
MRS BULLETIN  •  VOLUME 46  •  December 2021  •  mrs.org/bulletin               1211

Two‑dimensional materials enabled 
next‑generation low‑energy compute 
and connectivity
Arnab Pal, Kunjesh Agashiwala, Junkai Jiang, Dujiao Zhang, 
Tanmay Chavan, Ankit Kumar, Chao‑Hui Yeh, Wei Cao, and 
Kaustav Banerjee* 

Since the invention of the metal–oxide–semiconductor field-effect transistor (MOSFET) in late 
1959, the impact of electronics on human society has been increasingly pervasive, heavily 
regulating modern health, transport, finance, entertainment, and social media sectors through 
“Big Data.” However, daily generation of petabytes of data from these sectors, along with 
their associated communication overhead, is placing an immense strain on the conventional 
computing and communication technologies, which were not developed exclusively for 
big data. Tackling these problems calls for a holistic overhaul of the current semiconductor 
technology, from materials to architecture, and two-dimensional (2D)-layered materials with 
their exotic electrical and structural properties are well positioned to accomplish just that. This 
perspective article aims to provide an overview of the key technological innovations in the 
nanoelectronics domain that have been achieved with 2D-materials thus far, and to bring forth 
the promise of this new materials family in developing brain-inspired ultra low-energy on-chip 
computing and communication techniques to usher a new era in electronics.

Introduction
Need for energy-efficient electronics: The emergence of the 
complementary-metal-oxide-semiconductor (CMOS) technol-
ogy in the late sixties ushered in an explosive development in 
the field of microelectronics that has intensified in the recent 
decade with the emergence of “big data” and data centers. 
This, along with the rapid growth in machine learning (ML) 
enabled artificial intelligence (AI) and Internet-of-things (IoT) 
applications, is driving transformative societal and economic 
changes through various implementations in self-driving cars, 
avionics, and smart grid technologies. This exponential growth 
in the volume of data being generated and consumed, however, 
demands an equally high exponential increase in the capacity 
needed for processing and moving this data around (Figure 1), 
thereby dissipating more energy. In fact, it has been estimated 
that energy dissipation of data centers will triple over the 

next-decade and is expected to leave a carbon footprint larger 
than that of the entire aviation industry. Moreover, Moore’s 
Law,1 which has enabled energy-efficient computing with 
shrinkage of transistor feature size every 2–3 years, is slow-
ing down as transistors scale down to sub-20 nm feature sizes, 
thereby increasing power density while the fundamental heat 
dissipation mechanism in chip packaging/cooling solutions 
remains unchanged.2 Therefore, to further increase chip com-
putational efficiency and repel the imminent threat of global 
warming through energy-intensive inefficient computing, it is 
imperative that innovative solutions to low-energy computing 
be actively explored. Figure 2 shows the way forward with 
solutions encompassing a wide range of emerging logic (both 
energy-efficient, and programmable that increases functional-
ity) and interconnect technologies, that can be integrated in 
the vertical dimension via monolithic-3D (M3D) integration 
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and provide new technology platforms for alternate computing 
schemes such as in-memory and neuromorphic (NM) comput-
ing. However, these improvements need a radical departure 
from the conventional CMOS-Cu material platforms and can 
only be made possible through a significant overhaul of the 
current semiconductor technology.

Promise of 2D-materials in designing energy-efficient elec-
tronics: Recently, the emergence of layered 2D-materials (2D-
M) (Figure 3) with exotic properties of inherent thinness,3–5 
defect-free interface,6 optimal bandgap and effective mass of 
charge carriers,4 strong band-tail suppression,7 and bulk sili-
con comparable mobilities,8,9 has provided sufficient promise 
and excitement to make this post-Si/Cu revolution a possibil-
ity. Figure 3 shows the entire family of 2D-materials5 encom-
passing a broad range of electronic materials including metals, 
semimetals, semiconductors, insulators, superconductors, and 
topological insulators. Despite this wide range of conduction 
mechanisms, all 2D-materials are layered, held together by 
strong in-plane covalent bonding and by relatively weak van 
der Waals (vdW) forces along the out-of-plane direction, 
which allows one to selectively grow or peel off individual 
layers, each ~ 0.35 nm thick, offering precise thickness control.

Since the net energy consumption of any design is limited by 
two fundamental factors: energy consumed by the computation 
(device power) and energy consumed by the data communication 
i.e., interconnects, solutions to low power computing, therefore, 
require concurrent solutions to both (Figure 2). The ubiquitous 
electronic switch used for logic computing, the MOSFET, has a 
Boltzmann-limited minimal subthreshold swing (SS) of 60 mV/
decade at room temperature, thereby imposing an upper limit on 
the maximum energy efficiency of such a device.4,10 Sub-kT/q 

logic switches over-
come the Boltzmann 
limit and therefore, 
can be operated with 
smaller voltages, lead-
ing to significant energy 
savings (Figure  4a). 
Among the several 
low SS (< 60  mV/
decade) devices pro-
posed, the most notable 
ones are tunneling-
FETs (TFETs),11,12 
negative-capacitance 
F E T ( N C F E T ) , 1 3 
Dirac-source FETs 
(DSFETs),14 impact-
i o n i z a t i o n  F E Ts 
(IFETs),15 and nano-
electro-mechanical FET 
(NEMFET).16,17 How-
ever, despite the theoreti-
cal promise, realistically 
there are several design 

and reliability concerns that have been detrimental toward their 
commercial implementation. NCFETs, for example, suffer from 
severely limited design space constraints that hamper its practi-
cal realization,18 in addition to enhanced hysteresis and reliability 
issues. DSFETs can only yield sub-60 SS over a limited voltage 
range and offer SS no smaller than the contemporaries, along with 
a low density of states (near graphene Dirac point) limited ON-
current.19 Similarly, IFETs20 and NEMFETs21 suffer from severe 
reliability issues with hot-carrier (generated during avalanche 
breakdown) mediated oxide breakdown, and the mechanical failure 
of the conducting cantilever, respectively. TFETs, therefore, despite 
their quantum mechanical tunneling limited ON-current affecting 
applicability in conventional computing, can be beneficial for low-
energy and low-frequency circuits.

However, the impact of these newly discovered low SS 
devices is still limited by the computing architecture that they 
are used in. Specifically, conventional von Neumann (VN) 
architecture with separate computing and memory elements 
consume energy not only for both the logic- and the memory-
functionalities but also for data communication between them. 
Neuromorphic (NM) computing22 is an alternative, which 
mimics certain neuro-biological architectures of the human 
brain, and therefore, can be designed to be highly parallel 
with very low-power consumption that has the potential to 
perform complex operations in a smaller area; and can also 
perform computation in-memory. Therefore, integration of 
both memory and data processing in NM architecture not 
only cuts down on their discrete power consumption, but 
also minimizes the energy needed for data movement. This 
has led to NM computing garnering much attention leading 
to an explosive market growth recently, particularly for ML 
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Figure 1.   Overview of worldwide and on-chip electronics energy/power consumption. (a) Shows the rise in 
the energy consumption for data centers and consumer electronics as a function of time, and its projection 
beyond 2021. The exponential rise is projected to cause electronics energy consumption to dominate over 
those of all nations by 2030, which stands at #4 in the global rankings of nation-wise energy consumption 
at present. (b) On-chip power consumption for CPUs and GPUs as a function of time, showing a steady 
increase in the total dissipated power (TDP). Interconnect power consumption, which can be expected to 
contribute close to 2/3rd of the overall power consumption, also shows a steady increase, contributing to 
low chip energy efficiency.
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enabled AI applications, led by commercial NM chips, includ-
ing Intel’s Loihi23 and IBM’s TrueNorth.24 However, these 
commercial implementations use conventional MOSFETs for 
their digital circuitry, which as discussed above, suffer from 
large OFF-current and Boltzmann limited SS, further degraded 
due to non-optimal electrostatics offered by the 3D-material 
Si.4 2D-M, with their inherent thinness and pristine interfaces 
not only improve electrostatics, thereby offering SS improve-
ments, but their low density of band-tails and trap-states help 
with carrier transport (Figure 4b), thereby helping improve the 
overall energy efficiency for both logic and memory devices.

As devices become more energy-efficient through fun-
damental material syntheses and device scaling approaches, 

interconnects however, have not seen similar improvements 
in energy efficiency through scaling (as discussed in the sec-
tion titled “Low-energy connectivity with graphene intercon-
nects”),25 which implies that we are fast approaching a point in 
computing where the energy to move the data around in circuits 
dominates the energy required to perform computation on the 
data itself, a phenomenon which is commonly referred to as the 
“memory-wall.”26 In fact, in conventional ICs it is estimated that 
the interconnect energy consumption can contribute up to twice 
the energy consumption by the active devices,27 and this problem 
is going to exacerbate as we further move to low-energy low-SS 
logic devices. Therefore, it is imperative that future interconnect 
technology advances, primarily on material domains, must be 

Figure 2.   Low-energy computing and communication directions enabled by various 2D-materials (2D-M) w.r.t state-of-the-art 
von Neumann (VN) computation with CMOS and Cu interconnects. The use of 2D-M in designing low-energy low-subthreshold 
swing (SS) 2D-TFETs (pink), next-generation graphene (Gr) interconnects (green), monolithic-3D integration (light blue), program-
mable devices (orange), in-memory (purple), and neuromorphic computing (deep blue), with their respective figures of merits 
(FOMs), w.r.t state-of-the-art CMOS/Cu technology with VN computing (shown on the outermost hexagon at the center with 
smaller solid circles). The size of the circles represents increasing FOMs, with the biggest circles in the inner hexagon represent-
ing the desired corner, enabled with 2D-M. Note that the color of the lines and the size of the dots they connect correspond to 
the degree of benefits derived from the various approaches illustrated around the outermost hexagon. Low-SS 2D-TFETs for 
example, are expected to yield highest FOM for VDD reduction, no benefit in cap reduction, moderate benefit (because of lower 
generated heat) in integration density, and no benefits in other FOMs. Gr interconnects offer cap reduction, VDD scaling (due 
to smaller cap), and moderate memory access and integration density FOMs. M3D integration offers highest integration FOM, 
moderate memory access, VDD and cap reduction FOMs; programmable devices offer highest functionality, moderate memory 
access, VDD and cap FOMs; in-memory computing offers highest parallelization and memory access, and logic functional-
ity FOMs, while NM computing offers highest FOMs overall, but with low cap (due to extensive interconnects) FOM. Overall, 
2D-materials with their inherent thinness offer benefit in integration density in all application spheres.
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concurrently explored, to simultaneously allow continued scaling 
and low-energy computing. Graphene (Gr) is one such 2D-M, 
which has shown tremendous potential to be a prospective inter-
connect technology, primarily due to its ultra-high current car-
rying capacity, and ability to be engineered to exhibit resistivity 
and resistance values (per unit length) much lower than that of 
state-of-the-art metal interconnects.28 Moreover, Gr-based inter-
connects can be significantly thinned down due to their high 
current carrying capacity,28,29 resulting in a significant reduction 
in wire capacitance and a corresponding increase in the circuit 
performance and operating frequency.28,30 Additionally, these 
2D-enabled devices and interconnects can be uniquely engineered 
to create a monolithically integrated 3D stack of 2D-M (M3D), 
resulting in ultra-high-density integration for next-generation 
low-energy computing and communication31,32 technologies.

This paper, therefore, looks at future solutions for low-energy 
computing enabled by 2D-M, and is organized as follows: The 
section titled “Low-energy computing with 2D-material enabled 
tunneling-FETs” discusses the recent advancements in the design 
of 2D-M enabled vertical- and lateral-TFETs, the next section 
titled “Beyond von Neumann low-energy computing enabled 
by 2D-based devices” discusses the recent advancements in the 
memory space, specifically flash devices and Resistive RAM 
(RRAM), and the section titled “Low-energy connectivity with 
graphene interconnects” discusses the prospects of Gr intercon-
nects and 3D integration with 2D-M, for low-energy computing.

Low‑energy computing with 2D‑material 
enabled tunneling‑FETs
Tunnel FETs work on the principle of band-to-band tunneling 
(BTBT) (Figure 4c),12,33,34 where carriers upon the application 
of a suitable gate-source voltage can tunnel from the occupied 
source-valence band (VB) to the empty channel-conduction band 

(CB), thereby constituting a sharp turn-on of the drain current, 
especially since OFF-current is suppressed by filtering-off the 
high-energy carriers in the tail of the Boltzmann distribution.35 
The extreme sensitivity of the tunneling probability of carriers to 
the junction electric field, modulated by the applied gate-source 
bias, results in a highly non-linear current–voltage character-
istics, where the gate voltage dependent SS is minimum at the 
onset of BTBT, and progressively degrades as the drain current 
increases.35 For effective energy-efficient operation, therefore, it 
must be ensured that the average TFET-SS, at least over 4 decades 
of ON current swing, is around 40 mV/decade to obtain a ben-
efit in energy efficiency of ~ 50% over ideal MOSFETs (detailed 
calculations are shown in the section titled “Low-energy con-
nectivity with graphene interconnects”). However, TFETs fab-
ricated from conventional 3D-materials like Si, Ge, and III-V 
compounds, exhibit either low ON-current, or a low-SS only at 
very low current value, due to presence of trap states and non-
optimal electrostatics.36–38 These problems can be significantly 
alleviated with 2D-M,33–35,39 which by virtue of their ultra-thin 
pristine body improve electrostatics, and their comparatively thin-
ner depletion widths with strong band-tail suppression, compara-
ble effective masses and bandgap, and choice for a wide variety of 
source-channel heterojunctions, offer benefits in transport phys-
ics, that together (Figures 3, 4b) enable 2D-TFETs to achieve 
both ultra-low OFF current and low SS, therefore, providing 
promise to realize high-performance (HP) TFETs.35 Moreover, 
their layered nature eases the fabrication challenges of fabricating 
vertical junctions, thereby making vertical-TFETs in addition to 
conventional lateral TFETs, easily realizable.

Vertical 2D‑TFET
The first demonstration of a 2D-M-based vertical tunneling 
device40 involved a field-emission type tunneling current along 
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band (VB) with their respective minima and maxima. (d) The pristine thickness control of 2D-TMDs over conventional bulk materials allows for 
low variability in the bandgap, thereby unaffecting the mobility at extreme thinness. The large bandgap variation in a thin bulk semiconductor, 
however, leads to enhanced scattering and degrades the mobility. (e) Mobility comparison of various 2D-M as a function of channel thickness, 
showing significant mobility advantages at thinner channel thickness, w.r.t bulk materials, which exhibit rapidly degrading mobility values. Data 
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the out-of-plane direction in 2D-M between two adjacent layers 
of Gr separated by hexagonal-boron nitride (h-BN) tunnel bar-
rier (TB). This was followed by a similar experiment,41 where 
the TB was replaced by the lower bandgap few-layered WS2. 
Similarly, a tunneling diode using 2D-TMDs, based on a vertical 
heterojunction (HTJ) of MoS2-WSe2 was demonstrated42 where 
the bottom- and top-electrodes controlled MoS2 and WSe2, 
respectively, and negative differential resistance (NDR) behav-
ior with a small tunneling current (~ nA/µm2) were observed. 
These experiments were followed by the demonstration of inter-
band tunneling current in a vertical 2D HTJ TFET43 where tun-
neling was observed between gate modulated p-type WSe2 and 
a degenerate n+-SnSe2 layer. A relatively large minimum SS 
of 100 mV/decade with a 4-decade average SS of ~ 260 mV/
decade, and a low ON-current of 100 nA/µm were observed, 
unpromising for low-energy applications. Based on a similar 
material combination, Yan et al.44 demonstrated a vertical TFET 
and achieved a minimum SS of 37 mV/decade, but with a 4-dec-
ade average SS of 317 mV/decade and an ON current of 2 µA/
µm. A different material combination of WSe2-MoS2 for vertical 
TFETs45 yielded a 4-decade average SS of 676 mV/decade and 
ON current of 100 nA/µm. The average SS (over 3 decades) 
was subsequently improved to 414 mV/decade in Reference 46 
with a 50 nm high-k HfO2 dielectric, however, the ON-current 
was limited to only 3 nA/µm, too low for any practical applica-
tion. Recently, a vertical TFET was demonstrated based on a 
WSe2-SnSe2 HTJ47,48 with 10 nm of back gate HfO2 dielectric 
and a 4-decade average SS of 174 mV/decade was observed, but 
with a similar low ON-current of 10 nA/µm2.

Therefore, despite years of research into realizing high ON-
current and low SS vertical TFETs based on 2D-TMDs, the 

search has proved to be elusive, mainly due to the lack of suit-
able doping techniques needed to increase the tunneling elec-
tric field. 3D-materials like Ge/Si can be degenerately doped 
with techniques employed in the IC industry and are therefore, 
good options for designing the source terminal of the TFET, 
while the channel can be realized using 2D-M. Therefore, such 
a 3D-2D HTJ TFET can theoretically yield both low SS and 
high ON-current as was demonstrated in Reference 49 where 
a Ge-MoS2 source-channel HTJ resulted in a minimum SS of 
only 3.9 mV/decade and an average SS of ~ 31 mV/decade 
over 4 decades of current swing (from 0.1 pA to 1 nA), and 
at a low power-supply voltage of 0.1 V; all achieved with a 
bilayer MoS2 channel thickness of 1.3 nm, thereby indicat-
ing the potential for ultra-low-energy operation with extreme 
device scalability. These low SS values have been confirmed 
to be achievable with rigorous band-tail analysis of 2D semi-
conductors, and various 2D-2D and 2D-3D HTJs.7 However, 
the use of VLSI incompatible high-k solid polymer (ionic gate) 
dielectric and a comparatively low ON-current of 0.3 µA/µm2 
limit the viability of this specific 2D-TFET for most practical 
applications. Based on a similar idea, a vertical 3D (Si)—2D 
(MoS2) HTJ TFET was demonstrated in Reference 50 that 
achieved a 4-decade averaged SS of 77 mV/decade with an 
ON-current of 0.013 µA/µm2.

Therefore, although 3D-2D TFETs have achieved better 
performance compared to 2D-2D vertical TFETs, the presence 
of the naturally existing vdW gap along with high carrier effec-
tive mass51,52 along the out-of-plane direction of any 2D-M 
act as a deterrent to achieving high ON-current. A lateral 2D 
TFET architecture53 with well-designed source-channel HTJ 
can remedy this.
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2. φch is the surface potential. (b) Schematic of a lateral single gated 2D-TFET fabricated with p-type 2D-TMD source and n-type 2D-TMD 
channel and drain regions, with 2D-insulator h-BN for the gate dielectric. The use of 2D-TMDs with pristine interface and inherent thinness allows 
for excellent electrostatics, while the choice for heterojunctions (HTJs) with optimum band alignment and smaller depletion widths improve the 
transport efficiency. (c) Operational principle of a MOSFET w.r.t a TFET. The energy-filtering of the Boltzmann tail in TFETs leads to very low 
OFF-current while the alignment of the source-VB and channel-CB allows for a sudden increase of the TFET ON-current, leading to low SS. (d) 
Atto-Joule computing enabled by lateral 2D HTJ TFETs53 compared to other state-of-the-art TFETs and MOSFETs showing benefits in energy 
efficiency, also quantified in terms of the decreasing energy-delay product (EDP).
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Lateral 2D‑TFET
The design of 2D-TFETs in a lateral configuration was first 
proposed and theoretically evaluated in Reference 53 (Fig-
ure 4b). Such design was shown to be further improved with 
optimal material combinations resulting in a source-channel 
staggered HTJ, which reduces the effective barrier height and 
results in a simultaneous improvement of both ON-current 
and SS. Through rigorous simulations, the material combina-
tion of WTe2-MoS2 in a gated Esaki diode (GED) structure 
was found to be most optimal, that is, capable of generating 
both high ON current (> 728 µA/µm) and a 4-decade average 
SS of 18 mV/decade at a channel length of 12 nm and VDD of 
0.5 V. Although, GEDs are scalable down to channel length 
of 3 nm, the increased OFF current due to direct source-drain 
tunneling at channel lengths below ~ 6 nm motivates the use 
of a larger effective mass material, such as BP (∼1.5m

0
) or 

SnS2 (∼2.1m
0
) for the channel. Figure 4d shows the energy-

delay benchmarking of the various 2D HTJ GEDs with dif-
ferent VDD (0.2–0.5 V) w.r.t IRDS requirements (Lg = 6 nm) 
as well as some state-of-the-art TFETs (from simulation 
and experiments) and CMOS devices, showing unmatched 
delay and switching energy metrics and a correspondingly 
smaller energy-delay product (EDP), thereby favoring lateral 
2D-TFETs. Moreover, since TFETs, particularly GEDs with 
optimized source-channel material,53 are immune to channel 
length scaling, they can be suitably scaled down to sub-10 nm 
dimensions, which also lowers the net device capacitance. This 
reduction in the device capacitance, therefore, minimizes the 
need for high ON-current in these scaled devices (< 10 nm 
channel length) to achieve same delay penalty, and they can be 
operated in the desired corner of Figure 4d (delay and switch-
ing energy less than 1 ps and 100 aJ/µm, respectively) pro-
vided an ON-current greater 262 µA/µm is achieved (assum-
ing 0.5 nm effective oxide thickness).

On the experimental front, a lateral homojunction (HMJ) 
TFET based on BP as channel material was demonstrated in 
Reference 54 that achieved an ON-current of 200 µA/µm2 
(at VDS = 0.8 V), but with a poor minimum SS of 170 mV/
decade. Recently, a lateral reconfigurable-TFET utilizing 
multilayer BP for the source and monolayer BP for channel 
and drain, resulting in a broken source-channel HTJ, was 
demonstrated,55 where a low 4-decade average SS of 24 mV/
decade was obtained with a moderately low ON-current of 3 
µA/µm. Although very promising, the need for a large back 
gate voltage of − 45 V for suitable electrostatic doping of the 
p-TFET renders its potential for energy-efficient computing 
weak. Moreover, the use of chemically unstable BP (to ambi-
ent environment) demands careful encapsulation, impairing 
large-scale manufacturability.

The biggest hindrance to experimentally realizing HP 
2D-TFETs has been the quality and defect-free growth of 
these HTJs with suitably high source/drain doping. How-
ever, recently, significant progress has been made in this 
domain where experimentalists have devised ways to intro-
duce substitutional impurities during the CVD (chemical 

vapor deposition) growth of 2D-TMDs to highly dope the 
material56,57 and realize perfect edge-contacted HTJs.58,59 
Therefore, although it has not been feasible to realize a HP 
TFET with the characteristics predicted by Reference 53, and 
promising results from References 49 and 55, it is reason-
able to believe that with advances in synthesis and doping 
of 2D-M, along with reduction in contact resistance to 2D 
semiconductors,60,61 suitably designed lateral 2D HTJ-TFETs 
can achieve more than tenfold benefit in energy-efficiency w.r.t 
state-of-the-art logic devices (Figure 4d), thereby revolutioniz-
ing computing. Moreover, in addition to their merits in opera-
tion of low-energy low-frequency circuits (more details in the 
next section), optimally designed GED TFETs with their high 
ON-current of ~ 1 mA/µm, approaching that of HP-FinFETs, 
along with their 4-decade average SS of ~ 18 mV/dec can be 
equally attractive options for implementing high-frequency 
conventional circuits.

Beyond von Neumann low‑energy computing 
enabled by 2D‑based devices
Apart from using 2D logic devices for energy-efficient con-
ventional VN computing, alternate computing architectures, 
like NM and in-memory computing (IMC) has generated 
immense research interest lately. While NM architectures 
implement spiking neural nets (SNNs),23,24,62 where the 
implemented hardware emulates biological neurons and 
synapses (Figure 5a–d), IMC architectures enable fast com-
putation of multiply and-accumulate (MAC) and matrix-
vector-multiplication (MVM) operations (Figure 5e–g)63 
in artificial neural nets (ANN),64,65 which are necessary 
for realizing machine learning (ML)-based AI applications 
through back-propagation and error correcting algorithms. 
Figure 5 shows the outline of both NM and IMC archi-
tectures, and the benefits in low-energy computing offered 
w.r.t conventional VN computing by both. NM comput-
ing architectures derive benefits in energy efficiency from 
both lower frequency of neuronal spikes that incrementally 
increase the membrane potential eventually leading to neu-
ron firing, and massive parallelization (the human brain 
roughly connects 1 neuron to 104 synapses). In comparison, 
IMC architecture saves energy by minimizing the energy 
lost for data communication between separate computing- 
and memory-elements. The ultimate goal for hardware ena-
bled NM architectures would be to reach the ultra-energy 
efficiency of the human brain, which in fact, consumes four 
orders less energy for cognitive tasks w.r.t the current state-
of-the-art VN computing machines. However, it is impor-
tant to note that, while in theory, IMC and NM computing 
can offer significant benefits to computing efficiency, this 
can only be achieved once the energy consumption of the 
accompanying control circuitry (CC) can be minimized. 
While this can surely be bettered by the introduction of 
new memory/computing/connectivity solutions as discussed 
further in this paper, optimization of the computing archi-
tecture is also of utmost importance. For example, it has 
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been estimated66 that while energy consumption of ADC 
and DAC circuits can deteriorate the energy consump-
tion of an analog-IMC architecture by 12× , an additional 
10× energy efficiency is degraded due to memory access 
overhead from on-chip to off-chip memory buffers. These 
comprise significant additional overhead that need focused 
research effort, mostly on the architectural level,67 that will 
otherwise limit the practicality of these alternate comput-
ing architectures. Nevertheless, this section discusses the 
hardware opportunities for implementing both NM and IMC 
architectures by exploiting emerging 2D-M.

In the NM/SNN architecture, which works in an event-
driven update scheme, that is, computation is initiated upon 
receipt of a specific input, nonvolatile memory (NVM), 
devices have been extensively used for implementing the 
synaptic functionality between neurons (Figure 5a), while 
low-power devices, like TFET, can be used for realizing 
neuron spiking behavior. Learning rules, deriving their 
inspiration from biology, like spike time-dependent plastic-
ity (STDP) (Figure 6a),68 are based on the Hebbian learn-
ing principle69,70 that programs the synaptic weight based 
on the time difference of two neuronal firing events. A 
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Figure 5.   Overview of NM and in-memory computing and their promise in enabling low-energy computing. (a) Biological neuronal connection 
of neurons A, B, and C and their respective synaptic connections. The signal flows from neuron A to B to C. These dense synaptic connections 
enable an extremely high computational efficiency for the human brain, which in fact, consumes only ~ 20 W of power for pattern recognition, w.r.t 
state-of-the-art computer, which consumes ~ 100 kW. (b) Hardware implementation of the brain-inspired NM computing through a spiking-neural-
net (SNN) where the inputs and outputs to the network are neuronal spikes. (c) The promise of low-power NM computing comes through two major 
factors: (1) reduced frequency (~ kHz) of operation as compared to ~ GHz clock frequency for conventional VN computing, thereby leading to low 
dynamic power (PD); (2) the massive parallelization enabled by the dense neuronal connection in the brain where each neuron connects to ~ 104 
synapses (fan-out (fout) of 104), while VN computing generally has a low fout (< 10). Neuronal membrane potential increases with each incoming 
spike, which causes a generation of an output spike once this membrane potential exceeds a threshold (Vth), leading to resetting of the neuron 
membrane potential to the resting potential (Vrest). (d) Highly parallelized NM circuit completes multiple computational tasks (for algorithms leverag-
ing parallelization) in a single timestep w.r.t VN computing, which needs multiple timesteps to achieve the same. (e) Schematic of a conventional 
VN (left) and in-memory (right) architectures. The VN computer with separate computing and memory units wastes energy for data movement 
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 among them, in addition to individual computing 
(

�E1
)

 and memory 
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)

 energies. Individual computing and memory units are shown 
with colored rectangles. For an operation needing N cycles of data fetch, the total energy consumption for the VN computer is also shown, where 
the factor of 2 represents the storing- and fetching- of stored data. An in-memory computing architecture on the other hand, combines computing 
and memory units within (shown with distributed solid color bars), and therefore, consumes energy only for computation. ECC represents the energy 
consumed by the peripheral control circuitry (CC) of in-memory computing architectures, and combines energy consumed by analog to digital- 
(ADC) and digital to analog- (DAC) converters, in addition to energy consumed by peripheral memory units in storage and retrieval of data from 
memory. These constitute additional energy penalties that are accounted for by error bars in (f), where comparison between the energy consumed 
by in-memory and VN computing architectures as a function of the data fetch cycles is sketched (the dashed line representing energy consumption 
of IMC architectures represent the mean). The large energy requirements for on-chip cache (~ 5 pJ) and off-chip memory (~ 640 pJ) data access as 
compared to a simple computing task of ~ 0.1 pJ highlights the stark difference between these two architectures as N grows large. (g) Circuit layout 
and electrical wiring for a hardware implementation of in-memory computing network in a single clock cycle. The output vector (Ij) can be obtained 
using the matrix multiplication of the row bit-line (BL) voltage inputs Vi with the conductance matrix of the individual resistive elements (gi,j).



Two‑dimensional materials enabled next‑generation low‑energy compute and connectivity

1218         MRS BULLETIN  •  VOLUME 46  •  December 2021  •  mrs.org/bulletin

causal firing relationship, that is, pre-synaptic neuron fir-
ing ahead of post-synaptic neuron, causes an increase in the 
synaptic weight in a process called long-term potentiation 
(LTP), while an anti-causal firing event causes a decrease in 
the synaptic weight through long-term depression (LTD). 
Various flash-based and RRAM devices have been explored 
which implement this functionality, through modulation of 
their conductivity. However, for hardware synapses to be 
feasible for large-scale NM circuit implementation, certain 
important figures of merit (FOM) such as—low (~ fJ) energy 
consumption per conductance state change (E�G

) with high 
linearity (for both LTP and LTD),71 along with the presence 
of at least 128 distinct conductance states (7 bits) between 
the maximum and minimum conductance values to allow for 
high-fidelity operation, with a high dynamic range of more 
than 10 to allow operation with high noise margins, must be 
met;72 all with high endurance and retention time and low 
device-to-device and cycle-to-cycle variation.73 2D-mate-
rials by virtue of their excellent properties can help satisfy 
most of them.

2D‑M‑based flash memory
Floating gate transistor (FG-FET) and charge trap flash (CTF) 
are the two main constituents of the flash74 memory. Currently, 
vertically integrated QLC (quad-level cell) 3D-NAND from 
Intel,75 BiCS (bit-cost scalable) from Toshiba,76 and TCAT 
(terabit cell array transistor) from Samsung77 are the major 
industry drivers of this technology.

Figure 6b shows the schematic of two such FG-FET-based 
flash memory devices, implemented with 2D-M that comprises 
a control gate (CG), multi-layer graphene (MLG)-based float-
ing gate (FG), h-BN control-oxide (COX) and tunnel-oxide 

(TOX) and monolayer (1L) WSe2 as FG-FET channel mate-
rial, and Figure 6c shows the carrier-transport across the verti-
cal cross section of such a device. Application of a large posi-
tive bias to the CG results in tunneling or hot carrier injection 
of electrons from the FG-FET channel into the FG, increas-
ing the threshold voltage and turning the device OFF (bit 0) 
(for an n-type FG-FET), while a negative bias moves these 
deposited electrons back, programming the device back into 
ON-state (bit 1). Since the data retention time is determined 
by the retention time of tunneled electrons in the FG, hence, 
thicker COX and TOX are preferred which degrade FET elec-
trostatics. However, judiciously designed 2D-FG-FETs with 
WSe2 for the channel material and MLG for FG,78 for exam-
ple, can offer a distinct band-offset between the channel and 
FG Ec (conduction band energy) (Figure 6c), thereby, helping 
improve retention time even with thinner TOX. Moreover, 
1L-WSe2 with its inherent thinness help improve electrostatics 
and the relatively thin MLG minimizes the cell-to-cell interfer-
ence (CTCI) due to lower FG-to-FG coupling capacitance,78 
thereby, enabling further scaling and compaction. Therefore, 
2D-M are very promising for use in designing next-generation 
FG-FETs, including CTFs,78–80 particularly for feature sizes 
beyond the 10-nm node.81 In addition to these geometric prop-
erties, the large effective mass of carriers in the out-of-plane 
direction in 2D-M51,52 suppresses tunneling leakage current, 
thereby alleviating the problems faced by conventionally 
used poly-Si; while their strong in-plane bonding prevents 
unwanted metal ion diffusion into gate-dielectric, preserving 
its quality and solving the problems faced by metallic FGs.82 
Also, the presence of vdW gap improves noise performance83 
leading to larger retention times. Moreover, 2D-M can be eas-
ily stacked in the out-of-plane direction, resulting in easier 3D 
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integration,31,32 and therefore complement the current indus-
trial 3D NAND technology (see subsection B of section titled 
“Low-energy connectivity with graphene interconnects”).

Experimental 2D FG‑FET demonstrations
This potential of atomically thin nanomaterials had been 
recognized with the first experimental effort on designing an 
FG-FET with the low-dimensional material, carbon nanotube 
(CNT),84 where the CNT was used for designing both CG and 
FG to achieve a memory window of 400 mV. Subsequently, 
2D-M like graphene-oxide (GO),85 Gr,86 and MLG87 were 
utilized as the FGs for fabricating flash devices, resulting in 
large memory windows (Figure 6d), highlighting its prospects. 
The first flash memory device employing 2D-layered materi-
als for both the FG (MLG) and the FET (MoS2) was designed 
with Gr as the source/drain electrodes, and a large memory 
window of 8 V was achieved.88,89 This was followed up by 
demonstrations with Gr/MoS2

90 and MoS2/BP91 for FG/FET, 
respectively. In addition to these prototype demonstrations, 
the prospects of designing all 2D-enabled FG-FETs with Gr 
as the FG in flash, and graphene nanoribbon (GNR) as the FG 
in charge trap memory, was proposed and extensively studied 
in Reference 78,  which is now being implemented in com-
mercial flash cell designs albeit with conventional materials.

In addition to the discussed FG implementations, 2D-FETs 
on account of their large bandgap can also prevent unwanted 
gate-induced-drain-leakage (GIDL)92 current that sets an 
upper limit on the refreshing frequency of DRAMs, and 
therefore, improves energy efficiency. Moreover, while alter-
nate memory devices employing 2D-ferroelectrics have been 
explored,93 where 2D-M can offer benefits in energy efficiency 
over conventional 3D ferroelectrics, discussion on them were 
skipped in favor of more mature FG-FET and RRAM tech-
nologies, which are either commercially employed or have 
been intensively studied for promising applications in emerg-
ing computing architectures.

Implementation of 2D FG‑FET for beyond VN computing
The above discussed benefits of using 2D-M in designing FG-
FETs also make it an attractive solution for designing synap-
tic devices and arrays, targeted toward NM and in-memory 
computing. Particularly, the excellent electrostatics offered by 
2D-M can lead to much desired improvements in—energy-
efficient synaptic potentiation and depression, increase in 
number of conductance states, and a linear and symmetrical 
conductance change, thereby leading to larger noise margins. 
This tremendous prospect has been suitably recognized with 
various experimental efforts. For example, Yi et al.94 dem-
onstrated synaptic behavior in a bottom-gated (BG) double 
FG structure with a MoS2 channel with h-BN-MoS2-h-BN-Au 
gate stack on a SiO2–Si substrate. The device exhibits linear 
and symmetric conductance change with retention time > 104 s, 
however; the requirement of a large gate bias of 29 V restricts 
its potential for use in realistic low-energy circuits. This need 
for large programming voltage was addressed in Reference 

95 where an extended Gr FG was used to enhance the elec-
trostatics, and a programming voltage of ~ 7 V with ultra-low 
energy of 5 fJ were achieved, but with a larger device foot-
print restricting its potential for miniaturization. FG devices 
with MoS2 as the channel material and Gr for the FG have 
been studied extensively.95–97 The first demonstration of STDP 
behavior in a top-gated 2D-FG synaptic transistor, employ-
ing CVD- and metal–organic CVD (MOCVD)- grown MoS2 
(for FET) and Gr (for FG) respectively, with a low linearity 
factor of 2 and large number (100) of conductance states was 
achieved in Reference 98. While Tang et al.96 achieved large 
(~ 400) conductance states (Figure 6e) with a non-linearity 
factor of ~ 1 with good endurance (> 105 cycles) and a large 
retention time of 105 s, its energy consumption per potentia-
tion/depression pulse of 18 fJ was worse than that of 7.3fJ in 
Reference 97 and 5 fJ in Reference 95.  However, both Refer-
ences 95 and 97 require the use of complicated pulse inputs 
for accomplishing the STDP behavior that need additional 
circuitry and dissipate energy. Therefore, it is important to 
note that although STDP behavior has been demonstrated in 
FG-FETs, they require careful waveform engineering of the 
input pulse trains to implement the SNN architecture specific 
STDP curves that inevitably introduce additional complexities. 
Hence, Figure 6e only shows the modulation of the FG-FET 
conductance with application of pulse inputs, which is the fun-
damental step toward achieving eventual synaptic behavior. 
FG-FETs have also been used for performing logic in-memory 
computation as shown recently,99 where logic operations of 
NOR and NAND in MoS2-based FG-FETs were demonstrated. 
Although a relatively large programming voltage of ~ 12 V and 
low voltage gain (< 2) limits energy efficiency, its transfer-free 
fabrication highlights the opportunity for large-scale fabrica-
tion of 2D-ANN arrays in the future.

Therefore, although significant progress has been made in 
the demonstration of 2D-enabled FG memories targeted for 
NM and IMC, its applications in mimicking a neuron spiking 
behavior in SNN and executing MAC operations in ANN are 
still missing experimentally. This is primarily due to the rela-
tively immature 2D-fabrication process w.r.t CMOS process, 
restricting large-scale manufacturability needed for fabricating 
additional circuitry for demonstrations of SNN neurons and 
ANN arrays.

2D‑M enabled RRAM
Although the flash memories described earlier can theoreti-
cally implement MAC operations for ANN implementation of 
IMC, the need for three control terminals and their relatively 
low endurance and long write times, in addition to large pro-
gramming voltages, impose an upper limit on how trainable, 
fast, and energy-efficient the implementation will be. Resistive 
RAM (RRAMs) are an alternative,100–102 which are two-termi-
nal NVM elements that exhibit higher endurance and ON–OFF 
ratios, thereby making the operation more noise insensitive. 
Moreover, their resistance, like FG-FETs, can be tuned granu-
larly by application of pulsed voltage biases making multi-level 
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operation possible. The traditional RRAM (Figure7a,b) con-
sists of a metal–insulator-metal (MIM) stack, where a con-
ductive path between the two metal layers is created upon the 
application of an external bias leading to the soft breakdown 
of the insulator. This, therefore, programs the device from 
high resistance state (HRS) to low resistance state (LRS) (Fig-
ure 7a). Conventionally, compounds of oxygen (metal-oxides) 
are used for the insulators in RRAMs, which however, leads 
to severe variability and endurance issues,103 mainly due to 
undesired redox reaction of generated oxygen ions with the 
electrodes, and unwanted diffusion of filament atoms. In this 
aspect, 2D insulators like h-BN without the presence of oxy-
gen demonstrate superior chemical stability due to strong sp2 
hybridized bonds, larger formation energy of B vacancies104 
and dangling bond-free interface,105 thereby alleviating oxi-
dation reaction to metallic filaments. Moreover, its relatively 
large bandgap (~ 5.9 eV) results in a larger average window 
for SET/RESET operation,106 and have therefore, become 
superior choices for designing RRAMs, as shown in recent 
literature.101,106 In addition to the use of h-BN as the switching 
layer, several other 2D-M have been used by researchers, for 
example, Gr,107 GO,108 BP,109 MoS2

110,111 where the switching 
mechanisms were attributed due to the migration of intrinsic 
atomic species (e.g., O in GO, S in MoS2), and in some cases, 
combined with penetration of metal ions. The GO108 and BP109 
RRAMs demonstrated a retention time of 104 and 105 seconds, 
and ON–OFF current ratio of 103 and 105, respectively, with a 
very high endurance of 108 cycles.

An array of such RRAMs in a large-scale crossbar array 
(Figure 7e) can lead to much desired improvements in low-
power energy-efficient IMC where the RRAMs, by virtue of 
their programmable resistance, can resemble MVM function-
ality for IMC.112,113  However, the use of a sole RRAM can 
lead to increased leakage current through the array via current 
sneak paths, decreasing the efficiency, which can be combatted 
with the addition of a selector device, commonly a transistor 
(Figure 7b) that also maintains the operation voltage. Never-
theless, the doubled device count (RRAM and transistor) leads 
to the inevitable degradation of area efficiency. This limitation 
was recently overcome (References 101 and 102) wherein by 
innovatively combining the transistor (1T) and the RRAM 
(1R) into a single device, called the 0.5T0.5R memory cell 
(Figure 7c), the device count was halved leading to record 
performance (< 10 ns switching-speed), energy- (~ 0.07 pJ/
bit) and area-efficiency (smallest footprint among all reported 
2D-M-based RRAM memory units), as well as great retention 
(106 s) and endurance (> 1000 cycles). This is in fact, the first 
demonstration of a merged transistor-memory device,114 and 
was achieved using h-BN as both the common RRAM active 
switching layer and the gate dielectric for the WS2-based 
2D-FET. Gate-tunable Gr were used for the electrical con-
tacts in the FET for achieving an ultra-low contact resistance 
(~ 0.67 kΩ·µm) as observed in Reference 115. Moreover, since 
the lateral footprint of this device depends on the size of the 
transistor (the insulating h-BN can be only a monolayer), fur-
ther scaling of the device therefore depends on the scaling 

Top electrode (V–)

Bottom electrode (V+)

HRS

“ON state” 

“OFF state” 

Top electrode (V+)

Bottom electrode (V–)

LRSStorage
layer CFs

GSG-HFET
(0.5T)

WL

SL
BL

WL

Gr WS2

h-BN 
switching layer

Gr 
edge contact

h-BN 
RRAM (0.5R)SL

BL

SL
WL BL

Source Drain

Substrate
Channel

Metal
Oxide

Gate oxide Metal

= , + , + ⋯+ ,

(LTP) (LTD)

a b d e

c

f

1.9–2.6V
(–1.9) –(–2.6) V

Pulse Number

Figure 7.   RRAM and its use for NM and IMC. (a) Switching mechanism of an RRAM where creation and rupture of conducting filament pro-
grams the device into a low resistance state (LRS/ON) and high resistance state (HRS/OFF) state, respectively. (b) Schematic of a conventional 
1T1R-RRAM with discrete transistor and memory. (c) Schematic of the fabricated 0.5T0.5R-RRAM, which merges the transistor and memory into 
a single device. (d) Application of potentiation and depression pulses to the RRAM bit-line (BL) increases/decreases the current, that is, the con-
ductance, respectively, mimicking LTP and LTD operation in NM applications.102 (e) Illustration of N × M crossbar-network with 0.5T0.5R-RRAM 
memory cells for ANN based in-memory computing. The output current 

(

Ij
)

 through each select-line (SL) is the multiplicative sum of the applied 
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performance of the GSG (Gr-2D-semiconductor-Gr) FET, 
which has already been shown to be extremely scalable, down 
to channel lengths of few nm.102

RRAMs have also been used for demonstration of STDP116 
behavior, where a bilayer MoS2 was used as the switching 
layer, but its low ON–OFF ratio of 10 and a comparatively 
high E�G

 of 0.6 µJ were improved to 106 and 70 nJ, respec-
tively, by use of h-BN as the switching layer.117 However, both 
these demonstrations lacked multi-bit programming capabil-
ity which was addressed (Figure 7d) in References 101 and 
102 by co-integrating the RRAM with a transistor. Although 
Sangwan et al.118 demonstrated RRAM operation in a single 
transistor, the lack of separate memory and logic units cannot 
avert the large OFF-state current leakage in an array operation. 
Moreover, the large switching time of 1 ms and design of the 
RRAM in Reference 118 on grain boundaries can lead to atom 
migration and a large device-to-device variability. Recently, 
Chen et al.106 demonstrated the first wafer-scale integration 
of h-BN-based RRAMs and achieved a smaller E�G

 of 22.5 
pJ with multi-bit functionality and 200 ns switching time. 
Although these demonstrated properties of various imple-
mentations are inferior w.r.t the 0.5T0.5R-RRAM,101,102 for 
the latter to be useful in a practical IMC circuit, certain other 
specific criteria should be met, already discussed in Refer-
ences 70 and 73, among which the RRAM can, at present, 
only meet the requirement for large ON–OFF conductance 
ratio (> 50), thereby necessitating further optimization of the 
device design. Such an optimized device can be expected to 
satisfy all the demands for emerging abundant-data comput-
ing targeted for an energy-efficient in-memory/brain-inspired 
learning network102 (Figure 7e, f), and therefore, can also 
potentially be used as a bionic cell for implementing a low-
energy and high-speed synapse. Note that although Figure 7e, 
f show a large-scale array, it is essentially a collection of indi-
vidual 0.5T0.5R-RRAM cells, highlighting the capability for 
fabricating a functional large-scale crossbar network targeted 
for demonstrating IMC operations in the future. Notably, 
hardware implementations leveraging RRAM crossbar used 
as MACs to compute MVM multiplication through cycles in-
memory, such as supervised cognition, equation solver, and 
cybersecurity applications,119–121 have pointed out the poten-
tial of fast-speed and low-energy parallel processing in-mem-
ory beyond the conventional VN computing, which therefore, 
not only makes the developed compact-0.5T0.5R cell a viable 
solution for the advancement of high-density and superior-
performance storage technology, but also, for enabling a fast, 
low-power, highly reliable and cost-effective solution for next-
generation NM and in-memory computing.

2D‑TFET‑based NM circuit
The above sections described the device-based approach 
toward implementing both SNN- and ANN-based NM and 
in-memory computing, but as is clear, implementing the most 
biologically plausible SNN operation, where the same device 
represents both neurons and synapses, is either still left to 

be discovered, or requires the need for extensive additional 
circuitry for generation of programmable voltage pulses, inevi-
tably degrading the area- and energy-efficiency of the imple-
mented design. Commercial NM chips like Intel’s Loihi23 and 
IBM’s TrueNorth,24 circumvent this problem by implementing 
the SNN architecture on mature CMOS process technology, 
which as described earlier, has limited energy efficiency. The 
low-energy and low-operating (~ KHz) frequencies of the NM 
circuits can, however, be very beneficial avenues for appli-
cations with TFETs, which with its ultra-low OFF-current 
and low SS characteristics can lead to many-fold increase in 
energy efficiency. To adequately quantify the performance 
benefits of using these devices in NM computing, a suitable 
robust and scalable compact model was developed34 that is 
capable of capturing intricate device physics of both HMJ- 
and HTJ-TFETs down to channel lengths as small as 5 nm. 
This model was subsequently used to design and benchmark 
a fully functional leaky-integrate-fire (LIF) NM circuit, along 
with its Hebbian learning circuitry, and the performance was 
compared w.r.t implementations with commercial 7 nm PTM 
multi-gate (MG) low-standby power (LSTP) FinFET transis-
tors.122 A benefit in energy efficiency of close to two orders 
was observed in favor of the TFET implementation. Use of 
next-generation Gr interconnects (discussed in more detail in 
the next section) are expected to further improve this energy 
efficiency.

The lore of NM computing which promises to bring a para-
digm shift in low-energy computing, approaching efficiencies 
of that of the human brain, requires a fully holistic approach 
to the entire computing platform, including computing devices 
which can function both as synapses and neurons, thereby, 
removing the interface cost and complexities. However, the 
search for this elusive device has yet proved unfruitful, due to 
the lack of reconfigurability and modularity in conventional 
bulk materials and their designs. 2D-materials by virtue of 
their lego-like structure6 allowing for easier designing of 
heterojunctions, and their unique properties—including flex-
ibility, enhanced optical-123,124 and electrical-125 responsive-
ness, can be engineered to design devices with both synaptic 
and neuronal functionalities, in addition to low-energy logic 
devices (TFETs and MOSFETs), thus, paving the way for 
novel NM architectures. In addition, to achieve the density of 
connections on the scale of the human brain, where each neu-
ron connects to ~ 104 synapses, requires an extensive intercon-
nect network, which is unachievable with current interconnect 
technology. The next section discusses the prospects offered 
by 2D-materials in tackling these challenges and paving the 
way to realize artificial brain.

Low‑energy connectivity with graphene 
interconnects
While the low-energy 2D-switches and alternate comput-
ing architectures described in the preceding sections are 
promising candidates for low-power, energy-efficient com-
putation, it is worth noting that the significant benefits to 



Two‑dimensional materials enabled next‑generation low‑energy compute and connectivity

1222         MRS BULLETIN  •  VOLUME 46  •  December 2021  •  mrs.org/bulletin

overall chip energy consumption cannot be made without 
making the “communication,” that is, interconnects more 
efficient. This is due to interconnects in conventional ICs 
accounting for more than ~ 50% of the total circuit capaci-
tance (Figure 8a), arising due to the need for connecting 
billions of transistors in ever increasing densities, and con-
stitute a substantial bottleneck.27,126 Addressing this bottle-
neck necessitates the need for less resistive, more reliable, 
thinner, and faster wiring solutions. However, traditional 
metallization technologies, such as copper (Cu) (Figure 8b), 
cobalt (Co), ruthenium (Ru), and other noble metals suffer 
from significant size effects as their dimensions are scaled 
down, mainly due to a non-linear increase in resistivity, wire 
and via resistance, which increases self-heating, degrades 
electromigration reliability and thereby limits their current 
carrying capacity and performance.126–130 2D-materials, 
such as Gr (or more specifically, doped MLG) (Figure 8c) 
were first proposed131,132 as a promising solution to these 
existing interconnect scaling challenges, due to its supe-
rior electrical and thermal properties, and was later experi-
mentally shown to beat the resistivity values of Cu (at 
sub-20 nm critical dimensions) by an appropriate level of 

(intercalation) doping (Figure 8c–e).28 Intercalation doping 
introduces (via diffusion) foreign atoms between the layers 
of MLG (Figure 8c) to efficiently modulate its conductivity 
(via charge transfer), and the process becomes increasingly 
efficient for narrow MLG wires (< 20 nm). Apart from its 
use as a wiring technology, MLG can also be utilized as an 
ultra-thin capping layer for certain metal interconnects,133 
lowering resistance by up to ~ 15%, and also as a heat-sink, 
allowing for more effective thermal management.31,32,134 
Furthermore, recent advances in CMOS-compatible (i.e., 
below the thermal budget of 450°C and transfer free) MLG 
synthesis have resolved a major process integration issue, 
making it a strong contender for next-generation low-energy 
computing interconnect solution,28,30,135,136 as further elabo-
rated in the following section.

Implications for low‑energy computing
The significantly higher (> 100-fold) current carrying capac-
ity of doped MLG wires w.r.t conventional Cu wires (Fig-
ure 8d) allows them to be thinner, thereby lowering the inter-/
intra-wire capacitances associated with MLG-based intercon-
nects, and thus leading to significant performance boost and 
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Figure 8.   Next-generation low-energy computing with DGNR interconnects. (a) Power distribution in logic and interconnects for conventional 
computing.27 (b) Schematic of the cross section of two-parallel copper wires of thickness H with a barrier layer. (c) Schematic cross section of 
an intercalation-doped MLG wire. (d) Schematic cross section of two parallel doped-MLG wires, with a thickness of 0.5H. (e) Wire resistance vs. 
wire width for conventional metal interconnects in comparison with DMLG wires. (f) Delay for a unit-sized inverter driving a fanout of 4 (FO4) load 
via an interconnect, whose length is 100x the minimum gate pitch, as a function of wire width. The simulations in (e) and (f) have been carried out 
using an 11 nm multi-gate LSTP driver, with an experimentally achieved doping level of − 0.6 eV28 for doped MLG interconnects. For conven-
tional metal interconnects, empirically derived models129 have been used for estimating the resistance and FO4 delay. (g) Switching energy com-
parison between Cu and DMLG interconnects connecting an 11 nm node multi-gate LSTP driver, showing ~ 80% benefits in energy savings for 
local wires, and ~ 72% benefit for global wires. These simulations assume the same delay penalty of ~ 5% for both the local and global wires. A 
power-optimal repeater insertion methodology137 has been assumed for the global wire simulations, where the optimal GNR length between two 
repeaters is ~ 0.072 mm. All the simulations in (e–g) have been carried out in HSPICE. Switching energy in (g) was evaluated by simulating a single 
inverter driving a FO4 circuit connected with Cu/DMLG interconnects at various frequencies and extracting the slope of the power–frequency 
curve. Contact resistances to DMLG have been included in the empirically derived model in Reference 28.
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lower switching energies.28 This was experimentally dem-
onstrated in Reference 28,  where CVD grown high-quality 
DMLG showed lower resistance (Figure 8e) and delay (Fig-
ure 8f) (at sub-50 nm wire dimensions) w.r.t conventional 
metals, while also improving reliability by > 100-fold,30 per-
formance by > four-fold,30 and energy efficiency by ~ 80/72% 
at the local/global wiring levels.28 However, the CMOS-
incompatible steps of transferring the MLG from the growth 
substrate (typically metallic) to the desired substrate along 
with high CVD growth temperature (~ 1000°C) had restricted 
the integration of MLG wires for large-scale low-energy 
computing. This limitation was recently overcome30,135,136 
by employing a unique solid-phase CMOS-compatible MLG 
growth30 and intercalation doping process,138 while main-
taining similar DMLG performance, reliability, and energy 
efficiency benefits. Although the above-mentioned demon-
stration used a fixed thickness of 20 nm for DMLG intercon-
nects, its significantly higher current carrying capacity w.r.t 
Cu wires (Figure 8d) allow for further lowering of its thick-
ness, which would significantly reduce the (inter- and intra-)
wire capacitances at sub-10 nm technology nodes, the key 
factor in determining the performance of aggressively scaled 
wires, thus providing significant energy and performance 
boosts, offering ~ 80% benefit in energy efficiency w.r.t Cu 
interconnects at the local wiring levels (Figure 8g) (for the 
same delay penalty of ~ 5%).

To highlight 
the significance 
of these energy 
efficiency gains, 
it is worthwhile 
to  note  tha t 
these  energy 
savings benefits 
correspond to a 
VN architecture 
designed with 
logic devices 
d e m o n s t r a t -
ing a 6-decade 
averaged SS of 
~ 10 mV/decade 
(Figure   9a) , 
w . r . t  i d e a l 
CMOS devices 
(SS = 60), that 
requires revolu-
tionary progress 
in the current 
state-of-the-art 
2 D - m a t e r i a l 
syntheses and 
device architec-
ture, and is a far 
cry from what 

has been achieved to date (Figure 4d), thereby conveying that 
the near-future of low-energy computing could greatly benefit 
from the integration of low aspect ratio (AR) DMLG inter-
connects in the mainstream CMOS technology, by allowing 
significant reduction in the dynamic switching energy (Fig-
ure 9b). These energy gains can be further enhanced with well-
designed lateral 2D-TFET logic devices,53 which can improve 
the computation energy efficiency by an additional ~ 60% due 
to their low SS (20 mV/decade over 6 decades of drain cur-
rent), thereby leading to > 90% benefit in overall chip-scale 
energy (i.e., ~ ten-fold increase in the integration density with 
similar energy footprint). Monolithically integrated 2D-mate-
rials/devices stacks can further improve this integration den-
sity, as discussed in the following section.

2D‑M enhanced monolithic 3D integration
Monolithic 3D (M-3D) integration, where multiple active lay-
ers, such as logic, memory, analog, RF are fabricated sequen-
tially on top of each other, can not only enhance integration 
densities but can also alleviate the “memory-wall” bottleneck, 
by providing low latency, high-bandwidth, and energy-efficient 
communication channels across multiple levels.139,140,141 Theo-
retical studies have demonstrated that due to their ultra-thin 
pristine body with excellent electrostatics, 2D-M-based 3D 
integration can improve integration density by more than ten-
fold when compared to through-silicon-via (TSV)-based 3D 
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in mV/decade. For example, a 48-mV low SS switch (over 6 orders of drain current swing—difficult to fabricate) 
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when interconnect capacitance dominates the entire circuit capacitance.
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ICs, and by more than 1.5-fold when compared to conventional 
M-3D integration.31,32 Recent experimental attempts of M-3D 
integration based on low-dimensional materials involved com-
bining CNT-FETs with RRAM and silicon FETs on 4 different 
vertical layers142 and realizing 3D-stacked 1T-1R cell based on 
MoS2 FET and h-BN RRAM;143 both of which although prom-
ising, necessitates the employment of a CMOS-incompatible 
step of 2D-M transfer, restricting the practical implementation 
of these technologies for low-energy computing. Additionally, 
the integration of 2D-M (such as doped MLG) as intercon-
nects in the BEOL of a conventional IC can help in signifi-
cantly reducing the wire thickness, thus improving inter-tier 
wire delay, cross-talk, and energy dissipation. Besides, the 
higher lateral thermal conductivity of MLG interconnects 
also helps in improving the lateral heat spread and remove 
the thermal hot-spots in 3D-ICs, which can be a major design 
challenge for designing ultra-scaled 3D-ICs.32 Furthermore, 

the inherent thinness 
of 2D-M allows for 
significant reduction of 
the M-3D stack thick-
ness, thereby reducing 
thermal resistance and 
mitigating self-heating 
of the upper tiers. This 
not only permits design 
of robust 3D ICs, but 
also minimizes tem-
perature induced leak-
age power dissipation, 
thereby improving 
overall chip energy 
efficiency.3,32 Finally, 
the lower tempera-
ture and transfer free 
growth techniques of 
2D BEOL candidates, 
such as recently dem-
onstrated MLG30,136 
can also be extended 
for demonstrating low 
temperature growth 
of 2D-dielectrics such 
as h-BN, as well as 
2D-semiconductors 
(such as MoS2, WS2, 
etc.), which provides 
sufficient promise for 
integrating 2D-M in 
the BEOL of conven-
tional Si ICs. Besides 
M-3D, while there 
have been several 
attempts at heterog-

enous integration of bulk Si with 2D-M via vdW epitaxy or 
remote epitaxy144,145 opening up entirely new playground of 
materials growth and interface engineering, these techniques 
not only significantly increase the overall process complexity, 
but also involve the VLSI-incompatible step of transfer, which 
makes their large-scale practical implementations unfeasible.

Furthermore, apart from being an excellent interconnect 
material, utilizing Gr as a shielding layer reduces the inter-layer 
dielectric (ILD) thickness by 90%, with the added benefit of it 
being a good heat sink, allowing for good thermal management, 
thus facilitating the realization of dense 3D-ICs using 2D-M.32 
Moreover, the reduction in the inter-tier thickness using 2D-M 
can lead to significant improvement in the inter-tier commu-
nication speed and the energy-efficiency because of smaller 
interconnect parasitics.31,32 In spite of these terrific advantages 
over conventional bulk materials, M-3D integration solely with 
2D-M must overcome several significant process challenges 
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close to 48% and 70%, respectively. Substitution of Cu (AR = 2) with Gr interconnects (AR = 0.5) can reduce 
interconnect capacitance, thereby further improving the energy efficiency by almost ~ 80%, regardless of 
the logic device used (ideal CMOS shown with red line, or SS = 10 switch shown with green line), when the 
entire circuit capacitance is dominated by interconnect (CW), that is, α = 1. Cases for which CW is 33% (α = 
0.33), or 50% (α = 0.5), or 67% (α = 0.67) of the total circuit capacitance comprising device-input, parasitic, 
and diffusion capacitances (CD), along with interconnect capacitances are also shown, promising energy 
efficiencies of 27%, 40%, and 54% over Cu interconnects, respectively. α = 1 also corresponds to inter-
connect dominant capacitance, expected from a full-fledged NM circuit with each neuron connecting to 104 
synapses. Changing the computing architecture to NM computing can further lower energy because their 
low activity factors (β) allow for a proportionately lower dynamic switching energy. Simulations for β ranging 
from 1 to 10–2

, for a SS = 10 device with Gr interconnects at α = 1 are shown in purple solid line, below 
which the static energy due to device leakage current is expected to dominate the total energy dissipation 
(purple-dashed line). Overall, 2D-M with low SS devices and interconnects can lead to ~ 94% benefit in 
energy savings in conventional computing, and > 100-fold higher in NM computing.
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that hinder the practical realization of this technology. Even 
though low temperature synthesis of high-quality MLG is now 
achievable,29,30,136 development of high-quality direct growth 
techniques of h-BN and 2D-TMDs at low temperatures with 
precise control over their thickness must still be achieved. 
Alternatively, heterogeneous integration of 2D-semiconductors 
with Si to build area-efficient vertical devices and structures, 
including complementary FETs, can also be explored to bring 
forward unique opportunities in addressing both process- and 
electrical-challenges of M-3D integration realized solely with 
a homogeneous semiconductor material system.

Summary

The article provided a comprehensive overview of the future 
directions for low-power energy-efficient computation 
and communication, specifically highlighting the potential 
significant benefits of employing 2D-materials in logic devices, 
memory, interconnects, and alternative non-von Neumann 
computing architectures for the same (Figure 10). It is shown 
that while well-designed 2D-TFETs for logic computing, and 
Gr for interconnects, can yield energy benefits of around 70% 
in overall computing and 80% in communication energies, 
respectively, they can be combined together to yield over 94% 
benefits in energy efficiency over the conventional CMOS-Cu 
computing technology. Moreover, efficient implementation of 
neuromorphic and in-memory computing architecture enabled 
by 2D-M based memory units of RRAMs and FG-FETs can 
lead to an additional energy benefit of more than 100-fold 
(Figure  10) over conventional CMOS-Cu VN computing 
architectures. Additionally, the seamless integration of these 
computing and communication blocks in a monolithically 
integrated heterogeneous 3D platform, all made possible 
with 2D-materials, can potentially deliver further benefits in 
energy-efficiency and integration density, paving the way for 
a revolutionary next-generation “brain-like” ultra-low-energy 
computing and connectivity platform.
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