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Abstract—How can we identify similar repositories and clusters
among a large online archive, such as GitHub? Determining
repository similarity is an essential building block in studying the
dynamics and the evolution of such software ecosystems. The key
challenge is to determine the right representation for the diverse
repository features in a way that: (a) it captures all aspects of
the available information, and (b) it is readily usable by ML
algorithms. We propose Repo2Vec, a comprehensive embedding
approach to represent a repository as a distributed vector by
combining features from three types of information sources. As
our key novelty, we consider three types of information: (a)
metadata, (b) the structure of the repository, and (c) the source
code. We also introduce a series of embedding approaches to
represent and combine these information types into a single
embedding. We evaluate our method with two real datasets from
GitHub for a combined 1013 repositories. First, we show that our
method outperforms previous methods in terms of precision (93%
vs 78%), with nearly twice as many Strongly Similar repositories
and 30% fewer False Positives. Second, we show how Repo2Vec
provides a solid basis for: (a) distinguishing between malware and
benign repositories, and (b) identifying a meaningful hierarchical
clustering. For example, we achieve 98% precision, and 96%
recall in distinguishing malware and benign repositories. Overall,
our work is a fundamental building block for enabling many
repository analysis functions such as repository categorization
by target platform or intention, detecting code-reuse and clones,
and identifying lineage and evolution.

Index Terms—Embedding, GitHub, Similarity, Clustering,
Software.

I. INTRODUCTION

Establishing a way to measure similarity between software
repositories is an essential building block for studying the
plethora of repositories in online Open Source Software (OSS)
platforms. These OSS platforms contain a massive number of
repositories and engagement of millions of users [1]. There
are significant collaborations and code reuses [2], [3] on
these platforms, which are openly supported and encouraged.
Researchers are interested in studying the dynamics of such
repositories, which include the ability to identify: (a) derivative
repositories, (b) families of repositories, (c) the evolution
of software projects, and (d) coding and technology trends.
GitHub is arguably the largest such platform with more than 32
million repositories and 34 million users exhibiting significant
collaborative interactions [4].

How can we quantify the level of similarity between two
repositories? This is the problem that we address here. Focus-
ing on GitHub, every repository consists of metadata, source
code, and auxiliary files. Given a repository, how can we
identify the most similar repositories among a large set? The
input here is a large number of repositories and a set of queries.

Figure 1: Our approach outperforms the state of the art approach
CrossSim in terms of precision using CrossSim dataset. We also see
the effect of different types of information that Repo2Vec considers:
metadata, adding structure, and adding source code information.

The desired output is: (a) the most similar repositories for a
given query repository and (b) clusters of similar repositories.
The key challenge here is to represent the repository data into a
numeric feature vectors to enable ML approaches to compute
the similarities and cluster among repositories. In addition,
combining vectors from different types of information, as we
will do here, is also a challenge.

There are relatively few efforts that focus on establishing
similarity between repositories, and most of them use either
metadata or source code level information, while none of
them use the three types of information that we do here.
First, LibRec [5], SimApp [6], Collaborative Tagging [7], and
RepoPal [8] utilize only metadata to find similarity among
repositories. Second, MUDABLUE [9] and CLAN [10] are
two similarity computation approaches using only source
code of repositories as plain text. Third, CrossSim [11], [12]
proposes a graph representation to compute similarity between
repositories using both metadata and source code. We discuss
the related works in more detail in Section VII.

As our key contribution, we propose Repo2Vec, an em-
bedding approach to represent software repositories with a
multi-dimensional distributed continuous vector which can
be used to measure the similarity between repositories. We
briefly describe the key features of our approach. First, our
method represents a repository as a distributed continuous
vector in an embedding space. Second, we consider three
types of information: (a) metadata, (b) source code, and (c) the
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repository directory structure. Our approach provides a flexible
way to combine these three types using our default values
which can be customized to match the niche needs of a savvy
user. The significance of our approach is that it generates a
relatively-low dimensional vector that can enable follow up
repository analysis. Such follow up studies can leverage the
plethora of ML techniques: we provide a proof of concept for
two such applications here.

We deploy our approach and study the similarity on a
malware dataset of 433 repositories and a benign dataset of
580 repositories. First, we demonstrate the effectiveness of our
method by comparing it against state of the art works. Second,
we show how our Repo2Vec can enable algorithms for: (a)
distinguishing between malware and benign repositories, and
(b) identifying a meaningful hierarchical clustering. The key
results are briefly discussed below.

a. Repo2Vec outperforms prior works. For this compari-
son, we select the best approach to date, CrossSim, which has
been shown to outperform previous approaches [8], [9], [10].
For consistency, we also follow their evaluation methodology
and use their dataset with 580 benign repository. We show that
our approach identifies similar repositories with 93% precision
compared to 78% as shown in Figure 1. Further, our approach
finds nearly twice as many strongly similar repositories and
30% fewer False Positives, as we see in Figure 6.

b. Metadata and structure provide significant perfor-
mance. We assess the information contribution of three types
of information. Interestingly, we can identify similarity fairly
well without the use of source code as shown in Figure 1.
Using only metadata and structure leads to a 76% precision,
which is comparable to the previous best method, which uses
source code.

c. Application: identifying malware repositories accu-
rately. We show that our approach can enable a supervised
classification approach. We focus on distinguishing malware
from benign repositories, which is a practical problem [13].
Using our embedding, we can identify malware repositories
with 98% precision and 97% recall, which outperforms the
previous approaches.

d. Application: identifying a meaningful hierarchy. We
show that our approach can form the basis for a meaningful
(unsupervised) hierarchical clustering of repositories. We show
that the emerging structure aligns with their purpose and lin-
eage. In our evaluation, we focus at two levels of granularity:
a coarse and a fine level with 3 and 26 clusters respectively.
Using an LDA-based topic extraction method, we find that
the clusters are cohesive: more than 80% of the repositories
per cluster have the same focus. We discuss the clustering in
Section V.

Our work in perspective. Our approach can be seen as a first
step towards the use of embedding approaches in repository
analysis. In fact, it can be seen as a general framework
where the selection of individual features can be driven by
the intention of the application. For example, one can focus
on different primary features depending on whether we want
to identify: (a) plagiarism or function level similarity, (b)

programming styles, or (c) software intention. We intend to
share our method and our dataset to facilitate follow up
research in this direction.

II. BACKGROUND

We provide some background on GitHub and describe
embedding approaches, which we extend and use later.

A. GitHub and its features. GitHub is a massive software
archive, which enables users to store and share code creating a
global social network of interaction. Users can collaborate on
a repository by raising issues or forking projects, where they
copy and evolve projects. Users can follow projects, and “up-
vote” projects using “stars”. We describe the key elements of
a GitHub repository here. A repository contains three types of
information (a) metadata, (b) project directory, and (c) source
code files, which we explain below.

a. Metadata: A repository in GitHub has a large number
of metadata fields. Most notable are: (a) title, (b) descriptions,
(c) topics, and (d) readme file. All these fields are optional and
they are provided by the author. Commit and issues are other
sources of textual metadata which include messages about
the specific functionality of the repository. At the same time,
there are metrics that capture the popularity of a repository
including: (a) stars, (b) forks, and (c) watches. As the text
fields are provided by the repository author, they can be
unstructured, noisy, or missing altogether.

b. Source code: It is the core element of a software
repository. A repository contains software projects written in
various programming languages such as C/C++, Java, Python,
and so on. These source codes are the logical centre of a
software stored in a repository.

c. Project directory structure: A well-crafted software
repository follows a best-practices directory structure con-
taining dataset, source code, and other auxiliary files. We
hypothesize that the structure could be useful in establishing
similarity between repositories.

B. Embedding approaches. An embedding (a.k.a. dis-
tributed representation) is an unsupervised approach for map-
ping entities, such as words or images, into a relatively
low-dimensional space by using a deep neural network on
a large training corpus [14], [15]. Although the method
is unsupervised, it relies on ideally a large dataset, which
is used to “train” the neural network. The neural network
develops a model of the dataset, which we can think of
as probabilities and correlations of its entities. Embedding
approaches have revolutionized research in several fields, such
as Natural Language Processing (NLP) [14], [15], [16], [17],
computer vision [18], graph mining [19], [20], and software
analysis [21].

The power of an embedding is twofold: (a) it can simplify
the representation of a complex entity with diverse features,
including categorical, and (b) it provides a way to quantify
entity similarity as a function of the distance of their corre-
sponding vectors. An efficient embedding has the following
properties: (a) it gives a fixed and low dimensional vector,
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and (b) it ensures that semantically similar objects are “close
by” in the embedding space.

a. Word embedding: word2vec. In the seminal word2vec
work [15], we map words to vectors in a way that similar
words, such as “father” and “parent”, map to nearby vectors.
This similarity is established by “feeding” a large corpus of
documents to the deep neural network. In other words, the
model captures word correlations by calculating the probabil-
ity with which a word can appear within a given neighborhood
of words.

b. Document embedding: doc2vec. The doc2vec [14] is an
unsupervised embedding model for a variable length paragraph
or document. The model takes a document as input and maps
it to an M-dimensional embedding vectors while doing a proxy
task, predicting target word or sampled words in the document.

In more detail, the document embedding model is based
on the word embedding [15] model. The main difference
between them is the introduction of the document id vector.
Like word2vec, there are two types of doc2vec available: (a)
Distributed Memory Model of Paragraph Vectors (PV-DM)
and (b) Distributed Bag of Words version of Paragraph Vector
(PV-DBOW). PV-DM is similar to the Continuous Bag of
Words (CBOW) model in word2vec. The PV-DBOW model
is similar to the skip-gram model of word2vec. The document
vector is calculated at the same time as the word vectors of
the document. Note that, PV-DM performs better for large, and
well-structured documents. On the other hand, PV-DBOW is
considered a better choice for small and defective documents,
as it is computationally fast.

c. Code embedding: code2vec. Embedding approaches
have also been proposed for detecting code similarity. A recent
approach is code2vec which maps a method (or more generally
a code snippet) of arbitrary length to an M-dimensional vec-
tor [21], [22]. The code2vec approach uses program structure
explicitly to predicting program properties and uses an atten-
tion based neural network that learns a continuous distributed
vector representation for the code snippet. As a result, one
can compare and group code snippets. The process is fairly
involved as it attempts to capture the the logical structure
and flow of the program and the sequence of commands.
For example, the code is decomposed into a set of paths
based on its abstract syntax tree. The neural network learns
simultaneously: the representation of each path and how to
aggregate a set of them. Due to space limitations, we refer the
interested reader to the original work [21].

d. Node embedding: node2vec. The node2vec [20] is a
graph embedding approach for mapping a node in a network
to an M-dimensional embedding vector. The model maximizes
the likelihood of preserving network neighborhoods of nodes
using Stochastic Gradient Descent (SGD).

In more detail, the model computes the embedding based on
nodes neighborhoods. First, the network structure is converted
to a set of paths (node sequences) using a biased random
walk sampling strategy which combines Depth-First Sampling
(DFS) and Breadth-First Sampling (BFS) for every nodes. The
sampling strategy efficiently explores diverse neighborhoods

of a given node. These sets of paths can be analogized to
the sentences in a document. Then the model is trained on
these node sequences with the skip-gram models presented
word2vec [15] to get the vector representations for each node.
For more details about the model, we refer to the original
paper [20].

III. PROPOSED METHOD

The main idea behind Repo2Vec is to combine the metadata,
source code, and directory structure of a repository and provide
an embedding representation for the whole repository. In fact,
we create an embedding for each type of data, which we
refer to as: (i) meta2vec for metadata, (ii) source2vec for the
source code, and (iii) struct2vec for the directory structure.
Our approach follows these four steps. In the first three steps,
we create an embedding vector for each of the three types of
data, and in the fourth step, we combine these into a repository
embedding. The Repo2Vec pipeline is shown in Figure 2. We
explain each step of our approach in more detail below.

Figure 2: Overview of the Repo2Vec embedding: (a) we create an
embedding representation for metadata, structure, and source-code,
and (b) we combine them into an embedding that captures all three
types of information. Each embedding hides significant subtleties and
challenges.

Step 1. Metadata embedding: meta2vec. We define
meta2vec as mapping all the metadata in a repository to an
RM -dimensional embedding vector, MRM

. In meta2vec, we
follow three steps. First, we select the fields of metadata
that we want to “summarize” in embedding. Second, we
preprocess the metadata text to remove noise. Finally, we adapt
the doc2vec approach to compute the embedding vector. The
overview of meta2vec is shown in Figure 3.

a. Field selection: We consider all the fields of metadata
that contain descriptive information regarding the content of
a repository such as title, description, topics (or tags), and
readme file. Recall that all this information is provided by
the author. There are many ways to extract and combine
textual information from each field. Here, we opt to treat each
metadata field as a paragraph and concatenate them to generate
a document, which we process as below. Note that we do not
consider metrics that relates to the popularity of a repository,
since our intuition and initial results suggest that it is less
helpful in determining similarity.

b. Text preprocessing: Like any Natural Language Pro-
cessing (NLP) method, we start with necessary preprocessing
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Figure 3: The overview of the meta2vec embedding: (a) we collect
the text from metadata fields, (b) we combine them into a single
document, (c) we preprocess the text in the document, and (d) we
map the document to a vector using an approach inspired by doc2vec.

of the text to improve the effectiveness of our approach. As
metadata in a repository text fields are often noisy, we follow
the NLP best practices step which include removal of: (i)
special characters e.g. ‘?’, and ‘!’, (ii) irrelevant words and
numbers e.g. “URL”, “Email”, “123”, (ii) stopping words.

c. Repository meta vector generation: We map the
metadata in a repository to an RM -dimensional distributed
vector, MRM

in this step. Following the basic principles
of doc2vec [14] approach, we adapt it to our needs and
constraints here. Specifically, as metadata in a repository often
consists of unstructured text and is small in size, we employ
PV-DBOW, discussed in Section II, because it performs better
for small text dataset.

Step 2. Directory structure embedding: struct2vec. We
define struct2vec as mapping of repository directory structure
to an RS-dimensional embedding vector, SRS

. We compute
struct2vec following three steps. First, we represent the di-
rectory structure into a tree representation. Second, we gen-
erate node vectors employing node2vec. Third, we synthesize
node vectors into a single structure vector. The overview of
struct2vec is shown in Figure 4.

a. Directory tree representation: A software repository
in GitHub consists of a standard directory structure with
necessary data files and source code files. We consider the
directory structure and transform it into Tree representation to
enable node2vec on it. Note that, in order to nullify the effect
of directory or file names in the mapping, the representation
does not include directory or file names in the tree.

b. Node vector generation: We map all nodes in the tree
into an RS-dimensional node embedding vector, NRS

, in this
step. Following the properties of node2vec, first, we convert
the trees into a set of paths using a biased random walk
sampling strategy to include a diverse set of neighborhood
nodes for a node. Then, we apply skip-gram models on these
paths to get vectors for all nodes.

c. Repository directory structure vector generation: We
compute repository directory structure embedding vector, SRS

,
by synthesizing the node vectors, NRS

, in the tree. We follow
column-wise aggregation method to synthesize these into a
single vector. In order to do that, we employ six aggregation
functions: mean, mode, max, min, sum, and standard deviation
to compute a value for a column in the resultant vector.

Figure 4: The overview of our struct2vec embedding: (a) we extract
directory tree structure of the repository, (b) we map each node into
a vector following a node2vec approach, (c) we combine the node
embedding to create athe structure embedding for the repository.

Step 3. Source code embedding: source2vec. We define
source2vec as an embedding approach to represent the source
code in a repository to an RC-dimensional embedding vector.
In source2vec, we employ the Java method embedding tech-
niques and a trained model with 15.3M methods discussed
in Section II. We follow three steps in source2vec. First, we
compute the RC-dimensional method code vectors for each
method in the source file available in a repository. Second, we
aggregate these method vectors in a single RC-dimensional
file code vector. Finally, we compute the final RC-dimensional
repository code vector for all the source files by another level
of vector aggregation. The pipeline of our approach is shown
in Figure 5 and discussed below in details.

a. Method code vector generation: A software repository
may have multiple source code files and other files. First, each
source file is decomposed into its methods. Next, methods
are preprocessed into AST paths, and context vectors and are
passed to the code2vec model. The model maps each method
into an RC-dimensional embedding code vector, MCRC

.
These method vectors are then passed to the next stage of
pipeline to be aggregated into a single vector.

b. File code vector generation: After generating the
method code vectors, MCRC

, in a file, the task is now
to aggregate them into an RC-dimensional file code vector,
FCRC

. We follow a number of column-wise aggregation
functions. The aggregation functions that we investigate are
mean, mode, max, min, sum, and standard deviation. Fol-
lowing the procedure, the pipeline creates a single file code
vector, FCRC

, and passes it to the next stage to create a single
repository vector.

c. Repository code vector generation: At this stage of the
pipeline, source2vec aggregates all the RC-dimensional file
code vectors, FCRC

for all source code files available in the
repository to a single RC-dimensional repository code vector,
CRC

. The pipeline follows same procedure like previous step,
column-wise aggregation function to get the repository code
vector.

Step 4. Repo2Vec: Repository embedding. We propose
Repo2Vec to present a GitHub repository in an embedding
vectors using features from three types of information sources:
metadata, source code, and project directory structure follow-
ing the pipeline shown in Figure 2. In this step, we combine
metadata vector MRM

, directory structure vector SRS
, and
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Figure 5: The overview of our source2vec embedding: (a) we extract functions (methods) from each source file, (b) we embed each function,
(c) we combine each function embedding to create an embedding for each file, and (c) we aggregate each file embedding to create the
source-code embedding for the repository.

source code vector CRC
into repository vector ARx .

Combining the vectors of each information type is a chal-
lenge as many methods exist following two types of ap-
proaches: (a) merging the numerical values into a single vector,
using the sum, average or median, etc, and (b) concatenating
vectors to create a “longer” vector. In both approaches one
can consider weighting and normalizing to ensure “fairness”.
Here, we opt to use the concatenation approach as follows:

ARx = wM ∗MRM
+ wS ∗ SRS

+ wC ∗ CRC
(1)

where wM , wS and wC are the weights for the meta vector
MRM

, structure vector SRS
, and source code vector CRC

respectively, and these weights are in the range of [0, 1].

IV. EXPERIMENTS AND EVALUATION

We evaluate the effectiveness of Repo2Vec using real data
and answer two questions.

Q.1: What is the effect of each information type? We
want to quantify the effect and contribution of the three
information types in determining similarity.

Q.2: How does Repo2Vec compare to prior art? We
compare our method with CrossSim [12], [11], which is
arguably the state of the art approach and was shown to
outperform previous approaches [8], [10], [9].

A. Experimental Setup

We present the datasets and our evaluation approach.
1. Datasets. We consider two datasets in our evaluation: (a)

a dataset of benign repositories, D ben, which was used in
prior work [11], [12], and (b) a dataset of malware repositories,
D mal, collected by a prior repository analysis study [13].

a. Benign repositories D ben: This dataset consists of 580
Java repositories from GitHub and was used in an earlier study

introducing CrossSim [11]. We select this dataset in order
to make a fair and reproducible comparison with CrossSim.
The dataset spans various software categories such as: PDF
processors, JSON parsers, Object relational mapping projects,
Spring MVC related tools, SPARQL and RDF, Selenium test,
Elastic search, Spring MVC, Hadoop, and Music player.

b. Malware repositories D mal: This dataset consists of
433 Java malware repositories. The dataset is provided by
the SourceFinder project [13], whose goal is to identify and
provide malware source code repositories. Here, we choose
only the Java language repositories, which are the focus
of the CrossSim approach. The repositories have a fairly
wide coverage across malware families including: Botnets,
Keyloggers, Viruses, Ransomware, DDoS, Spyware, Exploits,
Spam, Malicious code injections, Backdoors, and Trojans.

2. Query-based evaluation. For consistency and fairness,
we follow the evaluation methodology and similarity metrics
of prior work [11]. We conduct our evaluation by using
similarity queries as follows: a given repository, we want to
identify its five most similar repositories.

a. The query-set Q ben: For the sake of compatibility
with CrossSim, Q ben consists of the same query set of 50
repositories as CrossSim. The query set spans various domains
e.g. SPARQL and RDF, Selenium test, Elastic search, Spring
MVC, Hadoop, and Music player.

b. The query-set Q mal: For the D mal dataset, we create
a query-set by selecting 50 repositories uniformly at random.
The query set includes various malware families such as Key-
logger, Botnet, DDoS, Ransomware, Virus, Backdoor, Trojan,
etc.

3. Ground truth generation. We establish the groundtruth
for each dataset by manual evaluation and follow the scoring
framework, which was used in prior work [11]. Namely, we
use four categories of scores to label the level of similarity:
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• Category 4: Strongly Similar (SS) repositories.
• Category 3: Weakly Similar (WS) repositories.
• Category 2: Weakly Dissimilar (WD) repositories.
• Category 1: Strongly Dissimilar (SD) repositories.
For consistency, we follow the convention of the previous

study [11]: a repository in category 3 or 4 is considered (suffi-
ciently) similar or a True Positive. Conversely, a repository in
category of 1 or 2 is considered dissimilar or a False Positive.

For the evaluation, we opted to use experts, who are more
reliable compared to a Mechanical Turk platform for highly
technical questions [23] . Specifically, we recruited three
computer science researchers with at least 3 years of Java
programming experience. The evaluators are given the target
repository and the response of 5 repositories per query. Note
that the five repositories in each response are in random
order to avoid introducing biases. The evaluators assign a
score among the four categories of scores to each repository
in the responses. The evaluators were provided with context
and information in order to calibrate their criteria. The first
and second evaluators independently assign a score to each
repository in the response. Later, the third evaluator acts as
judge by rechecking and finalizing their scores if their scores
are not same for a query.

4. Evaluation metrics. For consistency, we adopt the
metrics used in related works [11], which we describe below.

a. Success rate: We say an answer to a query is successful,
if one or more of the returned repositories is similar to
the above definition of similarity. The success rate is the
percentage of successful queries.

b. Precision: Precision is the percentage of the returned
repositories which are similar to their query repository. We
compute the precision following the equation,

precision =
SS +WS

SS +WS +WD + SD
(2)

c. True and False Positives: Following the standard def-
initions, True Positives for a query-set is the total number
of similar repositories returned, while False Positives is the
number of non-similar repositories in the answers.

d. Ranking order correlation (ROC): We quantify the
quality of the ranked answer to the query using again a metric
introduced in prior work. The intuition is to ”reward” an algo-
rithm that returns highly similar repositories ranked higher. To
quantify this, we calculate the widely-used Spearman’s rank
correlation coefficient r [24], which is defined as:

r = 1− 6
∑

(di)
2

n(n2 − 1)
(3)

where r is the coefficient, di is the difference between the
two ranks of each repository, and n is the number of ranked
repositories. The coefficient is in the range of [−1, 1], with 1
implying perfect agreement, and -1 disagreement between the
two rankings.

Comment: Given the way we formulate the query, the use
of Recall is less relevant here: we ask the algorithms to report
only the top five most similar repositories. Formulating a query

we expect the methods to return all similar repositories is
challenging for two reasons. First, we would need an estab-
lished ground-truth, since manual validation would be labor-
intensive. Second, there is no absolute way to define what
constitutes “sufficiently similar” repositories, while relative
similarity is easier to define.

B. Deploying Repo2Vec

We implement our method, which we described in Sec-
tion III using Python3.6 packages: TensorFlow2.0.0, gensim
PV-DBOW doc2vec. We discuss some implementation details
and parameter choices.

Selecting the embedding dimensions. We select 128 as
the embedding vector dimension for RM , RS , and RC ,
since well-established embedding techniques [15], [14], [21],
[20] recommend this number for striking a balance between
computational cost and effectiveness. We use the same number
of dimensions for the vector of each type of information for
fairness. Concatenating these three vectors creates a single
Repo2Vec vector with Rx=384 dimensions. The above choices
give good results as we will see later. In the future, we will
explore the effect of different vector dimensions.

Exploring the solution space via weight selection. The
weights in equation 1 give us the ability to control the
”contribution” of each information type. Here, we focus on
the following weight combinations, which give rise to three
derivative algorithms: (a) Repo2Vec M using only metadata
with weights wM = 1, wS = 0, wC = 0; (b) Repo2Vec MS
using metadata and structure with weights wM = 1, wS =
1, wC = 0; and, (c) Repo2Vec All using all three types of
information with weights wM = 1, wS = 1, wC = 1.

In other words, we explore the effect of weights but in a
coarse way. In the future, we intend to explore non-integer
weight combinations. Overall, our results suggest that equal
weights seem to work quite well, but a savvy user can
customize them to achieve optimal performance for niche
problems.

Calculating the similarity. There are many different ways
to calculate the similarity in an embedding space as the inverse
of their distance in that space. Here, we use the widely
used cosine similarity, which is often recommended for high
dimensional spaces [25], and yields great results here as well.

Selecting the right aggregation function to aggregate
multiple vectors into a single vector. As we see in Section
III, we introduce six column-wise aggregation functions to
aggregate vectors into a single vector. We find that mean
aggregation function performs better than others. In more de-
tail, we evaluate the performance of all aggregation functions:
average, max, min, mode, sum, and standard deviation. We
find that embedding with mean aggregation shows highest 93%
precision for D ben dataset and 95% precision for D mal
dataset. Max aggregation function shows the second best
result 88% and 91% precision for benign and malware dataset
respectively. Other aggregation functions show relatively lower
precision for both dataset. In the remaining of the work, we
use the mean aggregation function.
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D ben Dataset D mal Dataset
Method Success

Rate
Precision Success

Rate
Precision

Repo2Vec M 100% 62% 100% 67%
Repo2Vec MS 100% 76% 100% 82%
Repo2Vec All 100% 93% 100% 95%

Table I: Performance comparison of our three variants of Repo2Vec.
Using all three information types (metadata, structure, and source
code) provides significantly better results.

Figure 6: Repo2Vec outperforms CrossSim significantly: it finds
nearly twice as many Strongly Similar repositories and 30% fewer
False Positives.

C. Evaluation

We evaluate Repo2Vec in two ways. First, we assess the
effect of each type of information on the performance. Second,
we compare our method against CrossSim [11], which is the
state of the art approach.

a. The effect of the information types: We evaluate
the effect of information types by comparing the perfor-
mance of our three variants: Repo2Vec M, Repo2Vec MS,
and Repo2Vec All, which we defined earlier. We report the
result in Table I for our three Repo2Vec variations and both
datasets. This evaluation leads to two main observations:

Observation 1: Using all three data types provides
significantly better performance. In the table, we see that
Repo2Vec All achieves 93% and 95% precision compared to
76% and 82% when only metada and structure information
are used.

Observation 2: Metadata and structure provide
fairly good results. Although Repo2Vec All performs best,
Repo2Vec MS performs quite well especially if we compare
it with CrossSim on the same benign dataset and query-set
shown in Table II. Note that the computational effort for
using metadata and structure is significantly less compared
to analyzing the code.

b. Comparing Repo2Vec to the state of the art. We
compare the best configuration, Repo2Vec All, with Cross-
Sim with respect to success rate, precision, confidence, and
ROC for the benign dataset D ben. We find that Repo2Vec

Method Success Rate Precision Spearman’s
Coefficient (r)

CrossSim 100% 78% 0.23
Repo2Vec All 100% 93% 0.59

Table II: Repo2Vec performs better in comparison of similarity
approaches between Repo2Vec and CrossSim for the D ben dataset.

outperforms CrossSim in terms of precision and ROC and has
the same success rate as CrossSim.

Observation 3: Repo2Vec: higher precision and better
ranking. The results are presented in Table II. Although
CrossSim does well in terms of success rate, its precision of
78% is significantly lower compared to the precision of 93%
of Repo2Vec All. Also, the ranking of similar repositories
identified by Repo2Vec All is better than CrossSim. We find
that ROC = 0.59 for Repo2Vec All, and ROC = 0.23 for
CrossSim, which further suggests that Repo2Vec All is better
at computing similarity among repositories.

Observation 4: Repo2Vec provides better quality results.
Given that we have four categories of similarity, we assess the
quality of the results as follows. We plot the returned reposito-
ries from each method per category in Figure 6. Considering
category 4 (strong similarity) only, Repo2Vec All identifies
nearly 100% more such repositories! Similarly, CrossSim
reports 5 times more repositories in the strong dissimilarity
category.

In conclusion, our comparison suggests that Repo2Vec
outperforms CrossSim. The evaluation is summarized in Table
II and Figure 6. In addition, CrossSim was shown to perform
better than other related works RepoPal, CLAN, and MUD-
ABLUE [11].

V. CASE STUDIES

In this section, we want to showcase how Repo2Vec can
facilitate repository mining studies for specific applications
considering both unsupervised and supervised techniques. We
consider two likely case studies: a) classifying repositories as
benign or malicious, and b) clustering a set of repositories.

A. Identifying malware repositories

We showcase the usefulness of our Repo2Vec in a super-
vised classification problem, which is of interest to practi-
tioners [13], [26], [27]. The question is to identify whether
a repository contains malware or benign code. We assess the
effectiveness of our approach and we also compare it with the
state of the art method [13].

We create a dataset of 580 benign repositories from D ben
and 433 malware repositories from D mal collected and
discussed in Section IV.

Method Accuracy Precision Recall F1 Score
SourceFinder 90% 89% 99% 94%
Repo2Vec 97% 98% 96% 97%

Table III: Repo2Vec outperforms SourceFinder in malware repository
classification
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Figure 7: Hierarchical clustering of malware repositories. Horizontal
line 1 cuts into 3 distinct cluster of repositories and line 2 cuts into
26 distinct cluster of repositories

Using our Repo2Vec, we determine the embedding vector
for each repository. For the classification, one can use a
plethora of ML approaches. Here, we use the Naive Bayes,
which is widely used for NLP classification problems [28],
and, more importantly, it is also used by the most recent
SourceFinder study [13]. With this selection, we want to focus
more on the effect of the features when comparing to the
SourceFinder classification. We implement the SourceFinder
classifier, and apply it on our dataset.

We assess the classification performance using 10-fold cross
validation. The results are shown in Table III. Our model
classifies the malware and benign repositories with 98% pre-
cision and 96% recall which clearly outperforms the previous
malware repository classification study by SourceFinder [13].

B. Hierarchical clustering

Here we showcase whether our approach can lead to a
meaningful clustering of repositories creating the basis for
an unsupervised solution. We consider the union of our two
datasets, D mal and D ben dataset with a total of 1013
repositories.

First, we apply Repo2Vec on all the repositories and get
the embedding vectors. Second, we apply the widely-used
agglomerative hierarchical clustering (AGNES) [29] on the
vectors of the repositories. Clearly, there are many different
clustering techniques, but note that our goal is to showcase the
capability and not to propose a clustering method. We show
the resulting hierarchical clustering in Figure 7.

How meaningful is this clustering? Assessing the effec-
tiveness of a hierarchical clustering is challenging and it can
depend on specific focus of a study. A related question is at
what levels of granularity we should focus. We provide indirect
proof that our clustering provides meaningful results.

Considering two levels of granularity. We analyze our
hierarchical clustering at two different levels of granularity,
which are represented by two horizontal lines in Figure 7. The
first line (Cut 1) corresponds to a coarse level of granularity
and yields three large clusters. The second line (Cut 2)
corresponds to fine level of granularity and yields 26 smaller
clusters.

Cluster
No.

Number
of
Repos

Dominant
Repo
Family

Cluster
No.

Number
of
Repos

Dominant
Repo
Family

1 25 DDoS 14 10 Virus
2 27 Android

Keylogger
15 58 Trojan and

Spyware
3 42 Backdoor 16 33 REST API
4 32 Worms 17 48 Hadoop
5 44 Android

Botnet
18 36 JSON

Parser
6 55 Android

Malware
19 45 Music

Player
7 31 Rootkit 20 71 SPARQL
8 24 Java

Keylogger
21 146 Elastic

Search
9 32 Ransomware 22 54 Object

Relational
Mapping

10 24 Whitehat
Hacking

23 27 PDF
Processor

11 15 Malicious
Code
Injection

24 25 Graph-
Aided Searc

12 8 Android
Trojan

25 31 Selenium

13 6 Android
Backdoor

26 56 Spring
MVC

Table IV: Fine-level clustering: the profile of the 26 repository
clusters using a topic extraction method. The color of the cluster
is similar to that of Figure 7.

Cluster
No.

Number
of
Repos

Cluster
Type

Cluster Description

1 433 Malware The D mal malware repositories
2 33 Benign Cluster 16 from the fine granularity

with REST API repositories
3 547 Benign The D ben repositories.

Table V: Coarse-level clustering: the profile of the three clusters. The
color of the cluster is similar to that of Figure 7
.

We elaborate on how we select the two cuts in the dendo-
gram in Figure 7. First, we select Cut 1 to see if the clustering
distinguishes the malware from the benign repositories. Sec-
ond, we select a Cut 2 in a way that optimizes the number of
clusters. A commonly-used approach is the elbow method [30].
The elbow or knee of a curve is a cutoff point in the number
of clusters versus sum of squared error (SSE) graph, where
increasing the number of cluster shows diminishing returns.
Figure 8 shows that the elbow lies at around K=26 clusters,
which is how we select Cut 2.

Our goal is to profile the identified clusters at both levels
of granularity. The results are shown in Table V and IV.

1. Fine level cluster profiling: We want to evaluate the
nature and the cohesiveness of the 26 clusters at this level.
We extract the profile of each cluster in terms of its focus
and we present the results in Table IV. Our profiling consists
of two steps: (a) we identify the dominant keywords of the
cluster and (b) we assess how aligned its repository is to the
profile cluster. In more detail, we identify the cluster topics
using Latent Dirichlet Analysis (LDA) topic modeling [31] on
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Figure 8: Determining optimal number of clusters. Diminishing
returns of sum of squared error (SSE) is shown at red circle.

the metadata of each repository. Note that we use a randomly
selected subset of half of the repositories in the cluster. Second,
we want to identify the most dominant topic among all the
candidate topics. The most dominant topic is the one that
appears in the most repositories of the cluster. We report that
topic in table IV. The cohesiveness of the cluster is substantial:
at least 80% of the inspected repositories are clearly members
of the family of the cluster. Finally, as an extra optional step,
we manually investigate the repositories to verify the accuracy
of the profile.

This process gives us both cohesive and ”focused” clusters.
Most of the clusters contain repositories from narrowly-defined
malware or benign software families, such as Android Botnet,
Keyloggers, Trojan, DDoS, Backdoor, Hadoop, Json parser,
Elastic Search, and Spring MVC.

We provide an indication of an insight that can be extracted
here. Interestingly, the largest malware cluster (cluster 15) with
58 repositories contains repositories from Trojan and spyware
malware families. A Trojan malware program is similar to
spyware except that it is packaged as another program. This
observation can give rise to the following hypothesis: could
Trojan and Spyware have more in common than we thought?

2. Coarse level cluster profiling: The overarching observa-
tion is that the three clusters of this level correspond correctly
to different software domains as shown in Table V. We find
that following clusters: (a) the D mal, malware repositories,
(b) the D ben, benign repositories, and (c) REST API related
benign repositories, which correspond to cluster 16 in the
fine granularity clustering. The fact that the unsupervised
clustering separated malware and benign repositories suggests
that malware and benign software are different. The only
exception seems to be the REST API cluster 16, which would
have been bundled with the malware repositories if we have
created a two cluster decomposition. We argue that the REST
API repositories seem to resemble ddos and botnet malware
(opening and listening to ports etc).

VI. DISCUSSION

In this section, we discuss the scope, extensions, and limi-
tation of our study.

a. What are the limitations of Repo2Vec? As Repo2Vec
is a comprehensive approach with data from three different
sources, it performs even if every data source is not present.
However, we believe unstructured software repositories with
evasive metadata and obfuscated source code might fool
Repo2Vec. In this case, previous works might perform better as
these mostly depend on the graph connection of repositories.

b. Will our approach generalize to other programming
language repositories? Our approach is generalizable and
extendable for all programming languages, though accuracy
levels may vary. First, code2vec [21] can be extended to other
programming languages, and the researchers seem to have
plans to expand to other languages. Second, two informa-
tion types, metadata, and structure, are fairly programming-
language independent. Furthermore, from Table I, we can see
that even using only these two information types, we can
achieve reasonably good performance.

c. What will happen if the quality of metadata is low
or misleading? If metadata becomes unreliable, we could
decrease its weight in our algorithm. At the same time, we find
that developers have an inherent motivation to provide quality
metadata. First, these repositories are part of the developers
professional persona, and part of one’s professional portfolio
or resume. Second, these repositories are public, therefore
there is an intention to make them both easy to find and easy
to use. The bragging rights of having a popular repository is a
strong motivation to provide informative metadata. Hence, the
number of these type of repositories tend to be very low. We
only have 1 in 580 (0.17%) repositories in D ben, and 3 in 433
(0.69%) repositories in D mal with an empty metadata. Also,
as Repo2Vec is a comprehensive approach with data from three
information sources, even if metadata is unavailable, it will
perform sufficiently.

d. Why is GitHub search not sufficient to identify similar
repositories? GitHub only allows the retrieval of repositories
based on the keywords. Though very useful, GitHub’s query
capability is not answering the problem that we address here.
First, it does not support query by example: ”find the most sim-
ilar repositories to this repository”. Second, it does not provide
the ability to measure similarity between a pair of repositories
or rank a group of repositories based on similarity to a given
repository. Third, the service does not seem to use source-code
which as we saw, provides significant improvement.

e. Are our datasets representative? This is the typical hard
question to answer for any measurement study. We attempt
to answer the question by making two statements. First, we
evaluate our approach with the same dataset of 580 repositories
(D ben) used by well-known prior studies [11], [12]. This
dataset attempts to include repositories from ten different
families as listed in Table IV. Second, our D mal dataset
includes 13 types of malware families listed in the same table.
In the future, we intend to collect more repositories in our
dataset and include more programming languages. The key
bottleneck is the creation of groundtruth.

f. Should we consider the popularity metrics? So far,
we did not consider the popularity metrics of the repositories,
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such as the number of stars, watches, and forks. While we
intend to examine what information we can extract from
such metrics, we argue that they will mostly help in finding
the representative or influential repositories. Our preliminary
analysis suggests that popularity does not provide information
w.r.t. the type of the repository. As a proof of concept, we
can consider an initial and a forked repository: they are most
likely nearly identical, but their popularity metrics can vary
significantly.

VII. RELATED WORKS

Studying the similarity among software repositories has
gained significant attention in the last few years. Most studies
differ from our approach in that: (a) they do not incorporate
all types of data present in a repository, (b) they do not
present a feature vector keeping the semantic meaning of the
metadata, source code, and structure of a repository, and (c)
their approaches are not suitable for other ML classification
tasks such as repository family classification, malware and
benign repository classification, etc. We discuss the related
works briefly below.

a. Software similarity computation: The prior studies in
software similarity computation can be classified mainly into
three groups based on the data they use: (a) high level meta
data [7], [5], [6], [8], (b) low level source code [9], [10], and
(c) the combination of both high and low level data [11], [12].

In an earlier study [7], authors utilize repository tags to
compute the similarity among repositories written in differ-
ent languages. Capturing the weights of tags present in a
repository, they create the feature vector and apply cosine
similarity to compute the similarity. Later, [5] proposes a
library recommendation method, LibRec, using association
rule mining and collaborative filtering techniques. It searches
for the similar repositories to recommend related libraries for
developers. Another effort [6] proposes SimApp to identify
mobile applications with similar semantic requirements. A
recent approach, RepoPal [8], utilizes readme file, and stars
property of GitHub repositories to compute the similarity
between two repositories.

On the other hand, MUDABLUE [9] is the first automatic
approach to categorize the software repositories using Latent
Semantic Analysis (LSA) on source code. Considering the
source code as plain text, they create a identifiers-software
matrix and apply LSA on it to compute the similarity. Later,
another study [32] categorizes the software repositories apply-
ing Latent Dirichlet Allocation (LDA) on the source codes.
A recent study named CLAN [10] computes the similarity
between repositories by representing the source code files as
a term-document matrix (TDM) where every class represents
a row and the repositories are the columns.

Finally, a very recent study [11], [12] proposes CrossSim,
a graph based similarity computation approach using both
high level star property and API call references in source
code files in a repository. Utilizing the mutual relationship,
they represent a set of repositories as a graph and compute
the similar repositories of a given repository from the graph.

However, their work is limited by the external library call
which may fool as the similarity will largely depends on it.
Another study [33] has confirmed that CrossSim may identify
dissimilarity based on external API usage while internally
implementing similar functionalities.

b. Embedding approaches: A recent advancement in
Natural Language Processing (NLP) has opened a whole new
way of feature representation, a neural network based feature
learning approach for discrete objects. First, introduction of
word2vec [15], a continuous vector representation of words
from very large corpus, has paved the way. Later, another study
named doc2vec [14] introduces a distributed representation of
variable length paragraph or documents. More recently, the
embedding concept is being shared in other domains and has
gained enormous success in effective feature representation
such as graph embedding [20], [19], topic embedding [34],
tweet embedding [35], and code embedding [21], [36], [37],
[38].

VIII. CONCLUSIONS

We present Repo2Vec, an approach to represent a repository
in an embedding vector utilizing data from three types of
information sources: (a) metadata, (b) repository structure, and
(c) source code available in a repository. The main idea is
to aggregate the embedding representations from these three
types of information.

Our work can be summarized in the following points:
1) A highly effective embedding: Repo2Vec is a com-

prehensive embedding approach, which enables us to
determine similar repositories with 93% precision.

2) Improving the state of the art: Our approach outper-
forms the best known method, CrossSim, by a margin of
15% in terms of precision. Also, it finds nearly twice as
many Strongly Similar repositories and 30% less False
Positives.

3) Facilitating the identification of malware: Our ap-
proach can classify the malware and benign repositories
with 98% precision outperforming previous studies.

4) Enabling meaningful clustering: Our approach identi-
fies a tree hierarchy of repositories that aligns well with
their purpose and lineage.

In the future, we first plan to extend the work with a larger
dataset and a more extensive ground truth dataset. In fact,
we would like to help develop a community-wide benchmark
that will facilitate further research. Second, we would like
to extend our work to other programming languages, which
hinges mostly on developing a code2vec capability for other
languages. It would be interesting to see if different languages
lend themselves to embedding representations the same way
we are able to do here with Java.

Finally, we intend to open-source our code and datasets
to maximize the impact of our work and facilitate follow up
research.
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