 (right) the local polynomial degree d versus logarith-
mic L2-errors for d = 4, 8, 12, 16, 20 and k = 50, 100, 200, 400, 800. As mentioned
above, in (56), η̂β is defined in (48), however, η is computed using the Nyström
method [20]. As in the case of the circle, the results in Fig. 9 (right) show that for any
wavenumber the accuracy increases with the increasing local polynomial degree d,
and the method is also frequency independent.

6 Conclusion

In this paper, we proposed two different β-asymptotic Galerkin boundary element
methods for approximations of solutions to high-frequency sound-hard scattering
problems. These twomethods are based on the ansatz describing the asymptotic behav-
ior of the total field associatedwith the Neumann boundary condition.We provided the
missing parts in the derivation of this ansatz given in [45]. For the convergence anal-
yses, we used the ansatz to derive wavenumber explicit estimates on the derivatives
of the slow envelope corresponding to the total field on the boundary. An important
ingredient of these analyses resides in the use of appropriate number of terms in the
asymptotic expansion. This resulted in the design of Galerkin boundary element meth-
ods that deliver prescribed error tolerances using frequency independent numbers of
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Fig. 6 Real (first column) and imaginary (second column) parts of η, and those of ηslow (columns three
and four) associated with the circular scatterer in Fig. 5 for k = 50, 100, 200, 400, 800
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Fig. 7 Logarithmic pointwise errors for the unit circle in Fig. 5 for k = 400 and local polynomial degrees
d = 4, 8, 12, 16, 20

degrees of freedom. The numerical implementations confirm that the solutions cor-
responding to any fixed number of degrees of freedom yield frequency independent
approximations.
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Appendix

A Asymptotic expansion of the total field

The ansatz representing the asymptotic expansion of the total field η for the Neumann
boundary value problem used in the present paper is given by Melrose and Taylor in
[45]. However, the authors did not present all the mathematical steps needed in its
derivation. In this section, we provide the missing details of this analysis.

Let K ⊂ R
n+1 be a compact strictly convex obstacle such that B = ∂K ⊂ R

n+1

is a smooth hyper-surface, and consider the Neumann-to-Dirichlet operator

N−1 : E ′(R × B) � f (t, x) �→ v(t, x)|R×B ∈ D′(R × B) (57)
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Fig. 8 Real (first column) and imaginary (second column) parts of η, and those of ηslow (columns three
and four) associated with the elliptical scatterer in Fig. 5 for k = 50, 100, 200, 400, 800
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(a) (b)

Fig. 9 Local polynomial degree versus log10(L
2 error) for the unit circle (left) and the ellipse (right) for

k = 50, 100, 200, 400, 800

where D′(B × R) and E ′(R × B) are the spaces of distributions and compactly sup-
ported distributions respectively, and v is the solution to the wave problem

{
(∂t t − Δ)v(t, x) = 0 in R × Ω,

∂νv(t, x)|R×B = f (t, x) on R × B,
(58)

wherein Ω = R
n+1 \ K is the exterior domain, and ν is the outward unit normal.

In what follows, for an incident field vi (t, x) = δ(t −α · x) (δ is the Dirac function)
with direction α ∈ Sn , we denote the solution of the wave problem (58) associated
with f (t, x) = (α · ν(x))∂tv

i (t, x) by v. In this case, the total field vt := v + vi can
be expressed on the boundary as [45,p.296]

vt (t, x)|R×B = (I + N−1(α · ν(x))∂t )δ(t − α · x) (59)

where I is the identity operator. Using the same notation and procedure in [45], we
define the Kirchhoff operator (see [45,Equation 8.26])

QN : E ′(Sn × R) � v(t, x) �→ (I + N−1(α · ν(x))∂t )Fv(t, x) ∈ D′(B × R)

where F is the Fourier integral operator [41,Equation 9]

Fv(t, x) :=
∫

R×Sn
κF (t − s, w, x)v(s, α)dsdα (60)

with kernel κF (t, α, x) := δ(t − α · x).
As shown in [45], the asymptotic behavior of the total field η is determined by the

kernel κQN of the Kirchhoff operator QN .
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Lemma 6 [45,Lemma 9.1] The asymptotic behavior as k → ±∞ of the total field
η(α, k, x) obtained by inverse Fourier transformation of the kernel κQN (α, t, x)

η(α, x, k) =
∫

eitkκQN (α, t, x)dt (61)

is determined by the singularities of the kernel κQN modulo rapidly decreasing terms.

The main goal is therefore the study of the kernel κQN . To this end, one first utilizes
the general theory ofFourier integral operators with folding canonical relations [45,§5
and §6] to decompose the operator QN . In what follows, we use the notation in
[45] except that O P Sθ

ξ,ζ denotes the collection of pseudodifferential operators with

symbols in the Hörmander class Sθ
ξ,ζ , and we write O P Sθ for O P Sθ

1,0.

Theorem 6 [45,Theorem 8.30] The Kirchhoff operator QN can be expressed as

QN = J1DA−1 J2 (62)

where J1 and J2 are elliptic Fourier integral operators of order zero, D ∈ O P S
− n

2− 1
6

1
3 ,0

has an asymptotic expansion

D ∼
∑

r∈Z+, �∈−N

Ar ,�Φ
r ,� (63)

with Ar ,� ∈ S
− n

2− �
3− r

3+(�+1)−
cl and Φr ,�(k− 1

3 ξ1) ∈ S
( �
3− 2r

3 )+
1
3 ,0

(R) (see [44,p.11-12])

so that

Dv(t, x) ∼
∑

r∈Z+, �∈−N

∫
ei(x−y)·ξ+i(t−t ′)kar ,�(t, x, k, ξ)Φr ,�(k− 1

3 ξ1)v(t ′, y)dt ′dydkdξ

(64)

where (k, ξ) are variables dual to (t, x), and ar ,� ∈ S
− n

2− r
3− �

3+(�+1)−
1,0 admits an

asymptotic expansion

ar ,�(t, x, k, ξ) ∼
∑

q∈Z+
k− n

2−q− r
3− �

3+(�+1)− aq,r ,�(t, x, ξ) (65)

wherein aq,r ,� are C∞ functions uniformly bounded together with all their derivatives
(cf. [42,Definition 2.5.6]), and A−1 is the convolution operator defined by Fourier
transformation as [45,Equation 1.36]

̂A−1v(t, x)(ξ) = v̂(ξ)

A+(k− 1
3 ξ1)
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where A+(z) := Ai(e
2π i
3 z) and Ai is the Airy function [43].

The Fourier integral operator J2 is given by

J2 :E ′(R × Sn) → D′(R × R
n)

:v(s, α) �→ (J2v)(t ′, y) =
∫

ei(y−α)·ξ−i(t ′−s)kaJ2(s, α, t ′, y)v(s, α)dsdαdkdξ

where aJ2 ∈ S0
1,0 (aJ2 does not depend on ξ and k because it is a symbol of order 0).

Applying the Dirac function at the base point (0, ᾱ) (see [41, 45]) yields

(J2δ(0,ᾱ))(t
′, y) =

∫
ei(y−α)·ξ−i(t ′−s)kaJ2(s, α, t ′, y)δ(0,ᾱ)(s, α)dsdαdkdξ

=
∫

ei(y−ᾱ)·ξ−i t ′kaJ2(ᾱ, t ′, y)dkdξ

=
∫

ei(y−ᾱ)·ξ−i t ′kaJ2(ᾱ, t ′, y)δ̂0(k, ξ)dkdξ = (Pδ0)(t
′, y) (66)

where the operator P ∈ O P S− n
2+ 1

6 is specified by

(Pv)(t ′, y) :=
∫

ei(y−ᾱ)·ξ−i t ′kaJ2(ᾱ, y, t ′)̂v(k, ξ)dkdξ.

Accordingly, use of (66) in (62) implies

QN (δ(0,ᾱ)(t, x)) = J1DA−1 J2(δ(0,ᾱ)(t, x)) = J1DA−1P(δ0(t, x)). (67)

Finally, since Pδ0 = P#δ0 mod O P S−∞ and P# commutes with A−1 [45,p.295],
(67) can be rewritten as

QN (δ(0,ᾱ)(t, x)) = J1D P#A−1(δ0(t, x)) (68)

modulo rapidly decreasing terms.
In what follows, we briefly explain how representation (68) can be used to express

the amplitude associated with the kernel κN as an asymptotic series of oscillatory
integrals each of which is amenable to an application of the stationary phase method
[28].

To this end, we first use (63) to deduce for the composition D P# of the pseudo-
differential operators D and P#

D P#v(t, x) ∼
∑

r∈Z+
�∈−N

∫
ei(x−y)·ξ−i(t−t ′)kar ,�(t, x, k, ξ)Φr ,�(k− 1

3 ξ1)P#v(t ′, y)dt ′dydkdξ(69)
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with

P#v(t ′, y) :=
∫

ei(y−ᾱ)·η+i t ′τ p#(ᾱ, t ′, y)̂v(τ, η)dτdη

=
∫

ei(y−z−ᾱ)·η+i(t ′−t ′′)τ p#(ᾱ, t ′, y)v(t ′′, z)dt ′′dzdτdη (70)

where p# ∈ S0
1,0, and (τ, η) is the dual variable to (t ′, y). Using (70) in (69), we

therefore get

D P#v(t, x) ∼
∑

r∈Z+
�∈−N

∫
ei(x−z)·ξ+(t−t ′′)k−i ᾱ·ξ br ,�(ᾱ, t, x, t ′′, z, k, ξ)

Φr ,�(k− 1
3 ξ1)v(t ′′, z)dt ′′dzdkdξ (71)

with

br ,�(ᾱ, t, x, t ′′, z, k, ξ) :=
∫

ei(y−z)·(η−ξ)+i(t ′−t ′′)(τ−k)−i ᾱ·(η−ξ)

ar ,�(x, t, ξ, k)p#(ᾱ, t ′, y)dt ′dydτdη.

As for the composition of the operator D P# with the Fourier integral operator J1
appearing in (62), let us first note that

J1 :D′(R × R
n) → D′(R × B)

:v(t ′, y) �→ J1v(t, x) =
∫

eiψ1(x,τ,η)+iτ(t−t ′)−iy·ηaJ1(x, t ′, y)v(t ′, y)dt ′dydτdη

(72)

where (τ, η) are variables dual to (t, x), aJ1 ∈ S0
1,0, and the phase function ψ1 is

defined in a neighborhood of the base point as [45,Equations 7.11 and 7.13]

ψ1(x, τ, η) = −|η′|2
2τ

− |x ′|2τ
2

−
{

3
2 (−η1τ

− 1
3 )

3
2 sgn(α · ν(x)), if α · ν(x) �= 0,
0, otherwise.

(73)

In (73), we have used the notation x ′ = (x2, . . . , xn) for x = (x1, . . . , xn) ∈ B and
similarly for η ∈ R

n . Combining (71) with (72), we obtain

J1D P#v(t, x) ∼
∑

r∈Z+
�∈−N

∫
eiψ1(x,τ,η)+iτ(t−t ′)−iy·ηaJ1 (x, t ′, y)

[ ∫
ei(y−z)ξ+i(t ′−t ′′)k−i ᾱ·ξ

br ,�(ᾱ, t ′, y, t ′′, z, k, ξ)Φr ,�(k− 1
3 ξ1)v(t ′′, z)dt ′′dzdkdξ

]
dt ′dydτdη,
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and we rewrite this as

J1D P#v(t, x) ∼
∑

r∈Z+
�∈−N

∫
eiψ1(x,k,ξ)−i ᾱ·ξ−i tk−i zξ−i t ′′k

qNr ,�
(ᾱ, x, t ′′, z, k, ξ)Φr ,�(k− 1

3 ξ1)v(t ′′, z)dt ′′dzdkdξ (74)

where

qNr ,�
(ᾱ, x, t ′′, z, k, ξ) := aJ1#br ,�(ᾱ, x, t ′′, z, k, ξ)

=
∫

eiψ1(x,τ,η)−iψ1(x,k,ξ)+i(k−τ)(t ′−t)+i(ξ−η)·y

aJ1(x, t ′, y)br ,�(ᾱ, t ′, y, t ′′, z, k, ξ)dt ′dydτdη.

In light of (68), substituting [45,p.295]

A−1δ0(t
′′, z) =

∫
eiξ ·z+ikt ′′ 1

A+(k− 1
3 ξ1)

dkdξ (75)

for v in (74), we get

QN δ(0,ᾱ)(t, x) ∼
∑

r∈Z+
�∈−N

∫
eiψ1(x,k,ξ)−i ᾱ·ξ−i tk−i z·ξ−i t ′′kqNr ,�

(ᾱ, x, t ′′, z, k, ξ)

Φr ,�(k− 1
3 ξ1)A−1δ0(t

′′, z)dt ′′dzdkdξ

∼
∑

r∈Z+
�∈−N

∫
eiψ1(x,k,ξ)−i ᾱ·ξ−i tkqNr ,�

(ᾱ, x, k, ξ)
Φr ,�(k− 1

3 ξ1)

A+(k− 1
3 ξ1)

dkdξ

(76)

where qNr ,�
(ᾱ, x, k, ξ) := aJ#br ,�(ᾱ, x, k, ξ).

For the kernel κQN , we accordingly have

κQN (α, t, x) ∼
∑

r∈Z+
�∈−N

∫
eiψ1(x,k,ξ)−i ᾱ·ξ−i tkqNr ,�

(ᾱ, x, k, ξ)
Φr ,�(k− 1

3 ξ1)

A+(k− 1
3 ξ1)

dkdξ

and, in virtue of Lemma 6, we deduce (see [45,p.298])

η(α, x, k) ∼
∑

r∈Z+
�∈−N

∫
eiψ1(x,ξ,k)−i ᾱ·ξ qNr ,�

(ᾱ, x, k, ξ)
Φr ,�(k− 1

3 ξ1)

A+(k− 1
3 ξ1)

dξ. (77)
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Making the change of variable ξ = kζ in (77), we therefore find [45,p.298]

η(α, x, k) ∼
∑

r∈Z+
�∈−N

∫
eikψ2(α,x,ζ )qNr ,�

(ᾱ, x, k, ζ )
Φr ,�(k

2
3 ζ1)

A+(k
2
3 ζ1)

dζ (78)

where ψ2(α, x, ζ ) = ψ1(x, 1, ζ ) − ᾱ · ζ , and with a slight abuse of notation we have
written qNr ,�

(ᾱ, x, k, ζ ) for knqNr ,�
(ᾱ, x, k, ζ ). In this case, qNr ,�

is a symbol of order
n
2 + 1

6 − r
3 − �

3 + (� + 1)− so that

qNr ,�
(ᾱ, x, k, ζ ) ∼

∑

q∈Z+
k

n
2+ 1

6−q− r
3− �

3+(�+1)−qNq,r ,�
(ᾱ, x, ζ ). (79)

Using (79) in (78), we arrive at

η(α, x, k) ∼
∑

q,r∈Z+
�∈−N

k
n
2 + 1

6−q− r
3− �

3+(�+1)−
∫

eikψ2(α,x,ζ )qNq,r ,�
(ᾱ, x, ζ )

Φr ,�(k
2
3 ζ1)

A+(k
2
3 ζ1)

dζ. (80)

In order to further simplify (80), we introduce the function

Ψ r ,�(τ ) := e− iτ3
3

∫
Φr ,�(s)

A+(s)
e−isτ ds. (81)

The symbolic behavior of Ψ r ,� is as follows.

Lemma 7 [45,Lemma 9.34] The function Ψ r ,� defined in (81) belongs to S1+�−2r (R),
admits an asymptotic expansion

Ψ r ,�(τ ) ∼
∑

j∈Z+
αr ,�, jτ

1+�−2r−3 j (82)

as τ → +∞, and is rapidly decreasing in the sense of Schwarz as τ → −∞.

Rewriting (81) as

e
iτ3
3 Ψ r ,�(τ ) =

∫
Φr ,�(s)

A+(s)
e−isτ ds =

(̂Φr ,�

A+

)
(τ ),

and using F−1 to denote the inverse Fourier transform, we obtain

Φr ,�(k
2
3 ζ1)

A+(k
2
3 ζ1)

= F−1
((̂Φr ,�

A+

)
(τ )

)
(k

2
3 ζ1) = F−1

(
e

iτ3
3 Ψ r ,�(τ )

)
(k

2
3 ζ1)

=
∫

eik
2
3 ζ1τ e

iτ3
3 Ψ r ,�(τ )dτ = k

1
3

∫
eikζ1t+ik t3

3 Ψ r ,�(k
1
3 t)dt . (83)
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Using (83) in (80), we finally conclude

η(α, x, k) ∼ k
1
3

∑

q,r∈Z+
�∈−N

k
n
2+ 1

6−q− r
3− �

3+(�+1)− Iq,r ,�(α, x, k) (84)

where

Iq,r ,�(α, x, k) :=
∫

eikψ3(ζ,t)qNq,r ,�
(ᾱ, x, ζ )Ψ r ,�(k

1
3 t)dζdt (85)

with the phase function given by

ψ3(ζ, t) := ψ2(α, x, ζ ) + tζ1 + t3

3
. (86)

As shown in [45], the integrals Iq,r ,�(α, k, x) can be treated using the stationary
phase method which results in

Iq,r ,�(α, x, k) ∼ k− 1
3

∑

p∈Z+
k− n+1

2 − 2p
3 ap,q,r ,�(α, x) (Ψ r ,�)(p)(k

1
3 Z(α, x)) eikα·x , (87)

and this leads into the following for the envelope ηslow(α, k, x) = e−ikα·xη(α, k, x).

Theorem 7 [45,Theorem 9.36] In a vicinity of the shadow boundary {x ∈ B :
α · ν(x) = 0}, ηslow(α, k, x) belongs to the Hörmander class S0

2
3 , 13

and admits an

asymptotic expansion

ηslow(α, x, k) ∼
∑

q,p,r∈Z+
�∈−N

ap,q,r ,�(α, x, k) (88)

with

ap,q,r ,�(α, x, k) := k− 1
3− 2p

3 −q− r
3− �

3+(�+1)− bp,q,r ,�(α, x) (Ψ r ,�)(p)(k
1
3 Z(α, x))

where bp,q,r ,� are complex-valued C∞ functions, Z is a real-valued C∞ function that
is positive on the illuminated region {x ∈ B : α · ν(x) < 0}, negative on the shadow
region {x ∈ B : α · ν(x) > 0}, and that vanishes precisely to first order at the shadow
boundary.

Under certain assumptions, Theorem 7 is in fact valid over the entire boundary B.
This is given in the next theoremwhere we use the notation Bε

≷ = {x ∈ B : α ·ν(x) ≷
ε}.
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Theorem 8 Assume there exists ε ∈ (0, 1) such that on Bε
< the envelope ηslow belongs

to S0
1,0(Bε

< × (0,∞)) and admits an asymptotic expansion

ηslow(α, x, k) ∼
∑

j∈Z+
k− j a j (α, x), as k → ∞, (89)

and it is rapidly decreasing in the sense of Schwarz on Bε
> as k → −∞. Then

ηslow ∈ S0
2
3 , 13

(B × (0,∞)) and the asymptotic expansion (88) is valid over the entire

boundary B.

The proof of Theorem 8 follows the same lines as in the proof of [23,Corollary 5.3]
(see also [27,Theorem 3.1 and Corollary 2.1]) and is based on the standard matching
of asymptotic expansions technique (see e.g. [23] and the references therein). The
expansion (89) related to Neumann problem is similar to the one given in [45,Equation
1.15] for the Dirichlet case. Furthermore, using the references provided in [23] (see
the proof of Corollary 5.3) we can deduce that, for the two-dimensional Neumann
boundary value problem, ηslow decays exponentially in Bε

> as k → −∞which implies
the assumption of its rapid decay in the sense of Schwarz in Theorem 8.

B Auxiliary results

Here we provide auxiliary results used in the proofs.

Lemma 8 [24,Lemma 14] Let a(s, k) = kθ b(s) ϕ(kωΥ (s)) where b, ϕ and Υ are
smooth functions, b and Υ are periodic, and θ ∈ R\N and ω ∈ R\Z+. Then

|Dn
s Dm

k a(s, k)| � kθ−m
n+m∑

j=0

k jω|ϕ( j)(kωΥ (s))|

for all n, m ∈ Z+ and all k > 0.

Theorem 9 [47,Corollary 3.12] Given a function f ∈ C∞([a, b]) and n ∈ Z+, there
exists a constant Cn > 0 such that

inf
p∈Pd

‖ f − p‖L2[(a,b)] ≤ Cn

[∫ b

a

∣∣Dn f (s)
∣∣2 (s − a)n (b − s)n ds

] 1
2

d−n

for all d ∈ N with d + 1 ≥ n.

Lemma 9 [24,Lemma 14] Suppose that either [α, β] ⊆ [t1, t2] ⊆ (c, d) or [α, β] ∩
(t1, t2) = ∅ and [c, d] ⊆ (t1, t2). Then, for any a, b ∈ R, n ∈ N ∪ {0}, m ∈ N, there
holds

∫ β

α

(s − a)n (b − s)n

(s − c)m (d − s)m
ds
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=
∑

0≤p,q≤n
1≤ j≤m

(
2m − j − 1

m − j

)(
n

p

)(
n

q

)
(−1)n F(α, β; a, b; c, d; n, p, q; j)

(d − c)2m− j
.

Here we have

F(α, β; a, b; c, d; n, p, q; j) = (c − a)p (c − b)q log

(
β − c

α − c

)

+ (a − d)p (b − d)q log

(
d − α

d − β

)

when 2n − (p + q + j) = −1, and

F(α, β; a, b; c, d; n, p, q; j)

= (c − a)p (c − b)q

2n − (p + q + j) + 1

[
(β − c)2n−(p+q+ j)+1 − (α − c)2n−(p+q+ j)+1

]

+ (a − d)p (b − d)q

2n − (p + q + j) + 1

[
(d − α)2n−(p+q+ j)+1 − (d − β)2n−(p+q+ j)+1

]

when 2n − (p + q + j) �= −1.
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