
First Results from SMAUG: Insights into Star Formation Conditions from Spatially
Resolved ISM Properties in TNG50

Bhawna Motwani1,2 , Shy Genel2,3 , Greg L. Bryan1,2 , Chang-Goo Kim2,4 , Viraj Pandya2,5 , Rachel S. Somerville2,6,
Matthew C. Smith7 , Eve C. Ostriker4 , Dylan Nelson8,9 , Annalisa Pillepich10 , John C. Forbes2 ,

Francesco Belfiore11,12 , Rüdiger Pakmor13 , and Lars Hernquist7
1 Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA; bm2900@columbia.edu

2 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
3 Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA

4 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
5 UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA

6 Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA
7 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
8Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany

9 Universität Heidelberg, Zentrum für Astronomie, Institut für theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany
10 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

11 European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany
12 INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50157 Firenze, Italy

13 Heidelberg Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
Received 2020 October 22; revised 2021 November 21; accepted 2021 November 22; published 2022 February 18

Abstract

Physical and chemical properties of the interstellar medium (ISM) at subgalactic (∼kiloparsec) scales play an
indispensable role in controlling the ability of gas to form stars. In this paper, we use the TNG50 cosmological
simulation to explore the physical parameter space of eight resolved ISM properties in star-forming regions to
constrain the areas of this hyperspace where most star-forming environments exist. We deconstruct our simulated
galaxies spanning a wide range of mass (Må= 107–1011 Me) and redshift (0� z� 3) into kiloparsec-sized regions
and statistically analyze the gas/stellar surface densities, gas metallicity, vertical stellar velocity dispersion,
epicyclic frequency, and dark-matter volumetric density representative of each region in the context of their star
formation activity and environment (radial galactocentric location). By examining the star formation rate (SFR)
weighted distributions of these properties, we show that stars primarily form in two distinct environmental regimes,
which are brought about by an underlying bicomponent radial SFR profile in galaxies. We examine how the
relative prominence of these regimes depends on galaxy mass and cosmic time. We also compare our findings with
those from integral field spectroscopy observations and find similarities as well as departures. Further, using
dimensionality reduction, we characterize the aforementioned hyperspace to reveal a high degree of
multicollinearity in relationships among ISM properties that drive the distribution of star formation at
kiloparsec scales. Based on this, we show that a reduced 3D representation underpinned by a multivariate radius
relationship is sufficient to capture most of the variance in the original 8D space.

Unified Astronomy Thesaurus concepts: Star formation (1569); Star forming regions (1565); Dimensionality
reduction (1943); Interstellar medium (847); Galaxy physics (612); Galactic and extragalactic astronomy (563)

1. Introduction

Local characteristics of the interstellar medium (ISM) drive a
complex interplay of processes at the subgalactic scale that
regulate the star formation and feedback in a galaxy (e.g.,
Leroy et al. 2008, 2013; Shi et al. 2018; Dey et al. 2019; Sun
et al. 2020). Gravitational instabilities on kiloparsec scales
heavily influence the lifecycle and properties of giant molecular
clouds (GMCs), thereby setting up star formation and
controlling its efficiency in different regions of the galaxy
(e.g., Elmegreen 1987, 1991; Kim & Ostriker 2001; Kim et al.
2002; Kim & Ostriker 2006; Dobbs 2008; Bournaud et al.
2010; Dobbs et al. 2011; Renaud et al. 2013). Feedback on
these scales influences the dynamical state of the gas by
limiting its evolution toward high densities and dispersing the

clouds (e.g., Hopkins et al. 2012a; Kim et al. 2013; Kim &
Ostriker 2015; Semenov et al. 2017, 2018). Additionally,
hydrodynamical interaction between the hot and cold ISM on
kiloparsec scales facilitates the acceleration of galactic outflows
(e.g., Hopkins et al. 2012b; Muratov et al. 2015; Anglés-
Alcázar et al. 2017; Kim & Ostriker 2018) that subsequently
suppress star formation through the depletion of cold gas and
prevention of future gas cooling and accretion (e.g., Bouché
et al. 2010; Davé et al. 2012; Lilly et al. 2013; Forbes et al.
2014a; Rodríguez-Puebla et al. 2016). As such, by virtue of
controlling the incidence and effects of star formation, physical
properties of the ISM on kiloparsec scales play a vital role in
modulating the overall baryon cycle of galaxies (Somerville &
Davé 2015; Naab & Ostriker 2017).
Deciphering the link between star formation and galactic

structure is a multiscale problem, ranging from the ∼100 pc
scale of molecular cloud collapse to the 105–106 pc scale of the
circumgalactic medium. Due to the steep computational
challenge of simulating the vast range of scales involved,
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modern simulations of galaxy formation must implement only
approximate subgrid treatments of small-scale physical pro-
cesses, smoothing over much of the complexity at or below
cloud scales (Naab & Ostriker 2017). Consequently, while
results from contemporary large-scale cosmological simula-
tions have been shown to match the integrated stellar-mass
abundances and star formation rates (SFRs) of observed
galaxies (see Somerville & Davé 2015 for a review), they
invoke simplified treatments of the underlying, often less-
understood, small-scale processes such as star formation and
ISM physics, making the treatment less realistic. Under-
standing the conditions that govern the onset of star formation,
and their interrelationships, is, therefore, of fundamental
importance to the modern theory of galaxy formation and
evolution (Orr et al. 2018; Chruslinska & Nelemans 2019;
Morselli et al. 2019; Trayford & Schaye 2019). The conditions
in which stars form are crucial ingredients that must be firmly
constrained in order to improve our models of star formation
and feedback. Beyond star formation, characterizing the
physical properties of galaxies in a spatially resolved manner
also has ramifications for our understanding of how stellar
populations vary in their compositions across galactic scales as
well as the kinematic evolution and dynamical state of galaxies.

It has long been known that properties of the birth sites of
stars can differ substantially between regions not only within a
galaxy but also between galaxies of different global phenotypes
(masses, morphologies, etc.). Across large parts of a galaxy,
star-forming gas can show a range of densities and metalli-
cities, often correlated with the environment and changing with
galactocentric radial location (e.g., Pagel & Edmunds 1981;
Koda et al. 2009; Heyer & Dame 2015). Past observations
capable of directly probing cloud-scale quantities like velocity
dispersions and surface densities for cold gas—such as those
with the Atacama Large Millimeter/submillimeter Array
(ALMA) and the Northern Extended Millimeter Array—have
indeed revealed sizable deviations among the properties of star-
forming molecular clouds in different sites, namely, the
Galactic center (Shetty et al. 2012; Battersby et al. 2020),
outer parts of our Galaxy (Miville-Deschênes et al. 2016; Rice
et al. 2016), and local star-forming galaxies (Schinnerer et al.
2013; Sun et al. 2018). Along the same lines, merging and
starburst galaxies have been shown to boast higher densities,
line widths, and diluted metallicities (Irwin 1994; Elmegreen
et al. 2016; Cortijo-Ferrero et al. 2017) than most other
environments. Nevertheless, results in this area have been
limited to a handful of physical parameters and to small
samples of galaxies lacking diversity in their global properties
(Bolatto et al. 2008; Leroy et al. 2008; Wong et al. 2011;
Druard et al. 2014; Faesi et al. 2018).

In the last decade, our understanding of both gas and stellar
properties on resolved (∼kiloparsec) scales has greatly benefited
from the advent of integral field spectroscopy. Owing to the use
of wide-field multiplexed integral field units (IFUs) in large
galaxy surveys—namely, the Calar Alto Legacy Integral Field
Area Survey (CALIFA; Sánchez et al. 2012), the Sydney-AAO
Multi-object Integral field spectrograph Galaxy Survey (SAMI;
Croom et al. 2012), and Mapping Nearby Galaxies at Apache
Point Observatory survey (MaNGA; Bundy et al. 2015)—we
now have simultaneous photometric+spectroscopic information
across relatively large radial extents of low-redshift galaxies for
a statistically significant sample with varied structural and
environmental properties. Recent works from these surveys have

explored local ionization states of galactic regions and the
different processes responsible for them, the presence of resolved
scaling relations down to kiloparsec scales, their comparison
with global counterparts, and the role of star formation and
dynamical processes in giving rise to these relations (see
Sánchez 2020; Sanchez et al. 2021 and references therein).
Furthermore, the combination of IFU surveys with millimeter-
wave interferometry, e.g., EDGE-CALIFA14 (Bolatto et al.
2017) and ALMaQUEST15 (Lin et al. 2019) has now poised us
to better understand the kinematical properties of molecular gas
and its role in the fueling and quenching of star formation on
resolved scales.
On the theoretical front, recent cosmological zoom-in

simulations have allowed for detailed exploration of the
formation processes and the resulting internal structure of
galaxies for direct comparison with high-resolution observations
(Dubois et al. 2013; Anglés-Alcázar et al. 2014; Ceverino et al.
2014; Hopkins et al. 2014; Forbes et al. 2016; Wetzel et al.
2016). By pushing their resolution to the scale of molecular-
cloud complexes, these simulations have the potential to mitigate
some of the limitations of modeling small-scale processes in a
cosmological context. On the other hand, intermediate-scale
simulations capable of resolving supernova feedback (e.g., the
TIGRESS framework by Kim & Ostriker 2017; see also Gatto
et al. 2017; Kannan et al. 2020) are now helping to close the gap
between stellar (parsec) and cosmological scales (mega-
parsec) to investigate star formation and its effects at a higher
level of spatial detail. In general, these are vertically stratified
“tall-box” simulations representative of specific local star-
forming regions within a galaxy with domain sizes of ∼kilo-
parsec- and ∼parsec-scale resolution. In such simulations, the
adopted models allow for a more comprehensive and self-
consistent evolution of a self-gravitating multiphase ISM with an
explicit treatment of star formation and supernova feedback and
very few a priori assumptions. The ISM content and disk gravity
within such a framework are parameterized by a set of physical
properties (e.g., gas/stellar surface density, dark-matter density,
gas metallicity, stellar scale height/vertical velocity dispersion,
etc.), which are representative of the patch being simulated, and
play a central role in governing the process of star formation.
Hence, performing a systematic exploration of these parameters
in these simulations comprises a vital effort toward achieving
thorough insight into how diverse galactic environments
influence the formation of stars, and consequently stellar
feedback and outflow properties. Unfortunately, though, given
the high dimensionality of this parameter space, and the
immense computational cost involved in conducting a sweep
through it, this problem does not lend itself well to a brute-force
approach and requires a better sampling scheme to pick out the
most essential initial conditions.
As part of the SMAUG consortium,16 we undertake in this

paper the task of generating and statistically surveying the
multidimensional parameter space of the aforementioned local
physical properties of star-forming sites in a large-volume
cosmological simulation. Specifically, we use the Illu-
strisTNG50 simulation to do a coarse-grained (∼kiloparsec-
scale) exploration of the gas surface density, gas metallicity,
stellar surface density, stellar vertical velocity dispersion,

14 Extragalactic Database for Galaxy Evolution Survey-CALIFA.
15 ALMA-MaNGA QUEnching and STar formation.
16 https://www.simonsfoundation.org/flatiron/center-for-computational-
astrophysics/galaxy-formation/smaug
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epicyclic frequency, and dark-matter volumetric density in a
statistically significant sample of galaxies across a wide range
of galaxy mass as well as redshift. While these properties may
not potentially be exhaustive in describing the conditions of
star formation—either because other properties have a less
obvious connection to star formation or because the timescales
for their evolution are short compared to the star formation time
—we have aimed to examine the most common quantities upon
which contemporary first-principles-based models are built
(Table 1 summarizes the list). We study these physical
parameters in the context of ongoing star formation (via star
formation surface density) and the galactic location/environ-
ment (radial galactocentric distance) of each site. In doing this
study, our goal is to uncover the region(s) of the parameter
space over which most star-forming environments exist, or in
other words, identify the birth conditions in which most stars in
the universe form. Alongside this, our work will enable the
recognition of meaningful initial conditions for future local/
tall-box simulations and help devise an optimal strategy for
their exploration. Doing so would enable us to understand the
link between star formation and outflows directly, which is a
key element of the SMAUG project’s larger goal to develop
and implement advanced subgrid recipes, such as for star
formation, winds, and black hole feeding, that are built on the
results of simulations that explicitly resolve small-scale
physics, thereby eliminating the necessity of tuning to
observations (see Angles-Alcazar et al. 2021; Fielding et al.
2020; Kim et al. 2020; Li et al. 2020a, 2020b; Pandya et al.
2020; Smith et al. 2021 for other work in SMAUG). Lastly, the
results of our work will also be a useful research tool for
pursuing in detail future lines of inquiry including but not
limited to investigating the universality of resolved scaling
relations in galaxies and the intricate link between local star
formation histories and the scaling laws that control star
formation within galaxies.

This paper is organized as follows: Section 2 provides a brief
description of several features of the IllustrisTNG simulations
that are most pertinent to this study. Section 3 describes our
detailed methodology for generating the ISM physical para-
meter space. In Section 4, we present a picture of the parameter
space in one dimension, focusing mainly on the distributions of
all properties, as well as their dependence on galaxy masses

and cosmic time. Section 5 portrays a multidimensional view of
all of the parameters, where we briefly explore resolved scaling
relationships among properties and, later, describe the results of
dimensionality reduction conducted on the hyperparameter
space. In Section 6, we make a qualitative comparison of our
simulation results with resolved observations from the MaNGA
IFU survey and report our findings. Finally, we summarize the
conclusions of our work in Section 7.

2. The TNG Simulations

The IllustrisTNG project is a suite of gravo-magnetohydro-
dynamic simulations (Pillepich et al. 2018a; Marinacci et al.
2018; Naiman et al. 2018; Nelson et al. 2018, 2019a; Springel
et al. 2018) consisting of three separate cosmological volumes
(TNG300, TNG100, and TNG50) run using the moving-mesh
code AREPO (Springel et al. 2001) at distinct mass resolutions.
The physical model employed is described in Pillepich et al.
(2018b) and includes subgrid treatments of star formation
(Springel & Hernquist 2003), metal enrichment from stellar
evolution (Naiman et al. 2018), ideal magnetohydrodynamics
(Pakmor & Springel 2013), supernova winds, and AGN
feedback (Weinberger et al. 2017), and has been shown to
yield results that agree with observations over a diverse range
of galaxy properties. For this work, we primarily use the
highest resolution realization of the smallest volume box in the
suite, i.e., TNG50-1. Here, we present a brief summary of the
key features of TNG50-1 (hereafter identified as TNG50;
Nelson et al. 2019b; Pillepich et al. 2019) and refer the
interested reader to the papers mentioned in this section for
further details on the TNG suite.
TNG50 has a uniformly sampled domain volume of roughly

503 Mpc3 with 2× 21603 initial resolution elements and mass
resolution of 8.5× 104 and 4.5× 105 solar masses for baryons
and dark matter, respectively. The comoving gravitational
softening lengths for dark matter and collisionless star particles
is 290 pc, while the gas gravitational softening length is
adaptive and set by its cell size, with a floor at 74 pc. Both of
these values are considerably smaller than the analysis scale we
are interested in (i.e., ∼kiloparsec) and hence ensure ample
resolving power. At these values, TNG50 provides an
exceptional combination of volume alongside resolution that
allows us to meaningfully investigate spatially resolved star
formation in this study.

2.1. Star Formation in TNG50

The process of star formation from dense gas in all TNG
simulations is governed by an updated Springel & Hernquist
(2003, hereafter SH03) subgrid model of star formation, which
uses a specified density threshold as a criterion for star
formation to set in. Gas less dense than the threshold value
nth= 0.13 cm−3 (in physical units) is considered non-star-
forming, and its behavior is driven purely by hydrodynamics
(in addition to gravity) based on an ideal-gas equation of state,
whereas, above this density value, the model treats the
interstellar medium as an admixture of two phases of gas in
pressure equilibrium: (i) a cold, dense star-forming cloud phase
at a constant temperature of 103 K, and (ii) an ambient hot,
ionized phase whose temperature is determined based on the
energy injected from supernova feedback. Of these, the star-
forming phase stochastically turns into stars on a timescale set

Table 1
Constituents of the Resolved ISM Parameter Space Measured in This Work,

Their Physical Importance, and Their Units of Measurement

Property
Physical Role (in Tall-box
Models) Units

Gas surface density, Σgas Self-gravity Me kpc−2

Stellar surface density, Σå External gravity Me kpc−2

Dark matter volumetric
density, ρDM

External gravity Me kpc−3

Stellar vertical velocity
dispersion, σå

External gravity km s−1

Epicyclic frequency, κ Gravitational shear km s−1 kpc−1

Gas metallicity, Zgas Gas cooling + heating dimensionless
Star formation rate surface

density, Σsfr

L Me yr−1 kpc−2

Galactocentric radius, R L kpc

Note. All spatial quantities here are expressed in physical units (not comoving),
and property roles are defined in the context of their contribution to the tall-box
simulation physics.
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by the local cold gas density. This conversion of gas into stars
is then regulated by the balance between heating and
evaporation of cold clouds resulting from supernova feedback
(assumed to be instantaneous in this case) and the radiative
cooling of the hot phase leading to cloud growth. Finally, in
this self-regulated regime, the model describes the bulk
properties of this two-phase gas, such as its pressure and
temperature, in terms of an effective equation of state as a
function of density, and does not explicitly solve for the
multiple ionization-state- and temperature-density-based
phases.

The key way in which the model incorporated in the TNG
simulations differs from the original SH03 model is in its use of a
different initial mass function (Chabrier 2003 instead of
Salpeter 1955) as well as a softer equation of state. Additionally,
on account of the numerical challenge of forming stars due to the
very high resolution and consequently extremely short MHD time
steps in the TNG50 simulation, the model implemented therein
employs a steeper relationship between the equilibrium star
formation timescale and gas density (tå∝ n−1) for the densest gas
in the simulation (230 nth) as opposed to the canonical scaling
(∝ n−1/2) set by the observed Kennicutt–Schmidt relation
(Schmidt 1959; Kennicutt 1998) used in other TNG boxes. This
change was made for numerical efficiency reasons alone and was
found to have no significant impact on the overall gas content or
galaxy properties in the simulation (for more details, see Nelson
et al. 2019b).

Utilizing the TNG simulations, a number of studies seeking to
understand star formation and its implications have reported
promising outcomes. For example, Tacchella et al. (2019)
investigate the connection between galaxy morphology and star
formation, finding that the morphology of galaxies exhibits only a
weak correlation with their star formation activity, which matches
the observed correlation. Additionally, Donnari et al. (2019) have
characterized the star formation activity of simulated galaxies and
shown that the slope and normalization of the star-forming main
sequence in TNG are in excellent agreement with observations at
z= 0. Using an improved framework to estimate neutral gas
abundances, Diemer et al. (2019) demonstrated a good agreement
between the simulated and observed galaxy H I size–mass
relationship as well as the overall gas fractions. And most
recently, Nelson et al. (2019b) have described how the subgrid
input parameters in TNG successfully give rise to a realistic
multiphase structure and diverse properties of feedback-driven
galactic outflows. These studies, combined with the multitude of
results on other aspects of galaxy formation, provide a solid
empirical validation to the TNG model.

3. Methods and Analysis

3.1. Galaxy Sample Selection

The large volume of TNG50 provides a statistically sizable
sample of galaxies at a resolution capable of discerning the
internal structure of galaxies. Halos and their substructure are
identified in the simulation using the standard Friends-of-
Friends (FoF; Turner & Gott 1976) and SUBFIND(Springel
et al. 2001; Dolag et al. 2009) algorithms. The FoF algorithm
identifies collective groups of dark-matter particles (a.k.a.
halos) based on their physical proximity, whereafter the
SUBFIND algorithm identifies gravitationally self-bound
associations of all resolution elements combined within each
halo (a.k.a. subhalos). The gas, stars, black holes, and dark

matter associated with the most massive subhalo within an FoF
halo are considered as belonging to the central galaxy, while
the rest of the self-gravitating substructures, when present, are
classified as satellite galaxies. At the present epoch, the
simulation contains a total of ∼96,000 galaxies with Må
105 Me with a variety of morphologies, sizes, and formation
histories (e.g., Pillepich et al. 2019; Joshi et al. 2020; Pulsoni
et al. 2020). For our specific analysis, we construct a sample
consisting of both centrals and satellites as follows:

1. We select galaxies with stellar masses Må in the range
107–1011Me at redshifts z= {0, 0.5, 1, 2, 3}. The lower
limit of 107 Me is chosen to ensure measurement robustness
in view of the mass resolution of the simulation. In this
mass range, we find a range of morphologies, from the
extended, actively star-forming disks to quenched (non-star-
forming) elliptical systems, similar to those observed in the
real universe.

2. For the selected galaxies, we implement a minimum cut
on the number of particles contained within the galaxy to
be at 100 each for the gas, stars, and dark matter, such
that all three components of the galaxies are sufficiently
resolved. At the standard TNG50 resolution, this
corresponds to a minimum Må; 106.9 Me and Mdm;
107.7 Me. We also impose a minimum total SFR
threshold of 5× 10−4 Me yr−1 within a spherical volume
of twice the 3D stellar half-mass–radius (R1 2

 ) centered at
the center of mass of each galaxy. Even though the latter
measure leads to an exclusion of galaxies that are fully or
almost fully quenched, it does not adversely impact this
study given that such galaxies are not expected to
contribute much in terms of actively star-forming regions.

3. Lastly, due to our inclusion of satellite galaxies in the
sample, we take precaution to remove any misidentified
subhalos such as clumps or fragments in the outer parts of
a halo that did not arise from standard cosmological
processes of structure formation and collapse, using the
SubhaloFlag in the simulation (see Nelson et al.
2019a for more details).

Finally, our sample contains 10,394, 13,806, 16,663, 21,039,
and 20,630 galaxies, respectively, at z= {0, 0.5, 1, 2, 3}. In
totality, our selected sample at each of the redshifts encompasses
>80% of the total instantaneous star formation occurring in the
simulation volume. For most of the analysis in this paper, we
will focus on z= 0 galaxies with stellar mass in the range
109–1010Me, but also explore the variation in resulting trends
with galaxy stellar mass and redshift.

3.2. Galaxy Data Processing

Because our goal is to characterize the birth environments of
stars in the context of their corresponding ISM properties, we
set up a multidimensional physical parameter space by
conducting a coarse-grained measurement of these properties
from individual star-forming regions within our galaxy sample.
In a nutshell, we divide each galaxy into spatially resolved
regions by projecting it onto a two-dimensional image grid (in
the manner of Diemer et al. 2018), where each pixel represents
an ISM patch, and subsequently extract the physical parameters
of interest as column-integrated quantities from the image
pixels so produced. We further elaborate on the principal facets
of our analysis below. The distances utilized are all in
comoving units.
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Particle Smoothing:Due to the discretized nature of the
simulation volume and a finite mass resolution, each cell/
particle in it represents an unresolved entity that should ideally
be spatially distributed. To investigate spatially resolved
properties, as we do in this paper, it is thus important that we
alleviate the effects of this coarse sampling to avoid biasing our
quantitative analysis or making it dependent on the choice of
the analysis scale adopted.

In this work, we utilize a smoothing scheme where we
resample each star, gas, and dark-matter particle such that it
gives rise to a finitely extended distribution of subparticles. The
smoothing length σ, which governs the spatial extent within
which the subparticles originating from a parent particle are
distributed, is determined adaptively for each particle based on
the local density of the corresponding particle type. This
translates into the radius encompassing a fixed number of
nearest neighbors Nngb, which we choose to be 32 and 64 for
stars and dark matter, respectively. For gas, we use one-third of
the distance to the 32nd nearest neighbor. We note that our
choice of Nngb here is determined based on a visual conciliation
between a noticeable pixelation effect and fading of resolved
structure in galaxies. Using this smoothing length as the
standard deviation, we then convolve each particle with a
discrete 2D Gaussian kernel of size 6σ on a side and resolution
1 kpc centered on its position, giving us a collection of
subparticles that inherit the physical properties of their parent
particle in a manner that conserves the extensive properties
(mass, energy, and momentum) of the parent particle. From
here on, we use these resampled subparticles in lieu of the
original particles for further analysis.

Galaxy rotation and coarse graining: For each galaxy, we
first compile the list of both the parent (original) gas/star/dark
matter and the corresponding subparticles comprised within it.
We then calculate the angular momentum of the galaxy in its
center of mass rest frame, taken here to be that of all the star-
forming parent gas cells within R2 1 2´  and use it to perform a
rotation on the galaxy such that the Cartesian z-axis is aligned
with the direction of the calculated angular momentum vector.
This operation transforms the galaxies with (without) rotational
symmetry to a face-on (random) orientation, which is then
spatially binned using a grid of predetermined size and
resolution along the x−y plane to create an image representation
for each of the desired physical quantities. In this study, we
choose a fixed pixel scale (grid resolution) of 1 kpc, which
closely emulates the domain size of local ISM simulations, as
well as the sampling scale of modern IFU surveys. Additionally,
at this scale (which is bigger than the size of most GMCs), we
expect to naturally average over the different ISM phases that are
not explicitly resolved by the SH03 model. The overall size of
the square image is given by ( )L R R2 max 2 ,image 1 2 95,sfr» ´  ,
where R95,sfr is the radius within which 95% of all star-forming
parent gas cells of the galaxy are enclosed. This criterion allows
us to include most of the star formation in each galaxy while also
accounting for a significant fraction of its visible stellar
component. A discussion on convergence with different values
of pixel scale and simulation resolution is presented in
Appendix A. Because we do not impose any restrictions on

( )R Rmax 2 ,1 2 95,sfr
 to assume an integer or half-integer value,

we do not expect the center of the image grid to coincide with
the coordinate center of the galaxy.

3.3. Generation of Property Maps

To obtain the desired physical property maps for a galaxy,
we utilize the correspondingly binned gas, star, and dark-matter
subparticles gravitationally bound to the subhalo (as deter-
mined by SUBFIND) that lie within a vertical column of height
z=±20 kpc (unless otherwise noted) relative to the projection
plane. This value is arbitrarily chosen and was selected to
minimize the contamination from the hot gaseous corona as
well as from halo stars while preserving the contribution from
the diffuse stellar component associated with disk galaxies as
well as accommodating galaxies that do not have a well-
defined rotation axis.
Table 1 lists the eight local properties we measure in this

work. First, gas and SFR surface densities form an important
parameter space for a well-known empirical correlation, the
Kennicutt–Schmidt relation (Kennicutt & Evans 2012). Physi-
cally, it is also natural to expect that SFRs depend on the
amount of raw material for star formation, while in TNG50, the
relationship between Σsfr and Σg arises mainly, if not
completely, from the adopted star formation model (see
Section 2.1). Second, we measure the “external” gravity
parameters, including stellar surface density, stellar vertical
velocity dispersion, and dark-matter volumetric density. For
local galactic environments with a low gas fraction, nongas-
eous components would dominate gravity, setting the timescale
for star formation. Lastly, we measure gas metallicity, epicyclic
frequency, and galactocentric radius to probe the potential
ancillary dependence of star formation on gas cooling,
gravitational stability, and global structure, respectively.
In this work, we do not consider “dynamical” properties of

the gas, e.g., sound speed, vertical and radial velocity
dispersions, and gas scale height. In principle, gas scale height
(or gas vertical velocity dispersion) is important for estimating
the weight under the external gravity (the extent of the stellar
and dark-matter gravity experienced by the gas), while the gas
sound speed and radial velocity dispersion are critical for
determining the gravitational stability of the disk (they stabilize
the disk together with epicyclic motions against gravity;
Toomre’s Q parameter, Toomre 1964). However, we omit the
investigation of these properties in this paper as they are not
fully physical but are set and altered by the adopted effective
equation of state (see Section 2.1 and Vogelsberger et al. 2013).
Finally, we note that while there are potentially additional

local properties that may be important in describing star
formation, in choosing the aforementioned quantities, we have
attempted to identify those that are commonly discussed in the
context of star formation on kiloparsec scales. For example, all
properties except Σsfr are the input of local simulations where
the ISM, feedback, and star formation are modeled explicitly
(Kim & Ostriker 2017; see the second column in Table 1). It is
indeed expected that not all of these quantities would be
mutually independent and encode unique information, and we
address this aspect in a later section of this paper (see
Section 5.1).
Below, we provide the exact definitions used to calculate

local ISM properties of individual pixels:
Gas surface density Σg. Sum of the masses of all gas (sub)

particles contained within the column divided by the area of the
pixel. For non-star-forming gas, we only include the fraction of
mass present as neutral hydrogen (although this generally
includes H I + H2, the simulation does not differentiate
between the two). For gas cells below the density threshold, the
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simulation computes this fraction using the atomic network of
Katz et al. (1996) and a density-based self-shielding prescrip-
tion (Rahmati et al. 2013) in the presence of a time-dependent
uniform ultraviolet background (Faucher-Giguère et al. 2009).

Stellar surface density Σå. Sum of the masses of all star
particles present within the column divided by the pixel area.

Gas metallicity Zg. Mass-weighted mean metallicity of the
same gas as used for the calculation of Σg.

Star formation surface density Σsfr. Sum of the instantaneous
SFRs of all gas cells (as computed by the SH03 prescription;
see Section 2.1) contained within the column divided by the
area of the pixel.

Stellar vertical velocity dispersion σå. Mass-weighted
standard deviation of the z-velocity of all the star particles
present within the column.

Galactocentric radius R. Measured based on the number of
star-forming gas subparticles (Nsfg) inside the pixel. For pixels
with Nsfg� 1, R is assigned to be the Euclidean distance
between the galaxy center and the center of the pixel, whereas
when Nsfg> 1, R is the mean Euclidean distance between the
galaxy center and the SFR-weighted mean 2D position
coordinates of the gas subparticles in the pixel.

Epicyclic frequency κ. Calculated using the following
expression (simplified from Equation (3.83)–(84) in Binney
& Tremaine 2008) involving the galactocentric radius of the
pixel R and the circular velocity at that location vc(R):

( ) ( )
( )

( )R
v R

R

R

v R

v

R
2 1 1c

2

c

ck = +
¶
¶

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Here, vc(R) is due to the total mass enclosed within a spherical
volume of radius R and defined as ( )GM R R .

Dark-matter volumetric density ρdm. Sum of the masses of
all dark-matter subparticles within a column of height z=±hå,z
divided by the volume of the column. Here, hå,z denotes the
stellar half-mass height associated with the pixel.
As an example, we show in Figure 1 images of the

aforementioned physical properties for a galaxy with a high
gas-mass fraction. After generating such images for our entire
sample of galaxies, we record the values for all pixels obeying
Σsfr> 0 (hereafter dubbed “star-forming regions”) to obtain the
final 8D parameter space. We note that due to the presence of
out-of-equilibrium and merging galaxies in the simulation
volume, not all star-forming pixels in our sample are inherited
from dynamically stable disks. Nevertheless, we do not exclude
such pixels from our analysis as we are interested in exploring
all types of star-forming environments in this study.

4. Physical Properties of Star-forming Regions

One of the primary goals of our study is to understand the
dominant regime of star formation in the universe by way of
characterizing the underlying physical properties of the ISM. A
starting point for doing so would be to summarize the statistical
characteristics of the properties themselves measured from our
large sample of galaxies. Thereafter, one can glean insight into
the physical processes driving the shapes of the distribution
functions, as well as parse the degeneracies between them, by
exploring how the distributions evolve as galaxies evolve in the
redshift and stellar-mass space.
Thus, in this section, we begin by presenting probability

distributions for the measured physical properties weighted by
star formation and highlight their salient features in Section 4.1.
We then explore how these distributions change as a function
of stellar mass and redshift of the parent system in Section 4.2

Figure 1. Projections of physical properties for an example disk galaxy at z = 0 with M* = 2.84 × 1010 Me in TNG50. The images are ≈43 kpc on a side, which is
twice the radius encompassing 95% of all star-forming gas cells in this galaxy. The white circles denote twice the stellar half-mass–radius at ≈8.5 kpc.
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and Section 4.3. We also present composite distributions of
ISM conditions that have given rise to stars throughout cosmic
time in Section 4.4. Lastly, in Section 4.5, we investigate the
underlying origin of the bimodality seen in the distribution
functions presented in Section 4.1.

4.1. Distribution Functions for Low-redshift Galaxies

In order to discern which regions of the ISM physical
parameter space support most of the overall amount of star
formation, it is instructive to look at the distributions of these
parameters weighted by the SFR of the corresponding pixels.
Due to the fixed physical size of all pixels, this is equivalent to
weighting by Σsfr. In Figure 2, we show independently
normalized one-dimensional distributions of the properties of
all star-forming regions belonging to our fiducial sample
(which are galaxies with Må= 109–1010Me at z= 0). The gray
curve in each panel depicts the unweighted distribution, and in
black, we show the same distributions weighted by Σsfr. We
observe that the weighted radius distribution prefers lower
values while all other distributions are shifted toward higher
values compared to their corresponding unweighted counter-
parts. This trend is reflective of the intuitive notion that the
denser, inner regions of galaxies are more conducive to the
formation of stars on account of the gas being dense enough to
cool and collapse. More notably, we find that unlike the
unweighted distributions, a majority of the weighted distribu-
tions exhibit a strong bimodality in their shapes. This suggests
that star formation in our sample of galaxies is neither agnostic
to the properties of the ISM nor does it favor a specific range of
values but instead preferentially occurs in two distinct
environmental regimes. In the subsequent subsections, we
discuss this feature for galaxies of different masses and
redshifts and investigate its origin from radial star formation
surface density profiles of the overall population.

4.2. Dependence on Galaxy Stellar Mass

In view of the large dynamic range of galaxy masses present
in the simulation, we now look at how properties of the ISM in
star-forming regions differ between galaxies with different stellar
masses. Figure 3 shows the Σsfr-weighted distributions of ISM
properties of regions drawn from present-day (z= 0) galaxies in
four equal-sized bins of galaxy stellar mass. In each panel, the
curves become darker with increasing stellar mass from 107 to
1011 Me. We find three broad features to be apparent.
First, we notice that the distributions of gas surface density,

stellar surface density, and SFR surface density all exhibit a subtle
shift toward higher densities and SFR values for higher-mass
galaxies. While this trend is mostly manifest in the tails
(particularly, on the high-Σg/å/sfr end), the peak values of the
distributions do not significantly vary among galaxies of different
masses. Given that we are solely looking at actively star-forming
regions of the galaxies, the concurrence in the behaviors of Σg and
Σsfr is consistent with, and ensues from, the fact that the rate of
star formation in galaxies is fundamentally governed by the
density of gas on subgalactic scales. In line with this, the two are
directly related by construction in the star formation model of
TNG (Section 2.1). Additionally, the lack of strong variation in
the resolved SFR (alongside gas and stellar density) distributions
with galaxy mass confirms that star formation, being an inherently
small-scale process, is rather impervious to the overall gravita-
tional potential of the galaxy but is instead strongly influenced by
the local gravity set by Σg and Σå

Second, the mean stellar vertical velocity dispersion of star-
forming regions monotonically increases as a function of
galaxy mass, with the distributions themselves progressively
broadening while remaining unimodal. The monotonic depend-
ence can be ascribed to the fact that galaxies with a more
massive stellar component require larger dispersions to
maintain vertical dynamical equilibrium against the deepening
of their gravitational potential wells. Our finding in this case is
also corroborated by the results by Pillepich et al. (2019),

Figure 2. Independently normalized 1D probability distributions for the measured physical properties of all star-forming pixels from the sample of ≈1900 galaxies
with Må = 109–1010Me at z = 0 in TNG50. Gray curves depict the unweighted distributions for each property using only the pixels/regions with a finite amount of
star formation in them while black curves depict the corresponding Σsfr-weighted distributions. For completeness, we also show in blue the unweighted property
distributions obtained from the full pixel data set inclusive of non-star-forming pixels.
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where they show that the median 3D velocity dispersion and
scale height of stellar disks of star-forming TNG50 galaxies
indeed increase as a function of mass regardless of the sample
redshift. We suspect that the unimodal shape of this quantity
may be a consequence of phase mixing between stellar particles
with different kinematics as well as its much narrower dynamic
range compared to all other parameters.

Similar to the vertical velocity dispersion, the peak gas
metallicity also shows an increasing trend with stellar mass
(Tremonti et al. 2004), albeit with a gradual translation of the
distribution as a whole to higher values. Star-forming gas in
higher-mass galaxies is expected to be on average more enriched
than in lower-mass galaxies owing to a longer corresponding
history of star formation and deeper potential, and consequen-
tially, greater metal production and retention. In contrast, lower-
mass galaxies have a higher gas fraction relative to their stellar
material, thus making the metal content more dilute compared to
their high-mass counterparts. Interestingly, the variation in the
shapes of Zg distributions closely follows those of the corresp-
onding Σå distributions, indicating that the increase in metallicity
is systematically linked to the bias toward higher stellar densities
in more massive galaxies, hence explaining the presence of a local
mass–metallicity relationship (cf. Section 5.1).

Finally, from the quantities exhibiting bimodally shaped
distributions, we find that at a given redshift (here, z= 0), star
formation almost exclusively takes place in the high-dark-matter-
density innermost regions of low stellar-mass galaxies, while in
the higher-mass galaxies, a gradual suppression of this concen-
trated star formation paves way for relatively more diffuse star
formation in lower-density regions. These two regimes are
roughly equally populated for galaxies with Må; 109 Me, above
and below which star formation is prevalent in separate sets of
parameters. This trend appears to be due in part to galaxies being
more extended at larger masses, hence availing more area for star
formation to happen at large radii. This size increase effect is
reflected in the translation occurring in the peak positions of the R
distribution toward larger values for larger masses. However,

other factors could also potentially be at play, namely, an
increasing prevalence of central AGN feedback in more massive
galaxies (Kauffmann et al. 2003; Wang & Kauffmann 2008;
Bongiorno et al. 2016) as well as mass-dependent secular
transformation processes leading to a decline in the central gas
supply that give rise to a quiescent dense center surrounded by a
more extended gas-rich annulus where star formation mainly
occurs (Kormendy & Bender 2012; Forbes et al. 2014b).

4.3. Evolution with Redshift

Having looked at how the local property distributions transform
with host galaxy stellar mass, we now explore how these
properties vary in similar-mass galaxies as a function of cosmic
time. Figure 4 shows independently normalized property
distributions for star-forming patches from galaxies at five
different epochs from z= 3 to present with the host mass fixed
in the range 1010–1011 Me at each epoch. The curves get darker
toward lower values of redshift. The panels show that the
bimodally distributed quantities favor lower-density regions at
later times compared to regions within similarly massive hosts at
higher redshifts, albeit maintaining a similar overall range of
values. At fixed mass, galaxies at higher redshifts are more
compact potentially giving rise to the aforementioned trend.
Another notable feature appears in the case of stellar velocity

dispersion, where a discernible overall shift occurs in the
distributions from higher to lower values, while their width
remains mostly unaffected. As expected, this trend can be
ascribed to the fact that galaxies at low redshifts, especially
star-forming ones, have a higher degree of rotational support
and relatively thinner disks.
Lastly, we see that the shape of the metallicity distribution

mildly changes from being bimodal for galaxies at high redshifts
to unimodal at low redshifts. As evident from the corresponding
Σg distributions, this pattern can be ascribed to the removal of
high-density, high-metallicity gas from the central regions of
galaxies. However, the range of local metallicity values for our
galaxy sample does not substantially evolve with redshift.

Figure 3. Progression in the Σsfr-weighted probability distributions of all physical quantities with the stellar mass of the parent galaxy at z = 0 in TNG50. Because the
curves in each panel are independently normalized, the respective areas under the curve here do not convey the relative amount of star formation occurring in different
mass galaxies.
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Considering that the total gas fraction of galaxies appreciably
varies with redshift at fixed stellar mass (Santini et al. 2014), the
constancy in local metallicity distributions demonstrates that the
chemical evolution in galaxies is predominantly driven through
outflows and less so via gas inflow and stellar evolution (Torrey
et al. 2019). The redshift dependence of the integrated mass–
metallicity relationship must thus result from galaxy populations
losing gas while sampling from an underlying unevolving
distribution of local gas metallicity.

4.4. Star Formation across Cosmic Time

In the preceding subsections, we looked at the full expanse of
conditions under which star formation occurs in the universe at a

fixed time and explored how these conditions depend on galaxy
mass and epoch. It is then natural to ask: what are the
distributions of stellar birth conditions that have collectively
given rise to all the stars that have ever been formed? To answer
this, we now look at resolved ISM property distributions of star-
forming regions across a very wide window of cosmic time. In
Figure 5, black curves indicate independently normalized stellar-
mass-weighted distributions obtained from a composite data set
of pixels from galaxies with Må= 107–11 Me at 18 different
snapshots—with a roughly uniform spacing of 0.1 in scale factor
—between z= 0 and 10. Each set of property values (corresp-
onding to a pixel) is weighted by the mass of newly formed stars
contributed by the associated star-forming region. Assuming that
the distribution of star-forming region properties varies weakly

Figure 4. Evolution of Σsfr-weighted probability distributions of all physical quantities with redshift for the Må = 1010–1011Me galaxy sample in TNG50. All curves
shown here are independently normalized.

Figure 5. Stellar-mass-weighted distributions for the ISM birth conditions in TNG50 for all stars formed during 10 � z � 0 in galaxies with stellar mass in the range
107–1011 Me (black), compared with the corresponding Σsfr-weighted distributions of star-forming regions properties in galaxies with Må = 1010–1011 Me at z = 1
(pink; similar to that in Figure 3). All curves are independently normalized.
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enough with time, we calculate the stellar-mass contribution for
each pixel to be its instantaneous SFR (same as Σsfr due to unit
pixel size) times the intersnapshot duration Δtsf. More precisely,
for snapshot i, ( )t t t 2i i i

sf
1 1D = -- + , where t i is the look-back

time associated with snapshot i. For the last snapshot
(corresponding to z= 0), it is ( )t t 2i i1 -- .

The property distributions have an overall strong resemblance
to the distributions we saw in Section 4.3 for galaxies with
Må= 1010–1011 Me at z= 1 (also shown in Figure 5 in pink). In
all of the panels barring σå, the similarity is apparent both in the
locations of the peaks as well as their amplitudes signifying a
connection between local ISM conditions contributing new stellar
mass in the universe to the conditions sustaining star formation in
massive galaxies at z= 1. Previously published work on the
global star formation histories of galaxies and the evolution of star
formation efficiencies have shown that galaxies with halo masses
in the range 1011.5–1012.2 Me have the highest star formation
efficiency at every epoch, and are responsible for making most of
the stars in the universe (Behroozi et al. 2013a). From the stellar-
mass–halo-mass relationship (Moster et al. 2010), this is roughly
equivalent to the stellar-mass range 1010–1011 Me, in keeping
with our result. Moreover, it has been estimated from both
observations and simulations that galaxies in this mass range build
up∼80%–90% of their stellar mass at z 2 (mostly in their disks;
Behroozi et al. 2013b; Tacchella et al. 2019) and have a mass-
weighted mean stellar age of ∼7 Gyr, corresponding to z; 1
(Behroozi et al. 2013b). This again is well reflected in our current
findings. Nonetheless, due to the influence of stellar mass formed
along the entire cosmic star formation history—which includes
stars formed at earlier times and in galaxies with lower stellar
masses—the overall distributions here are somewhat broader than
the ones we saw in the preceding sections for fixed mass and time.

4.5. The Origin of Bimodality

To obtain some insight into the source of bimodality in
several of the ISM properties we have seen thus far, we now
examine the spatial distribution of star formation. Specifically,
because the bimodality in the distributions arises from
weighting by Σsfr, we look into how the mutual variation
between star formation and ISM properties can generate
bimodality in the respective distributions of those properties.
In the preceding sections, we saw a concomitant evolution of
bimodalities in multiple quantities, hinting at a common
underlying reason for their appearance. Based on this, we
choose only one of the parameters—the galactocentric radius R
—in this section for illustrative purposes and expect our
inferences to apply equivalently to the other bimodally
distributed quantities, namely, Σå, Zg, Σsfr, κ, and ρdm.

In Figure 6 we show the sample-averaged Σsfr(R) profile
constructed using the measured values of R and Σsfr of all star-
forming pixels from our fiducial sample of galaxies.17 The
profile appears to be composed of two disparate components,18

which we demonstrate below to be responsible for the two
distinct peaks in the distributions of quantities. To ascertain the

exact shape of the profile, we fit it with a two-component
analytical model consisting of an inner plus an outer
exponential component as

( ) ( )R e e , 2R R R R
sfr E1 E2E1 E2áS ñ = S + S- -

where ΣE1(ΣE2) are the normalizations, and RE1 (RE2) is the
scale length associated with the inner (outer) exponentials. To
calculate the fit parameters, we utilize MATLABʼs “trust-region”
algorithm (a kind of nonlinear least-squares formulation) with
bisquare weights. The data points used for fitting are obtained
by binning the sample values at a uniform interval of 0.5 kpc,
while our choice of the model itself is motivated by commonly

Figure 6. Top: A two-component fit to the average radial star formation rate
surface density profile (black markers) generated using the sample of pixels
with Σsfr > 0 belonging to TNG50 galaxies in the mass range 109–10 Me at
z = 0. The best-fit curves are shown in yellow (inner exponential), purple
(outer exponential), and crimson (total). Error bars on the markers indicate the
relative standard error of the mean, and the abscissa limits do not contain data
points that were excluded from the fit. Bottom: The two components making up
the average star formation rate profile result in a bimodal shape of the
galactocentric radius distribution of star-forming regions (cf. panel 7 in
Figure 2).

17 It is important to clarify here that due to the exclusion of pixels with zero
star formation, the profile shown in Figure 6 does not represent a true radially
averaged density profile, in a way that would be constructed using a stacked
galaxy sample. Here, unlike the total pixel population in a galaxy, the number
of star-forming-only pixels per radial bin does not scale with the bin radius in a
linear fashion.
18 Though it may be intuitive to think of the two components of the profile as a
bulge and a disk, we note that this physical interpretation may not be concretely
applied for reasons mentioned in the previous footnote.
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used profiles in the literature to describe azimuthally averaged
radial distributions of H I gas and SFRs in galaxies.19 We
exclude from our fitting procedure any data points with a
relative standard error of mean values exceeding 10%.
Figure 6, top panel, depicts the fitting procedure results for
the fiducial galaxy sample. The overall best-fit profile is
represented as a solid crimson line with the individual
components plotted as yellow (inner exponential) and purple
(outer exponential) curves.

As our next step, we seek to combine the two-component fit
we obtained with the unweighted distribution (or the number
distribution) of R corresponding to the pixel sample (see the log
R panel in Figure 2). For this purpose, we obtain a functional
approximation of the unweighted distribution by fitting it to a
log-normal distribution of the form

( ) ( ) ( ) ( )f R
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Here, N(R) denotes the number of pixels as a function of radius,
Ntot is the total number of pixels, and μ and σ are the mean and
standard deviation of the distribution, respectively.

Equipped with a functional form for both the average radial
Σsfr profile as well as the unweighted distribution, we then
proceed to derive the resultant weighted distribution as
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where Σsfr,tot is the sum of Σsfr values of all pixels in the
fiducial data set.

As shown in Figure 6, bottom panel, the distribution so
obtained not only reproduces the double-peaked structure of the
original weighted distribution but also the two individual
modes present can be separately recovered from the convolu-
tion of the unweighted distribution with the “inner” and “outer”
component of the Σsfr(R) profile, respectively. The multiplicity
of modes in the weighted distribution is therefore a natural
outcome of the occurrence of multiple exponential scale
lengths in the corresponding average Σsfr(R) profile, with the
scale length values also governing the positions of the modes.

Having discerned the origins of bimodality in the ensemble
property distributions, we now examine whether, and to what
degree, the dichotomy in star formation conditions arises from two
distinct populations of galaxies contributing exclusively to either
peak. In other words, could the bimodality result from an
admixture of galaxies undergoing inside-out quenching producing
the “outer” mode with the ones with mostly central star formation
manifesting as the “inner” mode? Or perhaps a population of
small galaxies with steep exponential profiles mixed with a
separate population of large galaxies with shallow profiles? To
this end, we assimilate the pixels corresponding to each galaxy
separately and calculate the relative fraction of the galaxy’s total

star formation contained within the two modes of the ensemble
distribution. To separate the two modes, we utilize the local
minimum between the peaks as the separation radius, which for
our fiducial sample turns out to be at log R; 0.19. We use this
simplified criterion instead of a Gaussian mixture model (GMM)
for peak separation as GMMs cannot be applied to density
distributions when sample weights are in consideration. Figure 7
shows the distribution of the fractional amount of integrated SFR
of each galaxy that is contained within the “inner” mode
(generated by the inner exponential component) of the weighted
ensemble distribution of Figure 6. As can be gleaned from the
figure, the distribution spans the full range from 0 to 1, indicating
that galaxies do not in fact fall into two separate classes, viz., star-
forming cores and rings, contributing exclusively to either of the
two modes of star formation at the ensemble level. While this is
true, this does not deliver a clear conclusion about whether
multiple components exist within the SFR profiles of individual
galaxies.
The existence of a sharp transition in the slope of the ensemble

Σsfr profile may arise from two plausible scenarios: (i) a
population of galaxies with concentrated star formation and steep
profiles contributing to the inner exponential mixed with a
population of galaxies with extended star formation and shallow
profiles producing the outer exponential, or (ii) the preponderance
of galaxies individually having the presence of two different scale
lengths. To ascertain this, we investigate the shape of the average
SFR profile for our fiducial galaxy sample (Figure 8) as a function
of the spatial extent of star formation in them. Galaxies are split
into three equally populated bins of star formation size, which we
define to be the galactocentric radius of the farthest star-forming
pixel in each galaxy. The panels confirm that galaxies of different
star formation sizes all have the presence of a broken SFR profile,
albeit with a more pronounced transition (or elbow) in bigger
galaxies on account of their outer components having greater scale
lengths, and hence, shallower slopes relative to the inner
component. Combined with the inference from the previous
figure, this finding suggests that galaxies in general provide a
finite contribution to the two modes of star formation that are
present in the ensemble distribution. Additionally, the overall
skewness of the distribution in Figure 7 toward lower values

Figure 7. Histogram depicting the fractional amount of star formation within
individual TNG50 galaxies that falls within the inner mode relative to the outer
mode of the Σsfr-weighted ensemble R distribution of the fiducial stellar-mass
bin at z = 0.

19 In addition to a double exponential, we also tested a Sérsic + exponential fit
to the profile. While the two fits performed equally well at z = 0, the Sérsic +
exponential failed to accurately describe Σsfr(R) profiles across multiple other
redshifts and mass bins, leading us to exclude it from our final analysis.
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implies that the vast majority of galaxies belonging to the fiducial
sample exhibit a greater amount of star formation in their diffuse
outskirts also at the individual galaxy level, which is analogous to
and confirms the population-wide trend noted in Section 4.

5. A Multidimensional View of the ISM Parameter Space

5.1. Resolved Galaxy-scaling Relations

Having thus far examined and discussed the statistical nature
of our physical parameter space one quantity at a time, we now
look into the mutual relationships among these spatially
resolved ISM properties in a pairwise fashion, more commonly
known as resolved scaling relationships, predicted by TNG50.

In Figure 9, we present the joint distribution functions of all
possible pairs of physical properties measured for star-forming
regions belonging to the galaxies in our fiducial sample. The
diagonal panels show one-dimensional Σsfr-weighted prob-
ability density distributions for the property labeled on the
corresponding abscissa (same as in Figure 2), while each of the
off-diagonal panels shows the Σsfr-weighted two-dimensional
cumulative density contours (up to 99% represented by the
outermost contour) for the property pair indicated by the
corresponding axes labels. In the following discussion, our use
of the term linear is meant to indicate linearity in log-space, i.e.,
a single power-law relation.

Our results give rise to spatially resolved counterparts to several
canonical global galaxy-scaling relationships (Schmidt 1959;
Kennicutt 1998; Tremonti et al. 2004; Noeske et al. 2007),
namely, the mass–metallicity relation (Σå−Zg) (Barrera-Balles-
teros et al. 2016; Sánchez et al. 2019, 2017), star formation main
sequence (Σå−Σsfr) (Abdurro’uf 2018; Liu et al. 2018; Cano-Díaz
et al. 2016) and the Schmidt star formation law (Σg−Σsfr) (Bigiel
et al. 2008; Schruba et al. 2010; Leroy et al. 2013; Roychowdhury
et al. 2015; Calzetti et al. 2018). Apart from these, the figure
demonstrates a widespread presence of linear or near-linear
relationships between multiple other quantities. The existence of
some correlations such as those with galactocentric radius is
intuitively expected on account of structural and dynamical
considerations as most galaxies are known to have well-defined
density and metallicity profiles. However, other correlations (e.g.,
metallicity versus stellar velocity dispersion) have seemingly less

obvious physical origins and warrant detailed investigation in a
separate future study (P. Torrey et al.2021, in preparation).
We notice that some relationships, specifically the Schmidt

law and mutual relations between stellar-mass density, dark-
matter density, radius, and the epicyclic frequency, are
extremely tight with negligible scatter. In the case of the
former, the low scatter indicates that in TNG50, star formation
is not only very closely related to the mass of the gas (due
to SH03), but is also well sampled on kiloparsec scales across
the entire range of Σg. The latter set of relationships simply
reflects the empirically known Σå and ρdm radial profiles, as
well as the definition used for κ in our analysis (Section 2).
Contrary to this, relationships involving gas density (with the
exception of the Schmidt law) exhibit little to no correlation.
These characteristics also come up in our subsequent analysis
in Section 5.2.
In a similar vein of contrasting features, we find that while a

majority of the scaling relationships have a monotonic and
manifestly linear shape, others (most notably, all panels
representing stellar velocity dispersion) hint at a break or a
turnover. Finally, in many of the two-dimensional distributions,
the underlying bimodality in the physical quantities is
manifested as two distinct clouds, which in some cases deviate
from one another in terms of their slope, thereby giving rise to
the aforementioned broken scaling relationships.
The ubiquity of linear correlations in Figure 9 points to a

high degree of redundancy in the overall parameter space,
where multiple parameters encode shared information among
them and lessen the effective degrees of freedom or “axes of
variance” available. This information, in principle, should
therefore be accessible using a lower-dimensional representa-
tion of the same space. Motivated by this feature, we
subsequently embark on a search for a reduced representation
of the ISM hyperparameter space using the commonly used
technique of principal component analysis (PCA) for dimen-
sionality reduction.

5.2. Characterizing the Hyperspace of ISM Properties

Even though each star-forming region in our analysis is
represented by a set of multiple physical parameters, not all of
them are expected to be equally informative. Sometimes,
relationships between parameters exist (as evident in
Section 5.1), thereby lowering the degrees of freedom needed
to account for the information contained in the original space,
also known as the intrinsic dimensionality of the data set. In
order to better scrutinize what these relationships are, and their
implications for the conditions in which star formation takes
place, we now conduct a statistical characterization of our
measured 8D parameter space by means of lowering its
dimensionality using the technique of PCA. Through this
exercise, we seek to answer the question: is there a simplified
meaningful representation of the underlying distribution of star
formation in the ISM, and if yes, how many controlling
parameters are required for such a representation to work?

5.2.1. Principal Component Analysis

PCA is a widely used nonparametric analysis technique to
reveal low-dimensional representations of structures underlying
complex high-dimensional data sets. Mathematically, PCA
aims to reexpress a given data set with a new set of orthogonal
basis—constructed through a linear combination of its original

Figure 8. Average radial star formation rate surface density profiles for the
TNG50 fiducial galaxy sample separated into three different star-formation-size
bins containing a roughly equal number of galaxies.
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basis—that minimizes noise and whose axes (known as
principal components or PCs) preserve most of the variance
within the data set (for a detailed procedure, see Shlens 2014).
The PCs thus obtained are naturally uncorrelated, and are
traditionally expressed as a rank-ordered set based on their
corresponding variance explained. A lower (say, k) dimen-
sional hyperplane approximation to the initial space is then
achieved by defining a threshold total variance and keeping
only the first k PCs required to capture that threshold.

Given the vastly different units of measurements and
dynamic ranges associated with ISM properties within our
data set, we apply a number of preprocessing steps in order to

standardize all features in terms of their magnitudes and scales.
We first apply a logarithmic transformation to our entire data
set to alleviate the impact of skewness of the distributions in the
linear space and attain a more practically useful sampling
resolution across the dynamic range of all measured properties.
Additionally, we also standardize our data such that each
original dimension is rescaled to have zero mean and unit
variance; this is done to prevent variables with larger scales
from dominating the covariance structure of the data set and
biasing the directions of the resulting PCs.
In our study, we use the correlation-matrix-based PCA

implementation available in MATLAB, which uses a singular-

Figure 9. Corner plot depicting scaling relations between properties of kiloparsec-sized star-forming regions in TNG50. Densities are derived using the collective data
corresponding to all star-forming pixels from our fiducial sample. The diagonal panels show the 1D Σsfr-weighted histograms for each quantity, while colored contours
represent Σsfr-weighted cumulative joint density fractions at 10%, 30%, 50%, 70%, 90%, and 99% from innermost to outermost.
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value decomposition algorithm in lieu of the more traditional
eigenvalue decomposition to compute the PC axes. Through
the rest of this section, we will refer to the individual star-
forming pixels as samples and the corresponding ISM proper-
ties as features. The data set derived from our fiducial sample
of galaxies and analyzed herein constitutes a total of 592,362
samples each associated with an eight-dimensional feature
vector.

5.2.2. PCA Results

The PCs we get from our analysis represent a new set of axes
(obtained by a generalized rotation of the initial basis) onto
which the original variables can be projected. By virtue of
being a simple transformation of the original coordinates, the
PC space is expected to capture the most important
characteristics (such as linear correlations) of the feature space.
It is therefore instructive to look at the distributions of these
transformed coordinates, known as component “scores,” shown
here in Figure 10. As evident from the figure, the weighted
distribution of the leading-component PC0 has a bimodal shape
while the other PCs have distributions unimodal in nature. This
indicates that PC0 by itself is able to capture the distinction
between the two star formation regimes exhibited in multiple
dimensions in the original feature space. Taking advantage of
this fact, we proceed to split our full data into two separate data
sets corresponding to the aforementioned regimes (cf.
Section 4) by making a cut along the PC0 axis, which is
determined by the point of minimum between the two peaks.
We conduct PCA separately on these two subsets of the data set
so as to allow us to better understand which physical
correlations govern the dispersion within each of the two
regimes. Hereafter, the “outer mode” stands for the low-value
peak of PC0 corresponding to the low-density star-forming
region population at large galactocentric distances, whereas the
“inner mode” represents the central high-density population.

In Figure 11, we show the percentage of the total variance
explained by each PC obtained from the decomposition of the

entire fiducial data set, and the two modes separately. For the
combined data, the first component (PC0) alone captures ∼80%
of the total variance in the data set, the second one (PC1) ∼9%,
and the third (PC2) ∼6%, and the values drop sharply thereafter
with the last few PCs presumably representing noise. The
widths of the distributions in Figure 10 also portray this trend.
That the first two PCs collectively account for ∼90% of the
total variability means that a 2D projection of the feature space
could indeed provide a reasonable characterization of the
complete 8D data set. Furthermore, the bimodal shape of the
PC0 distribution alongside its high value of associated variance
suggests that most variability in the data is manifested as peak-
to-peak variance arising from the mix of two different sample
populations (i.e., bimodality) in the data set. In fact, this
variance far exceeds the sample-to-sample variability within
the peaks themselves. On the other hand, in the case of the
separate modes, the explained variance curve declines rather
gradually and the number of PCs needed to capture 90% of the
variance goes from 2 up to 5, with the respective first
components explaining far less variance (60% and 45%) than
their counterpart for the combined data.
Next, we turn toward quantitatively examining the relation-

ship between the feature space and the resulting PC space. In
other words, because PCs are a linear combination of the ISM
properties, we can determine the contribution of each of those
properties to the PCs, also known as “loading factors” (see
Table 2). Figure 12 depicts the eight ISM properties as 2D
vectors plotted in the PC0 (abscissa) versus PC1 (ordinate)
plane for the full data (upper panel) as well as the two modes
separately (lower panels). The (x, y) coordinates of each
property are their loading factors along the corresponding PC
direction. Several key attributes emerge in this figure:
From the top panel, we see that all properties contribute with

roughly equal weights to the first PC and, with the exception of
galactocentric radius, have a similarly positive sign. This
conveys a correlated equal variation of all quantities with this
component to first order. Additionally, it explains why the PC0

Figure 10. The (unweighted) Σsfr-weighted distributions of principal component scores in descending order of explained variance shown in gray (black). The vertical
dotted line indicates the PC0 value used to separate the data set in Figure 12. The first PC captures the bimodality present in multiple properties constituting the original
parameter space. Due to the log-transform applied before conducting the PCA, the scores are unitless.
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of the full data set captures the bimodality—at low values of
PC0, samples would have high values of R and low values of all
the other quantities, thereby belonging to the high-R/low-
density regime i.e., the outer mode. By the same token, samples
that have a high value of PC0 would belong to the inner mode.
A similar trend is seen in the PC0 loadings associated with the
outer mode, albeit with a reduced contribution of Σg and Σsfr.
Thus, PC0 in this case highlights processes that modulate the
environment within stellar disks, which is primarily governed
by the dynamical influence of stars and dark matter. In the inner
mode, the pattern is significantly different, and PC0 loses most
of its correlation with σå and ρdm, hence tracing a more
complex dynamical environment driven mainly by gas and
stellar gravity.

In addition to the composition of PCs, we can draw insights
pertaining to the correlations existing between the features
themselves (see Komugi et al. 2018 for a similar analysis done
with observed dust, molecular gas, and star formation proper-
ties of individual GMCs in M33). In the top panel of Figure 12,
we observe a clear clustering among ISM properties hinting at a
high degree of multicollinearity in the system. In particular, the
quantities {Σå, κ, Zg, σå, ρdm} lie in a tight cluster indicating
that they have a strong positive correlation20 among them-
selves, and a strong negative correlation with the galactocentric
radius R. Σg and Σsfr also have a positive correlation between
them, which is an expected result based on the canonical
Schmidt law. These observations are well in line with our
interpretation of Figure 9. In the case of Σg, the apparent
overall lack of linear correlation with other parameters noted in
the previous subsection also emerges in the results of our PCA
analysis. This observation is perhaps suggestive of the fact that
the variance associated with the Σg scaling laws either comes
from predominantly nonlinear dependencies or is identified as

noise and hence not captured by the high-ranking PCs shown in
Figure 11. The figure also affords us the additional clarity that
this behavior is almost entirely on account of the more
dominant outer mode. In the case of the outer mode—which we
previously saw to be representative of a stellar disk environ-
ment—the same correlations stand as in the case of the full data
set. However, in the inner mode, the correlation between Σå

and R is appreciably weakened, indicative of a more diffuse
stellar environment. Strikingly, in these central star-forming
regions, σå is no longer linked with the properties of stars but is
more tightly coupled to the gas instead. Furthermore, σå does
not show a strong correlation with the radius, signaling the near
flatness or lack of a well-defined vertical velocity-dispersion
profile in those regions.
It is worth keeping in mind here that PCA, being a linear

method, is not expected to fully capture the nonlinear aspects of
relationships between features, if present. Given that, in order
to describe a nonlinear relationship fully, one cannot rely on a
single PC. Rather, in such a case, a group of PCs is needed, of
which one would provide the best linear approximation to the
underlying relationship while the others would encompass
variances in the directions of deviations to nonlinearity. By
using a logarithmic transform, however, we are not strictly
confined to the linear regime and are able to additionally
capture power-law relationships. Although nonlinear general-
izations of PCA (such as autoencoder neural networks and
kernel-PCA) as well as more advanced manifold-learning
methods exist, they are not conducive to the kind of analysis
we have conducted in this study i.e., one that requires taking
individual sample weights into account.
While so far we stepped through the PCA results for our

fiducial sample of galaxies, we now briefly consider how these
results change when we conduct PCA on samples representing
different galaxy stellar-mass ranges and redshifts (akin to our
approach in Section 4.2, 4.3). In Figure 13, we show the
distribution of PC0 for star-forming region data sets derived
from galaxies in different stellar-mass bins at z= 0, and for
data sets corresponding to galaxies with Må= 1010–1011 Me at
different redshifts. Darker curves represent higher stellar
masses and lower redshifts. The variation in the relative
amplitude of the two peaks as a function of Må is reproduced
well (compared to those observed in Sections 4.2 and 4.3 for
the full space), as is the trend with redshift, where the
preference for star formation gradually shifts toward low-
density, disk-like extended environments for lower redshifts
and higher stellar masses. This finding reinforces our under-
standing from previous results that the leading component fully
captures the bimodality signature in the original features as
well as the inherent physical relationships that correlate them.
Lastly, in Figure 14, we compare the actual distributions of

the initial physical space parameters for our fiducial sample of
galaxies with the reconstructed versions generated only by
including the first three PCs. We find that the agreement
between the original and the low-dimensional version is
excellent. For all the physical parameters where there are
clearly two distinct peaks, we recover their respective locations
and the position of the minimum between them. On the other
hand, in terms of the relative peak heights between the two
modes, the reconstructed representations are somewhat dis-
crepant from the original distributions. As such, it is possible to
reproduce the presence of bimodality in quantity distributions
by using PC0 alone; however, capturing their exact attributes

Figure 11. Percentage of variance in the data explained by each of the principal
components.

20 The strength of the correlation goes as cos(θ), where θ is the angle between
the vectors. This means that θ = 0(180{°}) depicts perfect linear correlation
(anticorrelation).

15

The Astrophysical Journal, 926:139 (24pp), 2022 February 20 Motwani et al.



and meaningful variations within individual peaks requires
additional components. In our case, the first three PCs account
for ∼94% of the information present in the data set (see
Table 2). Hence, by retaining a substantial fraction of the
information, a three-dimensional embedding of our data set can
serve as a practically useful avenue for sampling a family of
star-forming regions for further specific investigations, such as
tall-box simulations to study feedback and gas dynamics. As a
supplementary data product, we provide the PCA loading
factors, variances explained by all of the PCs, and joint
distributions of the first three PC scores for star-forming
regions from galaxies with Må= 107–108, 108–109, 109–1010,
and 1010–1011Me at z= {0, 0.5, 1, 2, 3} at https://github.
com/bhawnamotwani/smaug.

The results of our PCA potentially direct us to an empirical
star formation prescription using kiloparsec-scale galactic
properties. Indeed, recent theoretical models for SFRs (e.g.,
Ostriker et al. 2010; Ostriker & Shetty 2011; Faucher-Giguère
et al. 2013) have proposed that Σsfr is set to provide the total
pressure support in balance with the weight of the gas, which
depends on Σg, Σå, σå, and ρdm (as well as gas vertical velocity
dispersion). In accordance with this, our data manifest strong
correlations between Σsfr and the external gravity parameters
(Σå, σå, ρdm) in addition to just Σg, which is encouraging in the
context of developing new theoretical star formation prescrip-
tions based on existing analytical models. However, in TNG50,
the SFR is set by the Schmidt law with a particular choice of
parameters (Section 2.1), and the pressure of the star-forming
gas (> nth= 0.13 cm−3) is imposed by the effective equation
of state SH03. Beyond the correlation analyses presented in this
section, the development of a new subgrid star formation model
thus needs additional investigations asking, namely, to what
extent are the PCA correlations physical or arise from the SH03
model, what is the relation between the TNG50 outcomes and
new theoretical models, and what relevant kiloparsec-scale
parameters are measurable on-the-fly in cosmological simula-
tions for the purpose of prescribing a new star formation
model? In subsequent work (S. Hassan et al. 2021, in
preparation), we will extend our study to address the
aforementioned questions.

6. Preliminary Comparison with Observations

To assess some of the results obtained from our simulations
in the context of observations, we now proceed to examine the
distributions of properties from resolved observations of nearby
star-forming galaxies from the MaNGA IFU survey data

(Bundy et al. 2015). MaNGA presents a suitable data set for a
qualitative comparison against our results—more so than other
IFU surveys (e.g., MAD, SAMI)—by offering the best
combination of galaxy sample size and spaxel size compat-
ibility with our chosen analysis scale. However, due to the
unavailability in MaNGA of an observational counterpart to
several of the “local” properties we have worked with, we limit
the comparison in this section only to a handful of quantities,
namely, Σå, Σsfr, and R.

6.1. Survey Description

The MaNGA survey is one of the three programs undertaken
as part of the fourth installment of the Sloan Digital Sky Survey
(SDSS-IV) aimed at observing the resolved kinematic structure
of ∼10,000 nearby galaxies through integral field spectrosc-
opy. The imaging and spectroscopy for the galaxies are
conducted using the 2.5 m telescope at the Apache Point
Observatory (APO) alongside specialized IFUs and the BOSS
spectrograph with coverage in the 3600–10300 Å range and
resolving power R ∼ 2000. In this work, we use the latest
public release, DR15 (Aguado et al. 2019), consisting of 3D
data cubes for a sample of 4824 unique galaxies uniformly
sampled over the stellar-mass range ∼109–1011 Me.
Raw data are reduced using the MaNGA’s internal data

reduction pipeline (Law et al. 2016) and analyzed using the
data analysis pipeline (Belfiore et al. 2019; Westfall et al.
2019). The local mass density of spaxels used in this work is
computed as part of the Pipe3D pipeline through stellar
population modeling by performing a linear decomposition of
the spectrum into simple stellar populations of different ages
and metallicities for each spaxel and correcting for dust
attenuation (using the Balmer decrement) prior to fitting (for
full details, see Sánchez et al. 2016). The local SFRs are
derived from Hα luminosity using the formula from Kennicutt
(1998) and a Chabrier (2003) initial mass function. Due to an
imposed threshold of signal-to-noise ratio = 3 on Hβ (used for
extinction correction) alongside distance and intrinsic lumin-
osity constraints, the effective median sensitivity limit of Σsfr in
MaNGA lies at ∼10−3 Me yr−1 kpc−2. The spatial coverage of
galaxies is expected to be at a minimum of up to 1.5 effective
radii (Re). Lastly, MaNGA observations have a median spatial
resolution of 2 5 FWHM (;1.8 kpc at the median redshift of
≈0.03) and are sampled at a scale of 0 5 per spaxel in the final
data cubes, which translates into a physical scale of ∼1–2 kpc
per spaxel given the redshift range of 0.01 < z < 0.15.

Table 2
Results of the Weighted Principal Component Analysis on the Full Data Set Corresponding to the Fiducial Galaxy Population

Component Σg Σå Zg Σsfr σå κ R ρdm % Variance Explained

PC0 0.3075 0.3865 0.3430 0.3495 0.2935 0.3810 −0.3765 0.3785 78.60
PC1 0.7120 −0.1255 −0.1553 0.5246 −0.1986 −0.1950 0.1932 −0.2515 9.66
PC2 0.0396 −0.0811 −0.3730 0.0247 0.9011 −0.0871 0.1575 −0.0884 6.40
PC3 −0.0303 0.1127 0.7860 −0.0021 0.2117 −0.3217 0.4036 −0.2395 3.34
PC4 −0.0533 0.7427 −0.3002 0.0152 −0.1228 −0.2577 0.4186 0.3139 0.72
PC5 0.0811 −0.4039 0.0884 −0.0003 0.0278 −0.5470 −0.0772 0.7188 0.53
PC6 −0.6150 −0.0333 −0.0399 0.7573 −0.0152 −0.1587 −0.1197 −0.0771 0.39
PC7 −0.0919 −0.3159 0.0428 0.1685 −0.0405 0.5613 0.6616 0.3274 0.36

Notes. Each row describes the linear coefficients (loadings) associated with the eight physical parameters (features) that make up the corresponding principal
component. The 8 × 8 matrix of shaded values constitutes the transpose of the coefficient matrix (CT; with rows corresponding to PCs and columns corresponding to
features) and can be used for the reconstruction of the original parameter space from the principal component values (ref. Appendix B for the exact procedure).
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6.2. Galaxy and Spaxel Selection

For our analysis, we choose all galaxies from MaNGA DR15
with a given Baldwin–Phillips–Terlevich (BPT; Baldwin et al.
1981) classification (Kewley et al. 2001; Kauffmann et al.
2003) of either “cLIER” (galaxies with kiloparsec-scale low-
ionization emission regions in their centers accompanied by
star formation in the outskirts) or “star-forming” (as determined
by Belfiore et al. 2018). To select a comparison sample for both
MaNGA and TNG, we implement a selection criterion that
matches the simulated and observed galaxies in their size–mass
plane by stochastically sampling them in a binned fashion as
shown in Figure 15. Specifically, we use a metric for the two-
dimensional effective radius of the galaxy and the total stellar
mass enclosed within the effective radius calculated from the
corresponding pixels or spaxels for each galaxy. For MaNGA,
we adopt the effective radius to be the inclination-corrected
Petrosian half-light radius (Re), and the face-on projected 2D r-
band half-light radius (R1/2,r−band) for TNG50 galaxies. The

particular choice of mass inside R1/2,r−band for TNG50 is made
in order to avoid uncertainties arising from the differences
between the definitions of the total mass in the simulation (all
mass within the 3D virial radius) and in observation (mass
calculated from light within twice the 2D Petrosian radius).
Following this procedure gives us a total of only 147 galaxies
in both MaNGA and TNG due to the highly nonoverlapping
nature of their initial distributions. Thereafter, for all the
selected galaxies, we convolve our images with a MaNGA-like
Gaussian PSF with FWHM; 1.8 kpc and then draw the
corresponding spaxel contributions from within 1.5 times Re

(R1/2,r−band) in MaNGA(TNG) so as to record their Σå, Σsfr,
and R values. Like the case for TNG50 galaxies, the R values in
MaNGA are deprojected to be in the face-on orientation. Any
spaxels containing bad data such as ill-defined stellar masses
and/or undetected SFRs are excluded from the comparison
study. Additionally, to mimic the MaNGA detection thresholds
in the simulation data, we limit our analysis to only the subset

Figure 12. Loading plots from the Σsfr-weighted principal component analysis for pixels corresponding to our fiducial sample. Colored lines with markers indicate the
coefficients of the various physical quantities associated with the first and second principal components for the entire sample (top), the outer mode (bottom left), and
the inner mode (bottom right).
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of all spaxels that obey Σå� 2× 107 Me kpc−2 and
Σsfr� 10−3 Me yr−1 kpc−2.

6.3. Inference and Discussion

In Figure 16, we present the results of our comparative
analysis between the observational and theoretical data sets.
The top panels illustrate the individually normalized
unweighted and Σsfr-weighted distributions of log Σå, log
Σsfr, and log R as dotted and solid curves, respectively. As the
figure indicates, property distributions in MaNGA cover
approximately the same range as TNG50 both in their original
unweighted as well as the star-formation-weighted forms. As a
consequence, we also achieve an overall good agreement
between the two in terms of peak height. Interestingly, due to
the observational mocking steps involved, the TNG50
distributions no longer show a discernible bimodal shape,
keeping in line with their observational counterparts. Specifi-
cally, applying the MaNGA point-spread function on the
simulation results reduces the Σsfr values of the inner pixels (at
R 2 kpc) by spreading star formation across multiple
surrounding pixels. This in turn leads to an increase in the
scale length of the otherwise steep inner exponential part of the
TNG50 radial Σsfr profile and the smoothening of the elbow
following it. This change thereby not only causes the

suppression of the “inner” mode (see Section 4.5) but also
fades the prominent separation between the two modes by
decreasing the difference between the slopes of the inner and
outer exponential components of the profile.
Notwithstanding the general conformity, property distribu-

tions in TNG50 exhibit some departures from those of
MaNGA. The weighted MaNGA distributions of Σå and Σsfr

seemingly favor peak values that are slightly greater in
comparison with those exhibited by the TNG50 curves, a
behavior that is not perceptible in the case of their unweighted
distributions. Another notable disparity is between the two R
distributions in that the TNG50 curve features a minute overall
shift (≈0.1 dex) toward higher values both in the unweighted
and weighted forms relative to MaNGA. Lastly, the imposed
hard Σå cut in the case of TNG50 expectedly manifests as a
sharp lower limit of the unweighted distribution against a much
softer, tapered edge in MaNGA. Curiously, while the peak of
the weighted R distribution in MaNGA approximately lines up
with the outer (large-radius) mode in TNG, the peak in Σå is
more compatible with the inner higher-density mode of the
corresponding simulation-derived distribution.
The bottom panel of Figure 16 depicts the average Σsfr

profiles for the two data sets, constructed in a similar fashion to
the curve shown in Figure 6. At large radii, there is a noticeable
offset in the normalizations of the two profiles (≈0.1 dex)
while they exhibit an excellent agreement with one another at
R� 7 kpc. In contrast with the two-component profile
composition discussed in Section 4.5, both the observed
MaNGA and “mock” TNG50 profiles have a smooth shape
that can be best described by a single continuous component.
Indeed, if we fit the two curves, we find that the MaNGA
(TNG) profile can be well represented by a single exponential
of scale length ;1.3(0.7) kpc plus a constant. We therefore
deem the lack of two disparate scale lengths in this case to be of
direct consequence to the shapes of the weighted distributions,
potentially explaining the absence of a bimodality. Finally, we
notice that in spite of being largely akin to observations, the
TNG profile near the center (at R< 1 kpc) is somewhat
shallower and has a value that is a factor of ≈2 lower compared
to the inferred value in MaNGA. This difference could be
partially responsible for the suppressed weighted probability,
i.e., star formation, at small radii in TNG50 relative to
MaNGA, Although, in light of our chosen simulation-sampling
scale and the spatial resolution of MaNGA (;1 and 1.8 kpc,
respectively), we note that the nature of both profiles and their
mutual comparison at these small radii may be inadequate to
draw any robust conclusions. At large radii, the TNG50 curve
has a steeper decline as indicated by the smaller best-fit scale
length, while MaNGA retains a roughly constant value of star
formation albeit with a relatively noisier profile due to a
significant dearth of star-forming spaxels in the outskirts.
Despite a careful galaxy sample selection and the application

of MaNGA-like detection limits on simulation-derived data, the
presence of minor dissimilarities between TNG50 and MaNGA
suggests that the true extent of the selection effects inherent to
the survey is perhaps not fully captured in the hard thresholds
that we have used in our analysis. The resulting discrepancies
are conspicuously reflected in the (difference between)
unweighted distributions of Σå and R, as well as the Σsfr (R)
profiles. As an example, the difference between the average
Σsfr-profile slopes at large radii and in central regions of
galaxies is symptomatic of the fact that low-Σsfr regions are

Figure 13. Evolution of the probability density distribution of the first principal
component with parent galaxy stellar mass (top) and redshift (bottom). All
curves correspond to galaxies at z = 0 in the top panel, and the mass bin 1010–
1011 Me in the bottom panel (consistent with Figures 3 and 4, respectively).

18

The Astrophysical Journal, 926:139 (24pp), 2022 February 20 Motwani et al.



preferentially underrepresented in the observational data set
that we have utilized. Such regions of low star formation are
typically found in galaxy outskirts as well as in the centers of
galaxies undergoing inside-out quenching (the latter would be
expected due to our inclusion of cLIER galaxies). Considering
that the properties of TNG galaxies such as sizes, SFRs, and
specific SFRs have previously been shown to be consistent
with observed galaxy properties (e.g., Genel et al. 2018;
Hwang et al. 2019; Stevens et al. 2019), we hypothesize that
the dearth of outer/central low-SFR pixels is borne out of
vulnerability to the nuances of survey detection limits,
particularly in Σsfr. Recently, in a direct comparison performed
by Nelson et al. (2021), resolved SFR profiles of TNG50 and
3D-HST galaxies at z= 1 have been shown to be in good
agreement, in concurrence with our results from Figure 16. On

the other hand, plausible discrepancies have previously
emerged in studies pertaining to star formation in Illustris/
TNG galaxies. For example, using TNG100, Rodriguez-Gomez
et al. (2019) found that early-type galaxies (ETGs)—which
have a high central concentration—show a greater prevalence
of star formation in the TNG framework in comparison to the
real universe. This may in turn be symptomatic of the fact that
the TNG model produces an overall highly concentrated star
formation. In the specific case of green valley galaxies,
Starkenburg et al. (2019) have also shown this feature in both
Illustris and EAGLE, alluding to a fundamental mismatch
between SFR profiles of observed and simulated galaxies. It is
thus possible that the bimodality in TNG is a stronger-than-
usual manifestation of the galaxy contraction processes enabled
by the underlying physics in the simulation. To pinpoint the
exact cause would require a detailed controlled analysis of
simulations with model variations. Additionally, an exhaustive
future study conducted using carefully generated mock-
MaNGA observations from TNG will allow us to test the
exact role played by observational effects. Both of these efforts
lie outside the scope of this work; nonetheless, we hope that
with the upcoming resolved spectroscopic surveys pushing the
detection and resolution limits, the trends emerging from our
study could be directly tested against ISM property distribu-
tions in resolved observations and provide much-needed clarity
to this picture.

7. Summary and Outlook

In this work, we use the TNG50 cosmological simulation
volume to generate and statistically survey the multidimen-
sional parameter space of resolved ISM properties across a
wide range of galaxy masses and redshifts. Specifically, we
select star-forming galaxies in the mass range 107–1011 Me at
z= {0, 0.5, 1, 2, 3}. This sample accounts for more than 80%
of the total star formation in the simulation at each of the
utilized snapshots. By dividing the galaxy into kiloparsec-sized
regions, we conduct a coarse-grained measurement of gas/
stellar surface densities, gas metallicity, stellar vertical velocity

Figure 14. A reconstruction of the original 8D physical parameter space using the first three principal components. See Appendix B for details on the exact
reconstruction procedure.

Figure 15. The matched size–mass distribution of the TNG and MaNGA
galaxy samples used for comparative analysis in this section. The counts
indicated per bin are the same for both samples. The size and mass definitions
are as described in the axis labels (with the size defined in a 2D face-on
projection) and detailed further in the text.
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dispersion, disk epicyclic frequency, SFR density, and dark-
matter volumetric density representative of each region (see
Section 3.2 for further details). We present a synopsis of the
main findings of our analyses below.

1. The distributions of all ISM properties, with the exception
of stellar vertical velocity dispersion and gas surface
density, exhibit bimodally shaped distribution functions
when weighted by star formation (Figure 2), indicating that
star formation in galaxies takes place in two separate
environmental regimes. Star formation is most favored to
occur in the outer low-density, low-metallicity regions for
high-mass galaxies (above 109 Me) while being
localized to the central high-density regions for lower-
mass galaxies (Figure 3). For galaxies in a fixed mass bin,
the preference for star formation in the outer diffuse
regions is greater at lower redshifts (Figure 4). Addition-
ally, our results show that most of the star formation in the
universe takes place in galaxies with Må= 1010–1011Me
at z� 2 (Figure 5).

2. The presence of a bimodality in property distributions
results from an underlying bicomponent average radial
SFR profile for the galaxy sample. By fitting this profile
with a combination of two exponentials, we demonstrate
that the two peaks in the weighted distributions can be
individually reproduced from the “inner” and “outer”
exponential components separately (Figure 6). We also
find that almost all galaxies sustain a finite amount of star
formation in both modes, albeit with varying degrees of
relative contributions to them (Figures 7, 8).

3. We investigate the 2D joint density distributions between
parameters (Figure 9) and find a very high degree of
multicollinearity (a.k.a. redundancy) in the 8D space.
Through linear dimensionality reduction via PCA, we
find that almost all of the intrinsic variance of the

parameter space can be well captured via a transformed
three-dimensional representation (Figures 11, 14). More-
over, the leading PC alone also captures the multi-
parameter bimodality signature present in the original
space (Figures 10, 13). This signature is manifested in the
form of a “radius-relation” (Figure 12), i.e., the antic-
orrelation of the galactocentric radius with the rest of the
bimodally distributed ISM parameters.

4. We conduct a preliminary comparison of our 1D property
distributions and SFR profiles with those obtained from
the MaNGA IFU survey for z= 0, with both galaxy
samples selected to represent similar size–mass distribu-
tions (Figures 15, 16). Upon the application of observa-
tional detection limits, the Σsfr-weighted distributions in
TNG50 lose their bimodal shape showing concordance
with the shape of the observed resolved property
distributions. The comparison yields a match between
TNG50 and MaNGA for the spread and peak locations of
the parameter distributions, as well the underlying
average radial Σsfr profiles below ;7 kpc. However, the
two samples show differences both in their Σsfr-weighted
and underlying unweighted distributions. We argue that
these deviations possibly arise from the nuances of the
observational detection limits not being fully captured in
our analysis and may also have a contribution from the
underlying physics model implemented in the simulation.

We envision that the results from our study will provide the
impetus for the construction of new heuristic star formation/
ISM prescriptions in the near future that is driven by fewer free
parameters compared to currently used subgrid models. Given
that our analysis is based on a data set acquired from a fully
cosmological, high-resolution, large-volume simulation, we
provide strong constraints for any model that endeavors to
physically describe star formation and ISM physics in galaxies.

Figure 16. Top: probability density distributions for Σå (left), Σsfr (middle), and R (right) for all well-defined star-forming spaxels in MaNGA (orange) at z = 0–0.02
compared with those from TNG50 (black) at z = 0, derived in both cases from galaxies with total stellar mass tentatively in the [109, 1010] Me range. Dotted lines
represent the initial unweighted distributions while the solid curves are weighted by Σsfr. Bottom: binned average radial star formation rate surface density profiles for
MaNGA and TNG50, with the error bars indicating the relative error of the mean in each bin. Vertical bars in gray and orange denote the analysis scale used for
TNG50 (1 kpc) and the spatial resolution of MaNGA at median redshift (;1.8 kpc), respectively.
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By facilitating an optimal sampling of realistic initial condi-
tions for future high-resolution tall-box ISM simulations (e.g.,
TIGRESS), our characterization will allow us to bridge the gap
between stellar and galactic scales by establishing a direct link
between small-scale ISM conditions and large-scale outflow
properties. Finally, our work will provide avenues for mean-
ingful comparison with similar measurements conducted with
other large-scale cosmological simulations, as well as detailed
quantitative patterns emerging from future high-precision
spatially resolved observations, especially at high redshift.
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Appendix A
Convergence with Simulation Resolution and Pixel Size

We test the convergence of our results by comparing the
average SFR profiles and the resultant Σsfr-weighted R
distributions (similar to Figure 6) in Figure 17. To ascertain
the dependence on simulation resolution, we use the two lower-
resolution same-volume counterparts of the standard TNG50-1
run, namely TNG50-2 and TNG50-3. TNG50-2(TNG50-3) has

a mass resolution of 6.8 (54.2) Me for gas and 36.3 (290.4) Me
for dark matter, making it roughly a factor of 8 (64) coarser
compared to TNG50-1. From the top-left panel in the figure,
we observe that using a coarser-resolution box has a marginal
influence on the profiles both in terms of slope and normal-
ization. The inner component of the profile gets slightly steeper
at higher resolutions while the outer profile roughly maintains
the same slope. This trend manifests as a gradual leftward shift
in the location of the inner peak compared to the outer peak in
the weighted R distributions (top-right panel). The bimodality,
nevertheless, persists in all three simulations, becoming more
discernible with an increase in the simulation resolution. We
note that at R� 20 kpc, the profiles start to noticeably diverge.
Given the mass range we are working with, we expect these
regions to correspond to the far outskirts of the galaxies with
very few star-forming gas cells, thus making the profile noisier
due to poorer sampling.
In the bottom-left panel of the figure, we show a comparison

of the same profile in TNG50-1, but this time for different
choices of pixel size (image-grid resolution). The profile slopes
do not appear to have a dependence on pixel size for pixels in
the central parts where the simulation resolution elements are
smaller due to higher densities. In these regions, star formation
is adequately resolved with a few tens of particles contributing
to each pixel on average. When the size of the pixels exceeds
the median spatial resolution of the simulation, i.e., at
l> 1 kpc, we see a decrease in the central normalization due
to the central star formation being smeared over a larger area.
This in turn causes a sharper drop in the corresponding
weighted distributions at the smallest radii (bottom-right
panel). In the outer component of the profile, we observe a
weak variation of the slope with pixel size, such that bigger
pixels give rise to steeper profiles. This is because, in galaxy
outskirts, where star formation does not have a uniform
coverage, larger pixels tend to smooth over small-scale spatial
patterns, hence acquiring increasingly lower values of Σsfr as
we go farther out. Additionally, as these profiles are binned and
only composed of star-forming spaxels, they become noisier in
the outskirts due to arbitrarily low area coverage as well as
worsening Poissonian statistics. Notwithstanding, we note that
the presence of two different scale lengths in the Σsfr profile,
and hence a bimodality in the weighted R distributions, exists
regardless of our choice of grid resolution.
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Appendix B
Reconstructing the Original Space from PCA Results

Let X be the data matrix corresponding to the initial space
with n rows for the samples and m columns denoting features
(m= 8 in our study). As described in Section 5.2.1, we
standardize our data set before conducting PCA by first
subtracting the mean vector μ from all rows and dividing them
element-wise by the standard deviation vector σ. In our case,
we made σ be the Σsfr-weighted standard deviations. Doing
this gives us the corresponding matrix of standardized data,
also known as z-scores Z. After the PCA, we obtain our results
in the form of a coefficient matrix C, which is an m×m matrix
whose columns are the m eigenvectors representing the
directions of the PCs. Then, the PC scores are nothing but a
projection of our original space along each of the PC directions.
These are given in matrix form as P= Z C, with the same
dimensionality as our original parameter space, i.e., n×m.

Now, in order to reconstruct the original data from these
scores, we apply the inverse operation such that Z= PC−1.
Due to the orthonormality of C, this is equivalent to Z PCT= .
Finally, to obtain the reconstructed X, we multiply each column
of Z by the corresponding σ value and add the corresponding
mean μ. To obtain an approximate reconstruction using only a

few PCs, say k in number, one would only use the first k PC
scores, keeping just the first k columns of C in the calculation
above.
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