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Abstract

This paper is concerned with the design of two different classes of Galerkin boundary
element methods for the solution of high-frequency sound-hard scattering problems
in the exterior of two-dimensional smooth convex scatterers. We prove in this paper
that both methods require a small increase (in the order of k¢ for any € > 0) in
the number of degrees of freedom to guarantee frequency independent precisions
with increasing wavenumber k. In addition, the accuracy of the numerical solutions
are independent of frequency provided sufficiently many terms in the asymptotic
expansion are incorporated into the integral equation formulation. Numerical results
validating O (k€) algorithms are presented.
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1 Introduction

Wave propagation simulations at high frequencies require appropriate design of numer-
ical methods. Generally speaking, classical approaches based on finite elements [5,
22, 34], integral equations [2, 4, 8, 11, 50], and finite differences [46, 48, 49] demand
discretization in the order of the wavelength which produce very large linear sys-
tems for high wavenumbers. Therefore they are not suitable in the high frequency
regime because of the required computational cost. This is the main reason why
several research projects geared towards the design and analysis of high-frequency
simulation strategies were initiated. For instance, in the case of sound-soft scatter-
ing problems, several methods were introduced in the context of single and multiple
scattering configurations [7, 9, 10, 23-26, 31, 38]. Most of these methods were mate-
rialized thanks to the high-frequency asymptotic expansion (ansatz) of the normal
derivative of the total field, derived by Melrose and Taylor in the well known paper
[45], for the Dirichlet boundary value problem. Using the asymptotic expansion of the
total field corresponding to the Neumann problem, also given in the paper [45], here
we propose new high-frequency Galerkin boundary methods for sound-hard scattering
problems for smooth convex obstacles.

For the Dirichlet boundary value problem, most of the aforementioned techniques
use the Melrose-Taylor ansatz. These include the localized integration based Nys-
trom scheme proposed for single [9, 10] and multiple scattering problems [7] (for the
derivation of multiple scattering ansatz see [3, 27]), collocation technique depending
on the numerical steepest descent method [38], and the Galerkin boundary element
methods [23, 25, 26]. The algorithms developed in [7, 9, 10, 38] are not supported
with convergence analyses, and those in [7, 9, 10, 23, 38] approximate the solution
by zero in the deep shadow region which, as is well known, is true only in the high-
frequency limit. In the case of the Dirichlet problem, this approximation does not
effectively impair the accuracy of the numerical solution as it rapidly decays with
increasing wavenumber in that region. However, numerical simulations show that the
solution related to the Neumann case decays comparatively slower than the one for
the Dirichlet problem (see Figs. 1 and 2), and therefore they may also loose accuracy
for moderate frequencies. The Galerkin boundary element methods proposed in [25,
26] address this problem. For both algorithms, an increase of O(k€) (for any € > 0)
in the number of degrees of freedom is sufficient to fix the approximation error with
increasing wavenumber k.

In the last decades substantial interest has grown towards high-frequency problems
in the fields of mathematical and numerical analysis [13, 14, 16-19, 23, 25, 26, 32,
33, 35-38, 40]. Indeed, as emphasized above, the design of numerical methods for
these problems is based on the use of the ansatz directly in the numerical scheme.
This ansatz, derived analytically using several mathematical tools such as pseudo-
differential operators and asymptotic analysis, has a complicated form. This gives rise
to challenging difficulties mainly related to the development of stable and convergent
numerical algorithms. The aim of this paper is the design and analysis of new Galerkin
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boundary element methods for the solution of high-frequency sound-hard scattering
problems. From an analytical point of view, this requires a careful analysis of the
Melrose-Taylor ansatz for the Neumann boundary value problem which is significantly
more complicated than its Dirichlet counterpart. The derivation of the latter is provided
in complete detail in [45] which is not the case for the Neumann problem. Therefore,
for the sake of our analysis, here in this paper we complete the missing parts in this
derivation, and also explain how the ansatz extends over the entire boundary of the
scatterers.

The design and numerical analysis of the Galerkin boundary element methods
proposed in this paper are based on a careful analysis of the asymptotic properties
of the unknown total field 1 posed on the boundary of the scattering obstacle. More
precisely, assuming a plane wave incidence with direction «, the design and numerical
analysis of high frequency methods is reduced to the study of the asymptotic expansion
(ansatz) provided by Melrose and Taylor [45]

V@ x k)~ Y apgrelex,k) ()

P.q.,r=0
t<—1

where nSIOW(a, x, k) = e tkax n(«, x, k) (see Theorems 1 and 8 below). In that
connection, we first determine the Hormander classes and obtain wavenumber explicit
estimates on the derivatives of the terms a, 4 , ¢. Then, with the aid of this analysis,
we derive sharp wavenumber explicit estimates on the derivatives of the envelope
n¥°% . Finally, we use these estimates in the optimal design and numerical analysis
of two different classes Galerkin boundary element methods. As we will show, these
methods are capable of delivering prescribed accuracies with the utilization of numbers
of degrees of freedom that need to increase in the order of k¢ (for any € > 0) with
increasing wavenumber, and are therefore almost frequency independent.

It is proved in this paper that if an adequate number of terms a 4,,,¢ in the ansatz
is explicitly known, then the methods designed here are frequency independent. Cur-
rently, however, these coefficients are not explicitly known, and therefore the numerical
implementations presented here in this paper demand an O(k€) increase in the num-
ber of degrees of freedom to maintain accuracy with increasing k. In this connection,
let us mention that the error estimates for the Galerkin boundary element methods
developed for the Dirichlet [23, 25, 26] and the Neumann problem in this paper use
Céa’s lemma [12] which leads to an important factor expressed as a function of the

wavenumber. In the Dirichlet case, this factor was shown to be O(k %) as k — oo
for the combined field and star combined integral equations [29, 30] (see also [24,
25]), and therefore the Galerkin approximations are bound to degrade with increasing
frequency; this problem was addressed in [24] where, in the context of the combined
field and star combined integral equations, it is shown that incorporation of the leading
order term in the Dirichlet ansatz is sufficient to render the methods [25, 26] frequency
independent. As we will see, the same approach applied to the Neumann problem will
lead to similar observations and results.

In the context of the sound hard scattering problems considered in this paper, a coer-
cive formulation for planar screens was developed in [15]. Moreover, for the problem
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of scattering by smooth convex obstacles considered herein, a coercive formulation in
indirect form was proposed in [6]. These suggest that this kind of formulation can also
be derived in direct form for scattering from smooth obstacles. Assuming the existence
of such formulations, we rigorously determine the minimal number of terms in the
Neumann ansatz (1) that must be incorporated into the integral equation in order to
cancel the effect of the aforementioned factor when Céa’s lemma is used. To achieve
this, we show the existence of an increasing sequence {Fg} >0 of finite sets of indices
(p,q,r,¥) such that if

aglow = Z Ap.g.r.e )

(p.q.r.0)eFp

is known, then the wavenumber explicit estimates on the derivatives of all orders of
the new unknown

p/sslow — 77slow _ Uslow 3)
grow the slowest (with respect to the choice of the sets Fg) as a function of k with
increasing k; see Remark 2, Theorems 2 and 3. Following this, we design two numerical
methods, namely the frequency-adapted B-asymptotic Galerkin boundary element
method and the B-asymptotic Galerkin boundary element method based on frequency
dependent changes of variables, that incorporate the “B-asymptotic” term agk’w 2)
into any given appropriate integral equation formulation and thereby improve the error
estimates by the factor k=#/3. Let us note that = 0 corresponds to the case, as at
present, where no term ap 4, ¢ in the ansatz (1) is explicitly known. In this case,
Fo = @ and we use the convention that an empty sum is zero so that ,o(s)low = ptlow,

Although the numerical methods we develop in this paper use the same construc-
tions as in their sound-soft versions proposed in [26] and [25] respectively (see also
[24]), the analyses are significantly different. The former method resolves the bound-
ary layers around the shadow boundaries by adequate utilization of subregions in these
regions with respect to the frequency. On each subregion, the method uses algebraic
polynomials weighted by the oscillations in the incident field of radiation as in the
Dirichlet case [26]. Similarly, as in [25], the latter method utilizes frequency dependent
changes of variables to resolve the boundary layers around the shadow boundaries.
In addition, we show that, for 8 = 0 (which means no term a 4 ¢ in the ansatz is
incorporated into the integral equation formulation) both methods require only a small
increase (of size O (k) for any € > 0) in the number of degrees of freedom to maintain
accuracy with increasing k. Moreover, as mentioned above, we demonstrate that the
methods are frequency independent when sufficiently many terms in the ansatz are
appropriately used in the integral equation formulations.

The paper is organized as follows. In Sect. 2, we introduce the sound-hard scatter-
ing problem, and discuss the similarities and differences between the Neumann and
Dirichlet high-frequency solutions. In Sect. 3, we determine the Hormander classes
of the terms a, 4 , ¢ in the ansatz (1) and the envelopes pgl"w in (3), and derive sharp
wavenumber dependent estimates on their derivatives. We use these estimates in the
construction and numerical analysis of the frequency-adapted B-asymptotic Galerkin
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boundary element method and the B-asymptotic Galerkin boundary element method
based on frequency dependent changes of variables in Sect. 4. We present numerical
results confirming our theoretical findings in Sect. 5. Finally, the derivation of the
ansatz is presented in Appendix 1 where we also show how it extends to the entire
boundary of the scatterers.

2 Problem statement

We consider the sound-hard scattering problem in the exterior of a smooth, compact
and strictly convex obstacle K C R? illuminated by a plane wave incidence u'™ (x) =
ek with direction «, |o| = 1 and k > 0. The unknown scattered field u satisfies
[14, 20]

(A+kHu=0 inR\K,
oyu = —0,u™ ondk, 4)
lim, o /7 (5% —iku) =0, r=|x|,

where v is the exterior unit normal to K.

The direct approach in high-frequency integral equation formulations transforms
the scattering problem (4) into the computation of the (unknown) total field n :=
u+u"ondk. Indeed, as a radiating solution to the Helmholz equation, the scattered
field satisfies [14, 20]

u(a,x,k)zf (Mu(a,y,k)—MGk(x,w) ds(y) (5
IK ov(y) av(y)

for all x in the exterior region R? \ K, where
Lo
Gr(x.y) = 7 Hy(klx = y)

is the outgoing Green’s function for the Helmholtz equation and Hél) is the Hankel
function of the first kind and of order zero. Moreover, Green’s theorem applied to u™°
and Gy (x, -) gives, in the exterior region,

_ IGK(X, Y) inc U™ (@, y, k)
O_/BK< ey LT T Gk(x’”) s ©

Adding (5) and (6) and using the Neumann boundary condition d,u = —9,u™™ shows
that the scattered field can be expressed as the double-layer potential

0G(x,
u(a,x,k>=f G Y) 4, v, k) ds (). %
ok Ov(y)
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Fig. 1 Plots of the real and imaginary parts of the total field (top row) and the slow envelope (bottom row)
for the sound-hard scattering problem in the case of a plane wave incidence with direction « = (1, 0)
impinging on the unit circle (cost, sint) for k = 50, 100, 200, 400, 800
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Fig. 2 Plots of the real and imaginary parts of the normal derivative of the total field modulated by k (top
row) and the slow envelope modulated by k%/3 and k (bottom row) for the sound-soft scattering problem in
the case of a plane wave incidence with direction & = (1, 0) impinging on the unit circle (cost, sint) for
k =50, 100, 200, 400, 800
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One of the primary motivations for using direct formulations is the observation that
1 is amenable to phase extraction

(e, x, k) = e sl (@, x, k) 8)

asitis the case for the Dirichlet boundary value problem where the unknown represents
the normal derivative of the total field (see Figs. 1 and 2). In this paper, we develop
efficient Galerkin boundary element methods by using the asymptotic behavior (as
k — 00) of the envelope ¥ in the construction of Galerkin approximation spaces.
This approach is similar to the one used for the sound-soft scattering problem. In
Figs. 1 and 2, we display the total field and the normal derivative of the total field
respectively for the Neumann and Dirichlet boundary value problems. As we can
see, these densities have similar asymptotic characteristics. Specifically, they both
posses boundary layers around the shadow boundaries, and decay rapidly in the deep
shadow region with increasing wavenumber. From a numerical perspective, however,
approximating the density related to the Neumann problem is more challenging since
its slow part (n°%) oscillates more strongly around the shadow boundaries and decays
indubitably slower in the shadow region as displayed in the simulations in Figs. 1 and
2. Consequently, obtaining highly accurate numerical approximations to the Neumann
problem is significantly more challenging when compared to the Dirichlet case.

3 Hormander classes and wavenumber explicit derivative estimates

This section is dedicated to the study of the asymptotic expansion of the envelope
nl°% defined in (8). We first observe that the incident plane wave u™(x) = e/k@*
determines the illuminated and shadow regions, and the shadow boundaries on d K as

AK' ={x € 3K : o - v(x) < 0}
AKSR = (x € 9K : a0 - v(x) > 0}
AKSE ={x € 9K o - v(x) = 0}.

Welet2P = |0 K|, and we choose y as the 2 P-periodic arc length parameterization of
the boundary 0K in the counterclockwise direction such that the shadow boundaries
K38 = y ({11, 1}) are determined by the parameters 0 < 7; < 1, < 2P satisfying
t1+1t, = 2P, and the illuminated and shadow regions are givenby dK ' = y ((11, 1))
and= 0K SR = y ((0, t1) U (12, 2 P)). In what follows we shall write K S8 for {11, 1},
KL for (11, 1), and KSR for (0, t1)U(rp, 2P). For convenience, we shall also write
n(s, k), n¥9% (s, k), v(s), etc. rather than n (e, y (s), k), % (r, y (5), k), v(y (5)), etc.
where « is eliminated and y (s) is replaced by s. In the next theorem, we present the
asymptotic behavior of 7°°V in a two-dimensional setting while a general version is
given in Theorem 8 of Appendix 1.

Theorem 1 The envelope 1Y belongs to the Hormander class S9 | ([0,2P] x
33

(0, 00)) and admits the asymptotic expansion
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Vs k)~ Y apgirils k) ©)
p.q,r€ly
te—N
with

_ I+2p+3g+r+t 1
apgres, )y =k=— 35 TED-p () (@THP (K3 Z(s))  (10)

where 7 is the set of non-negative integers, t_ = min{t, 0}, by, 4 r ¢ are 2 P-periodic
complex-valued C* functions, Z is a 2P-periodic real-valued C* function that is
positive on the illuminated region 3K, negative on the shadow region KSR, and
vanishes precisely to first order at the shadow boundary dKSR. Finally ¥t are
complex-valued C*> functions which admit the asymptotic expansions

wt () ~ Z ar,g,jrl“_z’_” ast — +o0o
JELy

and rapidly decrease in the sense of Schwarz as T — —o0.

For concise definitions of Hormander classes and asymptotic expansions we refer to
[27,§2.2].

In this section, we study the asymptotic behavior of the terms a, 4 ¢ appear-
ing in the expansion (9), and first show that they belong to the Hormander class

§5P479([0,2P] x (0, 00)) where

3°3

_14+2p+3g+r+t

O (p,q.r.b) = 3 (1D
0, 1+¢—-2r—p<0,
4+ 1) o
HE+ D) +{M, 1+¢-2r—p=>0.
We then use this result to carry out a similar study for the expressions pl“;ow which we
now define.
Definition 1 Given 8 € Z., we define
O’EIOW = Z Apgri and p/sglow = 77slow _ O_Elow (12)

(p.q.r.0)eFp
where
Fp = {(p,q,r,ﬁ) €ly Xl xZy x (=N):0(p,q,r,0) > —g} (13)
We also set
— eika.yaglow

og and pgi=n—op= eika'ypgow. (14)
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Throughout the text, we use the standard convention that an empty sum is zero. In
particular (since ¥ (p, q,r,£) < 0 for any (p,q,7,€) € Zy X Z4 X Zy x (—N))
Fo = @ so that oglow = 0 and op = 0, and therefore p(s)low = %1% and pg = 1.

As mentioned in the introduction, the use of Céa’s lemma gives rise to a factor
depending on the wavenumber which effectively means the need for higher number of
degrees freedom with increasing k. The goal of the previous definition is to eliminate
this factor by incorporating sufficiently many terms in the asymptotic expansion into
any given continuous and coercive integral equation formulation. Indeed, as shown
in the following analysis, the definition of O’Elow (12) is optimal in the sense that it

leads to the balancing factor k~#/3 subject to a minimum number of terms a D.g.r L
incorporated into the integral equation (see Remark 2, and Theorems 2 and 3). This
represents a very important step in the design of Galerkin approximation spaces which
can provide prescribed error tolerances with the utilization of frequency independent
numbers of degrees of freedom.

Let us begin our analysis by giving the following result which is immediate from
the asymptotic behavior of "¢ described in Theorem 1.

Lemma1 Forall p,r € Z+ and £ € Z, there exists a positive constant C such that

(1 +|z¥reP, ifp>14+¢-2r=>0,

(1 + |tDHE2 =P otherwise, (15)

(5P (1)) < c{

holds for all T € R where
1+¢—-2r=y.¢ mod3 with y.,e{-3,-2,—1}

Remark 1 In the rest of the paper, the notation A < B will mean 0 < A < ¢B for
the range of values of the wavenumber k relevant to the context where c is a positive
constant independent of k (which might, however, depend on the geometry of the
scattering obstacle, the direction of incidence, and all the other parameters in the
context). Additionally, the notation A < B willmean A < B and B < A.

With the aid of Theorem 1, Lemma 1, and Lemma 8 in Appendix 1, we now char-
acterize the Hoérmander classes of a4 ¢ and derive wavenumber explicit estimates
on their derivatives.

Lemma2 [Hormander classes of ap g 0] Forany p,q,r € Zy and t € Z, ap 4.r ¢

belongs to the Hormander class Sg(’j’q’“‘)([o, 2P] x (0, 00)).

3°3
Proof Givenn,m, p,q,r € Z; and £ € Z, an application of Lemma 8 to a, 4 ¢ (10)
entails

+2p+3g+r+L
3

1
IDI Dy apgrio(s, k) Sk~ (D -—m

- K5 |7 PHD (k3 7)) 1o

0<j<n+m

for all (s, k) € [0,2P] x (0, 00).
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When 1 + ¢ — 2r < 0, use of (15) in (16) implies

1+2p+3g+r+t

|D;’DZ1 Apgri(s, k)l <k — 5t {+)_—m
x Y KAz e
0<j<n+m
o~ R L (1) —m 3 2
0<j<n+m
< R )+ 4

~

and this, in turn, implies thata, 4., € Sﬁ(p A e)([O, 2P] x (0, 00)).
When 1 + ¢ — 2r > 0, use of (15) in (16) gives

_ 1+2p+3g+r+e _
IDIDy ap g (s k) Sk= 5 HERDomm

. 1 ‘
x { Y kS kT Z(s) e

0<j<n+m
j<1+€—-2r—p

+ Y ka +k%|Z(s)|)V"f_p_j}. (17)

0<j<n+m
j>14+0-2r—p

If1+¢—2r—p <0,(17) reduces to

_ 1+2p+3g+r+e 141 —
|DnDk apqr((s K| <k — 5+ {+)_—m

x > KAk Z@rer

0<j<n+m
k™ W+(f+l) —m Z k%
0<j<n+m
SJ = l+2p+3q+r+£ F(U+1)_—m kn+m
< k l+2p+3q+r+€ +(e+1)_ + 2m

< kﬂ(p q.r l)+* m

so that ap 4,1 € Sz({”””([o 2P] x (0,00)). If 1 + ¢ —2r — p > 0, setting
J = min{n + m, 1+€—2r—p} (17) takes on the form

|D? D]T Ap.q,r,.t (s, k)|
1+2p+3g+r+t

<k*f+(€+l)_fm{ Z k%(1+k%|Z(s)|)]+l72r7p7j

~

O<j=J
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+ Y Ba+ks |Z(s)|)7”’i_p_j}

J<j=n+m
< k—w+(€+l)f—mi Z R e e Z kg}
0<j=<J J<j<n+m
< i l+2p+§q+r+l (C+1)_ —m {k1+lf32r7p n Z k% }
J<j<n+m

This entails, when 0 < 1 +¢ —2r —p <n-+m

Le2pedgret L=2r—p  nim
|D?D/T ap,q,r_[(s,kﬂ S k™ D~ {k 3 + k3 }
Sk_w+([+l)——m k’H—Tm
<k M+(@+l) +777
< kPaers €)+—7—7
andwhenn+m <1+£€—-2r—p
,W _ M
|DYD} ap.g.re(s, k)| Sk )y

< kP ParOH=m < g2 p, qrO+5-%

These show that a4 ,.; € S5 27" ([0,2P] x (0, 00)) when 1 + £ —2r — p > 0.
33

Therefore the proof is complete. O

For the developments that follow, we define
W(s, k) := k_% + lw(s)| with w(s) := (s —t1)(r — 5) (18)

for any k > 0.

Lemma 3 (Wavenumber explicit estimates on the derivatives of a, 4 ».¢) Givenky > 0
andn, p,q,r € Z4 and £ € 7, the estimate

3g+r > W(S,k)ij,1~|-Z—2r—p<07
ID{ap.g.re(s, OIS S B G RV Rt
Ap.ren(s, k), 1+4¢—-2r—p=0,

(19)

holds for all (s, k) € [0,2P] x [ko, 00) where

Lte=ar—p .
pan(S k) =k + Z W(s, k).
1+€—-2r—p<j<n
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Proof Givenn, p,q,r € Z4 and £ € Z, use of Lemma 8 entails for the derivatives of
ap.q.r.t (10)

1+2p+3g+r+L

D apgurls )l S ST HED- S PR kS ()] (20)

0<j<n

for all (s, k) € [0,2P] x (0, 00).
When 1 + ¢ — 2r < 0, use of (15) in (20) implies

1+2p+3g+r+L j .
DY ap (s Ol Sk 3T N S (kS Z ()
0<j=<n
= Y Ao e
0<j<n
kTG SN S (4 1 ()

0<j<n

142 p+3g+r+e 1 .
ks D S S 4 jw(s))

O<j=<n

S = 1+2p+;q+r+(’, F(e+1)

When 1 + ¢ — 2r > 0, use of (15) in (20) gives

|D;lap,q,r,é(sak)|
S e B DI SR S IF A0 et

~

0<j<n
Jj<1+0—-2r—p
+ Y KBa+Ezeperl 1)
0<j<n
Jj>14+0-2r—p

If1+¢—2r—p <0,(21)reduces to

1+2p+3g+r+¢

Dl pgre(s. )] Sk 3G N k(1 gz (s e
0<j<n
— LiZptagdrtl 4 gty Z K51+ k3| Z(s))
0<j<n
<k 1+2p+%q+r+«‘f+(€+1)7 Z k*(1+k*|a)(s)|) J
0<j<n
— kR S S 4w (s))
0<j<n

If1+¢—2r —p>0,setting J = min{n, 1 + £ — 2r — p}, (21) becomes

|D? ap,q,r,é(S, 9]
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< k- 1+2p+§q+r+[ (1)

> KAk Z(s)p

0=j=J
+ > KA+ rize) )
J<j<n
gk—wﬁﬁl)—{ )3 P e
0=j=J
+ Yy k%(l%—k%|w(sﬂ)”l’p’j}
J<j<n
N N (S D D A BV SO
J<j<n
n
e D S O
j=J+1
Thus the result follows. O

Using Lemma 3, we can obtain the following.

Corollary 1 (Simplified wavenumber explicit estimates on the derivatives of a;, 4, ¢)
Given kg > Oandn, p,q,r € Z+ and £ € Z, the estimate

|Dap g r (s, k)| S KPPETO W(s, k)™ (22)

holds for all (s, k) € [0,2P] x [ko, 00).

We now make use of Lemma 2 and Corollary 1 to characterize the Hérmander
classes and derive wavenumber explicit estimates on the derivatives of the envelopes

,031-0‘” we introduce next.

Definition 2 Given a finite set F C Z4 X Z4 X Z4+ x (—N), we define

slow . slow slow
pr =N —or
where
Usbw N
F = ap’q,,,g.
(p.q,r,0)eF
We also set

D (F) = max{d(p,q,r, L) : (p,q,r, L) € Zy X Zy X Zy X (—N)\F}.
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816 F. Ecevit et al.

Remark 2 As is apparent from (13), for any 8 € Z., the smallest finite set F C
Zy X Ly x Z4 x (—N) having 9 (F) = —% is precisely Fpg, and the sets Fg are
increasing with increasing 8. Moreover, comparing Definitions 1 and 2, we see that

slow __ _slow slow __ _slow
o =0, and Pg - = Pr, -

The next theorem thus clarifies the optimality of the sets F4 in connection with the
wavenumber explicit derivative estimates.

Theorem 2 Given a finite set F C Z4 x Zy X Z4 x (—N), the envelope ,OSIOW belongs
to Sﬂ(f:)([O 2P] x (0, 00)). Moreover, given ko > 1 and n € Z, the estimate

|anslow( s K0 W(s, k)" (23)

holds for all (s, k) € [0, 2P] x [ko, 00).

Proof First note that the definition of ¥ (p, g, r, £) (see (11)) implies
1
{(0(p,q,r, ) : (p,q, v, ) €Ly XLy X Ly x (—N)} = —3 Zy.

Thus, in light of Theorem 1 (specifically %% ¢ Sg , and (9)) and Lemma 2, the

3°3
definitions of Hormander classes and asymptotic expansions (see e.g. [27,§2]) imply
p;l_ow e S?(f )

Given 1336 Zy, let
F, = {(p,q,r,z) €Zy xZy xZy x (=N) : 9(p,q,r,£) > m(F) — %
where
m(F) :=min{d(p,q,r, L) : (p,q,r, ) € FU{(0,0,0,—1)}}.

Then F C F, so that

slow slow slow
O‘]_- UF + O’]_- \F>

and therefore

p;_ow _ p%OW+ sl:\\v}_' (24)

A second appeal to Theorem 1 (specifically n¥°% e Sg ! and (9)) and Lemma 2

implies through the definitions of Hérmander classes and asymptotlc expansions that

P e §5 T (25)
3 §
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n+1

The very definition of F,, entails ¥ (F,) = m(F) —
Hormander classes, (25) gives

so that, by definition of

D o3 (5. )| S (1 4+ "D FHE < A+ " DS Wis, ™. (26)

On the other hand, Corollary 1 yields

ID{oFENFG OIS Y KT W (s, k)
(p.q.r OEFN\F
< kmax{ﬁ(p,q,r,f):(p,q,r,l)E]:n\]:} W(s, k)™, 27)

Using (26) and (27) in (24), we therefore deduce

|D;1p;.l_0W(s’ k)| S [(1 + k)m(]:)—% + kmax{ﬁ(p,q,r,f):(p,q,r,l)e]:n\f}] Wis, k)—n

< gmax{®(p.q.r.0:(p.g.r ) €F\F} W(s, k).

Accordingly, since

max{?(p,q,r, L) : (p,q,r, L) € Fy\F}
=max{?(p,q,7r, ) : (p,q,r, ) € Zy X Ly X Zy x (—N)\F} = 0(F),

(23) follows. O

The design and analysis of the Galerkin boundary element methods presented in
Sect. 4 are based on the following theorem which is immediate from Remark 2 and
Theorem 2.

Theorem 3 Given 8 € Z., the smallest finite set F C Zy X Zy X Zy x (—N) having

HF) = —g is precisely Fg as defined in (13). Moreover p%low (12) belongs to the
_B

Hérmander class S, 3 ([0, 2P] x (0, 00)) and, for any given kg > 1 andn € Z, the
33

estimate

D2 o™ (s, )| S K5 W s, k)"

holds for all (s, k) € [0,2P] x [ko, 00).

4 Galerkin boundary element methods and convergence analyses

Throughout this section we assume that an integral equation formulation
Rin = f (28)
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is given to deal with the problem (4) where Ry : L?(3K) — L2(3K) is continuous
and coercive for all k > k( for some ko > 1, with continuity and coercivity constants

Cy and c;. We also assume that ogl"w (12) is available for some € Z. This amounts

to assuming that the terms ap 4,,,¢ in the asymptotic expansion of n¥°% appearing

in the definition of aglow are explicitly known throughout the entire boundary 9K .
This, in turn, means that a few of the terms in the asymptotic expansions of the
“reflection” and the “diffraction” terms are explicitly known on the corresponding
parts of the boundary. In this case, (28) can be re-written in terms of the new unknown

pPp =M1 —0pgas
Ripp = fp (29)
where fg = f — Ryop. Note that pg = nand fg = f when 8 = 0.

Definition 3 We define the B -asymptotic Galerkin approximation 1g to 1 associated
with a finite dimensional subspace G of L%(3K) as

p:=o0g+pgecog+gG (30)
where ,65 € G is the unique solution to the Galerkin formulation

(i, Ripp) = (L, fp),  forall i € G, (€29)
of the integral equation (29).

In virtue of (30) and Definition 1, we observe that n — fjg = pg — pg. Accordingly,
the Galerkin approximation spaces defined in the form

G = gikwygslow

capture the oscillations in pg = etkey ,oglow exactly. This, in turn, reduces the problem

to the design of approximation spaces G*'°V so as to effectively resolve the boundary
layers of pglow, as implied by Theorem 3, around the shadow boundaries with increas-
ing k. In Sects. 4.1 and Sect. 4.2, we introduce two different Galerkin approximation
spaces that are designed to effectively resolve the aforementioned boundary layers,
and where their convergence analyses are also presented. In particular, these analyses
reveal that the explicit knowledge of o implies that, provided the stability constant
Cy/cx grows like k€ as k — oo for some o > 0, then it can be controlled by k—#/3
choosing 8 > 3p.

The design of frequency-adapted B-asymptotic Galerkin approximation space in
Sect. 4.1 and the B-asymptotic Galerkin approximation space based on frequency
dependent changes of variables in Sect. 4.2, replicate those proposed for solution
of the corresponding Dirichlet problem in [26] and [25] respectively. However, the
convergence analyses have non-trivial technicalities due to the differences between
the wavenumber dependent estimates on the derivatives of the densities (total field for
the Neumann problem and normal derivative of total field for the Dirichlet problem).
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> (L) 7(SR)

+(SB,)

Fig.3 Parameterized regions for a plane-wave with direction « = (1, 0) on a circle

For the sake of presentation, we refer to [25, 26] for additional details on the proofs if
needed.

4.1 Frequency-adapted 3-asymptotic Galerkin boundary element method

For the construction of SB-asymptotic frequency-adapted Galerkin approximation
spaces, given k > 1, a natural number m, real numbers €, ..., €, with 0 <
Em < €] < - < € < %, and positive real numbers &1, &, &1, {» satisfying
h—§& <th—%&andtr+ ¢ < 2P+t — &1, the illuminated region (I L), illuminated
transitions (I Ty and I T3), shadow transitions (ST and ST3), shadow boundaries (S By
and S B»), and shadow region (SR), in the parameter domain are defined as

IL =1 +§1k‘%+€1, th — gzk—%ﬂl],

IT) =1[1 + &k 31 1 + £ k57,

ITy = [ty — £k 3T 1y — ok~ 3Fen],
SBy = [t — k3o 1y 4 gk 3T,
SBy = [ty — £k 3T 1y 4 ok~ 3Fen],

STy o= [ — k374, 1 — gk~ 5 +em),

STy = [tz + Lok~ 31 1 + £k~ 5+41],

SR = [ty + 0k 37 2P 41 — k3T,

see Fig. 3 for sample illustrations of these regions.

Note thatas k — oo the illuminated and shadow regions cover the entire boundary in
the parameter domain, and the remaining regions collapse to the shadow boundaries.
In order to resolve the singularities of p%low in vicinities of shadow boundaries as
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implied by the wavenumber explicit derivative estimates in Theorem 3, form > 1, we
partition each one of the four transition regions into m — 1 subregions as

1T =1 + LAY e |
IT] = [ty — &2k~ 5 1) — ok~ 341,
ST = [t — k349 1y — gk~ 3Fe1],

ST2j =+ ;zk*%“i“ ,th + ;2](%%./']’

for j = 1,...,m — 1. These result in a total of 4m regions

1T/ ji=L....m—1,
IT™", j=m+1,....2m—1,
ST ™", j=2m+1,....3m—1,

STI ™", j=3m+1,... 4m —1,

Rj:=laj bjl:=

and
R, =1L, Ry,:=SR, R3, =SBy, R4, : =SBy,

with the transition regions being redundant when m = 1. Identifying the spaces
L?(8K)and L? (U‘;”; | R;) through the parameterization y, we now define the Galerkin
approximation spaces, and the associated asymptotic Galerkin solutions.

Definition4 Form € Nandd = (dy, ..., dsn) € Z4", the 4m + |d| dimensional
frequency-adapted Galerkin approximation space in L*(dK) is defined as the direct
sum

4m
gd = eiko#y g(sjlow = eikotvy @ ]le ]P)d_,‘ (32)
j=1

where 1 is the characteristic function, and Py is the space of polynomials of degree
at most d.

Definition5 Form € Nandd = (dy, ..., dan) € Zi’”, the S-asymptotic frequency-
adapted Galerkin approximation fjg to 1 is defined as

ig == 0p + pp € 0p + Ya

where o is as given in (12), and pg = etkay ﬁglow € Gq is the unique solution of the
Galerkin formulation

(L, Rippg) = (i1, fp),  forall & € Gy,

of the integral equation (29).

@ Springer



Spectral Galerkin boundary element methods for high-frequency... 821

The approximation properties of the B-asymptotic frequency-adapted Galerkin
method are given in the following.

Theorem4 Given m € N and (ny,...,n4y,) € Zim, for k > ko and all d =
dy, ... ,day) € N4m withd; > nj — 1, we have
Cr 8 1+ Ek, )
= Apll2or) S — k3 ) ——i— (33)
Ck j=1 (dj)

for the B-asymptotic frequency-adapted Galerkin approximation fjg € og + Gq to 1.
On the transition regions (with j' = j mod m and j' € {1,...,m — 1})

1-3¢ . ’+1 ¢+

Ek, j) =k (k™ )” jell,...,damN\{m,2m,3m, 4m},

on the illuminated and shadow regions

—3e
k 6|)”/', j=m,2m,

E(k, j) = Snj,h/logk + Hnj —2]

where § and H are the Kronecker delta and Heaviside functions, and on the shadow
boundaries

E(k, j) :=k=0 (k)" j =3m, 4m.
Proof Writing pg = /%7 ,6/5310‘” for the unique solution of (31), we have

4m
n— g = (op + pp) — (05 + pp) = pp — Pp = €7 > L, (0™ — pF°).  (34)
j=1

Accordingly, when G = Gq, using Céa’s lemma, we obtain

lln — Agll =1l Z 1g; (0§ — By
< Singy ZnR P =PI (Pro .. pam) € Pay x ... x Py, }
Ck =
< — Z mf ||,0SIOW Pj||L2([aj,bj])~

Therefore, by Theorem 3 above and Theorem 9 in Appendix 1, we have

4m
. Cr, _s Wi(k;nj;aj, bj)

In—ngll < —k73 ) ——————
e ; )"
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for all positive integers d; > n; — 1 (j =1, ..., 4m) where
1
b n n 2
(s—a)' (b—y)
W(k;n;a,b) = —————ds| . 35
(k;n;a,b) [/a W 2 S] (35)
This inequality when combined with the next lemma gives the desired result. O

Lemma4 Foralln € Z and all k > 1, we have:

(i) Hluminated and shadow regions: If 0 < € < %, a =1t + $1k_%+E and b =
1 — §2k_%+€, ora =t + gzk—%“ andb =2P + 1 — §1k_%+6, then

Wik n;a,b) S 14 8,1/logk + Hin — 2k s =D, (36)

(ii) Illuminated and shadow transitions: If 0 < § < € < % a=1t+ Elk*%M and
b=t14+6k"5 ora = 11—k~ 3t andb = 1 — &k~ 3, ora = t+ Lok~ 3
1 1 1
andb =tr + k73 ora =1 —&kT3 T and b = t» — &k731° then

Wkin;a,b) S1+k o k7", (37)

(iii) Shadow boundaries: If 0 < €,8 < %, a=1 — §1k_%+‘s and b =t + Slk_%“,
ora =ty — élk_%“ andb =t + §2k_%+5, then

Wi(k;n;a,b) S1 L kTEET (38)
Proof In each of the three cases, the analyses leading into the given estimates are
similar for each of the given pairs of parameters a and b, so we present the proof for

only the very first pairs.
In any case, we have

W(k; 03a,b) = (b—a)? <1, (39)
so we assume n > 1. When 1 < k < kg for some ko > 1, we clearly have
W(k;n;a,b) S 1, (40)

and therefore we can assume that k is sufficiently large. In this case, for W (s, k) defined
in (18), we have

(s —cp)d; —s), s €1, 2],

(cs —5) (ds — 5). s € [0.2P\[11, 12], “h

W(s, k) = {

where

c1i=P—\T24+k™3, dp:=P+\T2+k3,
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and

1 1
cs:=P—\T2—k3, ds:=P+\T?—k 3,

wherein T := %
For (i) and (ii), we use (41) in Lemma 9 in Appendix 1 to obtain

wiomani= 3 (M (0)(0)

0<p.g=n
1<j<2n
(—1)”f(a,b;a,b;CI,d{;n,p,q;j) 42)
(dr —cp)tn—i

where for2n — (p+q + j) = —1

b_
Fla,bsa,b;cr.dr;n, p,q; j)=(cr —a)’ (c; —b)? IOg( Cl)

a—cy

d1—a
—dp? (b—dp?l ,
+(a—dpnt( 1) 0g<d1—b)

and for2n — (p+qg + j) # —1

Fla,bsa,b;cr,di;n, p,q; j)
_ (c; —a)P (c; — b1 [(b el (g CI)Zn—(p+q+j)+l:|
2n—(p+q+j)+1
(a—dp?P (b—dp?

2n—(p+q+j)+1

[(d] _ a)2n—(p+q+j)+l _ (dI _ b)Zn—(p+q+j)+1] )

. _1
For (i), as k — oo, wehavea —c¢; < k37, b—¢; < 1,d; —a < 1, and

dr — b =< k_%ﬁ (see Remark 1 for the notation ). Accordingly, for 0 < p,qg <n
and 1 < j <2n, we get

|F(a,b;a,b;cr,disn, p,q; I S1+ (k_%+€)p logk + (k_%*'é)” logk
S 1+ logk

for2n —(p+q+j)=—1,and

\F(a,bsa.bicp diin, p.g; )l S 1+ (k372 @HDTL g (= 5teyn=(p++1

ST k3!
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for 2n — (p + g + j) # —1. Using these estimates in (42), and upon noting that
d; —cy < 1 as k — 0o, we obtain

Wk s a,b)? < 1+ 8,1 logh + Hln — 2] (k3"
and therefore (36) follows.

For (ii), as k — 0o, we have a — ¢; < k_%”, b—cy = k_%“, dr —a =1, and
di —bx<1lsothat,forO < p,g <mand1 < j < 2n, we get

\F(a,bia,bicrdrin, pog: )l S 1+ (3P 57) logk < 1
when2n — (p+q + j) =—1,and

|F(a, b;a,b;cr,dr;n, p,q; j)l
§1+(k—§+a)p (k7%+€)q[(k7%+6)2n7(p+q+j)+l+(k7%+e)2n7(p+q+j)+1]
<14 (k7%+8)2n7j+1 k) + (kf%+e)2n7j+1 (k=€)
S 1+ k*%JrS (kefé)n +k7%+€
<14 k3 (k=5

when 2n — (p + g + j) # —1. Using these two estimates in (42) and recalling
d; — c; < 1 as k — o0, we therefore obtain

Wk nya, b)> <1+ Hin — 21 k=37 (k€8

from which (37) follows.
As for (iii), Lemma 9 in Appendix 1 entails

e o Kk [ 1

0<p.g=n
1<j<2n
y Fla,ti;a,b;cs,ds;n, p,q; j)  F,bia,b;cr,disn, p,q; j) 43)
(ds — cs)*=J (dj —cp)n—i ’

and we need to estimate F(a,t;a,b;cs,ds;n, p,q,j) along with the term
F(t1,b;a,b;cr,dr;n, p,q; j). Considering the former, we have

. I —¢s
Fla,nsa,bies,dsin, p,q. j) = (cs —a) (cs = b)? log (———)
de —
+ (@ — ds)" (b — ds) log (°—)
ds — 11
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for2n —(p+g +j) =—1, and

F(a,ti;a,b;cs,ds;n, p,q, J)
_ (es—a)P(cs —b)!

S 2n—(p+g+i)+1

(a —dgs)P (b —ds)!

2n—(p+q+)+1

[(“ — )2 _ g CS)an(p+q+j)+l:|

[(ds —a)?n=pratDH _ (g — tl)2n7(p+q+j)+1:|

for2n— (p+q+j) # —1.Since cs —a = k=38, |cs —b| k™34, c5—1 = k73,
ds—a=x1l,ds—bx1,ds—1t < 1,andds — cs =< 1 sothat, for0 < p,q <n and
1 <j <2n,weget

Fla,t;a,bics ds;n, pq, ) S 1+ (k5P (k3 logk < 1
for2n —(p+q+j)=—1,and

Fla.tiza,bics,dsin, p,q. )
<1 _’_(k—%+5)p(k—%+e)q [(k—§)2n—(p+q+j>+1 +(k—§+5)2n—(p+q+j)+1]
<1+ (k—%)Zn—jH(kﬁ)p(ké)q + (k—§+5)2n—j+1(ke—5)q
<1 +k*% (k<o) +k*%+‘3 (k€0
<1 s (k<o)

for 2n — (p + q + j) # —1. The same estimates hold also for the relevant term
F(t1,b;a,b;cy,dr;n, p,q; j). Accordingly (43) implies

Wik n:a, b)> < 1+k~5 (k)"

and this yields (38). O
In Theorem 4, for a given n € Z,, taking ny = ... = n4y = n and setting
diy = ... = da, = d for any positive integer d > n — 1, we see that in order to

balance the errors in all the 4m regions uniformly for all n (cf. (33)), we must have

1—3¢ € —€;
1=€ ='/—/+1 ]:1’,]/]1—1

6 " 2

This system of equations can be explicitly solved to yield the following.

Corollary 2 Givenn € Zy and m € N, if €; are chosen as

1 2m—2j+1
P T T 44
T3 T am 1 / " )
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then, for allk > kg andd := (d, ...,d) € N¥ ywithd > n — 1, we have

~ < Cv ¢ 14+6,1/logk + H[n — 2] (kﬁ)n—l
”77_77/3”L2(31<) S ak m -

W™

(45)

for the B-asymptotic frequency-adapted Galerkin approximation fig € og + Gq to 1.

To our knowledge, explicit analytical representations of the terms ap 4, ¢ in the
ansatz (9) are not available and this corresponds to 8 = 0. However, when the num-

ber of subregions m is chosen to increase proportional to log(k%) (which is clearly

proportional to log(k)), we observe that kﬁm]j is bounded and therefore (45) implies

. Ck 1+ 8p,1+/log(k)
I = pllizan < - log (k) —————. (46)

Moreover, as k — 00, if the stability constant f—}f grows proportional to k¢! for some
o1 > 0, and d is chosen to grow as k92 for some g > 0, then

3
1+ 8n,1/log(k) _ o1 (log(k))2
dn ~

Cr
— log(k) ez S

Ck

for all sufficiently large n. Since (46) is valid for all n, we therefore deduce that the
convergence of the method is spectral and requires an increase of only O(k€) (for any
€ > 0) in the total number of degrees of freedom to maintain accuracy for higher
values of k.

One of the most important aspects of this method consists of incorporating suf-
ficiently many terms a, 4 r ¢ in the ansatz (9) into the integral equation in order to
obtain a frequency independent method. Indeed, when § € Z, is chosen so that

f—:k’g(logk)% < lask — oo, then

ln— ﬁﬁ”LZ(aK) S d_”

This shows that the method is not only spectral but also independent of frequency
in the sense that prescribed accuracies can be attained with the utilization of fixed
numbers of degrees of freedom.

4.2 (-asymptotic Galerkin boundary element method based on frequency
dependent changes of variables

For the construction of S-asymptotic Galerkin approximation spaces based on fre-
quency dependent changes of variables, given positive constants &, & j’., $iy i J =
1, 2, satisfying

n+& <n+é&§=n-&§<n-=&,
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+(SB,)

(IT,) v(ST,)

AT, A(ST))

+(SB,)

Fig.4 Parametrized regions for a plane-wave with direction & = (1, 0) on a circle

h+O<h+=2P+1n—{ <2P+1 -1,

we define, for any wavenumber k > 1, the illuminated transition regions as

1 1
Ty :=lar, b1l :==[n +&k7 3,0+ &1, To:=lar, bol := 12 — &, 10 — &2k 73],

shadow transition regions as

1 1
T3 :=laz, b3]l :=[1 — ¢, t1 — C1k ™3], Ty :=[aa, ba] == [t2 + k™3, 12 + 3],

and the shadow boundary regions as

1

1

Is :=las,bs) :==[t1 — 01k™ 3,11 +&1k73],
1 1

Ts :=lae, bel :=[tr — &2k73, 00 + 52k 3];

see Fig. 4 for a sample illustration of these regions.
In what follows we identifty L?(9K)and L? (U?le ) through the parametrization

y.
In order to capture the boundary layers of pg in the transition regions as implied by

Theorem 3, we introduce the frequency dependent changes of variables ¢; : Z7; — I;
by setting

B1(s) =11 + @1 (KT ho(s) =12 — @1 (5) kY2,
¢3(s) i= 11 — @3 (s) kP3O, Ga(s) == 12 + @4 (5) kP4,
P5(s) ==, P6(s) :=s.
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Here v; are constructed so as to linearly increase from —% to 0 as one moves away
from the shadow boundaries, and ¢; are linear functions chosen to ensure that the
maps ¢; : T; — I; are bijective. They are defined explicitly as

O =g )= )
o =g o =BG o8) 0
Y3 (s) := _%;3__053 () =i+ (6= ¢i) ;3__233,
o A e -1

With these definitions, we are now ready to introduce the Galerkin approximation
spaces and the associated asymptotic solutions.

Definition6 Ford = (d;, ..., dg) € Zi, the Galerkin approximation space based on
frequency dependent changes of variables of dimension 6 + |d| in L2(9K) is defined
as

6
Ca =07 i = e Pz, Py 0 g (47)
j=1

Definition 7 Given 8 € Z., the B-asymptotic Galerkin approximation fjg to n based
on frequency dependent changes of variables is defined as

ng =0+ pp € og + Ca (48)

where pg 1= etk ﬁ%low € (Cq is the unique solution to the Galerkin formulation

(i, Ripg) = (i, fp),  forall 1 € Ca,

of the integral equation (29).

The convergence properties of the -asymptotic Galerkin approximations 7jg to 1
based on frequency dependent changes of variables are as summarized in the next
theorem.

Theorem 5 Given (ny,...,ne¢) € ZS, forall k > ko and d := (dy, ..., ds) € N°
withd; > nj — 1, we have

4 6

A Cr, _8 . s .

In =gl S = k5 logk (Y doghy @)™ + (@)~
Ck =1 j=5

for the B-asymptotic Galerkin approximation ijg € og + Cq to n based on frequency
dependent changes of variables.
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Proof Arguing as in the proof of Theorem 4 and then changing variables, we obtain
. 1 -1
Iy =gl < —Z inf ||pS°W —pjod; I,

=— inf |[(0g™" 0 p; — pj)\/P N2
x jZleEde B J J FIWL2(Z))

Next we observe that 0 < ¢} SlogkonZjfor j =1,2,3,4. Forinstance, for j =1,
upon noting that by — a; < 1 (cf. Remark 1), ¥ <0OonZj,and 0 < & < é{, this
follows from the identity

) log k:| k1),

Further, we clearly have ¢;. = lonZ; for j =4, 5. Accordingly,

Pi(s) =

1[51 §1+ (514‘(51 é%l)

6
R Cx . 1

In—ngll < —+/logk E inf (o™ odj — pjlli2z,)
B o g jzlp,-eIP’dj B J JIL2(Z))

Theorem 9 in Appendix 1 therefore gives

Bl—

[ a]] |D (pslow O¢q/)(8)|2(5‘ _ aj)nj (bj - S)njds]
Ui

I — gl < —wog Z

Accordingly, since b; — a; < 1 (cf. Remark 1) for j = 1, 2, 3, 4, and ¢5 and ¢
are identity maps, the next lemma yields

4 . 6
. Cr. _8 (log k)™ Wk;nj;aj, bj)
— < =
I = gl < Chi iogk (3 RO 4D 120

i =

where W is as defined in (35). Thus the result follows from part (iii) of Lemma 4. O

Lemma5 Given k > kg and n € N, the estimates

(log k)",

j=172
W(. k)", j=>5.6, “49)

1D} (o™ 0 9| S k=5 {

hold on 7.
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Proof For n = 0, the result is immediate from Theorem 3, so we assume n > 1. For
j=1,...,4, we utilize Fad Di Bruno’s formula for the derivatives of a composition
[39] to estimate

DI (g™ opDI S Y. 1D @I [ [ IDE; ™
=1

where 7, = {(m1,...,my) € ZIy :n = Y ,_;tmg} and m = Y ,_, my. Since
[25,Proposition 4.3]

1D < (logh) k¥,
we therefore obtain

DY (™ 0 I < ogh)" D7 (DY o™ ) (@) k™Y

(my,..., mn)ej:n

< (logh)" Z |(D;”p;1°W)(¢j)|km¢.f

m=0

-5 (log k)" 3 Wi kKM (50)

m=0

<k

where the last inequality is a consequence of Theorem 3. Note that, since

W), k) = K3+ lw(@p)] > lw(Pp] = [(¢; —11)(12 — ¢))|

and

¢ —t1 = @ik"' > praDkV = 1k, -1 =0 —¢i(b) =& onTi,
¢ — 1 = o(a) —t1 =&, t—¢p=pk" > p(a)k" = k" on1Iy,
t—¢3=3k” > 30k = (1k"3, h—¢3>n—1 onIs,
s —11 >t —11, ¢4—1tr=q@k"* > ps(a)kV* = 5kV* on 1y,

setting & = min{£,£[, §&,, {1(t2 — 11), ¢, (t2 — 11)}, we have
1
&2

for j =1, 2, 3, 4. Use of (51) in (50) therefore proves (49) for j = 1, 2, 3, 4. Note that
(49) is immediate from Theorem 3 for j = 5, 6 since, in this case, ¢; is the identity
map on Z;. This finishes the proof. O

W(g;, k)~ Vi < onZ; (51)

Assigning the same local polynomial degree d to each interval Z;, we obtain the
following.
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Corollary 3 Givenn € Z4, forallk > kg andd :=(d, ...,d) € NO withd > n — 1,
we have

n+i
< G iy (logk)"™2

17— 52, < — " (52)

for the B-asymptotic Galerkin approximation ijg € og + Cq to n based on frequency
dependent changes of variables.

In the case that the stability constant Cy /cj grows algebraically (that is Cy /c; =< k°
for some § > 0) as k — oo, Corollary 3 implies the followings. First, recall that 8 = 0
means no terma, 4 r ¢ in the ansatz (9) is incorporated into the integral equation (28).
Still, even in this case, estimate (52) clearly implies that the method is not only spectral
for each fixed k, but also increasing the number of degrees of freedom proportional
to k€ (for any € > 0) is sufficient to fix the approximation error with increasing k. In
other words, the method is spectral and almost frequency independent. When 8 > 0is
chosen so that § — /3 < 0, the method is still spectral for each fixed k, and moreover
it is frequency independent in the sense that prescribed accuracies can be attained
with the utilization of frequency independent numbers of degrees of freedom with
increasing k.

5 Numerical results

In this section, we present numerical results validating the theoretical developments on
the B-asymptotic Galerkin boundary element method based on frequency dependent
changes of variables (GBemCV) described in Sect. 4.2. Since the explicit forms of
the terms a4 r ¢ in the asymptotic expansion (9) are not available over the entire
boundary 0K, we take B = 0. The numerical results obtained using the frequency-
adapted B-asymptotic Galerkin boundary element method detailed in Sect. 4.1 are
entirely similar, and therefore not presented.

Several integral equations can be used to solve the Neumann problem (4), and they
are expressed in the general form

Rin = fr ondkK (53)

where 7 is the total field [21]. Using standard techniques, the operator R and the
right hand side f; can be taken as

Ry =71 — 2K, fr = 2uine (54)
Ri="Te,  fi:=du"™
Ri =T — 2K +ipTp),  fo =20 —ipd,u™)
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-1 0 1 -1 0 1

Fig.5 Configurations used in the numerical tests

where 1 is areal coupling parameter, and the double layer and hyper-singular operators
are given respectively by

G (x,
K (x) = / 96k 3) vy ds(y),
ok ov(y)

and

0 0Gi(x,y)
Tkp(x) == ) ke av () P(y)ds(y).

For the numerical tests performed here, we choose to implement the integral equation
(53) using (54) owing to the fact that it contains only integral operators with weakly
singular kernels. We discretize the operator Ry through use of the trapezoidal rule
and the Nystrom method [20] utilizing 10 to 12 points per wavelength. Regarding the
implementation, we refer to [25, 26] since it is similar to its Dirichlet version.

We consider two different single-scattering configurations consisting of the unit
circle {(cost,sint) : t € [0, 27]}, and the ellipse {(% cost, %sint) :t €[0,27]}
rotated by % radians in the counterclockwise direction. In both cases, the illumination
is coming in from the left as depicted in Fig. 5.

The unit circle is the standard test case since the analytical solution can be derived
with the aid of Fourier analysis and Jacobi-Anger expansion [20]. For a circle of radius
r, switching to polar coordinates, the analytical solution for the Neumann boundary
value problem is expressed as

. I (k .
n@) = elkrcosé) Z -m+2 (I_](l)((l:);)/ e1m9 Hrzl)(kl’) (55)

meZz

where J,,, and H,fql) are, respectively, the Bessel and Hankel functions of the first kind
and order m [1]. We display in Figure 6 the real and imaginary parts of the analytical
solution n along with those of the envelope nSl"W for k = 50, 100, 200, 400, 800.
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We observe that the oscillations in the solution 7 are increasing with increasing fre-
quency. In addition, as the asymptotic theory predicts, °'°% is non-oscillatory in the
illuminated region, admits boundary layers around the shadow boundaries, and decays
exponentially with increasing frequency in the deep shadow region. In order to vali-
date the accuracy of the approximations, we compare in Fig. 7 the exact value and the
numerical approximation of n for k = 400. We can see that the GBemCV solution
successfully approximates the exact solution over the entire boundary.

We analyze now the error produced by the use of the GBemCV method. The strategy
resides in evaluating the error with respect to increasing values of the local polynomial
degree d (see Corollary 3). In Fig. 9 (left), we plot the logarithmic L2-errors

logyo(lln — gl 2) (56)

ford = 4,8,12, 16,20 and k = 50, 100, 200, 400, 800. Let us mention that ﬁﬁ is
defined in (48), and n represents the analytical solution in (55). In our numerical tests,
we have constructed the Galerkin approximation spaces Cq in (47) utilizing the same
local polynomial degree d on each of the six direct summands which generates the
total number of degrees of freedom 6(d + 1). The results in Fig. 9 (left) show that,
for any fixed value of k, the accuracy increases with increasing values of d, and the
method is frequency independent.

For the elliptical configuration displayed in Fig. 5, since the analytical solution is
not available, we first start by displaying in Fig. 8 the numerical solutions obtained
by the GBemCV method (for 8 = 0). We can observe that 7 and ¥°% exhibit prop-
erties similar to the circle case. More precisely, with increasing wavenumber, 7°1°¥ is
non-oscillatory in the illuminated region, admits boundary layers around the shadow
boundaries, and it decays exponentially in the deep shadow region. Concerning the
error analysis, we plot in Fig. 9 (right) the local polynomial degree d versus logarith-
mic L2-errors ford = 4, 8, 12, 16, 20 and k = 50, 100, 200, 400, 800. As mentioned
above, in (56), g is defined in (48), however, n is computed using the Nystrém
method [20]. As in the case of the circle, the results in Fig. 9 (right) show that for any
wavenumber the accuracy increases with the increasing local polynomial degree d,
and the method is also frequency independent.

6 Conclusion

In this paper, we proposed two different S-asymptotic Galerkin boundary element
methods for approximations of solutions to high-frequency sound-hard scattering
problems. These two methods are based on the ansatz describing the asymptotic behav-
ior of the total field associated with the Neumann boundary condition. We provided the
missing parts in the derivation of this ansatz given in [45]. For the convergence anal-
yses, we used the ansatz to derive wavenumber explicit estimates on the derivatives
of the slow envelope corresponding to the total field on the boundary. An important
ingredient of these analyses resides in the use of appropriate number of terms in the
asymptotic expansion. This resulted in the design of Galerkin boundary element meth-
ods that deliver prescribed error tolerances using frequency independent numbers of
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Fig. 6 Real (first column) and imaginary (second column) parts of 1, and those of nSlow (columns three
and four) associated with the circular scatterer in Fig. 5 for k = 50, 100, 200, 400, 800
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logm(Poimwise error)

d=12
—d=16
Pys ——d=20[]

1 1 I

0 2 4 6

Fig.7 Logarithmic pointwise errors for the unit circle in Fig. 5 for £ = 400 and local polynomial degrees
d=4,8,12,16,20

degrees of freedom. The numerical implementations confirm that the solutions cor-
responding to any fixed number of degrees of freedom yield frequency independent
approximations.
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Appendix
A Asymptotic expansion of the total field

The ansatz representing the asymptotic expansion of the total field 1 for the Neumann
boundary value problem used in the present paper is given by Melrose and Taylor in
[45]. However, the authors did not present all the mathematical steps needed in its
derivation. In this section, we provide the missing details of this analysis.

Let K € R"*! be a compact strictly convex obstacle such that B = 9K ¢ R*+!
is a smooth hyper-surface, and consider the Neumann-to-Dirichlet operator

N7':E R x B) 3 f(t,x) = v(t, x)|rxs € D'(R X B) (57)
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Fig. 9 Local polynomial degree versus loglo(L2 error) for the unit circle (left) and the ellipse (right) for
k =50, 100, 200, 400, 800

where D' (B x R) and £'(R x B) are the spaces of distributions and compactly sup-
ported distributions respectively, and v is the solution to the wave problem

{ B — AMvt,x) =0 inRx £, (58)

v(t, x)|lrxp = f(t,x) onR x B,

wherein £2 = R"*! \ K is the exterior domain, and v is the outward unit normal.

In what follows, for an incident field v’ (¢, x) = 8(r — & - x) (& is the Dirac function)
with direction @ € S§", we denote the solution of the wave problem (58) associated
with £ (¢, x) = (a - v(x))d,v' (¢, x) by v. In this case, the total field v’ := v + v’ can
be expressed on the boundary as [45,p.296]

V't ) |rxs = I+ N7 (- v(x)d)8(t — o - x) (59

where [ is the identity operator. Using the same notation and procedure in [45], we
define the Kirchhoff operator (see [45,Equation 8.26])

On:EES" xR) s v(t,x)— (I + N~ - v(x))3,)Fu(t, x) € D'(B x R)

where F is the Fourier integral operator [41,Equation 9]
Fu(t,x) = / kp(t —s,w, x)v(s, a)dsda (60)
RxS"

with kernel kp (¢, o, x) := 8(t — « - x).
As shown in [45], the asymptotic behavior of the total field 7 is determined by the
kernel kg, of the Kirchhoff operator Q.
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Lemma 6 [45 Lemma 9.1] The asymptotic behavior as k — =00 of the total field
n(a, k, x) obtained by inverse Fourier transformation of the kernel kg, (o, t, X)

na, x, k) = /e“kKQN (a, 1, x)dt 61)

is determined by the singularities of the kernel k ¢,, modulo rapidly decreasing terms.

The main goal is therefore the study of the kernel k g, . To this end, one first utilizes
the general theory of Fourier integral operators with folding canonical relations [45,85
and §6] to decompose the operator Q. In what follows, we use the notation in
[45] except that O P Sg ¢ denotes the collection of pseudodifferential operators with

symbols in the Hormander class Sg’ % and we write O P S? for OPSIQ’O.

Theorem 6 [45,Theorem 8.30] The Kirchhoff operator Q y can be expressed as

On = /iDA™' ) (62)
_n_1
where Jy and J, are elliptic Fourier integral operators of order zero, D € OPS, é 6
?’
has an asymptotic expansion
D~ Z Ap @™ (63)

rEZ+, te—N

£_2r

and &L (k3E)) € S(130 YR) (see [44,p.11-12])
?v

so that

Dut.x)~ Y / ROk (1 x, b, 0T (6 (Y, y)de dydkds
reZy,te—N

(64)

. D- .
where (k, &) are variables dual to (t,x), and a, ¢ € S admits an
asymptotic expansion

et x k §) ~ Y KBTI 8) (65)
qEL4

wherein ay ¢ are C* functions uniformly bounded together with all their derivatives
(cf. [42,Definition 2.5.6]), and A~ is the convolution operator defined by Fourier
transformation as [45,Equation 1.36]

0(é)

AT, x)(E) = ——20
AL(k3E)
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where A, (2) := Ai(e% 7) and Ai is the Airy function [43].
The Fourier integral operator J> is given by

L &R xS - D[R xR"

(s, @) > (L), y) = /e“y—“)'é—i(f’—f)"ah (s,a, 1, y)v(s, a)dsdadkdE

where aj, € S? o (@, does not depend on & and k because it is a symbol of order 0).
Applying the Dirac function at the base point (0, @) (see [41, 45]) yields

(1280.a) (', y) = / O OE=k G (s 0,1, y)8(0.a) (5, a)dsdadkdE
= f JOTVE Gy @, y)dkd

= / SO G @, 1, 1)Sok, §)dkdE = (PS)(t', y)  (66)
where the operator P € OPS —5H5 is specified by

(Pv)(t',y) = / (O=OEky (&, y, YOk, £)dkdE.
Accordingly, use of (66) in (62) implies
ONG0.a)(t, %) = JIDA™ (80,4 (1, X)) = IDAT P(8o(t, x)). (67

Finally, since Py = P*5y mod OPS~ and P* commutes with A~! [45,p.295],
(67) can be rewritten as

OnG.a)(t, x) = ZHDP* A7 (S, x)) (68)

modulo rapidly decreasing terms.

In what follows, we briefly explain how representation (68) can be used to express
the amplitude associated with the kernel xy as an asymptotic series of oscillatory
integrals each of which is amenable to an application of the stationary phase method
[28].

To this end, we first use (63) to deduce for the composition D P* of the pseudo-
differential operators D and P*

DP*u(tx) ~ Y [ OOk k)07 k36 PRU(, y)di dydkd£(69)

rely
te—N
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with

P, y) = /-e"(y_“_‘)'”“t/’p#(&, v, y)u(t, n)dtdn

= / OO LR G ! vy, 2)dt dzdTdy  (70)

where p# € S(l),o’ and (t, n) is the dual variable to (¢, y). Using (70) in (69), we
therefore get

DP#U(I, x) ~ Z ei(x_z)'§+(t_l//)k_i&'sbr,g(6{, t,x, t//, z. k, E)
}’EZ+

te—N
O (k3 EN (", 2)di" dzdkdE 71)
with

bre(a,t,x,t",z,k, &) := /e"(y’Z)'(”’é)+i(’/””)(”k)’ia"(”’f)

aro(x, 1, €, k) p* (@, 1, y)di'dydrdn.

As for the composition of the operator D P¥* with the Fourier integral operator J;
appearing in (62), let us first note that

Ji DR xR"Y - D'[R x B)
w(', y) = Jiv(t, x) = /ei‘p' (x'f’”)“T(f*t,)*")"”a]l (x,t', Yo', y)dt'dydtdn

(72)

where (t, n) are variables dual to (¢, x), ay, € S?,o’ and the phase function v is
defined in a neighborhood of the base point as [45,Equations 7.11 and 7.13]

2 "2 3 103 .
v (x, T, 77)2*“;' _ lx"|“T _ { 5(=mt73)2 sgn(a - v(x)), 1fot~vgx)7é0, (73)
T 2 0, otherwise.

In (73), we have used the notation x’ = (x2, ..., x,) forx = (x1,...,x,) € B and
similarly for n € R”. Combining (71) with (72), we obtain

JLDPYu(t. x) ~ Z VT i y)[[ei(y—z)gw(z’—z")k—i&g

re’y
te—N

byo@. 1, y.t", 2,k £)O" Lk 3 EDw(”, z)dt”dzdkdé]dt/dydrdn,
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and we rewrite this as

841
JIDP#U(t, x) ~ Z eiwl(x,k,é)—i&-é—itk—izé—it”k
FEZ+
Le—N
qgn, (@, x, 1", z, k, £ L (k3 gD, D)di dzdkdE (74)
where

gn, (@, x,t", 2.k, §) == ay#b, (@, x,1",2,k, &)

fel’l/fl(x,f,n)—iilll(X,k,$)+i(k—f)(t’—t)+i(§—'7)-)’

ay (x,t', )by (@, t', y, 1", z, k, €)dt'dyddn.
In light of (68), substituting [45,p.295]

—dkd& (75)
A (k™381)
for v in (74), we get
OnSoa(t,x) ~ Y [ ehaiestitaizinithgy @ x,1" 2,k §)
}”EZ+
te—N
"L (k38 A 80", 2)dt" dzdkdE
1
. N ot (k™3
~ 3 [enukosizting, 6 x k5T gra
}’EZ+ A+(k 351)
te—N
(76)
where qu’Z(&,x,k,E) = ay#b, o(a, x,k, &).
For the kernel k¢, , we accordingly have
1
‘ L D (k3
Koy (@, 1,x) ~ Z /e”/"(x’k"”&)*l“'s*”qur_Z(6[,x,k, g)(—]sl)dkdg

reZ., AL (k™38)
te—N

and, in virtue of Lemma 6, we deduce (see [45,p.298])

n(a, x, k) ~ Zf

1
. - (k™3
(VIENTIEE g (@ x K, 9#‘15 77)
Sz Ay (k™3&)
te—N
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Making the change of variable £ = k¢ in (77), we therefore find [45,p.298]

2
) ¢r,£ k3
n(a, x, k) ~ Z ezkyhz(a,x,{)qu‘( (@, x, k, {)Md

2
}”EZ+ A+(k3§1)
te—N

¢ (78)

where V2 (o, x, $) = Y1 (x, 1, ¢) — & - ¢, and with a slight abuse of notation we have
written gy, , (@, x, k, ¢) for k”qN”Z (a, x, k, ¢). In this case, gy, , is a symbol of order

_ nyl_ . r_ ¢t _
qn, @ x k. 0) ~ Y k2tem s D—g @, x, 0). (79)
qELy

Using (79) in (78), we arrive at

. . . @ (k3
e~ Y k7+%_‘1_?_§+“+1)*/e’km(“’*'{)qzvq_,j(&,x,;)7( D 4e. (80)
q.rely +(k38

te—N

In order to further simplify (80), we introduce the function

i3 @r’[ S .
Ae"”ds.

r.t e,
Ui (t)=e 3 A () (81)

The symbolic behavior of ¥"* is as follows.

Lemma 7 [45,Lemma 9.34] The function W"* defined in (81) belongs to S1H¢=2" (R),
admits an asymptotic expansion

lpr,e(l_) ~ Z ar,f,jrl+e_2r_3j (82)
JELy

as T — +00, and is rapidly decreasing in the sense of Schwarz as T — —o0.

Rewriting (81) as

ir3 ¢r,l : 5;’7
eTlI/r’Z(‘E) — / (s) e 5T ds = ( )(‘L’),
Ay (s) Ay

and using F —1 {0 denote the inverse Fourier transform, we obtain

—

I f—l((%ﬁ)(f))(k?m N G I

2
Ay (k3gy)
2 P . L
=/e"“flfe§w’f(r)dr =k%/e'kflf“k’;w“(k%t)dz. (83)
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Using (83) in (80), we finally conclude

n(a, x, k) ~ k3 Z k36455 HErD- Ig.r oo, x, k) (84)
q,r€ly
te—N
where
lrataxik) = [0y @ox vt ddndcdr (85)

with the phase function given by

3
V3, 1) 1= Yale x, O) + 101 + % (86)

As shown in [45], the integrals I, , ¢(c, k, x) can be treated using the stationary
phase method which results in

Ipre(@,x ) ~ k75 S0 k5 F a0 (@, 0) (@O (K3 Z(a, ) 4%, (87)
PELy

and this leads into the following for the envelope %% (a, k, x) = e KXy (a, k, x).

Theorem 7 [45,Theorem 9.36] In a vicinity of the shadow boundary {x € B :
o - v(x) = 0}, nM°(a, k, x) belongs to the Hormander class SO | and admits an
3

I

asymptotic expansion

e, x, k)~ Y apgre(ax, k) (88)
q,p,rely
te—N
with
1 2p r_ L

pgri(ox, k) i= k™3~ F 055 H Db x) (@O P (k3 Z (e, X))

where by, 4 ¢ are complex-valued C* functions, Z is a real-valued C* function that
is positive on the illuminated region {x € B : o - v(x) < 0}, negative on the shadow
region {x € B : o -v(x) > 0}, and that vanishes precisely to first order at the shadow
boundary.

Under certain assumptions, Theorem 7 is in fact valid over the entire boundary B.
This is given in the next theorem where we use the notation B €< ={xeB:a-vx) =

€}.
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Theorem 8 Assume there exists € € (0, 1) such that on BE the envelope n°'°% belongs
to S?,O(Bi X (0, 00)) and admits an asymptotic expansion

nSlOW(a’x’ k) ~ Z k_j aj(a,x), as k — oo, (89)
JELy

and it is rapidly decreasing in the sense of Schwarz on BS as k — —oo. Then
nSIOW € S(z) (B x (0, 00)) and the asymptotic expansion (88) is valid over the entire
33

3
boundary B.

The proof of Theorem 8 follows the same lines as in the proof of [23,Corollary 5.3]
(see also [27,Theorem 3.1 and Corollary 2.1]) and is based on the standard matching
of asymptotic expansions technique (see e.g. [23] and the references therein). The
expansion (89) related to Neumann problem is similar to the one given in [45,Equation
1.15] for the Dirichlet case. Furthermore, using the references provided in [23] (see
the proof of Corollary 5.3) we can deduce that, for the two-dimensional Neumann
boundary value problem, 7*°V decays exponentially in BS as k — —oo which implies
the assumption of its rapid decay in the sense of Schwarz in Theorem 8.

B Auxiliary results

Here we provide auxiliary results used in the proofs.

Lemma 8 [24,Lemma 14] Let a(s, k) = k? b(s) (k®Y (s)) where b, ¢ and T are
smooth functions, b and T are periodic, and 6 € R\N and w € R\Z.. Then

n—+m
DYDY as, )| S K" Y K le (kT (5))]
j=0

foralln,m € Zy and all k > 0.

Theorem 9 [47,Corollary 3.12] Given a function f € C*°([a, b]) and n € Z.., there
exists a constant C,, > 0 such that

1

b 2
inf (| f = pliz2iapy = Cn [/ |D”f(s)}2 (s—a)" (b—s)" dsi| d"
pEPd a

foralld e Nwithd + 1 > n.

Lemma9 [24,Lemma 14] Suppose that either [a, B] C [t1, 2] C (c,d) or [a, B]1 N
(t1, 1) = D and [c,d] C (11, 12). Then, forany a,b € R, n € NU {0}, m € N, there
holds

P(s—a)"(b—s)
/a (s —o)m(d—s)m
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_ Z <2m —j- 1) (n)(n) (=)' F(a,Bsa,b;c,d;n, p,q; j)
B m—j J\pr)\q (d —c)m=i ’

0<p.,q=n
I<j<m

Here we have

a—cC

Fla,Bsa,b;e,d;n, p,q; j) = (c —a) (c —b)?log </3 _C>
d —
+(a—d) (b —d)?log (ﬁ)
when2n — (p+q + j) = —1, and

F(a,Bia,b;c,d;n, p,q; j)
_ (c—a) (c—b)!
S 2n—(p+qg+j)+1

(a —d)P (b—d)1
2n—(p+qg+j)+1

[(,3 _ o)=L (g C)Zn—(p+q+j)+l]

[(d — )2 _ (g ﬁ)zn—(p+q+j)+1]
when2n — (p +q + j) # —1.
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