
Parallel Minimum Spanning Forest Computation using Sparse Matrix

Kernels

Tim Baer ∗ Raghavendra Kanakagiri ∗ Edgar Solomonik ∗

Abstract

Formulations of graph algorithms using sparse linear algebra

have yielded highly scalable distributed algorithms for prob-

lems such as connectivity and shortest path computation. We

develop the first formulation of the Awerbuch-Shiloach par-

allel minimum spanning forest (MSF) algorithm using linear

algebra primitives. We introduce a multilinear kernel that op-

erates on an adjacency matrix and two vectors. This kernel

updates graph vertices by simultaneously using information

from both adjacent edges and vertices. In addition, we ex-

plore optimizations to accelerate the shortcutting step in the

Awerbuch-Shiloach algorithm. We implement this MSF al-

gorithm with Cyclops, a distributed-memory library for gen-

eralized sparse tensor algebra. We analyze the parallel scal-

ability of our implementation on the Stampede2 supercom-

puter.

1 Introduction

Graph computations are ubiquitous in many disciplines with

applicability to many real world problems. In recent years,

there has been considerable interest in formulating graph al-

gorithms via sparse linear algebra primitives. These primi-

tives mask the underlying irregular communication patterns,

lack of cache locality, and high synchronization costs of

graph algorithms to achieve scalability. In this paper, we fo-

cus on the minimum spanning forest (MSF) problem. When

the graph is connected, the minimum spanning forest is a

minimum spanning tree (MST). MST has many practical

applications including network design for computers, trans-

portation, telecommunication, and electrical grids [13, 16].

Approximation algorithms for several problems including

traveling salesman, maximum flow, and weighted perfect

∗University of Illinois at Urbana-Champaign.

We are grateful to Zhaoyu Wu and David (Yunxin) Zhang for early contribu-

tions to this project. This work used the Extreme Science and Engineering

Discovery Environment (XSEDE), which is supported by National Science

Foundation grant number ACI-1548562. Via XSEDE, the authors made use

of the TACC Stampede2 supercomputer. The research was supported by the

US NSF OAC via award No. 1942995.

matching invoke the computation of MST as subroutines.

Given an undirected weighted graph, a MSF is a sub-

set of edges that connects all the vertices in each connected

component with the minimum possible total edge weight.

The minimum spanning forest is unique if each edge has a

distinct weight. Boruvka, Prim, and Kruskal each proposed

what has become three classic MSF algorithms in the liter-

ature. MSF algorithms generally rely on the cut property of

minimum spanning trees: for any subset of vertices S, the

minimum-weight edge with one endpoint in S and one end-

point not in S belongs to all minimum spanning trees. We

call such an edge a minimum weight outgoing edge.

Parallel MSF algorithms also have a long history.

Among the classical algorithms, Boruvka’s exhibits a high

degree of parallelism. Many parallel MSF algorithms includ-

ing Boruvka’s defines disjoint subgraphs of the MSF in some

way and joins them together with minimum weight outgoing

edges. Awerbuch and Shiloach (AS) propose a MSF algo-

rithm that has O(log n) depth on n+m processors, where n
is the number of vertices and m is the number of edges in the

graph [29]. In this work, we develop a distributed-memory

implementation of the AS algorithm based on sparse matrix

algebra.

Many recent proposals on graph algorithms targeting

scalability and performance in distributed-memory imple-

mentations use linear algebraic primitives [2, 38, 32]. The

plurality of algebraic graph algorithm libraries [10, 36, 14]

has motivated standardization efforts such as the Graph-

BLAS [6]. The Combinatorial BLAS (CombBLAS) li-

brary [5] has been one of the first to leverage sparse matrix–

vector and matrix–matrix primitives to implement graph al-

gorithms. Their implementation of the Awerbuch-Shiloach

connectivity algorithm as part of LACC [2] is perhaps the

most closely related work to ours. We leverage the Cyclops

library for our algebraic MSF implementation, which has

previously been used to implement betweenness centrality

using sparse matrix multiplication [32]. We overview the

basics of algebraic graph algorithms, and describe the addi-

tional challenges in developing an algebraic implementation

for the Awerbuch-Shiloach MSF algorithm relative to con-

nectivity in Section 2.

We propose a formulation of the AS MSF algorithm in

U.S. Government work not protected by U.S. copyright
72

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 9

8
.2

1
2
.1

4
7
.1

1
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



terms of sparse matrix primitives in Section 3. To achieve

this, we introduce a multilinear kernel that updates graph

vertices by simultaneously using information from both ad-

jacent edges and vertices. This kernel is different from the

matrix-vector-product operations proposed in the existing lit-

erature including those in GraphBLAS [6]. The multilinear

kernel permits an algebraic implementation of the AS MSF

algorithm that does not incur overhead in updating the ad-

jacency matrix (for the AS connectivity algorithm, matrix–

vector products and vector operations suffice). Further, we

propose new optimizations for the shortcutting step in the

AS algorithm, which transforms MSF trees into stars. The

optimized algorithm shortcuts all trees into stars (height-1

trees) using one round of communication. We provide a cost

analysis of the algorithm and optimizations in Section 4. We

then contrast our work to other related efforts in Section 5.

We implement this as part of a general distributed tensor

library, Cyclops Tensor Framework (CTF) [33] that supports

a variety of generalized vector/matrix/tensor operations and

some all-at-once multi-tensor contraction kernels [31]. In

Section 7, the algebraic formulation of MSF using the mul-

tilinear kernel coupled with our optimizations achieves ex-

cellent strong and weak scaling for both synthetic and real

world graphs. These real world graphs include some of the

largest available graphs in the SNAP [20] and SuiteSparse

datasets [11].

Overall, our paper makes the following novel contribu-

tions:

• we propose a new algebraic primitive that enables an

efficient parallel implementation of the AS MSF algo-

rithm [29],

• we provide the first distributed-memory implementa-

tion of the AS algorithm (the LACC implementation of

the Awerbuch-Shiloach algorithm for connectivity [29]

is the closest related work [2]),

• we propose a new optimization to the shortcutting pro-

cedure, which performs communication for all pointer-

chasing rounds in a single stage,

• we demonstrate scalability of our algebraic implemen-

tation of the AS algorithm on up to 256 nodes (16K

cores) of Stampede2 on graphs with up to 11 billion

edges and 183 million vertices.

2 Background

We consider the case of an undirected weighted graph G =
(V,E,w : E → R) with n vertices, m edges, and distinct

edge weights. We label the vertices {1, . . . , n}. A tree is an

undirected graph in which any two vertices are connected by

exactly one path. A directed rooted tree is a tree in which

a single vertex is designated as the root and the edges of

the tree are oriented toward the root. A star is a directed

rooted tree of height at most 1. A forest is a disjoint union of

trees. A directed rooted forest is a disjoint union of directed

rooted trees. An outgoing edge from a tree T is an edge

(i, j) such that i ∈ T and j /∈ T . An outgoing edge

from a vertex i belonging to a tree T is an outgoing edge

from T that is adjacent to i. A minimum outgoing edge

from a tree is an outgoing edge with the smallest weight. A

minimum outgoing edge from a vertex is an outgoing edge

from that vertex with the smallest weight. The adjacency

matrix A ∈ R
n×n of graph G is defined by aij = w(i, j) if

(i, j) ∈ E and∞ otherwise.

2.1 Basic Algebraic Structures

Monoids: A monoid (S,⊕) is a set S equipped with an

associative binary operation ⊕ : S × S → S called addition

and an identity element.

Semirings: A semiring is an extension of a monoid

to two binary operations. Formally, a semiring (S,⊕,⊗) is

a set S equipped with binary operations ⊕,⊗ : S × S → S

called addition and multiplication respectively, satisfying: (i)

additive associativity, (ii) additive commutativity, (iii) multi-

plicative associativity, and (iv) left and right distributivity.

These conditions imply the existence of additive and

multiplicative identities for semirings. A simple example of

a monoid is the set of binary strings equipped with a concate-

nation operation ({0, 1}∗, ·). The usual semiring in arith-

metic is (R,+, ∗). Note that semirings do not guarantee the

existence of additive inverses, so fast matrix multiplication

algorithms like Strassen’s algorithm [34] may not apply.

2.2 Algebraic Graph Algorithms The formalism of alge-

braic structures such as monoids and semirings permit sim-

ple yet expressive graph algorithms. The key connection

to linear algebra is the adjacency matrix representation of

a graph. Many graph algorithms can be rewritten in terms of

matrix-vector and matrix-matrix multiplications with the ad-

jacency matrix on a certain monoid or semiring. Specialized

sparse matrix-vector (SpMV) and sparse matrix-matrix mul-

tiplication (SpMSpM) algorithms have been designed with

asymptotic complexity depending on nnz, the number of

nonzero entries in the matrix. In particular, a SpMV may

be computed with O(nnz) floating point additions and mul-

tiplications.

As a simple example of an algebraic graph algorithm,

we review a linear algebraic interpretation of the Bellman-

Ford algorithm for single source shortest paths (SSSP) based

on discussion from [17]. Formally, given a graph and a

starting vertex s, the SSSP problem is to compute the length

of a shortest path from s to j for all j ∈ V . The Bellman-

Ford algorithm can be derived with dynamic programming

on the number of hops on a shortest path from s to j for

all j ∈ V . We store tentative shortest path distances in

U.S. Government work not protected by U.S. copyright
73

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 9

8
.2

1
2
.1

4
7
.1

1
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



d(ℓ) ∈ R
n, where d

(ℓ)
j is the shortest path distance from

s to j among paths with at most ℓ hops. The Bellman-

Ford algorithm is based on the idea of edge relaxations: we

call an edge (k, j) tense if d
(ℓ)
j > d

(ℓ)
k + w(k, j). At each

iteration, we relax all tense edges, meaning that we update

d
(ℓ)
j ← d

(ℓ)
k +w(k, j) if (k, j) is tense. After n−1 iterations,

d(n−1) converges to SSSP.

Algorithm: Now, consider an interpretation of the

Bellman-Ford algorithm that implements each edge relax-

ation with a SpMV of A and a row-vector d(ℓ). Instead of the

usual semiring, we perform operations on R over the tropi-

cal semiring (R,⊕,⊗) where ⊕ = min and ⊗ = +. We

initialize d
(0)
j to 0 if j = s and∞ otherwise. We iteratively

compute d(ℓ+1) ← d(ℓ)A over the tropical semiring. After

n − 1 iterations, d
(n−1)
j stores the length of a shortest path

from s to j for all j ∈ V . Since we perform n − 1 SpMVs

with the adjacency matrix, the run time is O(nm).
Intuition: Consider updating the tentative distances for

a fixed j, d
(ℓ+1)
j ← (d(ℓ)A)j =

⊕

k d
(ℓ)
k ⊗ akj . Replacing

the generic semiring addition and multiplication symbols

with min and + respectively yields d
(ℓ+1)
j ← mink{d(ℓ)k +

akj}. By introspection, we can interpret this expression as

an edge relaxation.

2.3 Awerbuch-Shiloach Algorithm

Awerbuch and Shiloach [29] (AS) provide a classic parallel

algorithm for computing the minimum spanning forest of an

undirected graph with distinct edge weights. In addition to

the graph itself, the algorithm maintains a parent forest of

directed rooted trees, each intuitively representing a part of

the minimum spanning forest that has already been discov-

ered. The algorithm grows the minimum spanning forest by

joining trees together with minimum outgoing edges. The

algorithm only computes minimum outgoing edges for trees

that are stars. In such cases, we may find these edges with

work proportional to the number of member vertices and in

O(1) depth.

We represent the minimum spanning forest with a set of

edges F . In addition, we represent the parent forest with a

parent vector p ∈ V n, where pi stores the parent of vertex i.
In the first iteration, F ← ∅, and the parent forest consists of

n isolated vertices, each with a self-loop. At each iteration,

the algorithm computes the minimum outgoing edge (i, j)
for each star in parallel. We then join vertex i’s parent to

vertex j’s parent and add edge (i, j) to F , while taking care

to prevent cycles in the parent forest. Next, we shortcut

trees to reduce their height and possibly create many stars for

the next iteration. The algorithm terminates when no more

trees in the parent forest can be joined. If the input graph

is connected, the algorithm will terminate when the parent

forest converges to a single connected component and F is

the minimum spanning tree.

Let us assume that we have access to a routine that

decides whether a given vertex belongs to a star. In summary,

the algorithm performs three steps until convergence of the

parent vector p. Star hooking joins two trees to grow the

MSF. Tie breaking breaks cycles by detecting and removing

star hookings that create cycles. Shortcutting reduces the

height of trees by a factor of nearly two. We outline the AS

algorithm in Algorithm 1. Whenever an edge is used in star

hooking, we add it to the MSF.

Algorithm 1 Awerbuch-Shiloach

Require: G = (V,E,w : E → R) where V = {1, . . . , n},
is an undirected graph with distinct edge weights.

1: Let pold =

[

0 · · · 0

]T

be the old parent vector.

2: Let p =

[

1 · · · n

]T

be the parent vector.

3: while p 6= pold do

4: for each star root i do {star hooking}
5: (i, j)← minimum outgoing edge from i′s star

6: pi ← pj
7: end for

8: for each star root i do {tie breaking}
9: if i < pi and i = ppi

then

10: pi ← i
11: end if

12: end for

13: for each vertex i do {shortcutting}
14: if i does not belong to a star then

15: pi ← ppi

16: end if

17: end for

18: end while

We visualize these steps in Figure 1. AS show that the

sum of the heights of all the trees in the forest decreases by a

factor of at least 3/2 each iteration, resulting in convergence

after log3/2 n iterations.

In [29], AS first present a parallel algorithm for com-

puting the connected components (CC) of a graph that uses

modified hooking and tie breaking steps, while reusing the

shortcutting and starcheck steps from the MSF algorithm.

For CC, it is sufficient to hook with any outgoing edge from

a star instead of only the minimum such edge for the MSF.

Computing the minimum outgoing edge from a star may not

be expressed as a relaxation of the edges of a subset of ver-

tices.

Star hooking: We consider the PRAM parallelization

of a routine that computes the minimum outgoing edge

from each star. In particular, we assume the concurrent

read concurrent write (CRCW) PRAM with the conflict

resolution that the write with the minimum value succeeds.

U.S. Government work not protected by U.S. copyright
74

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 9

8
.2

1
2
.1

4
7
.1

1
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y





star may not have phi < pi so in that scenario, another edge

would be used during conditional hooking. Instead, we re-

quire a function that operates on pi, aij , pj all-at-once, which

we discuss on Section 3.1.

3 Algebraic MSF

3.1 Multilinear Function to Find Outgoing Edges We

introduce a type of multilinear function that updates vertices

by simultaneously using information from an edge and its

two adjacent vertices. Consider the problem discussed

in Section 2.3 of computing the weight of the minimum

outgoing edge from a vertex i that belongs to a star. Let

us denote the parent vector with p ∈ V n where pi is the

parent of vertex i. Since we assume that vertex i belongs to

a star, we decide whether an edge (i, j) is outgoing from i’s
star with pi 6= pj . We first seek to design a function f that

outputs aij when edge (i, j) is outgoing from i’s star and∞
otherwise. Such functions are of the form f : V ×R×V →
R, where

f(pi, aij , pj) =

{

aij : pi 6= pj and i belongs to a star,

∞ : otherwise.

Notice that if the vertex i did not belong to a star, then

f(pi, aij , pj) = ∞ for any aij and pj . We may compute

the weight of the minimum outgoing edge from i’s star with

qi ←
minj

f(pi, aij , pj).

More generally, this multilinear function is of the form

f : Sx × SA × Sy → Sw, where

wi ←
⊕

j

f(xi, aij , yj).

with w ∈ S
n
w, A ∈ S

n×n
A ,x ∈ S

n
x,y ∈ S

n
y and Sw is

equipped with a binary operation ⊕. Note that f in the

basic form xiaijyj over the usual semiring (R,+, ∗) is a

bilinear function. In Section 4.1, we analyze the complexity

of evaluating multilinear functions of this type in terms of

PRAM and communication cost.

3.2 Algebraic MSF Algorithm In Algorithm 2, we refor-

mulate the AS algorithm using linear algebraic primitives.

Given an undirected graph with distinct edge weights, the

algorithm computes the weight of the MSF. For clarity of

presentation, we omit tracking the MSF itself but note that

we may do so storing by (aij , i, j) in A and carrying this

information throughout operations. We represent the parent

forest with a parent vector p ∈ V n, where pi stores the par-

ent of i. On line 1, we define a set EDGE which contains

pairs consisting of an edge weight and an entry from the par-

ent vector. The monoid (EDGE, MINWEIGHT) outputs the

pair with the least edge weight.

We leverage the multilinear function described in Sec-

tion 3.1 to compute the minimum outgoing edge from each

vertex that belongs to a star on line 9. Since we need the

parent of the destination of the minimum outgoing edge to

hook, we modify f to return the pair (aij , pj) ∈ EDGE. On

line 10, we project the minimum outgoing edges of the chil-

dren onto their star root and keep the smallest such edge. We

can write this projection more verbosely as

ri ← MINWEIGHTj{qj : pj = i},
where r ∈ EDGE

n. Intuitively, ri stores the minimum

outgoing edge from the star with root i. Next, stars hook

on line 11. Note that only non-zero values of r are read,

so p is unchanged for vertices that are not star roots. Since

star hooking may create cycles in the parent forest, we detect

which hooks must be removed to avoid cycles on line 12. We

use t to fix the parent forest and update sum appropriately

on lines 13 and 14. We finally shortcut on line 15.

4 Parallel Analysis

4.1 Multilinear Kernel We propose an all-at-once kernel

to compute multilinear functions of the form introduced in

Section 3.1. We demonstrate that this multilinear kernel de-

creases the number of writes to main memory when com-

pared to pairwise formulations. We implement a multilinear

kernel as a part of the CTF library and optimize the vector

distribution compared to the default implementation.

All-at-once: We count the number of writes to main

memory and the communication cost of this all-at-once ker-

nel. We assume that A is mapped to a 2D
√
p×√p processor

grid. We denote processes on the grid by (r, s) and use su-

perscripts to denote the subset of an input assigned to each

process. Also, we assume that the vectors x,y,w are par-

titioned along rows of the grid so that processor (r, 0) owns

x(r), y(r), and w(r). First, we redistribute y to collect y(s)

along columns of the grid. Next, we broadcast x(r) over all

processes (r, t) and y(s) over all processes (t, s), where t is

variable. Each process (r, s) now owns A(r,s),x(r),y(s) and

computes w(r,s) = f(x(r),A(r,s),y(s)) locally. We then re-

duce over columns of the grid to yield w(r) =
⊕

s w
(r,s).

We see that this kernel requires n√
p writes to main mem-

ory. The interprocess communication cost comprises of re-

distribution, broadcast, and reduction of a vector of local size

n/
√
p. The amount of vector communication may in princi-

ple be reduced if the input vectors are sparse or if the output

is sparse (or an output mask is supplied). We visualize the

data distribution and communication pattern in Figure 2.

Pairwise: Alternatively, this multilinear kernel can be

implemented with two SpMV-like operations. However, we

show that this approach requires nnz more writes to main

memory than the all-at-once approach. As an illustrative

example, let us consider again the motivating problem for

defining this type of multilinear function: given a vertex i

U.S. Government work not protected by U.S. copyright
76

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 9

8
.2

1
2
.1

4
7
.1

1
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y





vertices have a new parent after the hooking and tie-breaking

steps on lines 2 − 6. Notice that a vertex i has a new parent

if and only if i is a star root that successfully hooked onto

another star. On line 7, we collect all such vertices and their

new parents on all processes. We then implement complete

shortcutting using only local data on lines 8 − 12. If the

parent of a vertex is a star root that did not hook onto another

star, we stop shortcutting. We provide a detailed description

of CSP in Algorithm 3.

Algorithm 3 Complete Shortcutting with Prefetching

Require: p ∈ V n is the parent vector,
pprev ∈ V n is the previous parent vector.

1: changed← ∅ {changed is a map}
2: for (i, pi) in local data do

3: if pi 6= pprevi then

4: changed← {(i, pi)} ∪ changed
5: end if

6: end for

7: changed← Allgather(changed)
8: for (i, pi) in local data do

9: while pi in changed do {local data}
10: pi ← changed[pi]
11: end while

12: end for

13: return p

5 Related Work

5.1 PRAM Algorithms The randomized linear time MST

algorithm by Klein et al. [18] inspired a search for linear-

work PRAM algorithms. First, Cole et al. proposed such

an algorithm [9] in the concurrent read, concurrent write

(CRCW) model. Pettie and Ramachandran then developed

a logarithmic depth and linear work algorithm [26] in the

exclusive read, exclusive write (EREW) PRAM model.

5.2 Parallel Implementations Many shared and dis-

tributed memory graph frameworks provide an implemen-

tation for MST. Galois [24] provides a shared memory im-

plementation of MST using constructs defined in its pro-

gramming model. To process large graphs on a single ma-

chine (with enough memory), Dhulipala et al. develop vari-

ous scalable graph algorithms [12] including MST. Their ap-

proach in many cases is shown to outperform the distributed

memory implementations. GraphChi [19] is another sin-

gle machine implementation that can process massive graphs

from secondary storage.

STAPL [7] provides support for both shared and dis-

tributed memory parallelism in C++. MST can be imple-

mented in STAPL using the framework’s distributed data

structures and parallel algorithms. Pregel [22] uses a Bulk

Synchronous Parallel (BSP) model, and takes a vertex cen-

tric approach for graph computations. The API provided by

the framework can be used to program many graph algo-

rithms in a distributed environment. Data distribution, un-

derlying message handlers, and fault tolerance are invisible

to the user. GPS [28] extends the Pregel API to incorporate

dynamic repartitioning, among other optimizations.

One of the shortcomings of Pregel’s vertex centric ap-

proach is the message load imbalance caused by few vertices

that communicate more messages than others. To address the

shortcomings, Pregel+ [37] proposes two techniques, vertex-

mirroring and request-respond paradigm where high degree

vertices are mirrored, and all requests from a machine to the

same target are merged into one request. Pregel+ is shown

to outperform other distributed memory frameworks includ-

ing GPS [28] and Powergraph [15]. An experimental eval-

uation that compares various graph frameworks (across dif-

ferent algorithm categories, graph characteristics, etc.) notes

that there is no single system that has superior performance

in all cases [21].

Panja et al. propose MND-MST to compute MST

on heterogeneous systems that house both CPU and GPU

compute capabilities [25]. They partition the input graph

across multiple nodes and devices and compute local MSTs

in parallel using Boruvka’s algorithm. They employ a 1D

partitioning scheme to balance the number of edges across

computing units. They present results for both CPU-only and

multi-device (CPU-GPU) systems. Their results are shown

to outperform Pregel+. We qualitatively compare Pregel+

and MND-MST to our MSF implementation in Section 7.4.

GraphBLAS [6] provides standardized linear-algebraic

primitives for graph computations. LAGraph [35] builds

on top of GraphBLAS to provide developers of graph al-

gorithms a set of data structures and utility functions. They

describe and benchmark algebraic implementation of several

graph algorithms using LAGraph’s API, though not for MST.

5.3 LACC and FastSV We further compare and contrast

our MSF formulation with the previously proposed linear

algebraic frameworks for graph connectivity, LACC [2] and

FastSV [38]. Both perform similar hooking and shortcutting

steps. The formulations identify sets of active vertices

that contribute to the output of certain computations and

represent them with a sparse vector. For example, vertices

that belong to converged components are inactive.

If the parent vector p has converged, we still need a last

iteration to verify that. FastSV proposes a stronger termina-

tion condition: repeat until convergence of the grandparent

vector. Since both CC and MSF terminate when a spanning

forest is found, this condition holds for MSF as well. For

most real-world graphs, the last iteration does not perform

any hooking and only shortcuts trees into stars. In these

cases, the stronger termination condition identifies a span-

ning forest an iteration before all trees are shortcut into stars.

U.S. Government work not protected by U.S. copyright
78

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 9

8
.2

1
2
.1

4
7
.1

1
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y









References

[1] S. G. AKL AND L. CHEN, On the power of some PRAM

models, Parallel Algorithms and Applications, 13 (1999),

pp. 307–319.

[2] A. AZAD AND A. BULUC, LACC: A linear-algebraic algo-

rithm for finding connected components in distributed mem-

ory, in 2019 IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS), 2019, pp. 2–12.

[3] D. A. BADER, A. KAPPES, H. MEYERHENKE,

P. SANDERS, C. SCHULZ, AND D. WAGNER, Bench-

marking for Graph Clustering and Partitioning, Springer

New York, New York, NY, 2018, pp. 161–171.

[4] S. BEAMER, K. ASANOVIC, AND D. A. PATTERSON, The

GAP benchmark suite, CoRR, abs/1508.03619 (2015).

[5] A. BULUÇ AND J. R. GILBERT, The Combinatorial BLAS:

Design, implementation, and applications, The International

Journal of High Performance Computing Applications, 25

(2011), pp. 496–509.

[6] A. BULUÇ, T. MATTSON, S. MCMILLAN, J. MOREIRA,

AND C. YANG, Design of the GraphBLAS API for C, in

2017 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), 2017, pp. 643–652.

[7] A. BUSS, HARSHVARDHAN, I. PAPADOPOULOS,

O. PEARCE, T. SMITH, G. TANASE, N. THOMAS, X. XU,

M. BIANCO, N. M. AMATO, AND L. RAUCHWERGER,

STAPL: Standard template adaptive parallel library, in

Proceedings of the 3rd Annual Haifa Experimental Systems

Conference, SYSTOR ’10, New York, NY, USA, 2010,

Association for Computing Machinery.

[8] D. CHAKRABARTI, Y. ZHAN, AND C. FALOUTSOS, R-mat:

A recursive model for graph mining, in Proceedings of the

2004 SIAM International Conference on Data Mining, SIAM,

2004, pp. 442–446.

[9] R. COLE, P. N. KLEIN, AND R. E. TARJAN, A linear-work

parallel algorithm for finding minimum spanning trees, 1994.

[10] T. A. DAVIS, Algorithm 1000: SuiteSparse: GraphBLAS:

Graph algorithms in the language of sparse linear algebra,

ACM Transactions on Mathematical Software (TOMS), 45

(2019), pp. 1–25.

[11] T. A. DAVIS AND Y. HU, The University of Florida sparse

matrix collection, ACM Trans. Math. Softw., 38 (2011).

[12] L. DHULIPALA, G. E. BLELLOCH, AND J. SHUN, Theoreti-

cally efficient parallel graph algorithms can be fast and scal-

able, in ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA), 2018.

[13] C. F. BAZLAMAÇCI AND K. S. HINDI, Minimum-weight

spanning tree algorithms a survey and empirical study, Com-

puters and Operations Research, 28 (2001), pp. 767–785.

[14] V. GADEPALLY, J. BOLEWSKI, D. HOOK, D. HUTCHISON,

B. MILLER, AND J. KEPNER, Graphulo: Linear algebra

graph kernels for nosql databases, in 2015 IEEE International

Parallel and Distributed Processing Symposium Workshop,

IEEE, 2015, pp. 822–830.

[15] J. E. GONZALEZ, Y. LOW, H. GU, D. BICKSON, AND

C. GUESTRIN, Powergraph: Distributed graph-parallel com-

putation on natural graphs, in Proceedings of the 10th

USENIX Conference on Operating Systems Design and Im-

plementation, OSDI’12, USA, 2012, USENIX Association,

p. 17–30.

[16] R. GRAHAM AND P. HELL, On the history of the minimum

spanning tree problem, Annals of the History of Computing,

7 (1985), pp. 43–57.

[17] J. KEPNER AND J. GILBERT, Graph Algorithms in the Lan-

guage of Linear Algebra, Society for Industrial and Applied

Mathematics, 2011.

[18] P. N. KLEIN AND R. E. TARJAN, A randomized linear-time

algorithm for finding minimum spanning trees, in Proceedings

of the Twenty-Sixth Annual ACM Symposium on Theory of

Computing, STOC ’94, New York, NY, USA, 1994, Associa-

tion for Computing Machinery, p. 9–15.

[19] A. KYROLA, G. BLELLOCH, AND C. GUESTRIN,

GraphChi: Large-Scale graph computation on just a PC, in

Proceedings of the 10th USENIX Conference on Operating

Systems Design and Implementation, OSDI’12, USA, 2012,

USENIX Association, p. 31–46.

[20] J. LESKOVEC AND A. KREVL, SNAP Datasets: Stan-

ford large network dataset collection. http://snap.

stanford.edu/data, June 2014.

[21] Y. LU, J. CHENG, D. YAN, AND H. WU, Large-scale dis-

tributed graph computing systems: An experimental evalua-

tion, Proc. VLDB Endow., 8 (2014), p. 281–292.

[22] G. MALEWICZ, M. H. AUSTERN, A. J. BIK, J. C. DEHN-

ERT, I. HORN, N. LEISER, AND G. CZAJKOWSKI, Pregel:

A system for large-scale graph processing, in Proceedings of

the 2010 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’10, New York, NY, USA, 2010,

Association for Computing Machinery, p. 135–146.

[23] R. C. MURPHY, K. B. WHEELER, B. W. BARRETT, AND

J. A. ANG, Introducing the graph 500, Cray Users Group

(CUG), 19 (2010), pp. 45–74.

[24] D. NGUYEN, A. LENHARTH, AND K. PINGALI, A

lightweight infrastructure for graph analytics, in Proceedings

of the Twenty-Fourth ACM Symposium on Operating Sys-

tems Principles, SOSP ’13, New York, NY, USA, 2013, As-

sociation for Computing Machinery, p. 456–471.

[25] R. PANJA AND S. VADHIYAR, MND-MST: A multi-node

multi-device parallel boruvka’s MST algorithm, in Proceed-

ings of the 47th International Conference on Parallel Process-

ing, ICPP 2018, New York, NY, USA, 2018, Association for

Computing Machinery.

[26] S. PETTIE AND V. RAMACHANDRAN, A randomized time-

work optimal parallel algorithm for finding a minimum span-

ning forest, in SIAM J. COMPUT, Springer, 1999, pp. 233–

244.

[27] M. K. RAHMAN, M. H. SUJON, AND A. AZAD, Fusedmm:

A unified sddmm-spmm kernel for graph embedding and

graph neural networks, in 2021 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), IEEE, 2021,

pp. 256–266.

[28] S. SALIHOGLU AND J. WIDOM, GPS: A graph processing

system, in Proceedings of the 25th International Conference

on Scientific and Statistical Database Management, SSDBM,

New York, NY, USA, 2013, Association for Computing

Machinery.

U.S. Government work not protected by U.S. copyright
82

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 9

8
.2

1
2
.1

4
7
.1

1
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



[29] Y. SHILOACH AND B. AWERBUCH, New connectivity and

MSF algorithms for shuffle-exchange network and PRAM,

IEEE Transactions on Computers, 36 (1987), pp. 1258–1263.

[30] Y. SHILOACH AND U. VISHKIN, An O(log n) parallel con-

nectivity algorithm, Journal of Algorithms, 3 (1982), pp. 57 –

67.

[31] N. SINGH, Z. ZHANG, X. WU, N. ZHANG, S. ZHANG, AND

E. SOLOMONIK, Distributed-memory tensor completion for

generalized loss functions in Python using new sparse tensor

kernels, 2021.

[32] E. SOLOMONIK, M. BESTA, F. VELLA, AND T. HOEFLER,

Scaling betweenness centrality using communication-efficient

sparse matrix multiplication, in Proceedings of the Interna-

tional Conference for High Performance Computing, Net-

working, Storage and Analysis, SC ’17, New York, NY, USA,

2017, Association for Computing Machinery.

[33] E. SOLOMONIK, D. MATTHEWS, J. R. HAMMOND, J. F.

STANTON, AND J. DEMMEL, A massively parallel tensor

contraction framework for coupled-cluster computations, J.

Parallel Distrib. Comput., 74 (2014), p. 3176–3190.

[34] V. STRASSEN, Gaussian elimination is not optimal, Nu-

merische mathematik, 13 (1969), pp. 354–356.

[35] G. SZÁRNYAS, D. A. BADER, T. A. DAVIS, J. KITCHEN,

T. G. MATTSON, S. MCMILLAN, AND E. WELCH, LA-

Graph: Linear algebra, network analysis libraries, and the

study of graph algorithms, CoRR, abs/2104.01661 (2021).

[36] M. M. WOLF, M. DEVECI, J. W. BERRY, S. D. HAMMOND,

AND S. RAJAMANICKAM, Fast linear algebra-based trian-

gle counting with KokkosKernels, in 2017 IEEE High Perfor-

mance Extreme Computing Conference (HPEC), 2017, pp. 1–

7.

[37] D. YAN, J. CHENG, Y. LU, AND W. NG, Effective techniques

for message reduction and load balancing in distributed

graph computation, in Proceedings of the 24th International

Conference on World Wide Web, WWW ’15, Republic and

Canton of Geneva, CHE, 2015, International World Wide

Web Conferences Steering Committee, p. 1307–1317.

[38] Y. ZHANG, A. AZAD, AND Z. HU, FastSV: A distributed-

memory connected component algorithm with fast conver-

gence, in Proceedings of the SIAM Conference on Parallel

Processing for Scientific Computing (PP20), SIAM, 2020,

pp. 46–57.

U.S. Government work not protected by U.S. copyright
83

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 9

8
.2

1
2
.1

4
7
.1

1
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y


	Introduction
	Background
	Basic Algebraic Structures
	Algebraic Graph Algorithms
	Awerbuch-Shiloach Algorithm
	Algebraic Connectivity Algorithms

	Algebraic MSF
	Multilinear Function to Find Outgoing Edges
	Algebraic MSF Algorithm

	Parallel Analysis
	Multilinear Kernel
	Shortcutting

	Related Work
	PRAM Algorithms
	Parallel Implementations
	LACC and FastSV
	All-at-once Kernels

	Experimental Setup
	Evaluation
	Shortcut optimization
	Strong Scaling
	Weak Scaling
	Comparison with Pregel+ and MND-MST

	Conclusions

