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Abstract—This paper applies probabilistic amplitude shaping
(PAS) to a cyclic redundancy check (CRC) aided trellis coded
modulation (TCM) to achieve the short-blocklength random
coding union (RCU) bound. In the transmitter, the equally likely
message bits are first encoded by distribution matcher to generate
amplitude symbols with the desired distribution. The binary
representations of the distribution matcher outputs are then
encoded by a CRC. Finally, the CRC-encoded bits are encoded
and modulated by Ungerboeck’s TCM scheme, which consists of
a systematic k0

k0+1
tail-biting convolutional code and a mapping

function that maps coded bits to channel signals with capacity-
achieving distribution. This paper proves that, for the proposed
transmitter, the CRC bits have uniform distribution and that
the channel signals have symmetric distribution. In the receiver,
the serial list Viterbi decoding (S-LVD) is used to estimate the
information bits. Simulation results show that, for the proposed
CRC-TCM-PAS system with 87 input bits and 65-67 8-AM coded
output symbols, the decoding performance under additive white
Gaussian noise channel achieves the RCU bound with properly
designed CRC and convolutional codes.

Index Terms—Probabilistic amplitude shaping, Trellis coded
modulation, tail-biting convolutional code, List decoding, Short
blocklength.

I. INTRODUCTION

On the additive white Gaussian noise (AWGN) channel,
the spectral efficiency can be improved by the probabilistic
shaping (PS) [1] which optimizes the shape and probability
mass function (PMF) of the constellation set. The combination
of PS and forward error correction (FEC) techniques further
boosts the performance of a transmission system [1]–[4]. A
well-known layered PS architecture is probabilistic amplitude
shaping (PAS) [1], [2].

The transmitter of a PAS consists three modules. The
first module is a distribution matcher (DM) which maps a
sequence of binary bits with uniform distribution to a sequence
of magnitude symbols that obey a desired distribution. In
practice, DM cannot generate symbols that have arbitrary
distribution because of finite input length. Hence, a good DM
should generate symbols with distribution that is as close as
to the desired one. The popular DMs are shell-mapping (SM)
DM [5], [6], constant composition (CC) DM [7] and other
forms of DM [8].
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The second module of PAS architecture is FEC. The parity
check bits of FEC serve as the sign sequence for the magnitude
sequence. The last module realizes modulation by entrywise
multiplication between the sign sequence and the magnitude
sequence. The authors in [1], [7] use low-density parity-check
(LDPC) codes as error correction codes.

A FEC code with excellent error correction performance
is vital for PAS transmission system. LDPC code has shown
near-capacity performance with long blocklength [9]. However
LDPC codes with short blocklength do not perform as well as
LDPC codes with long blocklength, as a result of short cycles
in the Tanner graph corresponding to the code.

Recently, convolutional codes concatenated with CRCs have
shown excellent performance in short blocklength regimes
[10]–[12]. Yang et al. in [10] show that a tail-biting convolu-
tional code (TBCC) concatenated with CRC can achieve FER
performance very close to random short-blocklength RCU
bound when the decoder implements the serial list Viterbi
decoding (S-LVD) algorithm.

This paper CRC-TCM-PAS architecture, which applies
probabilistic amplitude shaping to a cyclic redundancy check
aided trellis coded modulation to achieve the short-blocklength
RCU bound. In contrast with previous works [1], [2], [6],
which use LDPC codes as FEC to provide sign sequences for
the input magnitude sequence, this paper proposes a CRC-
aided trellis coded modulation [13] (TCM) which delivers
excellent decoding performance in short-blocklength regime.
TCM consists of a TBCC and a mapping function that
preserves the magnitude distribution and generates channel
signals with capacity-achieving distribution. These two proper-
ties are proved in this paper. Simulation results show that, for
the proposed CRC-TCM-PAS system with 87 input bits and
65-67 8-amplitude-modulation (8-AM) coded output symbols,
the decoding performance under AWGN channel achieves the
RCU bound with proper CRC and convolutional code.

The remainder of this paper is organized as follows: Section
II reviews the DM and shows that SMDM outperforms CCDM
in short-blocklength regime. Section III proves that with
non-uniform input data, CRC bits have uniform distribution.
Section IV introduces the encoding of TBCC and labeling of
mapping function. This section proves that output symbols
of proposed CRC-TCM-PAS system have capacity-achieving
distribution. Simulation results are shown in Section V and
Section VI concludes this paper.
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Figure 1. Diagram of CRC-TCM-PAS transmitter with 8-AM coded modulation.

II. DISTRIBUTION MATCHING

Fig. 1 illustrates the diagram of CRC-TCM-PAS transmitter.
The transmitter consists of three key modules: distribution
matcher, CRC bit generator and TCM. This section de-
scribes distribution matcher in detail and shows that for short-
blocklength regime, SMDM is a better choice than CCDM.

Let S be a random variable that obeys Bernoulli( 1
2 ), and A

be a random variable with alphabet A = {0, 1, ..., |A| − 1}.
Denote the random sequence of S with length k by Sk, and
the random sequence of A with length N by AN . Specifically,
Sk = [S1, . . . , Sk] and AN = [A1, . . . , AN ]. A fixed-to-fixed
distribution matcher is an invertible function fDM that maps
a length-k source binary sequence Sk to a length-N sequence
AN :

fDM : {0, 1}k → AN . (1)

Denote the range of fDM by the codebook CDM and note
that CDM ⊆ AN . The goal of a distribution matcher is that, in
average, the distribution of output symbols of a DM, P (Ā),
is as close as possible to the desired distribution P (Â). One
metric to measure the performance of a distribution matcher
is normalized KL divergence [7], which is defined as:

DKL
(
P (AN )||P (ÃN )

)
N

=
1

N2k

∑
aN∈CDM

log
1

PÂN (aN )
− k

N

. (2)

(2) indicates that the codebook of the optimal distribution
matcher should consist of the first 2k length-N sequences
obtained by sorting all possible codewords in an ascending
order with respect to log 1

PÂN (aN )
, and this optimal DM is

called shell-mapping DM (SMDM) [5]. The other well-known
DM is constant composition DM (CCDM), whose codebook
contains the sequences that have the same portion of a ∈ A.
CCDM has been proven to be asymptotically optimal. The
following example shows that for short blocklength, SMDM
delivers smaller normalized KL divergence than CCDM.

Example 1. Given the desired blocklength N=64 and dis-
tribution P (Â) = {0.587, 0.312, 0.014, 0.085}, the SMDM
codebook has cardinality |CSMDM | = 287 with normalized
KL divergence 0.0376 bits, whereas CCDM codebook has
cardinality |CSMDM | = 279 with normalized KL divergence
0.1335 bits.

Example 1 shows that SMDM can provide more information
with smaller divergence for short N . Considering our short
blocklength target, this paper uses SMDM as DM module.

III. CYCLIC REDUNDANCY CHECK ENCODING

The binary converter maps a symbol sequence aN ∈ CDM
to a binary sequence. Let |A| be some power of 2, i.e., |A| =
2α. For any a ∈ A, let b(a) = [wα...w2w1] ∈ Fα2 . The non-
uniformity of A results in different distribution for each bit wi.
Given P (A), the PMF of ith bit in b(A), P (Wi) is calculated
by:

PWi
(w) =

|A|−1∑
a=1

PA(a)I
(
bi(a) = w

)
, w = 0, 1. (3)

Denote the binary representation of aN by wNα, which is also
represented in polynomial form by w(x) =

∑Nα−1
i=0 wix

i ∈
F2[x], where wi is ith bits in wNL and F2[x] denotes binary
polynomial. A m-bit CRC is specified by a degree-m binary
polynomial p(x) =

∑m
i=0 pix

i. Let u(x) =
∑Nα+m−1
i=0 uix

i

be the output of CRC encoder, u(x) is calculated by:

u(x) = xmv(x) + v(x)(mod p(x)). (4)

The CRC code is systematic, as ui+m = wi, for i =
0, ..., Nα − 1. Denote random sequence of CRC code output
by UNα+m, it has P (Ui+m) = P (Wi). i = 0, ..., Nα−1. The
following theorem shows that P (Ui), i = 0, ...,m − 1 have
uniform distribution for the α = 2 case.

Theorem 1. For a length-N random sequence AN whose
elements Ai, i = 0, ..., N−1, are identical independent distri-
bution (i.i.d) random variables with alphabet |A| = {0, 1, 2, 3}
and distribution P (A). Let W 2N be the binary representation
of AN and U2N+m be the CRC output sequence by encoding
W 2N with some degree-m CRC polynomial p(x), When N is
large enough, i.e, when N →∞, it has:

PUi(u) =

{
0.5, u = 0
0.5, u = 1

, (5)

for i = 0, 1, ...,m− 1.

Proof. Define set We = {W2i, i = 0, ..., N − 1} and Wo =
{W2i+1, i = 0, ..., N − 1}. Since |A| = 4, based on (3), the
random variables in the same set have same distribution. We
specify the probability that Wi is 0 as follows:

PWi
(0) =

{
pe, if Wi ∈ We

po, if Wi ∈ Wo
, (6)

and PWi(1) = 1− PWi(0).
A CRC code is a linear block code. Denote the set of

information bits constrained by ith parity check byWi, where
i = 0, ...,m − 1. Let Ji,e be the number of the elements be-
longed to bothWe andWi, and Ji,o be the number of elements
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Figure 2. Partitioning of 8-AM channel signals into subsets with increasing minimum subset distance ∆0 < ∆1 < ∆2

belonged to both Wo and Wi . The p.m.f of ith parity check
bit, P (Ui), can be calculated by: P (Ui) = ~Wj∈Wi

P (Wj),
where ~ is the notation of circular convolution. The discrete
Fourier transform (DFT) of P (Ui) is calculated by

DFT (P (Ui)) =
∏

Wj∈Wi

DFT (P (Wj)) (7)

= [1 (1− 2pe)
Ji,e(1− 2po)

Ji,o ]. (8)

By implementing inverse DFT, P (Ui) is given by

PUi(ui) =
1

2
+ (−1)u

i 1

2
(1− 2pe)

Ji,e(1− 2po)
Ji,o , (9)

When N is large, Ji,e and Ji,o are also large. Since |1−2pe| <
1, P (Ui), i = 0, ...,m − 1, obey uniform distribution, when
N is large.

Remark. Theorem 1 uses |A| = 4 at convenience. This
theorem can be generalized to any |A| = 2α case and any
linear block code, such as the observation in [1] for LDPC
code. Besides, if m is divisible by α, the m

α random variables
corresponding to the CRC bits have uniform distribution with
alphabet A.

IV. TRELLIS CODED MODULATION

TCM [13] is a bandwidth efficient modulation technique
that combines a convolutional code with modulation in one
function. As an example shown in Fig. 1, a coded 8-AM
modulation consists a rate- 23 convolutional code followed by
a mapping function. The convolution code takes a binary
sequence of length 2(N+m

2 ) as input and generates the binary
output sequence of length 3(N + m

2 ). Then, each 3 parallel
bits are mapped to an 8-AM channel signal xi ∈ X , where X
is the constellation set.

A. Set Partitioning Mapping Rule

In order to maximize free Euclidean distance (ED) of TCM,
Ungerboeck in [13] proposed a mapping rule called ”mapping
by set partitioning”. The mapping rule follows from successive
partitioning of a channel-signal set into subsets with increasing
minimum distance ∆0 < ∆1 < ∆2 . . . between the signals in
these subsets.

Fig. 2 shows an example of set partitioning for an equidis-
tant 8-AM constellation set. The partition result makes sure
that ∆0 < ∆1 < ∆2. The other feature of the mapping
in Fig. 2 is that the first two bits indicate the magnitude of
channel signal and the least significant bit (LSB) serves as sign
indicator. As a result, if the convolutional code is systematic,

the information bits and check bits are mapped to magnitudes
and signs, respectively. Different with the PAS architecture in
[1], which uses bit 1 to indicate +1 and use bit 0 to indicate
−1, there is no deterministic relationship between the LSB
and sign value in the labeling example shown in Fig. 2.

A systematic approach to search optimal convolutional
codes maximizing the free ED is presented in [13]. However,
the convolutional codes listed in [13] may not be optimal for
CRC-TCM-PAS system, because the input bits to convolu-
tional codes are not uniform. Simulation results in Section V
show that convolutional codes in [13] also deliver excellent
performances in CRC-TCM-PAS. It will be our future work
to find optimal convolutional code for CRC-TCM-PAS.

As shown in [14], the rate-achieving PMF of an AM signal
X under AWGN channel should be symmetric:

PX(x) = PX(−x), x ∈ X . (10)

The next sub-section proves that (10) holds when the convo-
lutional code is tail-biting with a large N .

B. Tail Biting Convolution Code

A ν-memory-elements convolutional code which takes k0-
bit input and generates n0-bit output in each stage is denoted
by a (n0, k0, ν) convolutional code. We call each k0 input
bits as a data frame, and each n0 output bits as a code frame.
This paper is focused on (k0 + 1, k0, ν) convolutional code.
Let U = {0, 1, . . . , 2k0 − 1} be the set of input symbol and
L = {0, 1, .., 2n0 − 1} be the set of output symbol. Denote
the input symbol and output symbol in stage t by ut and lt,
respectively.

A convolutional code with N data frames can be described
as a N -stages trellis. Denote the set of vertices (or states) at
time instant t by Vt. For the convolutional code, the vertex
sets at different time instant are the same, i.e., Vt = V =
{0, 1, ..., 2ν−1}. In stage t denote the edge that starts with vt,
ends at vt+1 and has a output lt by a 3-tuple (vt, lt, vt+1). Let
Et be the set of edges in stage t. In this paper, we consider
the case where set of edges in all stages are the same, i.e.,
Et = E. Let the sequence (v0, l0, v1, l1, ..., lv−1, vN ) be a
valid path in T , i.e., (vt, lt, vt+1) ∈ E, t = 0, 1, ..., N − 1. A
tail-biting trellis requires v0 = vN .

Denote the input vector in stage t by ut ∈ Fk0×12 , and
denote the state vector in time instant t by vt ∈ Fν×12 . Based
on the state-space representation of convolutional code [15],
[16], the vt+1 is a function of vt and ut, i.e., vt+1 = Axt +
But,where A ∈ Fν×ν2 and B ∈ Fν×k02 . One question for



tail-biting convolutional code is that, given an input sequence
{ut, t = 0, . . . , N − 1}, find the starting state v0 such that the
path has v0 = vN , which also means v0 = vN . [15] pointed
that the v0 can be determined by the following equation:

v0 = (AN + Iν)−1v
[zs]
N , (11)

where Iν is a size ν identity matrix and AN + Iν is an
invertible matrix [15]. The term v

[zs]
N is called zero-state

solution and is the final state when the starting state is 0 and
input sequences are {ut, t = 0, . . . , N − 1}. The encoding
process of tail-biting convolutional code has two steps:

1) Run encoding process first time by setting x0 = 0 and
record x

[zs]
N .

2) Run encoding process second time by setting x0 using
(11) and generate output data.

Therefore, in order to study distribution of output data of
TBCC, we first analyze the case where the initial state is zero
state, and then analyze the case where the initial state is tail-
biting state.

Based on the analysis on distribution matcher and CRC
encoding, the data frames except from the ones corresponded
to CRC bits have non-uniform distribution. Because the data
frames are random variables, the state in time instant t, Vt ,
is random variable. Inspired by the work in [15], [16], this
subsection uses state-space representation of convolution code
to analyze the PMF of Vt. Define P(vi) = {(vj , l)|vj ∈ V , l ∈
L, (vi, l, vj) ∈ E} Based on the trellis description, the PMF
of state in time instant t, Vt, is calculated by:

PVt(vt) =
∑

vt−1∈V
P (vt−1)

∑
(vt,l)∈P(vt−1)

P (lt, vt|vt−1). (12)

Note that each edge is uniquely mapped to an input. Let
u = g−1 ((v, l, v′)) ∈ U if (vt−1, lt, vt) is the edge corre-
sponding to the starting state vt and input data frame ut.
Hence, P (lt, vt|vt−1) can be obtained by the data frame
distribution PU

(
g−1 ((vt−1, lt, vt))

)
.

Define the matrix Ct−1 ∈ R|V|×|V| as follows:

Ct−1(vi, vj) =
∑

(vj ,k)∈P(vi)

P (k, vj |vi), (13)

Let pt = [PVt(0) . . . PVt(2
ν − 1)]

T , (12) can be rewritten by:

pt = Ct−1pt−1 =

(
t−1∏
i=0

Ci

)
p0. (14)

Theorem 2. For an N data frame convolutional code with
any initial state distribution P (V0). If the data frames are
i.i.d random variables with p.m.f. P (U) and PU (u) > 0 for
u ∈ U , then state distribution at time instant N , P (VN ), is
asymptotically uniform, i.e.

lim
N→∞

PVN (vN ) =
1

2v
, ∀vN ∈ V . (15)

Proof. The assumption that N data frames have same distri-
bution implies that Ct = C, for t = 0, ..., N − 1. Hence, (14)
can be rewritten by

pN = CNp0. (16)

(14) implies that C is a right stochastic matrix. Besides, C is
also a regular matrix. The definition of regular matrix implies
that there exists a path with finite steps for any v1, v2 ∈ V .
Note that, C contains structure of trellis T , i.e., for any vi, vj ∈
V and some l ∈ L, if (vi, l, vj) ∈ E, then C(vi, vj) 6= 0. For
the convolutional code considered in this paper, vi can always
reach vj with finite stages. As a result, C is a regular right
stochastic matrix. Based on Perron-Frobenius theorem [17],
for any regular right stochastic matrix C, it has:

1) The matrix C has 1 as an eigenvalue of multiplicity 1.
2) All the other eigenvalues λj have |λj | < 1.
Let QJQ−1 be the Jordan Canonical form of C. Based on

Perron-Frobenius theorem, J = diag(1,J2, . . . ,Jq), where Ji,
i = 2, ..., q are Jordan block matrices with some eigenvalue
which maginutde is less than 1. Let Q = [q1 . . .q2ν ] and,
q1 is the eigenvector of C with eigenvalue 1. Due to the
stochastic property, the normalized eigenvector corresponding
to eigenvalue 1 is q∗1 = [ 1√

2ν
. . . 1√

2ν
]T , let q1 = rq∗1. Let

p0 =
∑2ν

i=1 ciqi = Qc, it has pN = CNp0 = QJNc. Note
that Ji → 0 as N →∞, therefore

lim
N→∞

pN = c1rq
∗
1 =

[
1

2ν
. . .

1

2ν

]T
. (17)

Thus, when N is large enough, P (VN ) converges to uniform
distribution.

Similarly, define Q(l) = {(vi, vj)|vi, vj ∈ V , (vi, l, vj) ∈
E}, the PMF of output in stage t, P (Lt), is calculated by

PLt(lt) =
∑
v∈V

PVt−1
(v)

∑
(v,vt)∈Q(l)

P (lt, vt|v). (18)

Define the matrix D ∈ R|L|×|V| as follows

D(l, v) =
∑

(v,v′)∈Q(l)

P (lt, vt|v), (19)

where l ∈ L and v ∈ V . Define qt = [PLt(0)...PLt(|L|−1)]T .
Then (18) can be rewritten as:

qt = Dpt. (20)

Theorem 3. If pt = [ 1
2ν

1
2ν . . .

1
2ν ]T , then:

PLt(l) =
1

2
P (g−1(vt−1, l, vt)), (21)

for any l ∈ L and any (vt−1, vt) ∈ Q(l).

Proof. The matrix D has two important properties. The first
property is that each row contains 2ν−1 non-zero elements.
This is because that the register that is most adjacent to the
output is uniquely determined by the code frame, therefore it
only has 2ν−1 possible states that ends at some states with
the given output. The second property is that the non-zeros



elements in each row have same values. This property comes
from the fact that the considered convolution code has sys-
tematic form and therefore each output lt corresponding to the
edge (v, lt, v

′) is uniquely mapped to the input g−1(v, lt, v
′).

Therefore, for any l ∈ L, it has:

PLt(l) =
2ν∑
i=1

D(l, i)PVt(i), (22)

=
1

2ν
2ν−1P (g−1(vt−1, l, vt)), (23)

=
1

2
P (g−1(vt−1, l, vt)). (24)

Remark. Let b(l) be the binary representation of l and l(0) be
the LSB of b(l). Because the convolutional code is systematic,
l(0) is the check bits corresponded l. Theorem 3 implies that,
for l, l′, whose binary representations only differ in parity
check bit, it has

PLN (l) = PLN (l′). (25)

Finally, for the CRC-TCM-PAS system, in order to generate
tail-biting path, the N + m

α input data frames are encoded
with initial state zero. Note that the first N data frames
have same distribution, and N is large enough such VN
has uniform distribution. The last m

α symbols have uniform
distribution. With (14), it is easy to show that VN+m

l
has

uniform distribution.
As indicated in (11), the TBCC initial state is a linear

transformation of VN+m
l

, thus the initial state of TBCC in
CRC-TCM-PAS has uniform distribution. This also implies
that the states in all N+1 time instants in TBCC have uniform
distribution. Because the information bits determine magnitude
and check bit determines signs of the channel signal, based
on (25), we have that for the output channel signals of CRC-
TCM-PAS system, {Xi, i = 0, ..., N + m

l − 1}, PXi(x) =
PXi(−x), x ∈ X . With proper design for distribution matcher,
the first N symbols have capacity-achieving distribution and
last m

α symbols have uniform distribution.

C. List Decoding
Under the AWGN channel, Viterbi algorithm finds the code-

words that has minimum Euclidean distance to the channel
observation. In TBCC-CRC-PAS system, the prior of channel
signaling must be taken into consideration. Let y ∈ RN , the
Viterbi algorithm finds x∗ ∈ XN such that

x∗ = arg min
x∈XN

N∑
i=1

[
(xi − yi)2 + 2σ2 log

1

PX(xi)

]
. (26)

The serial list Viterbi decoding (S-LVD) [18] sequentially finds
the first H most likely codewords. With CRC concatenated,
S-LVD works as follows: S-LVD first finds the most likely
codeword and passes it through CRC check. If the codeword
passes the CRC check then S-LVD claims a success and stops.
Otherwise, S-LVD finds the second most likely codewords and
passes it to CRC check. The decoding process is repeated until
Hth most likely codeword are searched.
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Figure 3. The FER curves of CRC-TCM-PAS transmission system with 8-
AM coded modulation and : a) degree 2 CRC and b) degree 6 CRC. The black
cuuves are RCU bound for CTC-TCM-PAS with corresponding CRC length.
The FER performances of the system without DM module, i.e., CRC-TCM,
are provided for comparison.

V. SIMULATION RESULT

In this section, we exam the performance of the proposed
CRC-TCM-PAS system under AWGN channel. In this paper,
we consider the channel signal as 8-AM symbols with equidis-
tance. The constellation set X and corresponding PMF are op-
timized using dynamic-assignment Blahut-Arimoto algorithm
[14].

For the TBCC-CRC-PAS transmitter, SMDM takes k = 87
bits as input and output N = 64 symbols with average
PMF P (Ā) = [0.5742, 0.3188, 0.01642, 0.09048]. The con-
volutional codes with different memory elements ν are taken
from [13]. Finally, CRC polynomials are searched in a brute
force manner, all the CRCs are simulated and the one delivers
best performance is chosen. Note that there are efficient CRC
selection algorithms for tail-biting convolution code [19]. On
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Figure 4. The gaps of TBCC-CRC-PAS system with various CRC length and
number of elements ν to the RCU bound at the FER of 10−4. The negative
values indicate the dB values which TBCC-CRC-PAS systems outperforms
RCU bound at the FER of 10−4.

the decoder side, the list decoder has list size H = 30. Fig. 3a
shows the frame error rate (FER) of CRC-TCM-PAS system
with 2 CRC bits and various number of elements, ν, for the
convolutional code. As a comparison, the RCU bound is pro-
vided in Fig. 3a. As indicated in Sec. V, the output symbols of
the CRC-TCM-PAS don’t have same distribution. The first N
symbols obey the DM output distribution and last m2 symbols
have uniform distribution. In order to calculate RCU bound,
we assume all output symbols have PMF P (Ā). Simulation
result shows that the decoding performance gets improved
with the increase of ν. With ν = 7, the FER performance
is better than the RCU bound. Fig. 3b shows the FER curves
with 6 CRC bits and various memory elements, hence the
output blocklength is 67, which has a lower transmission rate
compared with 2-bit CRC system. Simulation results shows
that when the CRC-TCM-PAS system implements 6-bit CRC,
the FER can outperform the RCU bound only with ν = 5.

Fig. 3 also provides the decoding performances of the
system with equiprobable constellation for comparison. The
CRC-TCM takes 128 binary bits as input and generates 64+m

2
8-AM output symbols. Simulation results show that the system
with DM has a better decoding performance.

Fig. 4 shows the gaps of CRC-TCM-PAS system with
various CRC length and number of elements ν to the RCU
bound at the FER of 10−4. The negative values indicate the dB
values which CRC-TCM-PAS systems outperform RCU bound
at the FER of 10−4. Simulation result shows that increasing
ν improves the gap greatly. For ν = 7, the CRC-TCM-
PAS system with all investigated CRC length outperforms
RCU bound. Fig. 4 also shows that, increasing the number
of elements for shorter CRC length has a larger benefit on
decoding performance than for longer CRC length.

VI. CONCLUSION

This paper proposes CRC-TCM-PAS which applies proba-
bilistic amplitude shaping to a cyclic redundancy check aided
trellis coded modulation to achieve the short-blocklength RCU
bound. This paper proves that with non-uniform input data,
CRC bits have uniform distribution. This paper also proves
that output symbols of proposed CRC-TCM-PS system have
capacity-achieving distribution. Simulation results show that,
for the proposed PS-CRC-TCM system with 87 input bits and
65-67 8-AM coded output symbols, the decoding performance
under AWGN can achieve RCU bound, when proper CRC and
convolutional code are selected.
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[7] P. Schulte and G. Böcherer, “Constant composition distribution match-
ing,” IEEE Trans. on Info. Theory, vol. 62, no. 1, pp. 430–434, 2015.

[8] Y. C. Gültekin, T. Fehenberger, A. Alvarado, and F. M. Willems,
“Probabilistic shaping for finite blocklengths: Distribution matching and
sphere shaping,” Entropy, vol. 22, no. 5, p. 581, 2020.

[9] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 599–618, 2001.

[10] E. Liang, H. Yang, D. Divsalar, and R. D. Wesel, “List-decoded tail-
biting convolutional codes with distance-spectrum optimal CRCs for 5g,”
in 2019 IEEE Glob. Comm. Conf. (GLOBECOM), 2019, pp. 1–6.

[11] H. Yang, S. V. Ranganathan, and R. D. Wesel, “Serial list viterbi
decoding with CRC: Managing errors, erasures, and complexity,” in
2018 IEEE Glob. Comm. Conf. (GLOBECOM). IEEE, 2018, pp. 1–6.

[12] H. Yang, E. Liang, H. Yao, A. Vardy, D. Divsalar, and R. D. Wesel,
“A list-decoding approach to low-complexity soft maximum-likelihood
decoding of cyclic codes,” in 2019 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[13] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE
trans. on Info. Theory, vol. 28, no. 1, pp. 55–67, 1982.

[14] D. Xiao, L. Wang, D. Song, and R. D. Wesel, “Finite-support capacity-
approaching distributions for awgn channels,” in 2020 IEEE Information
Theory Workshop (ITW). IEEE, 2021, pp. 1–5.

[15] C. Weiß, C. Bettstetter, and S. Riedel, “Code construction and decoding
of parallel concatenated tail-biting codes,” IEEE Trans. on Info. Theory,
vol. 47, no. 1, pp. 366–386, 2001.

[16] C. Fragouli and R. D. Wesel, “Convolutional codes and matrix control
theory,” in Proceedings of the 7th International Conference on Advances
in Communications and Control, Athens, Greece. Citeseer, 1999.

[17] F. R. Gantmakher, The Theory of Matrices, Volume 2. American
Mathematical Soc., 2000, vol. 133.

[18] N. Seshadri and C. Sundberg, “List viterbi decoding algorithms with
applications,” IEEE trans. on comm., vol. 42, no. 234, pp. 313–323,
1994.

[19] H. Yang, L. Wang, V. Lau, and R. D. Wesel, “An efficient algorithm for
designing optimal CRCs for tail-biting convolutional codes,” in 2020
IEEE Inter. Symp. on Info. Theory (ISIT), 2020, pp. 292–297.


	I Introduction
	II Distribution Matching
	III Cyclic Redundancy Check Encoding
	IV Trellis Coded Modulation
	IV-A Set Partitioning Mapping Rule
	IV-B Tail Biting Convolution Code
	IV-C List Decoding

	V Simulation Result
	VI Conclusion
	References

