

CURRENT EVIDENCE**Mud in the city: Effects of freshwater salinization on inland urban wetland nitrogen and phosphorus availability and export**

Lauren Kinsman-Costello ,^{1*} Eban Bean ,² Audrey Goeckner,² Jeffrey W. Matthews ,³ Michael O'Driscoll,⁴ Monica M. Palta,⁵ Ariane L. Peralta ,⁴ Alexander J. Reisinger ,² Gabriela J. Reyes,⁶ Ashley R. Smyth ,⁶ Marie Stofan¹

¹Kent State University, Kent, Ohio; ²University of Florida, Gainesville, Florida; ³University of Illinois at Urbana-Champaign, Champaign, Illinois; ⁴East Carolina University, Greenville, North Carolina; ⁵Pace University, New York, New York;

⁶University of Florida, Tropical Research and Education Center, Homestead, Florida

Scientific Significance Statement

Human-caused salinization of freshwater ecosystems is a well-known threat. Wetlands in cities are vulnerable to salinization from road salt, wastewater, weathering infrastructure, and other sources. Although we protect, conserve, restore, and build wetlands in cities to remove polluting nutrients, especially nitrogen and phosphorus, salt might fundamentally change wetland soils, microbes, and plants. Our current understanding of how salinization influences wetland sediment nutrient processing is based on studies that either mimic coastal saltwater intrusion or add only sodium chloride. Urban freshwater salinization is far more variable in ionic composition, ionic strength, and temporal loading than either of these scenarios. By reviewing the results of published experiments, we demonstrate that together, the effects of freshwater salinization diminish the capacity of wetlands to remove polluting nutrients.

Abstract

Salinization and eutrophication are nearly ubiquitous in watersheds with human activity. Despite the known impacts of the freshwater salinization syndrome (FSS) to organisms, we demonstrate a pronounced knowledge gap on how FSS alters wetland biogeochemistry. Most experiments assessing FSS and biogeochemistry pertain to coastal saltwater intrusion. The few inland wetland studies mostly add salt as sodium chloride. Sodium chloride alone does not reflect the ionic composition of inland salinization, which derives from heterogeneous sources, producing spatially and temporally variable ionic mixtures. We develop mechanistic hypotheses for how elevated ionic strength and changing ionic composition alter urban wetland sediment biogeochemistry, with the prediction that FSS diminishes nutrient removal capacity via a suite of related direct and indirect processes. We propose that future efforts specifically investigate inland urban wetlands, a category of wetland heavily relied on for its biogeochemical processing ability that is likely to be among the most impacted by salinization.

*Correspondence: lkinsman@kent.edu

Associate editor: Stephanie Melles

Author Contribution Statement: LK-C led the entire manuscript effort. LK-C, EB, JM, MP, AP, AJR, and AS developed the research question and major themes. All authors contributed to reviewing the literature and drafting text. LK-C edited final version of the paper.

Additional Supporting Information may be found in the online version of this article.

This is an open access article under the terms of the [Creative Commons Attribution](#) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Anthropogenic freshwater salinization is ubiquitous (Cañedo-Argüelles Iglesias 2020; Kaushal *et al.* 2021). Increasing salt concentrations, enhanced variability, and changing ionic composition impact freshwater organisms (Hintz and Relyea 2019) and alter geochemical dynamics (Chambers *et al.* 2016). Salinization and its effects, also known as the freshwater salinization syndrome (FSS) (Kaushal *et al.* 2018, 2019, 2021), have been documented in diverse freshwater ecosystems including lakes (Dugan *et al.* 2017a), streams (Kaushal *et al.* 2005, 2018; Reisinger *et al.* 2019), rivers (Cañedo-Argüelles *et al.* 2013), coastal wetlands (Tully *et al.* 2019), and groundwater (Cassanelli and Robbins 2013; Kelly *et al.* 2018; Jamshidi *et al.* 2020). An emergent body of research on FSS has focused on streams and rivers at catchment scales (Kaushal *et al.* 2017, 2018; Stets *et al.* 2018; Schulz and Cañedo-Argüelles 2019; Kaushal *et al.* 2021). In contrast, FSS is understudied in wetlands, particularly noncoastal inland wetlands. Although several studies indicate that FSS impacts inland freshwater wetlands (Wilcox 1986; Pugh *et al.* 1996; Herbert *et al.* 2015; Rhodes and Guswa 2016), most published research on wetland salinization has focused on coastal wetlands experiencing salinization associated with sea level rise (Herbert *et al.* 2015; Tully *et al.* 2019) and arid region wetlands (Jolly *et al.* 2008). Inland wetlands, especially urban ecosystems like roadside ditches, stormwater ponds, and accidental wetlands (Palta *et al.* 2017; Clifford and Heffernan 2018; Sinclair *et al.* 2020; Tatariw *et al.* 2021), are often on the salinization “front lines,” directly receiving anthropogenic salt loads (Van Meter *et al.* 2011; Hill and Sadowski 2016; Liang *et al.* 2017). Although relied upon, and sometimes specifically designed and constructed, for nutrient removal (Zedler 2003; Vymazal 2007), salinization may constrain urban wetland biogeochemical function through a combination of interrelated mechanisms.

Salinizing urban wetlands are ubiquitous in landscapes with human presence

Although human development has led to widespread global wetland loss and degradation, freshwater wetlands remain ubiquitous in many cities (van Asselen *et al.* 2013; Steele and Heffernan 2014). Three defining wetland features—hydrology, soils, and vegetation—are highly altered in urban settings (Palta and Stander 2020). Age, history, and varying degrees of active management create a complex mosaic of legacies and trajectories among urban ecosystems (Palta and Stander 2020). Many relict wetlands have not been drained or developed during known history, but are embedded in human-dominated landscapes where cities have “grown up” around them (Palta and Stander 2020). Restored and rehabilitated sites may contain legacies of contamination from periods of disturbance or draining for land reclamation (Griffin and Dahl 2016; Ravit *et al.* 2017). Constructed wetlands for water treatment, habitat mitigation, and other goals

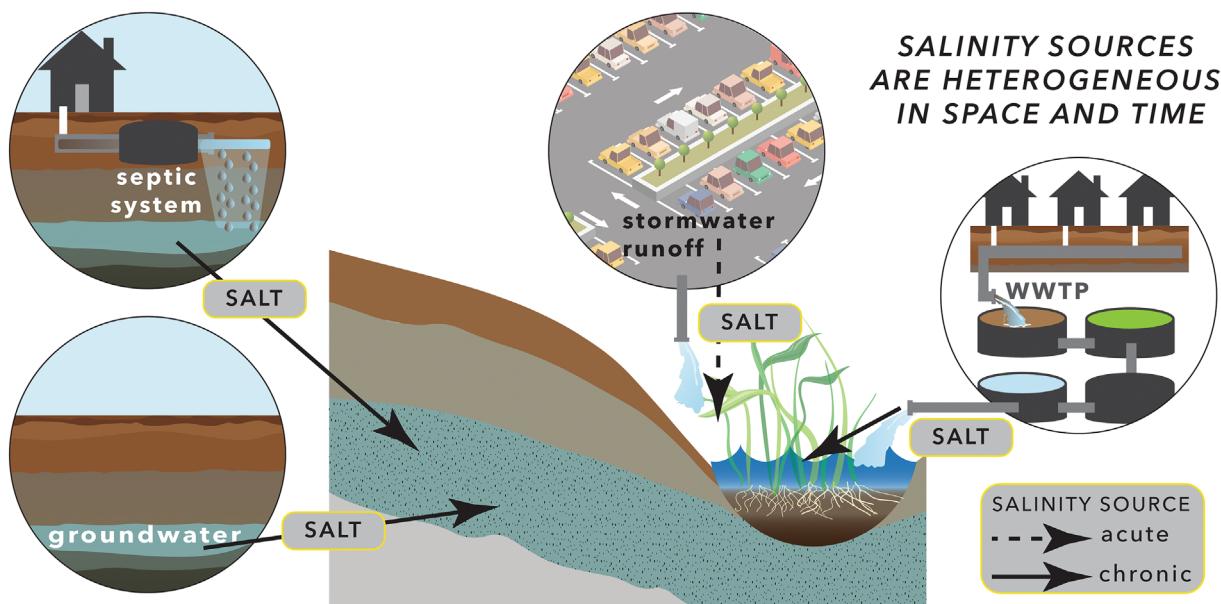
may contain a range of natural to human disturbed and created substrates (Vymazal 2007). Accidental wetlands form and persist on disturbed lands without intentional human construction or management (Palta *et al.* 2017; Maas *et al.* 2021).

Direct human intervention is a defining feature of most urban wetlands. Remnant, rehabilitated, and constructed wetlands may be subject to frequent and intensive management including imposed water-level regimes and invasive species control (Sinclair *et al.* 2020). In urban wetlands, current interventions, landscape drivers, and legacies of past use and impacts will shape salinization regimes and biogeochemical nitrogen (N) and phosphorus (P) cycling. While salinization-impacted biogeochemical processes are at play in salinizing wetlands regardless of salt source and specific land use, we argue that the impact of salinization on urban wetland biogeochemistry merits special consideration.

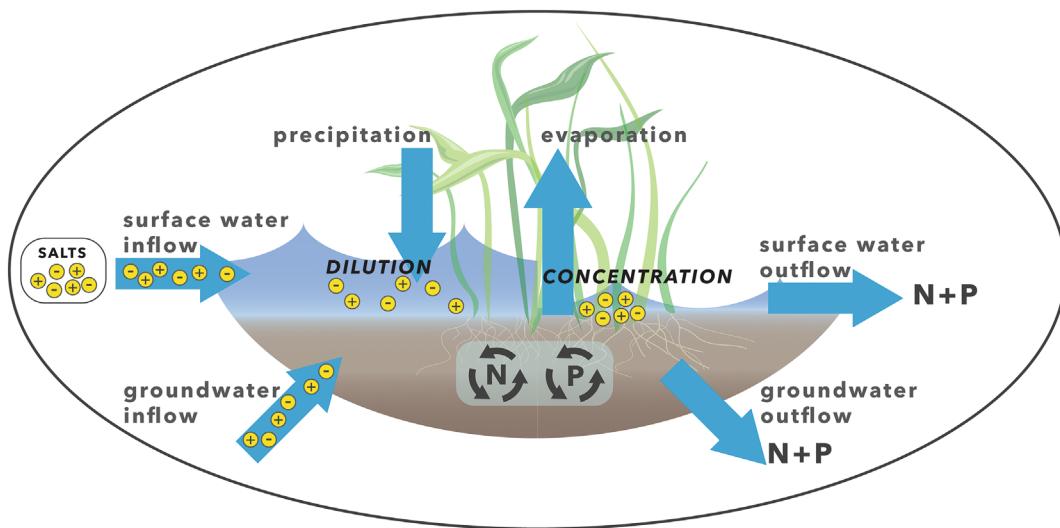
Understudied urban wetland biogeochemistry and salinization

Urban wetlands are generally understudied and often overlooked (Palta and Stander 2020). Few, if any, urban freshwater wetlands have been monitored at temporal resolutions (i.e., decadal scales) matching well-established long-term monitoring of urban streams, rivers, and lakes, in part because many urban wetlands are recently built or formed novel ecosystems (Palta *et al.* 2017; Clifford and Heffernan 2018; Maas *et al.* 2021). This lack of long-term data limits our ability to observe changing salt concentrations and leads us to rely on long-term monitoring of other aquatic ecosystems combined with shorter-term case studies to assess salinization in urban wetlands.

Excess salt drastically changes the geochemistry and biology of remnant wetlands (Wilcox 1986; Pugh *et al.* 1996; Rhodes and Guswa 2016) and shapes the structure and function of intentionally created urban wetlands (Van Meter *et al.* 2011; Hill and Sadowski 2016; Lam *et al.* 2020). The symptoms of FSS in wetlands are similar to those of lakes, streams, and rivers. Most freshwater wetlands are characterized by specific conductance values less than about $1000 \mu\text{S cm}^{-1}$ and chloride (Cl^-) concentrations less than 100 mg L^{-1} (Herbert *et al.* 2015), but salinizing urban wetlands commonly exhibit specific conductance values up to and over $25,000 \mu\text{S cm}^{-1}$ and Cl^- concentrations in the thousands of mg L^{-1} (Sanzo and Hecnar 2006; Van Meter *et al.* 2011; Hill and Sadowski 2016). Acutely salinized wetlands, such as urban stormwater ponds designed to intercept stormwater runoff, can contain salt concentrations exceeding those of ocean water, particularly in the deep waters with density stratification (Lam *et al.* 2020). Salinization symptoms are detected in urban wetland soils, which have higher pH and electrical conductivity than nonurban forested wetlands (Larson *et al.* 2016) and contain plant communities characterized by halophytic vegetation (Skultety and Matthews 2017, 2018).


Diverse salt sources

Salinizing urban wetlands receive ions from diverse anthropogenic sources (Supporting Information Table S1) (Griffith 2017; Overbo *et al.* 2021), leading to complex salinization regimes characterized by both elevated salt concentrations and a variable suite of ionic compositions (Fig. 1). De-icing salts (mainly NaCl but including CaCl₂, MgCl₂, and brine products) (Wilcox 1986; Pugh *et al.* 1996; Foos 2003; Hill and Sadowski 2016; Rhodes and Guswa 2016) and coastal saltwater intrusion (Tully *et al.* 2019) are perhaps the most conspicuous salinization drivers. However, heterogeneous pathways can deliver myriad salts to wetlands. Pervasive salinization occurs even in warmer regions that do not generally require de-icing, including the southern United States (Texas) and in the tropics (Puerto Rico) (Steele and Aitkenhead-Peterson 2011; Potter *et al.* 2014). Wastewater is a substantial salt source (Overbo *et al.* 2021), whether directly from treatment plant effluent (Steele and Aitkenhead-Peterson 2011; Kerr 2017; Liang *et al.* 2017), leaky wastewater infrastructure and septic systems (Potter *et al.* 2014; Hill and Sadowski 2016; Hoghooghi *et al.* 2016), or treated and reclaimed wastewater used for irrigation (Toor and Lusk 2011; US EPA 2012). The weathering of cement and rock-based infrastructure and anthropogenic “technosol” soils generates Ca²⁺, Mg²⁺, SO₄²⁻, HCO₃⁻ ions (Davies *et al.* 2010; Séré *et al.* 2010; Chambers *et al.* 2016) because raw materials mined for use in construction and then incorporated as artifacts in urban soils include calcite, gypsum, dolomite, and other calcareous minerals and rocks (Lehmann and Stahr 2007; Chambers *et al.* 2016). Salts are


one component of novel anthropogenic “chemical cocktails” (Kaushal *et al.* 2019) which also include elevated nutrients (Hobbie *et al.* 2017; Yang and Toor 2017; Iverson *et al.* 2018), metals (Davis *et al.* 2001; Schuler and Relyea 2018), and synthetic chemicals (Bernhardt *et al.* 2017), all of which interact with one another, resulting in uncertain consequences for nutrient removal functions. The diverse salt sources to urban wetlands result in complex and unpredictable salinization scenarios, which are largely shaped by the identity and nature of hydrologic inputs to wetlands.

Urban wetland hydrology

The hydrologic structure, connectivity, and watershed location of wetlands determine salt sources and transport, shaping salinization regimes (Figs. 1, 2). Within wetlands, water-level fluctuations and flow regimes shape the mixing, concentrations, and processing of salt ions (Fig. 2). Hydrology also drives within-wetland N and P biogeochemical processes (Reddy and DeLaune 2008; Mitsch and Gosselink 2015). Ultimately, wetland hydrologic regime (including human management decisions) determines the timing, magnitude, and ionic composition of both salt and nutrient exports. In cities, artificial drainage networks, impervious surfaces, engineered water systems, and microclimatic effects of urban development drastically alter every component of the hydrologic cycle at both local and catchment scales (McGrane 2016). Many features of urban hydrology, particularly in humid climates, enhance the temporal variability of salt loading, concentrations, and ionic composition.

Fig. 1. Diverse salt sources. Inland urban freshwater wetlands experience salinization from diverse sources (e.g., septic, groundwater, wastewater, stormwater) resulting in complex and unpredictable salinization regimes, as characterized by the intensity and timing of acute (dashed arrow) and chronic (solid arrow) salt loads as well as the altered ionic composition imposed by mixtures of salts from a variety of sources.

Fig. 2. Within wetland systems, hydrology shapes both salinization regime and nutrient inputs as well as internal system processing. Wetland geomorphology interacts with hydrology to shape patterns of salt dilution and concentration, and biogeochemical processing within wetlands influences salt and is influenced by salt. Salt concentrations and ionic compositions interact with wetland sediment nutrient biogeochemistry to influence within wetland nutrient availability and salt and nutrient exports.

Runoff and baseflow

In mesic and humid climates, highly connected impervious surfaces and artificial drainage limit soil infiltration, increasing surface runoff and peak flows (Paul and Meyer 2001), which creates flashier conditions in wetlands that receive surface water runoff, piped inflows and/or contributions from urban streams (O'Driscoll *et al.* 2010). When runoff, pipes, and streams carry anthropogenic salts, this hydrologic flashiness can coincide with “ionic flashiness” (Blaszcak *et al.* 2019), causing not only elevated salt concentrations but greater variability in concentrations and ionic composition. Despite the common story that urbanization leads to increased flashiness, more recent work in arid regions has revealed climate and context dependence (Hale *et al.* 2016; McPhillips *et al.* 2019; Li *et al.* 2020). In mesic and humid climates like the eastern United States, urban wetlands tend to be drier than their less urban counterparts (Ehrenfeld *et al.* 2003) and experience flashier inputs (Smith and Smith 2015). In contrast, urban aquatic systems in arid regions like Phoenix, Arizona (USA) are less flashy and less variable than their nonurban counterparts due to the buffering of stormwater detention, engineered drainage systems, and leaky infrastructure (McPhillips *et al.* 2019). These drivers may cause salinizing wetlands in arid regions to hold water more frequently than they might have otherwise, and the nature of this “urban baseflow” will influence salinization regimes (Bonneau *et al.* 2018; Kaushal *et al.* 2021).

Groundwater–surface water interactions

Natural and altered interactions between groundwater and surface water at catchment and wetland scales influence

freshwater wetland salinization both through subsurface salt, and through effects on hydrology. Impervious surfaces, sealed soils, and piped artificial drainage generally decrease infiltration and groundwater recharge (Price 2011; McGrane 2016), although engineered infrastructure, particularly aging and leaking infrastructure, can interact with subsurface flow paths (O'Driscoll *et al.* 2010; Kaushal and Belt 2012; McGrane 2016). In arid regions, the widespread use of stormwater retention basins and other infiltration features may enhance catchment-scale groundwater recharge (McPhillips *et al.* 2019). In remnant wetlands and constructed features that promote infiltration, urban wetlands can be important sites for groundwater recharge (McLaughlin and Cohen 2013), but may contribute to subsurface groundwater salinization if these wetlands are accumulating salt from upstream sources including stormwater runoff (Ostendorf *et al.* 2009; Snodgrass *et al.* 2017). In some constructed, impacted, and natural wetland systems, infiltration is intentionally or unintentionally prevented by installed linings, compacted soils from construction activities, or naturally impermeable substrates like clay layers. In these wetlands with minimal or no groundwater exchange and infiltration, accumulated salt is exported downstream during overflow events (Barbier *et al.* 2018). Small, hydrologically isolated urban wetlands with impermeable layers (Barbier *et al.* 2018; Maas *et al.* 2021) have a high propensity for drought-induced water-level drawdowns and associated evaporative concentration of salt ions (Nielsen and Brock 2009; Steele and Heffernan 2014; Siddig *et al.* 2020).

Precipitation and evapotranspiration

Urban environments shape microclimates, including urban heat island effects, which alters precipitation and evaporation

regimes. Although an active area of research, urbanization generally seems to enhance the amount and intensity of local precipitation (McGrane 2016). Depending on antecedent conditions, precipitation events may mobilize and transport salt loads to wetlands, contributing to long-term salt accumulation, or may temporarily dilute salt in places and at times where and when salt inputs are low (Barbier *et al.* 2018). Replacing vegetated land with impervious surfaces, sealed soils, and artificial drainage networks may decrease water losses through evapotranspiration at catchment scales (Rose and Peters 2001; McGrane 2016; Li *et al.* 2020), contributing to increased storm flows, stream flows, and flashiness. However, within open, vegetated urban wetlands and stormwater features designed to enhance evapotranspiration, evapotranspiration may enhance water losses, contribute to lower water levels, and create longer dry periods (McLaughlin and Cohen 2013). As climate change continues to intensify both precipitation events and droughts, these effects may be compounded in urban environments where microclimate and vegetation changes are acute. Increasingly variable hydrologic regimes from the combined effects of climate change and expanding urbanization will coincide with increasingly variable salinization regimes and less predictable impacts to the many interacting processes that create net ecosystem nutrient removal function.

Geomorphology: Urban wetland size, shape, and structure

The shape, size, and structure of urban aquatic ecosystems, including wetlands, are different from those in undeveloped and nonurban land uses (Steele and Heffernan 2014). Unique urban wetland shapes may influence the nature of, and biogeochemical responses to, wetland salinization. Wetlands in urban areas are often more fragmented and smaller, on average, than in nonurban areas (Steele and Heffernan 2014; Van Meter and Basu 2015), but with increased perimeter to area ratios (Aguilera *et al.* 2020). Higher perimeter to area ratios are indicative of greater connectivity of upland and wetland areas, and of a larger shallow portion of the wetland that supports the water-level fluctuations and wet-dry cycles; these in turn establish redox regimes that shift between anoxic and oxic conditions (Hefting *et al.* 2004; Van Meter and Basu 2015). Although smaller wetlands may be plagued by higher salt concentrations due to less dilution, the concomitant increase in perimeter to area ratio may facilitate higher biogeochemical processing rates related to wet-dry cycles, such as denitrification, in urban wetlands than in nonurban wetlands (Van Meter and Basu 2015; Cheng and Basu 2017). The relatively greater proportion of shallow areas in urban than nonurban wetlands may also amplify drying-and-rewetting event-driven mobilization of nutrients (Kinsman-Costello *et al.* 2016), accumulated salts, and oxidation products (e.g., nitrate, NO_3^- , and sulfate, SO_4^{2-}) from sediments. Little to no research exists that

investigates potential tradeoffs between wetland size, perimeter complexity, salinization regime, and nutrient biogeochemistry. This information could be critical, however, in informing wetland design to minimize salinization impacts and maximize nutrient removal services.

Freshwater salinization syndrome signatures

The magnitude, variability, timing, and chemical composition of salinization across spatial and temporal scales are all ecologically relevant features of wetland freshwater salinization and can be collectively considered as a “FSS signature.” Wetland FSS signatures differ across ecosystems and among regions due to differences in salt sources, climate, geology, and anthropogenic setting (e.g., infrastructure age and type, wetland management regime). Wetlands receiving inputs from urban impervious surfaces and artificial drainage networks will experience not only higher average salt concentrations, but more variable salt concentrations and ionic compositions (Blaszcak *et al.* 2019) than less urban systems. The salinization regime of a “frontline” wetland directly receiving surface runoff from roads and parking lots will be distinctly different from that of a groundwater or river-fed wetland with a larger drainage area that may integrate salinization from multiple sources. Run-off fed wetlands with relatively small drainage areas may experience more temporally variable, ionically “flashy” loadings in contrast to wetlands with larger drainage areas integrating flow from multiple sources. Storm runoff directly entering wetlands will likely contain the full suite of cations and anions directly contributed from nearby salt sources like road salt (e.g., Na^+ and Cl^-), whereas systems that integrate multiple sources from longer flow paths may receive salt loads dominated by Cl^- and displaced soil cations like Ca^{2+} , as Na^+ cations may sorb to soils along flowpaths.

Many urban wetlands likely experience chronically elevated salt concentrations due to consistent input from stable sources like wastewater treatment effluent and from salinizing groundwater and subsurface input (Foos 2003; Ledford *et al.* 2016). Chronic, consistent sources may be punctuated by acute inputs of high salt concentrations during salt-mobilizing storm events, evaporative concentration due to drought (Siddig *et al.* 2020), and/or ice formation concentration in shallow wetlands (Dugan *et al.* 2017b). Conversely, during times and in places where storm events do not mobilize salts, systems with chronically elevated salinity may experience dilution pulses during storms, also contributing to the temporal heterogeneity in salt concentrations. Seasonal and interannual variability may alter wetland salt loads, processing, storage, and export (Rhodes and Guswa 2016), which will result in observed seasonal variability in ionic composition and concentrations in inflows, surface water, pore waters, and outflows.

Within wetlands, the persistence and magnitude of salt stress will vary along dominant flow paths, as wetland sediments near inflows will experience the most salt exposure, with exposure declining as salt interacts with and is stored in sediments as water moves through the wetland interior to the outflow. Plant and microbial community structure will reflect these within-wetland salinity gradients, such that communities nearest a major inflow may have lower biomass if new salt exposure harms vulnerable plants and/or more salt-tolerant species assemblages. The broad range of salinization regimes that urban wetlands likely experience provides opportunities to examine how salinization alters fundamental biogeochemical processes by investigating the full range of changes to salt concentration, variability, and ionic composition. In short, salinizing urban wetlands are ripe for mechanistically informative and management-relevant investigations into how freshwater salinization influences biogeochemistry.

Salinization effects on nutrient cycling

Salinization alters environmental chemistry through both the collective effects of increased concentrations and the specific effects of individual ions, particularly sodium (Na^+) and SO_4^{2-} . The interrelated chemical effects that accompany salinization (Kaushal *et al.* 2018a; Tully *et al.* 2019) include increased ionic strength, sodicity, alkalinization, and sulfidization, which in combination shape biogeochemical processes. Ionic strength measures the effect of electrical attractions and repulsions between all cations and anions in a solution (Stumm and Morgan 1996). Ionic composition influences ionic strength because divalent cations like Ca^{2+} contribute four times as much to ionic strength as monovalent ions like Na^+ . Ionic strength establishes the osmotic conditions that organisms must cope with (Volkmar *et al.* 1998; Griffith 2017) and is one determinant of sorption-desorption equilibria and ion exchange between soils and solutions (Barrow *et al.* 1980a, 1980b; Seitzinger 1991; Rysgaard *et al.* 1999).

Sodicity measures the amount of Na^+ relative to other cations (Rengasamy and Olsson 1991; Wong *et al.* 2010; Steele and Aitkenhead-Peterson 2013). Salinity enhances aggregation of soil particles, whereas sodicity causes particle dispersion that ultimately reduces soil water infiltration capacity (Wong *et al.* 2010; Litalien and Zeeb 2020). Elevated soil Na^+ can cause the dispersion and transport of colloids and associated metals and nutrients (Norrström and Bergstedt 2001). Although the influence of sodicity has been thoroughly investigated in agricultural soils (Rengasamy and Olsson 1991; Sumner 1993), less work has investigated how sodicity influences flooded soils and sediments. Changes to soil physical properties due to salinization and sodicity may be particularly conspicuous in wetland soils that, by nature or design, experience prolonged dry periods without inundation. Elevated Na^+ can increase alkalinity and pH as ion exchange depletes soils

of base cations (Norrström and Bergstedt 2001; Kaushal *et al.* 2013).

Alkalinization occurs as concentrations of salts with strong bases increase, especially from human-accelerated weathering of carbonate mineral-based materials like concrete (Kaushal *et al.* 2020), increasing the acid-neutralizing capacity of urban freshwaters. Alkalinization and pH influence biogeochemical processes through indirect and direct effects, including the toxicity of contaminants (Kinsman-Costello *et al.* 2015), adsorption processes and sorption-desorption equilibrium (Stumm and Morgan 1996; Gustafsson *et al.* 2012; Ranjbar and Jalali 2013), sediment-surface water nutrient exchange (Seitzinger 1991; Huang *et al.* 2005), and carbon cycling (Ardón *et al.* 2016). The effect of increasing alkalinity on phosphate sorption depends on soil composition (Huang *et al.* 2005). Higher pH and alkalinity diminishes the strength of phosphate sorption to iron (oxyhydr)oxides, but enhances co-precipitation with and sorption to calcium carbonate minerals (Huang *et al.* 2005). Among N cycling processes, nitrification is particularly sensitive to changes in alkalinity and pH. If carbonate alkalinity decreases, nitrification can stop completely, limiting the supply of NO_3^- (Biesterfeld *et al.* 2003). However, in most urban systems weathering of concrete is a source of carbonate and urban waters are more alkaline (Kaushal *et al.* 2020), which supports nitrification.

Sulfidization is the least considered impact of freshwater salinization in inland ecosystems due to a focus on NaCl and other major road salt ions, and the assumption that sulfur cycling is unimportant in traditionally low- SO_4^{2-} , noncoastal ecosystems (Duan and Kaushal 2015; Haq *et al.* 2018). We use “sulfidization” to describe when sulfide and other forms of sulfur accumulate in freshwater ecosystems, especially in anoxic soils and sediments, due to elevated SO_4^{2-} loads. Emerging evidence demonstrates that SO_4^{2-} concentrations are elevated in inland urban freshwater ecosystems along with other salt ions (Moore *et al.* 2017; Reisinger *et al.* 2019), although to a more variable and different degree than in coastal ecosystems experiencing marine salt intrusion (Tully *et al.* 2019). Although SO_4^{2-} makes up a relatively small proportion of the ionic strength of noncoastal salinizing solutions, it can have an inordinately influential biogeochemical effect when conditions in organic-rich, low-oxygen wetland sediments promote its reduction to sulfide (Baldwin and Mitchell 2012; Kinsman-Costello *et al.* 2015). Hydrogen sulfide is directly toxic to organisms (Kinsman-Costello *et al.* 2015) and inhibits microbial enzymes that mediate N transformations (Brunet and Garcia-Gil 1996) and is also geochemically reactive. Sulfide binds strongly with soil Fe and other metals, which then can diminish soil P storage by “stealing” iron oxide sorption capacity (Roden and Edmonds 1997).

Over time, sulfidization and cation exchange in chronically salinized systems create a cumulative geochemical “memory” of past salinization in wetland sediments (Johnson *et al.* 2019),

which may have important implications for wetland biogeochemical functions when sediment conditions rapidly change, such as during and after extreme drying and reflooding. In this situation, oxidation of previously stored reduced sulfide when sediments are drying may lead to pulsed release of SO_4^{2-} , acid, and other oxidation products upon re-wetting (Kinsman-Costello *et al.* 2014, 2016). The combined chemical effects of freshwater salinization drastically alter not only the biotic structure of ecosystems through direct effects on organisms, but also N processing and P storage functions through both direct geochemical and indirect biological processes.

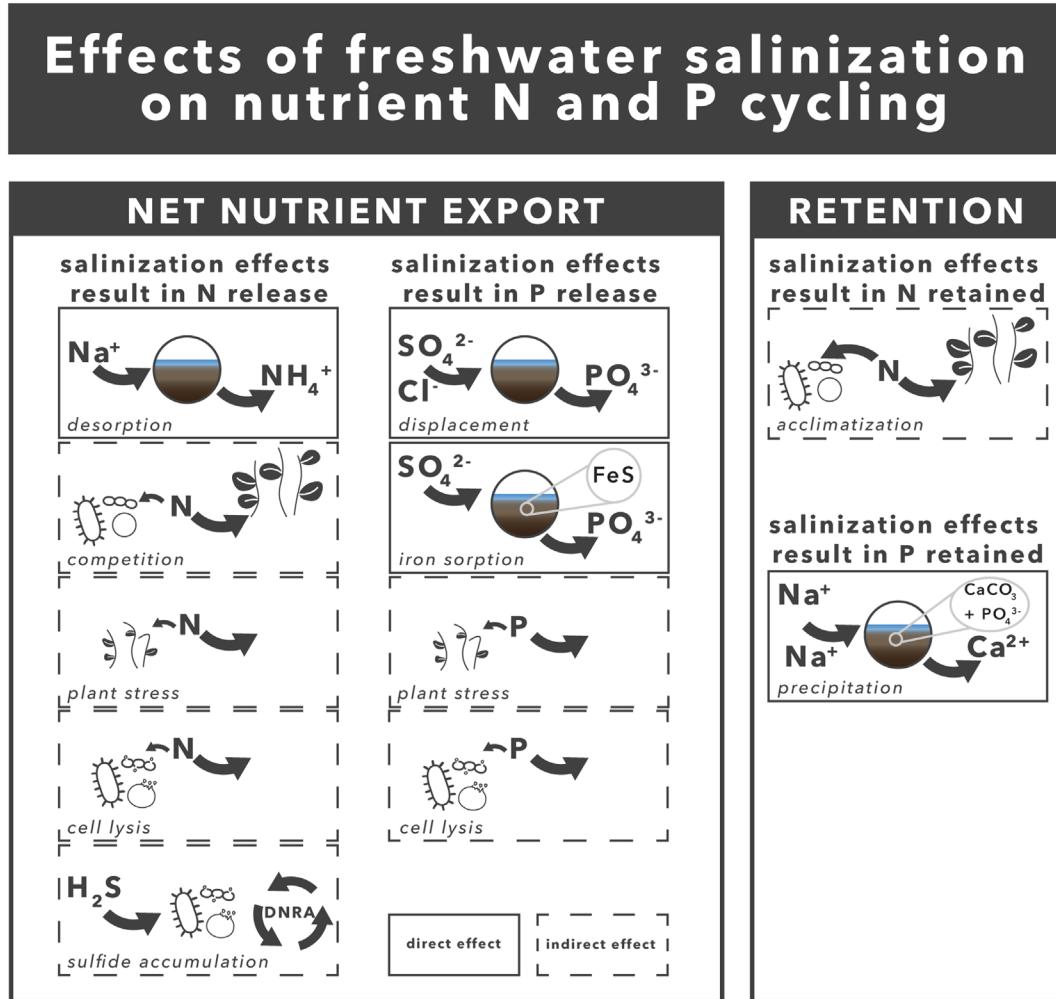
Knowledge gap: Biogeochemical freshwater salinization experiments inadequately reflect urban wetland salinization regimes

A robust body of evidence demonstrating the organismal and ecosystem-level impacts of freshwater salinization has emerged, but gaps limit our understanding of the biogeochemistry of salinization in urban wetlands. To demonstrate and confirm this knowledge gap, we reviewed studies that report the results of freshwater salinization experiments in aquatic or semi-aquatic soils and sediments in which salt concentrations were experimentally elevated in field or lab settings and indices of biogeochemical processes related to N and/or P availability and net export were measured. Although this review is not exhaustive, repeated literature searches with a variety of keyword combinations (including combinations of “freshwater salinization,” “salinization,” “wetlands,” “soils,” and “sediments”) and citation tracking give us confidence that our assessment adequately reflects the state of the literature at the time of publication. Our primary focus is on N and P cycling, so we only include studies directly relevant to N and/or P cycling. We noted whether each study pertained to inland or coastal wetlands and the suite of salt ions used to experimentally elevate salt concentrations (i.e., marine salts, NaCl only, or other combinations, Supporting Information Table S2).

We identified 34 peer-reviewed papers that report the effects of soil and/or aquatic sediment salinization on N and/or P biogeochemistry. The studies tend to either examine the full suite of ions at oceanic ratios in the context of coastal systems, or focus only on NaCl as a reflection of road salt (Table 1; Supporting Information Table S1). Of these, most (24) pertain to coastal systems in the context of saltwater intrusion (Table 1). Experiments with marine salts use actual sea water or artificial sea water salt mixtures (Supporting Information Table S1) including Instant Ocean (Marton *et al.* 2012) and TropicMarin (van Dijk *et al.* 2015) with fixed ionic ratios reflective of oceanic water. Fewer studies (12) report biogeochemical salinization experiments in inland wetlands, where most salinization is ascribed to road salt and usually only NaCl is used as a salt source. Six of the studies from inland settings explicitly concern urban land use and/or impacts of roads (Norrström and Bergstedt 2001; Hale and

Table 1. Quantities of published studies reporting the effects on experimental salinization on nitrogen and/or phosphorus biogeochemical processes in the context of freshwater coastal wetlands experiencing or vulnerable to sea level rise (“Coastal”) or noncoastal, inland, often urban wetlands experiencing or vulnerable to freshwater salinization (“Inland”). In 34 peer-reviewed papers, one reported results of both Marine Suite and NaCl Only salts (Donato *et al.* 2020), thus 35 total studies are enumerated.

Study system	Experimental salt ions			
	Marine suite	NaCl only	Other	Total
Coastal	21	3	0	24
Inland	1	7	3	11


Groffman 2006; Kim and Koretsky 2013; Duan and Kaushal 2015; Craig and Zhu 2018; Haq *et al.* 2018). In three studies, salt sources in addition to or distinct from NaCl are used, either in combinations or as individual treatments of alternate road salts like MgCl_2 and CaCl_2 (Beltman *et al.* 2000; Kim and Koretsky 2013; Craig and Zhu 2018). Only two studies of inland wetland salinization incorporated SO_4^{2-} in experimental salt treatments (Beltman *et al.* 2000; Donato *et al.* 2020). Neither sea salt nor NaCl alone adequately reflect the variable nature of inland urban freshwater wetland salinization regimes, and our ability to design and manage wetlands for nutrient removal services is limited by this knowledge gap.

Biogeochemical effects of urban wetland freshwater salinization

To develop synthetic hypotheses that predict how N and P biogeochemical processes in wetland sediments are altered as urban wetlands salinize, we first review the existing literature on how salinization influences sediment N cycling processes, sediment P cycling processes, and biologically mediated processes that influence the cycling of those nutrients. Finally, we integrate these results with fundamental biogeochemical principles to create synthetic summary hypotheses.

Effects of salinization on sediment N cycling processes

Salinization alters ecosystem N flux rates and pool sizes (Zhou *et al.* 2017) through a variety of processes (Fig. 3). Microbially mediated redox transformations dominate wetland sediment N cycling, but other biotic and geochemical processes also contribute. Through ionic exchange processes, Na^+ and other salt cations can cause desorption of cationic ammonium (NH_4^+) from soils and sediments (Seitzinger 1991; Rysgaard *et al.* 1999). This desorption can enhance rates of sediment NH_4^+ release from both coastal and inland freshwater sediments (Gardner *et al.* 1991; Baldwin *et al.* 2006; Weston *et al.* 2006; Jun *et al.* 2013) and ultimately lead to net ecosystem release of reactive N (Ardón *et al.* 2013) (Fig. 3).

Fig. 3. Illustrations of the interacting direct and indirect ways by which freshwater salinization influences nitrogen (N) and phosphorus (P) cycling processes in wetland sediments. Of the identified processes, the majority (9 of 11) are predicted to lead to net higher nutrient availability and export, whereas only two processes are predicted to lead to improved wetland nutrient retention.

Salt-driven NH_4^+ desorption may change ecosystem N removal rates by altering the outcome of plant-microbe competition for N. Plants may deplete inorganic soil N through uptake of salt-displaced NH_4^+ (Boudsocq *et al.* 2012) before the NH_4^+ can be microbially oxidized via nitrification to NO_3^- . When plants outcompete microbes for NH_4^+ in this way, nitrification and coupled nitrification-denitrification are limited, ultimately diminishing permanent N removal (Fig. 3). Although plants remove reactive N and store organic N in their tissue, organic N is remineralized to NH_4^+ upon plant senescence, and thus plant storage does not permanently remove N from ecosystems (Lee *et al.* 2009).

Although some effects of salinization on N cycling processes, like NH_4^+ release, may occur soon after the addition of salt water, a shift in dominant pathways may take longer after sediment properties change and microbial communities acclimate (Neubauer *et al.* 2019). Wetland sediments typically

support high rates of permanent removal of reactive N (NO_3^- and NH_4^+) via the anaerobic microbial process of denitrification and more rarely, anaerobic NH_4^+ oxidation (annamox) (Lee *et al.* 2009). The direct effects of salinization on microbially mediated N transformations depend on whether past salt exposure has assembled a salt-tolerant microbial community (Rath and Rousk 2015). In systems with a history of exposure (e.g., roadside soils), microbial communities are distinct from those in unsalinated systems (Lancaster *et al.* 2016), but often maintain N processing function. In urban and roadside systems with salinization histories of decades or more, salt additions often do not change indices of N cycling rates including denitrification enzyme activity (Hale and Groffman 2006), denitrification rates (Lancaster *et al.* 2016), net N mineralization, and nitrification (Craig and Zhu 2018). In salt-naive sediments, on the other hand, enhanced salinity can diminish denitrification (Seo *et al.* 2008; Lancaster

et al. 2016), likely due to osmotic stress (Yan *et al.* 2015) and ion-specific toxicity (Macêdo *et al.* 2019) to microbes (Fig. 3).

Sulfidization may alter NO_3^- removal by promoting dissimilatory NO_3^- reduction to NH_4^+ (DNRA). In DNRA, NO_3^- -N is transformed to NH_4^+ rather than N_2 gas, and therefore remains biochemically reactive in the system (An and Gardner 2002). A shift from denitrification to DNRA is observed along gradients from low to high salinity in estuaries (Giblin *et al.* 2010), presumably due to sulfide accumulation (Weston *et al.* 2006) which inhibits denitrification enzyme activity (Brunet and Garcia-Gil 1996). Some chemolithotrophic microbes directly link the sulfur and N cycles by oxidizing sulfide as they reduce NO_3^- -N to NH_4^+ in DNRA (Brunet and Garcia-Gil 1996). While the importance of DNRA tends to increase with increasing salinity in estuarine ecosystems, denitrification can still dominate N cycling in highly saline environments (Smyth *et al.* 2013). Free sulfide alters the composition of N-transforming microbial communities (Brunet and Garcia-Gil 1996; Murphy *et al.* 2020) and also inhibits nitrification (Joye and Hollibaugh 1995), limiting NO_3^- supply. Toxic sulfide sometimes decreases plant productivity (Kinsman-Costello *et al.* 2015), which may indirectly influence the balance of N-removal pathways by altering the quality and quantity of organic carbon inputs relative to NO_3^- . Generally, at low C : NO_3^- ratios (which may emerge as plant productivity declines due to sulfide toxicity), denitrification dominates, while at high C : NO_3^- ratios DNRA tends to dominate (Tiedje 1988; Hardison *et al.* 2015).

Effects of salinization on sediment P cycling processes

Wetland sediments store P through sedimentation and burial of P-containing particles (Noe *et al.* 2019). A proportionally small, but ecologically critical, fraction of the inorganic phosphate (PO_4^{3-}) ions interact with soil minerals through dynamic geochemical associations, in particular sorption to iron oxides and co-precipitation with calcium carbonates (Noe *et al.* 2019). Changes in soil chemistry alter interactions between PO_4^{3-} and sediments, enhancing or diminishing the bioavailability and transport potential of sediment-stored P.

Freshwater sediments tend to have greater PO_4^{3-} sorption capacity and lower pore water PO_4^{3-} concentrations than brackish and saline sediments (Sundareshwar and Morris 1999; Jordan *et al.* 2008), in part because freshwater sediments tend to contain more sorptive metal oxides, but also because of how ionic strength and pH influence sorption (Barrow *et al.* 1980a, 1980b; Stumm and Morgan 1996). Salt anions like Cl^- and SO_4^{2-} compete with anionic PO_4^{3-} for sorption sites (Fig. 3). At the higher pH of saline environments, the net surface charge of iron oxy(hydr)oxides tends to be more negative, which electrostatically discourages PO_4^{3-} anion sorption (Stumm and Morgan 1996). Thus, the increases in pH and alkalinity associated with the FSS may also contribute to lower sediment PO_4^{3-} sorption capacities. When salinization

includes SO_4^{2-} and drives sulfidization, sulfide and Fe interact strongly, diminishing sediment Fe binding capacity for PO_4^{3-} (Roden and Edmonds 1997) and leading to less sediment P storage and/or release of previously stored P from sediments (Lamers *et al.* 2002; Weston *et al.* 2006) (Fig. 3). In combination, the geochemical effects of salinization should decrease wetland sediment PO_4^{3-} sorption capacity.

Despite predictions that the increased ionic strength associated with salinization should weaken PO_4^{3-} sorption, experiments have yielded conflicting results. Some find that greater salinity accompanies greater P availability and less PO_4^{3-} sorption than expected (Beltman *et al.* 2000; Weston *et al.* 2010; Williams *et al.* 2014; Herbert *et al.* 2015; Haq *et al.* 2018; Steinmuller and Chambers 2018) while others find that salinity causes lower P availability and less release of P from sediments (Baldwin *et al.* 2006; Jun *et al.* 2013; van Diggelen *et al.* 2014; van Dijk *et al.* 2015, 2019). Although increases in ionic strength may diminish PO_4^{3-} sorption, concomitant changes also influence sediment P retention. Specifically, Na^+ -driven displacement of soil Ca^{2+} (Norrström and Bergstedt 2001) along with increasing pH may enhance complexation of PO_4^{3-} with calcium carbonate precipitates, resulting in lower P availability and higher P retention (Fig. 3) (Jun *et al.* 2013; van Dijk *et al.* 2015, 2019). The net effect of salinization on geochemical P retention will depend not only on the degree of salinization and the ionic composition of salinizing water (especially the relative importance of SO_4^{2-}), but also on sediment characteristics (e.g., mineral content and sorption properties) and P loads, as PO_4^{3-} sorption is an equilibrium process.

Indirect effects on N and P cycling: Community and organismal impacts

Microbes

Salinization influences microbial physiology, biological processes, community composition, and diversity through osmotic stress and ion-specific toxicity, but the resulting effects on biogeochemistry depend on whether microbes acclimate to saltier conditions. Rapid and acute osmotic stress, as when rainwater rapidly dilutes salinized soil water, can cause microbial cell lysis and sudden release of stored inorganic and labile organic forms of N and P (Turner and Haygarth 2001; Schimel *et al.* 2007; Wood 2015) (Fig. 3). Sudden pulses of salt shift community structure and alter biogeochemical functions more than long-term salinity changes (Chambers *et al.* 2013; Mansour *et al.* 2018; Steinmuller and Chambers 2018) (Fig. 3). When long-term salinity change results in stable, salt-tolerant microbial communities, microbially mediated biogeochemical functions like denitrification may continue at rates similar to pre- or un-salinized sediments (Allison and Martiny 2008; Graham *et al.* 2016).

Plants

Salinization effects on plant communities cascade to biogeochemical implications. Effects on plants include osmotic stress, ion toxicity, and nutrient deficiencies linked to the displacement and leaching of cations by Na^+ (Forman and Alexander 1998; Findlay and Kelly 2011; Tiwari and Rachlin 2018). At very high concentrations, as are often found within a few meters of roads, plants suffer direct injury (Lumis *et al.* 1976), sometimes creating “salt-burned” areas devoid of vegetation (Scott and Davison 1982). Further from roads, or under chronically salinized conditions, salinization alters plant species composition. Invasive, salinization-tolerant species, such as *Phragmites australis* and *Typha angustifolia*, can invade and expand (Wilcox 1986; Panno *et al.* 1999; Brisson *et al.* 2010). Maritime halophytes have invaded far inland along major roads in response to salinization (Scott and Davison 1982; Brauer and Geber 2002; Fekete *et al.* 2018; Skultety and Matthews 2018), forming novel salt-tolerant plant communities in roadside wetlands (Skultety and Matthews 2018). Invasion by dense stands of clonal species such as *P. australis* may lead to increased plant biomass, sediment accumulation and nutrient uptake in a wetland, supporting greater plant nutrient uptake and reduced leaching.

Salinization-driven changes to plant communities indirectly affect nutrient cycling by interfering with plant carbon inputs to soils or via changes in plant nutrient uptake, resulting in altered nutrient storage in soils and plant biomass (Yuckin and Rooney 2019). Salinity limits plant biomass, even under favorable nutrient conditions (Smart and Barko 1980). Even halophytic plants adapted to salt marsh conditions grow better at lower salinities (Mendelsohn and Morris 2000). Decreased N and P storage due to diminished plant biomass may be the most important plant-mediated influence on N and P cycling and export from salinized wetlands. Following an acute salinization event, plant biomass should decrease, leading to decreased organic matter input to soil, decreased plant nutrient uptake, and increased leaching, leading to greater nutrient availability and/or export (Fig. 3). However, N content can be greater in some halophytic plants due to the use of nonprotein forms of N for osmotic balance (Hassall 2014), potentially counter-acting some of the lost nutrient storage due to lost plant biomass. A meta-analysis of 33 experimental salinization observations in coastal wetlands found an 18% increase in plant biomass N content (Zhou *et al.* 2017). Ultimately, the combination of changes to total plant biomass as well as changes in plant tissue-specific nutrient content will contribute to net changes in ecosystem nutrient removal function.

Animals

Salinization has both direct and indirect effects on aquatic fauna, which in turn mediate nutrient cycling (Covich *et al.* 1999; Vanni 2002). High salt can be toxic to animals, but sensitivity is highly species-specific (Griffith 2017; Hintz and Relyea 2019). Although concentrations high enough to

cause direct mortality appear to be rare under field conditions (Blasius and Merritt 2002; Findlay and Kelly 2011), salinization causes changes in species composition and trophic interactions that sometimes decrease diversity (Petraska and Doyle 2010; Morgan *et al.* 2012; Hintz *et al.* 2017). As ion concentrations increase beyond the isotonic point of an organism, the organism must expend additional energy for osmoregulation (Griffith 2017), thus decreasing energy available for other functions such as feeding and reproduction (Venâncio *et al.* 2018; Entrekin *et al.* 2019), leading to non-lethal effects (Entrekin *et al.* 2019). For example, a decrease in plant productivity and the deposition of salt-enriched leaves might decrease detritivore consumption and productivity (Entrekin *et al.* 2019), slowing nutrient mineralization rates. Animals also mediate biogeochemistry through their influence on physical, chemical, and structural ecosystem features. For example, bioturbators burrow in sediments, enhancing water movement across the sediment water interface through active and passive bioirrigation and altering sediment–surface water nutrient exchange (Mermilliod-Blondin and Rosenberg 2006; Meysman *et al.* 2006). The effects of salinization on bioturbating ecosystem engineers remain largely unexplored. Despite demonstrated impacts of salinization on animal species, communities, and trophic interactions, the potential indirect impacts on wetland nutrient cycling, mediated through impacts on biogeochemically relevant animals and their actions, remains unexplored.

Summary: Synthetic hypotheses

Our literature review supports a hypothesis that collectively, the interacting effects of elevated ionic strength and sulfidization *diminish nutrient removal capacity in urban wetlands*, causing wetlands to be less effective at removing polluting N and P and, in some cases, leading to wetlands functioning as a source, rather than a sink, for N and P.

Increasing salt concentrations

Increased ionic strength impacts N and P removal through chemical and microbial processes and organismal salt stress. Conspicuous changes to P cycling occur due to direct impacts on geochemical processes, whereas changes to N cycling primarily occur through indirect impacts on microbial and plant-mediated processes. Elevated ionic strength diminishes sediment sorption capacity for NH_4^+ and PO_4^{3-} , leading to net nutrient release from sediments into surface waters, particularly under anoxic conditions and in response to transient high-ionic strength incidents. Osmotic stress and toxicity induced declines in plant biomass and community compositional changes indirectly influence ecosystem N and P cycling by altering assimilatory and dissimilatory uptake pathways, altering N and P storage within plant biomass, and changing mineralization rates. The enhanced variability in salt concentration and ionic strength experienced by many urban

wetlands may exacerbate the effects of osmotic stress on wetland communities, constraining community composition to organisms that are tolerant of wide salinity ranges and variability.

Sulfidization

In freshwater wetlands, SO_4^{2-} is a biogeochemical “keystone ion.” When elevated salts include high SO_4^{2-} concentrations, as they often do, sediment SO_4^{2-} reduction can lead to multiple cascading biogeochemical effects, the balance of which will depend on sediment biogeochemical characteristics (e.g., iron content), but which ultimately diminish nutrient removal capacity. Sediment–surface water PO_4^{3-} exchange rates are shaped by chronic salinization to the extent that sediment has been sulfidized and iron oxide sorption sites have been replaced by FeS . In low-iron sediments where available sulfide accumulates in excess of iron, sulfidization may also shift dominant microbial N-processing pathways away from denitrification to DNRA, resulting in less net removal of N as NO_3^- is converted to NH_4^+ and retained in the system or exported rather than denitrified to nitrogenous gases.

Research needs

Directly assessing the influence of salinization on wetland biogeochemistry and testing the above hypotheses will improve our ability to protect, restore, construct, and manage wetlands for nutrient removal, particularly in urban settings. The current general lack of comprehensive, multisite urban wetland investigations is severely limiting. Many individual wetland case studies demonstrate the potential effectiveness, but also variability, of urban wetland nutrient load reduction (Brown 1984; Wadzuk *et al.* 2010). Fewer broad-scale studies similar to those that monitor urban streams and rivers exist to inform urban wetland management. Deliberate, holistic monitoring of salinizing urban wetlands representing diverse climate regimes, anthropogenic settings, legacies, and management strategies will contribute to not only filling the specific knowledge gap reviewed here, but a general deficit in our understanding of these societally important yet persistently understudied ecosystems. In short, not only are we uncertain of the ultimate outcomes of salinization impacts to urban freshwater wetlands, but we also know little of how fundamental biogeochemical mechanisms play out in novel urban wetland ecosystems.

Ecosystem field studies: Comprehensively assessing urban wetland systems

Wetlands are integrated systems, and thus comprehensive monitoring of hydrology, water quality, soils, plant, and microbial community dynamics is required to understand how salt may be impacting the ability of wetlands to remove nutrients. Measuring loads, interior pools, and export rates of major cations, anions, and nutrient forms will support the characterization of the diverse FSS signatures that wetlands

experience, and will indicate how salt loads and nutrient cycling processes interact. Monitoring across seasons and years over a variety of hydrologic conditions (i.e., baseflow, drought, storm events, etc.) will reveal potential “hot moments” and control points in salt loading and biogeochemical impacts including acute salt pulses from snowmelt events or drought-induced evaporative concentration. Studying ecosystems receiving a range of hydrologic inputs and at contrasting watershed positions will support our understanding of how variable mixtures of salt sources and loading patterns set the stage of freshwater wetland salinization. Assessing diverse wetlands, including novel accidental and constructed wetlands along with extant relict and restored wetlands, will inform how land use history and human-engineered management interventions interact to shape the biogeochemical outcomes of salinization. And as is the case in not only urban areas, but ecosystem ecology in all settings, human dimensions of urban wetland functioning cannot be overlooked, particularly given the direct and prominent nature of management interventions in settings with human occupancy.

Lab and field salt manipulations: Environmentally relevant ionic compositions

To elucidate the biogeochemical mechanisms by which elevated salt ions change nutrient mass balances, experimental salt additions to sediment–surface water microcosms and/or mesocosms using treatments that reflect realistic signatures are necessary. Experimental salt additions that represent neither the fixed ionic ratios of marine salt solutions nor solely NaCl will pose more complex, but more realistic and mechanistically informative experimental results. These mechanistic studies can be designed to disentangle the complex biogeochemical web of processes that salt may influence by distinguishing direct physicochemical effects from indirect biologically mediated effects. In particular, the “keystone” role of SO_4^{2-} when present as an ion in salinizing wetlands must be directly assessed for its potential cascading biogeochemical impacts to both N and P cycles. Experiments designed to assess the influence of the greater variability in ionic strength often observed in wetlands by comparing pulsed and/or fluctuating salt loads to stable elevated loading will also inform mechanistic understanding of salinization impacts. Finally, to fully understand urban wetland biogeochemistry, explicit investigation of the interactions among elevated salt, nutrients, and other contaminants making up the “chemical cocktails” that impact urban ecosystems (Kaushal *et al.* 2018, 2019) will be necessary.

Conclusion: We should study freshwater salinization in urban wetlands

The inherent heterogeneity of urban wetlands and their settings present both challenges and opportunities to

understand the mechanisms by which salinization alters sediment biogeochemistry and the outcomes of salinization effects across diverse regimes. While long-term water quality data from streams and rivers provide an integrative picture of the legacies and trajectories of freshwater salinization at watershed scales, investigating salinization regimes in wetlands can provide an invaluable window into ecosystem-level ecological and biogeochemical impacts. Wetlands are diverse in structure, connectivity, and landscape position, and thus can represent the full range of salinization regimes in terms of rates of change of concentration, and seasonal and event-driven variability, along with a range of changes in ionic composition, all of which may have variable impacts on biogeochemical processes. Together, this diversity of salinization regimes may provide a rich area of study to mechanistically understand how salt alters soil and sediment biogeochemical processes. Improved understanding of salinization-impacted nutrient cycling will support improved predictions of how salinizing aquatic ecosystems function, inform management to enhance desired ecosystem services, and may provide evidence to justify wetland protection and conservation.

Data Availability Statement

No new data were collected for this Current Evidence article, which synthesizes past literature. No data sets have been submitted to a data repository. All synthesized information can be found in the article itself, supplemental information associated with this manuscript, and in the references we cite.

References

Aguilera, M. A., J. Tapia, C. Gallardo, P. Núñez, and K. Varas-Belemmi. 2020. Loss of coastal ecosystem spatial connectivity and services by urbanization: Natural-to-urban integration for bay management. *J. Environ. Manage.* **276**: 111297. doi:[10.1016/j.jenvman.2020.111297](https://doi.org/10.1016/j.jenvman.2020.111297)

Allison, S. D., and J. B. H. Martiny. 2008. Resistance, resilience, and redundancy in microbial communities. *Proc. Natl. Acad. Sci.* **105**: 11512–11519. doi:[10.1073/pnas.0801925105](https://doi.org/10.1073/pnas.0801925105)

An, S., and W. Gardner. 2002. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). *Mar. Ecol. Prog. Ser.* **237**: 41–50. doi:[10.3354/meps237041](https://doi.org/10.3354/meps237041)

Ardón, M., J. L. Morse, B. P. Colman, and E. S. Bernhardt. 2013. Drought-induced saltwater incursion leads to increased wetland nitrogen export. *Glob. Chang. Biol.* **19**: 2976–2985. doi:[10.1111/gcb.12287](https://doi.org/10.1111/gcb.12287)

Ardón, M., A. M. Helton, and E. S. Bernhardt. 2016. Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands. *Biogeochemistry* **127**: 411–426. doi:[10.1007/s10533-016-0189-5](https://doi.org/10.1007/s10533-016-0189-5)

Baldwin, D. S., G. N. Rees, A. M. Mitchell, G. Watson, and J. Williams. 2006. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. *Wetlands* **26**: 455–464 doi:[10.1672/0277-5212\(2006\)26\[455:TSEOSO\]2.0.CO;2](https://doi.org/10.1672/0277-5212(2006)26[455:TSEOSO]2.0.CO;2)

Baldwin, D. S., and A. Mitchell. 2012. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment. *Water Res.* **46**: 965–974. doi:[10.1016/j.watres.2011.11.065](https://doi.org/10.1016/j.watres.2011.11.065)

Barbier, L., R. Suaire, I. Durickovic, J. Laurent, and M.-O. Simonnot. 2018. Is a road Stormwater retention pond able to intercept deicing salt? *Water Air Soil Pollut.* **229**: 251.

Barrow, N., J. Bowden, A. Posner, and J. Quirk. 1980a. Describing the effects of electrolyte on adsorption of phosphate by a variable charge surface. *Soil Res.* **18**: 395.

Barrow, N. J., J. W. Bowden, A. M. Posner, and J. P. Quirk. 1980b. Describing the effects of electrolyte on adsorption of phosphate by a variable surface charge. *Aust. J. Soil. Res.* **18**: 395–404.

Beltman, B., T. G. Rouwenhorst, and M. B. V. Kerkhoven. 2000. Internal eutrophication in peat soils through competition between chloride and sulphate with phosphate for binding sites. *Biogeochemistry* **50**: 183–194. doi:[10.1023/A:1006374018558](https://doi.org/10.1023/A:1006374018558)

Bernhardt, E. S., E. J. Rosi, and M. O. Gessner. 2017. Synthetic chemicals as agents of global change. *Front. Ecol. Environ.* **15**: 84–90. doi:[10.1002/fee.1450](https://doi.org/10.1002/fee.1450)

Biesterfeld, S., G. Farmer, P. Russell, and L. Figueroa. 2003. Effect of alkalinity type and concentration on nitrifying biofilm activity. *Water Environ. Res.* **75**: 196–204. doi:[10.2175/106143003X140971](https://doi.org/10.2175/106143003X140971)

Blasius, B. J., and R. W. Merritt. 2002. Field and laboratory investigations on the effects of road salt (NaCl) on stream macroinvertebrate communities. *Environ. Pollut.* **120**: 219–231. doi:[10.1016/S0269-7491\(02\)00142-2](https://doi.org/10.1016/S0269-7491(02)00142-2)

Blaszcak, J. R., J. M. Delesantro, Y. Zhong, D. L. Urban, and E. S. Bernhardt. 2019. Watershed urban development controls on urban streamwater chemistry variability. *Biogeochemistry* **144**: 61–84. doi:[10.1007/s10533-019-00572-7](https://doi.org/10.1007/s10533-019-00572-7)

Bonneau, J., M. J. Burns, T. D. Fletcher, R. Witt, R. N. Drysdale, and J. F. Costelloe. 2018. The impact of urbanization on subsurface flow paths—A paired-catchment isotopic study. *J. Hydrol.* **561**: 413–426. doi:[10.1016/j.jhydrol.2018.04.022](https://doi.org/10.1016/j.jhydrol.2018.04.022)

Boudsocq, S., A. Niboyet, J. C. Lata, X. Raynaud, N. Loeuille, J. Mathieu, M. Blouin, L. Abbadie, and S. Barot. 2012. Plant preference for ammonium versus nitrate: A neglected determinant of ecosystem functioning? *Am. Nat.* **180**: 60–69. doi:[10.1086/665997](https://doi.org/10.1086/665997)

Brauer, J., and M. A. Geber. 2002. Population differentiation in the range expansion of a native maritime plant, *Solidago sempervirens* L. *Int. J. Plant Sci.* **163**: 141–150. doi:[10.1086/324047](https://doi.org/10.1086/324047)

Brisson, J., S. de Blois, and C. Lavoie. 2010. Roadside as invasion pathway for common reed (*Phragmites australis*). *Invas. Plant Sci. Manag.* **3**: 506–514. doi:[10.1614/IPSM-09-050.1](https://doi.org/10.1614/IPSM-09-050.1)

Brown, R. G. 1984. Effects of an urban wetland on sediment and nutrient loads in runoff. *Wetlands* **4**: 147–158. doi:[10.1007/BF03160493](https://doi.org/10.1007/BF03160493)

Brunet, R. C., and L. J. Garcia-Gil. 1996. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. *FEMS Microbiol. Ecol.* **21**: 131–138. doi:[10.1111/j.1574-6941.1996.tb00340.x](https://doi.org/10.1111/j.1574-6941.1996.tb00340.x)

Cañedo-Argüelles Iglesias, M. 2020. A review of recent advances and future challenges in freshwater salinization. *Limnetica* **39**: 185–211. doi:[10.23818/limn.39.13](https://doi.org/10.23818/limn.39.13)

Cañedo-Argüelles, M., B. J. Kefford, C. Piscart, N. Prat, R. B. Schäfer, and C.-J. Schulz. 2013. Salinisation of rivers: An urgent ecological issue. *Environ. Pollut.* **173**: 157–167. doi:[10.1016/j.envpol.2012.10.011](https://doi.org/10.1016/j.envpol.2012.10.011)

Cassanelli, J. P., and G. A. Robbins. 2013. Effects of road salt on Connecticut's groundwater: A statewide centennial perspective. *J. Environ. Qual.* **42**: 737–748. doi:[10.2134/jeq2012.0319](https://doi.org/10.2134/jeq2012.0319)

Chambers, L. G., T. Z. Osborne, and K. R. Reddy. 2013. Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: A laboratory experiment. *Biogeochemistry* **115**: 363–383. doi:[10.1007/s10533-013-9841-5](https://doi.org/10.1007/s10533-013-9841-5)

Chambers, L. G., Y.-P. Chin, G. M. Filippelli, C. B. Gardner, E. M. Herndon, D. T. Long, W. B. Lyons, G. L. Macpherson, S. P. McElmurry, C. E. McLean, J. Moore, R. P. Moyer, K. Neumann, C. A. Nezat, K. Soderberg, N. Teutsch, and E. Widom. 2016. Developing the scientific framework for urban geochemistry. *Appl. Geochem.* **67**: 1–20. doi:[10.1016/j.apgeochem.2016.01.005](https://doi.org/10.1016/j.apgeochem.2016.01.005)

Cheng, F. Y., and N. B. Basu. 2017. Biogeochemical hotspots: Role of small water bodies in landscape nutrient processing. *Water Resour. Res.* **53**: 5038–5056. doi:[10.1002/2016WR020102](https://doi.org/10.1002/2016WR020102)

Clifford, C., and J. Heffernan. 2018. Artificial aquatic ecosystems. *Water* **10**: 1096. doi:[10.3390/w10081096](https://doi.org/10.3390/w10081096)

Covich, A. P., M. A. Palmer, and T. A. Crowl. 1999. The role of benthic invertebrate species in freshwater ecosystems. *Bioscience* **49**: 119. doi:[10.2307/1313537](https://doi.org/10.2307/1313537)

Craig, S., and W. Zhu. 2018. Impacts of deicing salt and nitrogen addition on soil nitrogen and carbon cycling in a roadside ecosystem. *Water Air Soil Pollut.* **229**: 187.

Davies, P. J., I. A. Wright, O. J. Jonasson, and S. J. Findlay. 2010. Impact of concrete and PVC pipes on urban water chemistry. *Urban Water J.* **7**: 233–241. doi:[10.1080/1573062X.2010.484502](https://doi.org/10.1080/1573062X.2010.484502)

Davis, A. P., M. Shokouhian, and S. Ni. 2001. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. *Chemosphere* **44**: 997–1009. doi:[10.1016/S0045-6535\(00\)00561-0](https://doi.org/10.1016/S0045-6535(00)00561-0)

Donato, M., O. Johnson, B. Steven, and B. A. Lawrence. 2020. Nitrogen enrichment stimulates wetland plant responses whereas salt amendments alter sediment microbial communities and biogeochemical responses. *PLoS One* **15**: e0235225. doi:[10.1371/journal.pone.0235225](https://doi.org/10.1371/journal.pone.0235225)

Duan, S., and S. S. Kaushal. 2015. Salinization alters fluxes of bioreactive elements from stream ecosystems across land use. *Biogeoosciences* **12**: 7331–7347. doi:[10.5194/bg-12-7331-2015](https://doi.org/10.5194/bg-12-7331-2015)

Dugan, H. A., S. L. Bartlett, S. M. Burke, J. P. Doubek, F. E. Krivak-Tetley, N. K. Skaff, J. C. Summers, K. J. Farrell, I. M. McCullough, A. M. Morales-Williams, D. C. Roberts, Z. Ouyang, F. Scordo, P. C. Hanson, and K. C. Weathers. 2017a. Salting our freshwater lakes. *Proc. Natl. Acad. Sci.* **114**: 4453–4458.

Dugan, H. A., G. Helmueller, and J. J. Magnuson. 2017b. Ice formation and the risk of chloride toxicity in shallow wetlands and lakes: Ice formation and the risk of chloride toxicity. *Limnol. Oceanogr. Lett.* **2**: 150–158.

Ehrenfeld, J. G., H. B. Cutway, R. Hamilton, and E. Stander. 2003. Hydrologic description of forested wetlands in northeastern New Jersey, USA—An urban/suburban region. *Wetlands* **23**: 685–700 doi:[10.1672/0277-5212\(2003\)023\[0685:HDOFWI\]2.0.CO;2](https://doi.org/10.1672/0277-5212(2003)023[0685:HDOFWI]2.0.CO;2)

Entrekkin, S. A., N. A. Clay, A. Mogilevski, B. Howard-Parker, and M. A. Evans-White. 2019. Multiple riparian–stream connections are predicted to change in response to salinization. *Philos. Trans. Roy. Soc. B Biol. Sci.* **374**: 20180042.

Fekete, R., A. Mesterházy, O. Valkó, and A. V. Molnár. 2018. A hitchhiker from the beach: The spread of the maritime halophyte *Cochlearia danica* along salted continental roads. *Preslia* **90**: 23–37. doi:[10.23855/preslia.2018.023](https://doi.org/10.23855/preslia.2018.023)

Findlay, S. E. G., and V. R. Kelly. 2011. Emerging indirect and long-term road salt effects on ecosystems. *Ann. N. Y. Acad. Sci.* **1223**: 58–68.

Foos, A. 2003. Spatial distribution of road salt contamination of natural springs and seeps, Cuyahoga Falls, Ohio, USA. *Environ. Geol.* **44**: 14–19. doi:[10.1007/s00254-002-0724-7](https://doi.org/10.1007/s00254-002-0724-7)

Forman, R. T. T., and L. E. Alexander. 1998. Roads and their major ecological effects. *Ann. Rev. Ecol. Syst.* **29**: 207–231. doi:[10.1146/annurev.ecolsys.29.1.207](https://doi.org/10.1146/annurev.ecolsys.29.1.207)

Gardner, W. S., S. P. Seitzinger, and J. M. Malczyk. 1991. The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: Does ion pairing affect ammonium flux? *Estuaries* **14**: 157. doi:[10.2307/1351689](https://doi.org/10.2307/1351689)

Giblin, A. E., N. B. Weston, G. T. Banta, J. Tucker, and C. S. Hopkinson. 2010. The effects of salinity on nitrogen losses from an oligohaline estuarine sediment. *Estuar. Coast.* **33**: 1054–1068. doi:[10.1007/s12237-010-9280-7](https://doi.org/10.1007/s12237-010-9280-7)

Graham, E. B., J. E. Knelman, A. Schindlbacher, S. Siciliano, M. Breulmann, A. Yannarell, J. M. Beman, G. Abell, L. Philippot, J. Prosser, A. Foulquier, J. C. Yuste, H. C. Glanville, D. L. Jones, R. Angel, J. Salminen, R. J. Newton,

H. Bürgmann, L. J. Ingram, U. Hamer, H. M. P. Siljanen, K. Peltoniemi, K. Potthast, L. Bañeras, M. Hartmann, S. Banerjee, R.-Q. Yu, G. Nogaro, A. Richter, M. Koranda, S. C. Castle, M. Goberna, B. Song, A. Chatterjee, O. C. Nunes, A. R. Lopes, Y. Cao, A. Kaisermann, S. Hallin, M. S. Strickland, J. Garcia-Pausas, J. Barba, H. Kang, K. Isobe, S. Papaspyrou, R. Pastorelli, A. Lagomarsino, E. S. Lindström, N. Basiliko, and D. R. Nemergut. 2016. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes? *Front. Microbiol.* **4**: 214. doi:[10.3389/fmicb.2016.00214](https://doi.org/10.3389/fmicb.2016.00214)

Griffin, R. K., and T. E. Dahl. 2016. Restoration outcomes and reporting: An assessment of wetland area gains in Wisconsin, USA. *Ecol. Restor.* **34**: 191–199. doi:[10.3368/er.34.3.191](https://doi.org/10.3368/er.34.3.191)

Griffith, M. B. 2017. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: Teleost fish, crustacea, aquatic insects, and Mollusca: Osmoregulation and ionoregulation physiology of major ions. *Environ. Toxicol. Chem.* **36**: 576–600. doi:[10.1002/etc.3676](https://doi.org/10.1002/etc.3676)

Gustafsson, J. P., L. B. Mwamila, and K. Kerfoot. 2012. The pH dependence of phosphate sorption and desorption in Swedish agricultural soils. *Geoderma* **189–190**: 304–311.

Hale, R. L., and P. M. Groffman. 2006. Chloride effects on nitrogen dynamics in forested and suburban stream debris dams. *J. Environ. Qual.* **35**: 2425–2432. doi:[10.2134/jeq2006.0164](https://doi.org/10.2134/jeq2006.0164)

Hale, R. L., M. Scoggins, N. J. Smucker, and A. Suchy. 2016. Effects of climate on the expression of the urban stream syndrome. *Freshw. Sci.* **35**: 421–428. doi:[10.1086/684594](https://doi.org/10.1086/684594)

Haq, S., S. S. Kaushal, and S. Duan. 2018. Episodic salinization and freshwater salinization syndrome mobilize base cations, carbon, and nutrients to streams across urban regions. *Biogeochemistry* **141**: 463–486. doi:[10.1007/s10533-018-0514-2](https://doi.org/10.1007/s10533-018-0514-2)

Hardison, A. K., C. K. Algar, A. E. Giblin, and J. J. Rich. 2015. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N₂ production. *Geochim. Cosmochim. Acta* **164**: 146–160. doi:[10.1016/j.gca.2015.04.049](https://doi.org/10.1016/j.gca.2015.04.049)

Hassall, C. 2014. The ecology and biodiversity of urban ponds: Ecology and biodiversity of urban ponds. Wiley Interdiscip. Rev. Water **1**: 187–206.

Hefting, M., J. C. Clément, D. Dowrick, A. C. Cosandey, S. Bernal, C. Cimpian, A. Tatur, T. P. Burt, and G. Pinay. 2004. Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. *Biogeochemistry* **67**: 113–134. doi:[10.1023/B:BIOG.0000015320.69868.33](https://doi.org/10.1023/B:BIOG.0000015320.69868.33)

Herbert, E. R., P. Boon, A. J. Burgin, S. C. Neubauer, R. B. Franklin, M. Ardón, K. N. Hopfensperger, L. P. M. Lamers, and P. Gell. 2015. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. *Ecosphere* **6**: 1–43, art206. doi:[10.1890/ES14-00534.1](https://doi.org/10.1890/ES14-00534.1)

Hill, A. R., and E. K. Sadowski. 2016. Chloride concentrations in wetlands along a rural to urban land use gradient. *Wetlands* **36**: 73–83. doi:[10.1007/s13157-015-0717-4](https://doi.org/10.1007/s13157-015-0717-4)

Hintz, W. D., B. M. Mattes, M. S. Schuler, D. K. Jones, A. B. Stoler, L. Lind, and R. A. Relyea. 2017. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length. *Ecol. Appl.* **27**: 833–844. doi:[10.1002/eam.1487](https://doi.org/10.1002/eam.1487)

Hintz, W. D., and R. A. Relyea. 2019. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. *Freshw. Biol.* **64**: 1081–1097. doi:[10.1111/fwb.13286](https://doi.org/10.1111/fwb.13286)

Hobbie, S. E., J. C. Finlay, B. D. Janke, D. A. Nidzgorski, D. B. Millet, and L. A. Baker. 2017. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. *Proc. Natl. Acad. Sci.* **114**: 4177–4182. doi:[10.1073/pnas.1618536114](https://doi.org/10.1073/pnas.1618536114)

Hoghooghi, N., D. E. Radcliffe, M. Y. Habteselassie, and J. S. Clarke. 2016. Confirmation of the impact of onsite wastewater treatment systems on stream base-flow nitrogen concentrations in urban watersheds of Metropolitan Atlanta, GA. *J. Environ. Qual.* **45**: 1740–1748. doi:[10.2134/jeq2016.04.0139](https://doi.org/10.2134/jeq2016.04.0139)

Huang, Q., Z. Wang, C. Wang, S. Wang, and X. Jin. 2005. Phosphorus release in response to pH variation in the lake sediments with different ratios of iron-bound P to calcium-bound P. *Chem. Spec. Bioavailab.* **17**: 55–61.

Iverson, G., C. P. Humphrey, M. A. O'Driscoll, C. Sanderford, J. Jernigan, and B. Serozi. 2018. Nutrient exports from watersheds with varying septic system densities in the North Carolina Piedmont. *J. Environ. Manage.* **211**: 206–217. doi:[10.1016/j.jenvman.2018.01.063](https://doi.org/10.1016/j.jenvman.2018.01.063)

Jamshidi, A., A. R. Goodarzi, and P. Razmara. 2020. Long-term impacts of road salt application on the groundwater contamination in urban environments. *Environ. Sci. Pollut. Res.* **27**: 30162–30177. doi:[10.1007/s11356-020-09261-7](https://doi.org/10.1007/s11356-020-09261-7)

Johnson, N. W., J. Pastor, and E. B. Swain. 2019. Cumulative sulfate loads shift porewater to sulfidic conditions in freshwater wetland sediment. *Environ. Toxicol. Chem.* **38**: 1231–1244. doi:[10.1002/etc.4410](https://doi.org/10.1002/etc.4410)

Jolly, I. D., K. L. McEwan, and K. L. Holland. 2008. A review of groundwater–surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. *Ecohydrology* **1**: 43–58. doi:[10.1002/eco.6](https://doi.org/10.1002/eco.6)

Jordan, T. E., J. C. Cornwell, W. R. Boynton, and J. T. Anderson. 2008. Changes in phosphorus biogeochemistry along an estuarine salinity gradient: The iron conveyer belt. *Limnol. Oceanogr.* **53**: 172–184. doi:[10.4319/lo.2008.53.1.0172](https://doi.org/10.4319/lo.2008.53.1.0172)

Joye, S. B., and J. T. Hollibaugh. 1995. Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. *Science* **270**: 623–625. doi:[10.1126/science.270.5236.623](https://doi.org/10.1126/science.270.5236.623)

Jun, M., A. E. Altor, and C. B. Craft. 2013. Effects of increased salinity and inundation on inorganic nitrogen exchange and phosphorus sorption by tidal freshwater floodplain Forest soils, Georgia (USA). *Estuar. Coast.* **36**: 508–518. doi: [10.1007/s12237-012-9499-6](https://doi.org/10.1007/s12237-012-9499-6)

Kaushal, S. S., P. M. Groffman, G. E. Likens, K. T. Belt, W. P. Stack, V. R. Kelly, L. E. Band, and G. T. Fisher. 2005. Increased salinization of fresh water in the northeastern United States. *Proc. Natl. Acad. Sci.* **102**: 13517–13520. doi: [10.1073/pnas.0506414102](https://doi.org/10.1073/pnas.0506414102)

Kaushal, S. S., and K. T. Belt. 2012. The urban watershed continuum: Evolving spatial and temporal dimensions. *Urban Ecosyst.* **15**: 409–435. doi: [10.1007/s11252-012-0226-7](https://doi.org/10.1007/s11252-012-0226-7)

Kaushal, S. S., G. E. Likens, R. M. Utz, M. L. Pace, M. Grese, and M. Yepsen. 2013. Increased river alkalinization in the Eastern US. *Environ. Sci. Technol.* **47**: 10302–10311.

Kaushal, S. S., S. Duan, T. R. Doody, S. Haq, R. M. Smith, T. A. Newcomer Johnson, K. D. Newcomb, J. Gorman, N. Bowman, P. M. Mayer, K. L. Wood, K. T. Belt, and W. P. Stack. 2017. Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. *Appl. Geochem.* **83**: 121–135. doi: [10.1016/j.apgeochem.2017.02.006](https://doi.org/10.1016/j.apgeochem.2017.02.006)

Kaushal, S. S., G. E. Likens, M. L. Pace, R. M. Utz, S. Haq, J. Gorman, and M. Grese. 2018. Freshwater salinization syndrome on a continental scale. *Proc. Natl. Acad. Sci.* **115**: E574–E583.

Kaushal, S. S., G. E. Likens, M. L. Pace, S. Haq, K. L. Wood, J. G. Galella, C. Morel, T. R. Doody, B. Wessel, P. Kortelainen, A. Räike, V. Skinner, R. Utz, and N. Jaworski. 2019. Novel “chemical cocktails” in inland waters are a consequence of the freshwater salinization syndrome. *Philos. Trans. Roy. Soc. B Biol. Sci.* **374**: 20180017.

Kaushal, S. S., K. L. Wood, J. G. Galella, A. M. Gion, S. Haq, P. J. Goodling, K. A. Haviland, J. E. Reimer, C. J. Morel, B. Wessel, W. Nguyen, J. W. Hollingsworth, K. Mei, J. Leal, J. Widmer, R. Sharif, P. M. Mayer, T. A. Newcomer Johnson, K. D. Newcomb, E. Smith, and K. T. Belt. 2020. Making “chemical cocktails”—Evolution of urban geochemical processes across the periodic table of elements. *Appl. Geochem.* **119**: 104632.

Kaushal, S. S., and others. 2021. Freshwater salinization syndrome: From emerging global problem to managing risks. *Biogeochemistry* **154**: 255–292. doi: [10.1007/s10533-021-00784-w](https://doi.org/10.1007/s10533-021-00784-w)

Kelly, V. R., M. A. Cunningham, N. Curri, S. E. Findlay, and S. M. Carroll. 2018. The distribution of road salt in private drinking water wells in a southeastern New York suburban township. *J. Environ. Qual.* **47**: 445–451. doi: [10.2134/jeq2017.03.0124](https://doi.org/10.2134/jeq2017.03.0124)

Kerr, J. G. 2017. Multiple land use activities drive riverine salinization in a large, semi-arid river basin in western Canada. *Limnol. Oceanogr.* **62**: 1331–1345. doi: [10.1002/limo.10498](https://doi.org/10.1002/limo.10498)

Kim, S., and C. Koretsky. 2013. Effects of road salt deicers on sediment biogeochemistry. *Biogeochemistry* **112**: 343–358. doi: [10.1007/s10533-012-9728-x](https://doi.org/10.1007/s10533-012-9728-x)

Kinsman-Costello, L. E., J. O’Brien, and S. K. Hamilton. 2014. Re-flooding a historically drained wetland leads to rapid sediment phosphorus release. *Ecosystems* **17**: 641–656. doi: [10.1007/s10021-014-9748-6](https://doi.org/10.1007/s10021-014-9748-6)

Kinsman-Costello, L. E., J. M. O’Brien, and S. K. Hamilton. 2015. Natural stressors in uncontaminated sediments of shallow freshwaters: The prevalence of sulfide, ammonia, and reduced iron: Sulfide, ammonia, and iron in shallow freshwater sediments. *Environ. Toxicol. Chem.* **34**: 467–479. doi: [10.1002/etc.2801](https://doi.org/10.1002/etc.2801)

Kinsman-Costello, L. E., S. K. Hamilton, J. M. O’Brien, and J. T. Lennon. 2016. Phosphorus release from the drying and reflooding of diverse shallow sediments. *Biogeochemistry* **130**: 159–176. doi: [10.1007/s10533-016-0250-4](https://doi.org/10.1007/s10533-016-0250-4)

Lam, W. Y., D. Lembcke, and C. Oswald. 2020. Quantifying chloride retention and release in urban stormwater management ponds using a mass balance approach. *Hydrol. Process.* **34**: 4459–4472. doi: [10.1002/hyp.13893](https://doi.org/10.1002/hyp.13893)

Lamers, L. P. M., S.-J. Falla, E. M. Samborska, I. A. R. van Dulken, G. van Hengstum, and J. G. M. Roelofs. 2002. Factors controlling the extent of eutrophication and toxicity in sulfate-polluted freshwater wetlands. *Limnol. Oceanogr.* **47**: 585–593. doi: [10.4319/lo.2002.47.2.0585](https://doi.org/10.4319/lo.2002.47.2.0585)

Lancaster, N. A., J. T. Bushey, C. R. Tobias, B. Song, and T. M. Vadas. 2016. Impact of chloride on denitrification potential in roadside wetlands. *Environ. Pollut.* **212**: 216–223. doi: [10.1016/j.envpol.2016.01.068](https://doi.org/10.1016/j.envpol.2016.01.068)

Larson, M. A., R. L. Heintzman, J. E. Titus, and W. Zhu. 2016. Urban wetland characterization in south-Central New York state. *Wetlands* **36**: 821–829. doi: [10.1007/s13157-016-0789-9](https://doi.org/10.1007/s13157-016-0789-9)

Ledford, S. H., L. K. Lautz, and J. C. Stella. 2016. Hydrogeologic processes impacting storage, fate, and transport of chloride from road salt in urban riparian aquifers. *Environ. Sci. Technol.* **50**: 4979–4988. doi: [10.1021/acs.est.6b00402](https://doi.org/10.1021/acs.est.6b00402)

Lee, C., T. D. Fletcher, and G. Sun. 2009. Nitrogen removal in constructed wetland systems. *Eng. Life Sci.* **9**: 11–22. doi: [10.1002/elsc.200800049](https://doi.org/10.1002/elsc.200800049)

Lehmann, A., and K. Stahr. 2007. Nature and significance of anthropogenic urban soils. *J. Soil. Sediment.* **7**: 247–260. doi: [10.1065/jss2007.06.235](https://doi.org/10.1065/jss2007.06.235)

Li, C., G. Sun, P. V. Caldwell, E. Cohen, Y. Fang, Y. Zhang, L. Oudin, G. M. Sanchez, and R. K. Meentemeyer. 2020. Impacts of urbanization on watershed water balances across the conterminous United States. *Water Resour. Res.* **56**: 1–19. doi: [10.1029/2019WR026574](https://doi.org/10.1029/2019WR026574)

Liang, Y., H. Zhu, G. Bañuelos, B. Yan, Q. Zhou, X. Yu, and X. Cheng. 2017. Constructed wetlands for saline wastewater treatment: A review. *Ecol. Eng.* **98**: 275–285. doi: [10.1016/j.ecoleng.2016.11.005](https://doi.org/10.1016/j.ecoleng.2016.11.005)

Litalien, A., and B. Zeeb. 2020. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. *Sci. Total Environ.* **698**: 134235. doi:[10.1016/j.scitotenv.2019.134235](https://doi.org/10.1016/j.scitotenv.2019.134235)

Lumis, G. P., G. Hofstra, and R. Hall. 1976. Roadside woody plant susceptibility to sodium and chloride accumulation during winter and spring. *Can. J. Plant Sci.* **56**: 853–859. doi:[10.4141/cjps76-138](https://doi.org/10.4141/cjps76-138)

Maas, C. M., W. P. Anderson, and K. Cockerill. 2021. Managing stormwater by accident: A conceptual study. *Water* **13**: 1492. doi:[10.3390/w13111492](https://doi.org/10.3390/w13111492)

Macêdo, W. V., I. K. Sakamoto, E. B. Azevedo, and M. H. R. Z. Damianovic. 2019. The effect of cations (Na^+ , Mg^{2+} , and Ca^{2+}) on the activity and structure of nitrifying and denitrifying bacterial communities. *Sci. Total Environ.* **679**: 279–287. doi:[10.1016/j.scitotenv.2019.04.397](https://doi.org/10.1016/j.scitotenv.2019.04.397)

Mansour, I., C. M. Heppell, M. Ryo, and M. C. Rillig. 2018. Application of the microbial community coalescence concept to riverine networks: Riverine microbial community coalescence. *Biol. Rev.* **93**: 1832–1845. doi:[10.1111/brv.12422](https://doi.org/10.1111/brv.12422)

Marton, J. M., E. R. Herbert, and C. B. Craft. 2012. Effects of salinity on denitrification and greenhouse gas production from laboratory-incubated tidal forest soils. *Wetlands* **32**: 347–357. doi:[10.1007/s13157-012-0270-3](https://doi.org/10.1007/s13157-012-0270-3)

McGrane, S. J. 2016. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. *Hydrol. Sci. J.* **61**: 2295–2311. doi:[10.1080/02626667.2015.1128084](https://doi.org/10.1080/02626667.2015.1128084)

McLaughlin, D. L., and M. J. Cohen. 2013. Realizing ecosystem services: Wetland hydrologic function along a gradient of ecosystem condition. *Ecol. Appl.* **23**: 1619–1631. doi:[10.1890/12-1489.1](https://doi.org/10.1890/12-1489.1)

McPhillips, L. E., S. R. Earl, R. L. Hale, and N. B. Grimm. 2019. Urbanization in arid Central Arizona watersheds results in decreased stream flashiness. *Water Resour. Res.* **55**: 9436–9453. doi:[10.1029/2019WR025835](https://doi.org/10.1029/2019WR025835)

Mendelsohn, I. A., and J. T. Morris. 2000. Eco-physiological controls on the productivity of *Spartina alterniflora* Loisel. *In Concepts and controversies in tidal marsh ecology*. Dordrect, Netherlands: Kluwer Academic Publishing.

Mermilliod-Blondin, F., and R. Rosenberg. 2006. Ecosystem engineering: The impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. *Aquat. Sci.* **68**: 434–442. doi:[10.1007/s00027-006-0858-x](https://doi.org/10.1007/s00027-006-0858-x)

Meysman, F., J. Middelburg, and C. Heip. 2006. Bioturbation: A fresh look at Darwin's last idea. *Trends Ecol. Evol.* **21**: 688–695. doi:[10.1016/j.tree.2006.08.002](https://doi.org/10.1016/j.tree.2006.08.002)

Mitsch, W. J., and J. G. Gosselink. 2015. *Wetlands*, 5th ed. John Wiley & Sons, Ltd.

Moore, J., D. L. Bird, S. K. Dobbis, and G. Woodward. 2017. Nonpoint source contributions drive elevated major ion and dissolved inorganic carbon concentrations in urban watersheds. *Environ. Sci. Technol. Lett.* **4**: 198–204. doi:[10.1021/acs.estlett.7b00096](https://doi.org/10.1021/acs.estlett.7b00096)

Morgan, R. P., K. M. Kline, M. J. Kline, S. F. Cushman, M. T. Sell, R. E. Weitzell, and J. B. Churchill. 2012. Stream conductivity: Relationships to land use, chloride, and fishes in Maryland streams. *N. Am. J. Fish. Manag.* **32**: 941–952. doi:[10.1080/02755947.2012.703159](https://doi.org/10.1080/02755947.2012.703159)

Murphy, A. E., A. Bulseco, R. Ackerman, J. Vineis, and J. L. Bowen. 2020. Sulfide addition favors respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments. *Environ. Microbiol.* **22**: 2124–2139. doi:[10.1111/1462-2920.14969](https://doi.org/10.1111/1462-2920.14969)

Neubauer, S. C., M. F. Piehler, A. R. Smyth, and R. B. Franklin. 2019. Saltwater intrusion modifies microbial community structure and decreases denitrification in tidal freshwater marshes. *Ecosystems* **22**: 912–928. doi:[10.1007/s10021-018-0312-7](https://doi.org/10.1007/s10021-018-0312-7)

Nielsen, D. L., and M. A. Brock. 2009. Modified water regime and salinity as a consequence of climate change: Prospects for wetlands of Southern Australia. *Clim. Change* **95**: 523–533. doi:[10.1007/s10584-009-9564-8](https://doi.org/10.1007/s10584-009-9564-8)

Noe, G. B., K. Boomer, J. L. Gillespie, C. R. Hupp, M. Martin-Alciati, K. Floro, E. R. Schenk, A. Jacobs, and S. Strano. 2019. The effects of restored hydrologic connectivity on floodplain trapping vs. release of phosphorus, nitrogen, and sediment along the Pocomoke River, Maryland USA. *Ecol. Eng.* **138**: 334–352.

Norrström, A.-C., and E. Bergstedt. 2001. The impact of road de-icing salts (NaCl) on colloid dispersion and base cation pools in roadside soils. *Water Air Soil Pollut.* **127**: 281–299. doi:[10.1023/A:1005221314856](https://doi.org/10.1023/A:1005221314856)

O'Driscoll, M., S. Clinton, A. Jefferson, A. Manda, and S. McMillan. 2010. Urbanization effects on watershed hydrology and in-stream processes in the southern United States. *Water* **2**: 605–648. doi:[10.3390/w2030605](https://doi.org/10.3390/w2030605)

Ostendorf, D. W., R. N. Palmer, and E. S. Hinlein. 2009. Seasonally varying highway de-icing agent contamination in a groundwater plume from an infiltration basin. *Hydrol. Res.* **40**: 520–532.

Overbo, A., S. Heger, and J. Gulliver. 2021. Evaluation of chloride contributions from major point and nonpoint sources in a northern U.S. state. *Sci. Total Environ.* **764**: 144179.

Palta, M. M., N. B. Grimm, and P. M. Groffman. 2017. “Accidental” urban wetlands: Ecosystem functions in unexpected places. *Front. Ecol. Environ.* **15**: 248–256. doi:[10.1002/fee.1494](https://doi.org/10.1002/fee.1494)

Palta, M. M., and E. Stander. 2020. Wetlands in urban environments. *In Handbook of urban ecology*, 2nd ed. Routledge.

Panno, S. V., V. A. Nuzzo, K. Cartwright, B. R. Hensel, and I. G. Krapac. 1999. Impact of urban development on the chemical composition of ground water in a fen-wetland complex. *Wetlands* **19**: 236–245. doi:[10.1007/BF03161753](https://doi.org/10.1007/BF03161753)

Paul, M. J., and J. L. Meyer. 2001. Streams in the urban landscape. *Ann. Rev. Ecol. Syst.* **32**: 333–365. doi:[10.1146/annurev.ecolsys.32.081501.114040](https://doi.org/10.1146/annurev.ecolsys.32.081501.114040)

Petraska, J. W., and E. J. Doyle. 2010. Effects of road salts on the composition of seasonal pond communities: Can the use of road salts enhance mosquito recruitment? *Aquat. Ecol.* **44**: 155–166. doi:[10.1007/s10452-009-9286-z](https://doi.org/10.1007/s10452-009-9286-z)

Potter, J. D., W. H. McDowell, A. M. Helton, and M. L. Daley. 2014. Incorporating urban infrastructure into biogeochemical assessment of urban tropical streams in Puerto Rico. *Biogeochemistry* **121**: 271–286. doi:[10.1007/s10533-013-9914-5](https://doi.org/10.1007/s10533-013-9914-5)

Price, K. 2011. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. *Prog. Phys. Geogr. Earth Environ.* **35**: 465–492. doi:[10.1177/0309133311402714](https://doi.org/10.1177/0309133311402714)

Pugh, A. L., S. A. Norton, M. Schauffler, G. L. Jacobson, J. S. Kahl, W. F. Brutsaert, and C. F. Mason. 1996. Interactions between peat and salt-contaminated runoff in Alton Bog, Maine, USA. *J. Hydrol.* **182**: 83–104. doi:[10.1016/0022-1694\(95\)02934-6](https://doi.org/10.1016/0022-1694(95)02934-6)

Ranjbar, F., and M. Jalali. 2013. Measuring and modeling ammonium adsorption by calcareous soils. *Environ. Monit. Assess.* **185**: 3191–3199. doi:[10.1007/s10661-012-2782-y](https://doi.org/10.1007/s10661-012-2782-y)

Rath, K. M., and J. Rousk. 2015. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. *Soil Biol. Biochem.* **81**: 108–123. doi:[10.1016/j.soilbio.2014.11.001](https://doi.org/10.1016/j.soilbio.2014.11.001)

Ravit, B., F. Gallagher, J. Doolittle, R. Shaw, E. Muñiz, R. Alomar, W. Hoefer, J. Berg, and T. Doss. 2017. Urban wetlands: Restoration or designed rehabilitation? *AIMS Environ. Sci.* **4**: 458–483. doi:[10.3934/environsci.2017.3.458](https://doi.org/10.3934/environsci.2017.3.458)

Reddy, K. R., and R. D. DeLaune. 2008. *Biogeochemistry of wetlands: Science and applications*. Boca Raton, FL: CRC Press.

Reisinger, A. J., E. Woytowitz, E. Majcher, E. J. Rosi, K. T. Belt, J. M. Duncan, S. S. Kaushal, and P. M. Groffman. 2019. Changes in long-term water quality of Baltimore streams are associated with both gray and green infrastructure: Long-term trends in Baltimore water quality. *Limnol. Oceanogr.* **64**: S60–S76.

Rengasamy, P., and K. Olsson. 1991. Sodicity and soil structure. *Soil Res.* **29**: 935. doi:[10.1071/SR9910935](https://doi.org/10.1071/SR9910935)

Rhodes, A. L., and A. J. Guswa. 2016. Storage and release of road-salt contamination from a calcareous lake-basin fen, western Massachusetts, USA. *Sci. Total Environ.* **545–546**: 525–545.

Roden, E. E., and J. W. Edmonds. 1997. Phosphate mobilization in iron-rich anaerobic sediments: Microbial Fe(III) oxide reduction versus iron-sulfide formation. *Arch. Hydrobiol.* **139**: 347–378. doi:[10.1127/archiv-hydrobiol/139/1997/347](https://doi.org/10.1127/archiv-hydrobiol/139/1997/347)

Rose, S., and N. E. Peters. 2001. Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): A comparative hydrological approach. *Hydrol. Process.* **15**: 1441–1457. doi:[10.1002/hyp.218](https://doi.org/10.1002/hyp.218)

Rysgaard, S., P. Thastum, T. Dalsgaard, P. B. Christensen, N. P. Sloth, and S. Rysgaard. 1999. Effects of salinity on NH_4^+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. *Estuaries* **22**: 21–30. doi:[10.2307/1352923](https://doi.org/10.2307/1352923)

Sanzo, D., and S. J. Hecnar. 2006. Effects of road de-icing salt (NaCl) on larval wood frogs (*Rana sylvatica*). *Environ. Pollut.* **140**: 247–256. doi:[10.1016/j.envpol.2005.07.013](https://doi.org/10.1016/j.envpol.2005.07.013)

Schimel, J., T. C. Balser, and M. Wallenstein. 2007. Microbial stress-response physiology and its implications for ecosystem function. *Ecology* **88**: 1386–1394. doi:[10.1890/06-0219](https://doi.org/10.1890/06-0219)

Schuler, M. S., and R. A. Relyea. 2018. A review of the combined threats of road salts and heavy metals to freshwater systems. *Bioscience* **68**: 327–335. doi:[10.1093/biosci/biy018](https://doi.org/10.1093/biosci/biy018)

Schulz, C.-J., and M. Cañedo-Argüelles. 2019. Lost in translation: The German literature on freshwater salinization. *Philos. Transac. Roy. Soc. B Biol. Sci.* **374**: 20180007.

Scott, N. E., and A. W. Davison. 1982. De-icing salt and the invasion of road verges by maritime plants. *Watsonia* **14**: 41–52.

Seitzinger, S. P. 1991. The effect of pH on the release of phosphorus from Potomac estuary sediments: Implications for blue-green algal blooms. *Estuar. Coast. Shelf Sci.* **33**: 409–418. doi:[10.1016/0272-7714\(91\)90065-J](https://doi.org/10.1016/0272-7714(91)90065-J)

Seo, D. C., K. Yu, and R. D. Delaune. 2008. Influence of salinity level on sediment denitrification in a Louisiana estuary receiving diverted Mississippi River water. *Arch. Agron. Soil Sci.* **54**: 249–257. doi:[10.1080/03650340701679075](https://doi.org/10.1080/03650340701679075)

Séré, G., C. Schwartz, S. Ouvrard, J.-C. Renat, F. Watteau, G. Villemin, and J. L. Morel. 2010. Early pedogenic evolution of constructed technosols. *J. Soil. Sediment.* **10**: 1246–1254. doi:[10.1007/s11368-010-0206-6](https://doi.org/10.1007/s11368-010-0206-6)

Siddig, A. A. H., J. S. Richardson, and C. F. Dommann. 2020. Drought may amplify the impacts of salt pollution in pond ecosystems: An experimental exploration. *Fund. Appl. Limnol.* **194**: 1–9. doi:[10.1127/fal/2020/1225](https://doi.org/10.1127/fal/2020/1225)

Sinclair, J. S., A. J. Reisinger, E. Bean, C. R. Adams, L. S. Reisinger, and B. V. Iannone. 2020. Stormwater ponds: An overlooked but plentiful urban designer ecosystem provides invasive plant habitat in a subtropical region (Florida, USA). *Sci. Total Environ.* **711**: 135133.

Skultety, D., and J. W. Matthews. 2017. Urbanization and roads drive non-native plant invasion in the Chicago Metropolitan region. *Biol. Invasions* **19**: 2553–2566. doi:[10.1007/s10530-017-1464-7](https://doi.org/10.1007/s10530-017-1464-7)

Skultety, D., and J. W. Matthews. 2018. Human land use as a driver of plant community composition in wetlands of the Chicago Metropolitan region. *Urban Ecosyst.* **21**: 447–458. doi:[10.1007/s11252-018-0730-5](https://doi.org/10.1007/s11252-018-0730-5)

Smart, R. M., and J. W. Barko. 1980. Nitrogen nutrition and salinity tolerance of *Distichlis spicata* and *Spartina alterniflora*. *Ecology* **61**: 630–638. doi:[10.2307/1937429](https://doi.org/10.2307/1937429)

Smith, B. K., and J. A. Smith. 2015. The flashiest watersheds in the contiguous United States. *J. Hydrometeorol.* **16**: 2365–2381. doi:[10.1175/JHM-D-14-0217.1](https://doi.org/10.1175/JHM-D-14-0217.1)

Smyth, A. R., S. P. Thompson, K. N. Siporin, W. S. Gardner, M. J. McCarthy, and M. F. Piehler. 2013. Assessing nitrogen dynamics throughout the estuarine landscape. *Estuar. Coast.* **36**: 44–55. doi:[10.1007/s12237-012-9554-3](https://doi.org/10.1007/s12237-012-9554-3)

Snodgrass, J. W., J. Moore, S. M. Lev, R. E. Casey, D. R. Ownby, R. F. Flora, and G. Izzo. 2017. Influence of modern stormwater management practices on transport of road salt to surface waters. *Environ. Sci. Technol.* **51**: 4165–4172. doi:[10.1021/acs.est.6b03107](https://doi.org/10.1021/acs.est.6b03107)

Steele, M. K., and J. A. Aitkenhead-Peterson. 2011. Long-term sodium and chloride surface water exports from the Dallas/Fort Worth region. *Sci. Total Environ.* **409**: 3021–3032. doi:[10.1016/j.scitotenv.2011.04.015](https://doi.org/10.1016/j.scitotenv.2011.04.015)

Steele, M. K., and J. A. Aitkenhead-Peterson. 2013. Salt impacts on organic carbon and nitrogen leaching from senesced vegetation. *Biogeochemistry* **112**: 245–259. doi:[10.1007/s10533-012-9722-3](https://doi.org/10.1007/s10533-012-9722-3)

Steele, M. K., and J. B. Heffernan. 2014. Morphological characteristics of urban water bodies: Mechanisms of change and implications for ecosystem function. *Ecol. Appl.* **24**: 1070–1084. doi:[10.1890/13-0983.1](https://doi.org/10.1890/13-0983.1)

Steinmuller, H. E., and L. G. Chambers. 2018. Can saltwater intrusion accelerate nutrient export from freshwater wetland soils? An experimental approach. *Soil Sci. Soc. Am. J.* **82**: 283–292. doi:[10.2136/sssaj2017.05.0162](https://doi.org/10.2136/sssaj2017.05.0162)

Stets, E. G., C. J. Lee, D. A. Lytle, and M. R. Schock. 2018. Increasing chloride in rivers of the conterminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water. *Sci. Total Environ.* **613–614**: 1498–1509.

Stumm, W., and J. J. Morgan. 1996. *Aquatic chemistry: Chemical equilibria and rates in natural waters*, 3rd ed. John Wiley & Sons, Ltd.

Sumner, M. 1993. Sodic soils—New perspectives. *Soil Res.* **31**: 683. doi:[10.1071/SR9930683](https://doi.org/10.1071/SR9930683)

Sundareshwar, P. V., and J. T. Morris. 1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. *Limnol. Oceanogr.* **44**: 1693–1701. doi:[10.4319/lo.1999.44.7.1693](https://doi.org/10.4319/lo.1999.44.7.1693)

Tatariw, C., O. U. Mason, and B. Mortazavi. 2021. Ditching nutrients: Roadside drainage networks are hotspots for microbial nitrogen removal. *J. Geophys. Res. Biogeosci.* **126**: 1–20. doi:[10.1029/2020JG006115](https://doi.org/10.1029/2020JG006115)

Tiedje, J. M. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium, p. 179–244. In A. J. B. Zehnder [ed.]. *Environmental Microbiology of Anaerobes*. John Wiley and Sons.

Tiwari, A., and J. W. Rachlin. 2018. A review of road salt ecological impacts. *Northeast. Nat.* **25**: 123–142. doi:[10.1656/045.025.0110](https://doi.org/10.1656/045.025.0110)

Toor, G. A., and M. Lusk. 2011. *Reclaimed water use in the landscape: Managing salinity, sodicity, and specific ions in sites irrigated with reclaimed water*, v. **2011**. UF/IFAS Extension.

Tully, K., K. Gedan, R. Epanchin-Niell, A. Strong, E. S. Bernhardt, T. BenDor, M. Mitchell, J. Kominoeki, T. E. Jordan, S. C. Neubauer, and N. B. Weston. 2019. The invisible flood: The chemistry, ecology, and social implications of coastal saltwater intrusion. *Bioscience* **69**: 368–378. doi:[10.1093/biosci/biz027](https://doi.org/10.1093/biosci/biz027)

Turner, B. L., and P. M. Haygarth. 2001. Phosphorus solubilization in rewetted soils. *Nature* **411**: 258. doi:[10.1038/35077146](https://doi.org/10.1038/35077146)

US EPA. 2012. *2012 Guidelines for water reuse*. Washington, DC: U.S. Environmental Protection Agency. doi:[10.1007/s10661-011-2321-2](https://doi.org/10.1007/s10661-011-2321-2)

van Asselen, S., P. H. Verburg, J. E. Vermaat, and J. H. Janse. 2013. Drivers of wetland conversion: A global meta-analysis. *PLoS One* **8**: e81292.

van Diggelen, J. M. H., L. P. M. Lamers, G. van Dijk, M. J. Schaafsma, J. G. M. Roelofs, and A. J. P. Smolders. 2014. New insights into phosphorus mobilisation from sulphur-rich sediments: Time-dependent effects of salinisation. *PLoS One* **9**: e111106.

van Dijk, G., A. J. P. Smolders, R. Loeb, A. Bout, J. G. M. Roelofs, and L. P. M. Lamers. 2015. Salinization of coastal freshwater wetlands; effects of constant versus fluctuating salinity on sediment biogeochemistry. *Biogeochemistry* **126**: 71–84. doi:[10.1007/s10533-015-0140-1](https://doi.org/10.1007/s10533-015-0140-1)

van Dijk, G., L. P. M. Lamers, R. Loeb, P.-J. Westendorp, R. Kuiperij, H. H. van Kleef, M. Klinge, and A. J. P. Smolders. 2019. Salinization lowers nutrient availability in formerly brackish freshwater wetlands; unexpected results from a long-term field experiment. *Biogeochemistry* **143**: 67–83. doi:[10.1007/s10533-019-00549-6](https://doi.org/10.1007/s10533-019-00549-6)

Van Meter, K. J., and N. B. Basu. 2015. Signatures of human impact: Size distributions and spatial organization of wetlands in the Prairie Pothole landscape. *Ecol. Appl.* **25**: 451–465. doi:[10.1890/14-0662.1](https://doi.org/10.1890/14-0662.1)

Van Meter, R. J., C. M. Swan, and J. W. Snodgrass. 2011. Salinization alters ecosystem structure in urban stormwater detention ponds. *Urban Ecosyst.* **14**: 723–736. doi:[10.1007/s11252-011-0180-9](https://doi.org/10.1007/s11252-011-0180-9)

Vanni, M. J. 2002. Nutrient cycling by animals in freshwater ecosystems. *Ann. Rev. Ecol. Syst.* **3**: 341–370.

Venâncio, C., R. Ribeiro, A. M. V. M. Soares, and I. Lopes. 2018. Multigenerational effects of salinity in six clonal lineages of *Daphnia longispina*. *Sci. Total Environ.* **619–620**: 194–202.

Volkmar, K. M., Y. Hu, and H. Steppuhn. 1998. Physiological responses of plants to salinity: A review. *Can. J. Plant Sci.* **78**: 19–27. doi:[10.4141/P97-020](https://doi.org/10.4141/P97-020)

Vymazal, J. 2007. Removal of nutrients in various types of constructed wetlands. *Sci. Total Environ.* **380**: 48–65. doi: [10.1016/j.scitotenv.2006.09.014](https://doi.org/10.1016/j.scitotenv.2006.09.014)

Wadzuk, B. M., M. Rea, G. Woodruff, K. Flynn, and R. G. Traver. 2010. Water-quality performance of a constructed stormwater wetland for all flow conditions. *J. Am. Water Resour. Assoc.* **46**: 385–394. doi: [10.1111/j.1752-1688.2009.00408.x](https://doi.org/10.1111/j.1752-1688.2009.00408.x)

Weston, N. B., R. E. Dixon, and S. B. Joye. 2006. Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization. *J. Geophys. Res.* **111**: G01009.

Weston, N. B., A. E. Giblin, G. T. Banta, C. S. Hopkinson, and J. Tucker. 2010. The effects of varying salinity on ammonium exchange in estuarine sediments of the Parker River, Massachusetts. *Estuar. Coast.* **33**: 985–1003. doi: [10.1007/s12237-010-9282-5](https://doi.org/10.1007/s12237-010-9282-5)

Wilcox, D. A. 1986. The effects of deicing salts on water chemistry in Pinhook Bog, Indiana. *J. Am. Water Resour. Assoc.* **22**: 57–65. doi: [10.1111/j.1752-1688.1986.tb01860.x](https://doi.org/10.1111/j.1752-1688.1986.tb01860.x)

Williams, A. A., N. T. Lauer, and C. T. Hackney. 2014. Soil phosphorus dynamics and saltwater intrusion in a Florida estuary. *Wetlands* **34**: 535–544. doi: [10.1007/s13157-014-0520-7](https://doi.org/10.1007/s13157-014-0520-7)

Wong, V. N. L., R. S. B. Greene, R. C. Dalal, and B. W. Murphy. 2010. Soil carbon dynamics in saline and sodic soils: A review: Soil carbon dynamics in saline and sodic soils. *Soil Use Manag.* **26**: 2–11. doi: [10.1111/j.1475-2743.2009.00251.x](https://doi.org/10.1111/j.1475-2743.2009.00251.x)

Wood, J. M. 2015. Bacterial responses to osmotic challenges. *J. Gen. Physiol.* **145**: 381–388. doi: [10.1085/jgp.201411296](https://doi.org/10.1085/jgp.201411296)

Yan, N., P. Marschner, W. Cao, C. Zuo, and W. Qin. 2015. Influence of salinity and water content on soil microorganisms. *Int. Soil Water Conserv. Res.* **3**: 316–323. doi: [10.1016/j.iswcr.2015.11.003](https://doi.org/10.1016/j.iswcr.2015.11.003)

Yang, Y.-Y., and G. S. Toor. 2017. Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments. *Water Res.* **112**: 176–184. doi: [10.1016/j.watres.2017.01.039](https://doi.org/10.1016/j.watres.2017.01.039)

Yuckin, S., and R. Rooney. 2019. Significant increase in nutrient stocks following *Phragmites australis* invasion of freshwater meadow marsh but not of cattail marsh. *Front. Environ. Sci.* **7**: 16.

Zedler, J. B. 2003. Wetlands at your service: Reducing impacts of agriculture at the watershed scale. *Front. Ecol. Environ.* **1**: 65–72. doi: [10.1890/1540-9295\(2003\)001\[0065:WAYSRI\]2.0.CO;2](https://doi.org/10.1890/1540-9295(2003)001[0065:WAYSRI]2.0.CO;2)

Zhou, M., K. Butterbach-Bahl, H. Vereeken, and N. Brügmann. 2017. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. *Glob. Chang. Biol.* **23**: 1338–1352. doi: [10.1111/gcb.13430](https://doi.org/10.1111/gcb.13430)

Acknowledgments

This synthetic review is a product of the special session “The novel biogeochemistry of ubiquitous understudied urban wetlands” organized by L. E. Kinsman-Costello and A. Peralta for the 12th International Symposium on Biogeochemistry of Wetlands (Coral Springs, FL, 2018). Special thanks to Kayla Clark who contributed to designing the conceptual diagrams. During the drafting of this article, the authors received support from National Science Foundation, OPP-2006194 (L. E. Kinsman-Costello), University of Florida Graduate School Funding Award (A. Goeckner), USDA National Institute of Food and Agriculture, Hatch project 1018621 (J. Matthews), North Carolina Department of Justice-Environmental Enhancement Grant (M. O’Driscoll), National Science Foundation, DEB-1845845 and BCS-2009185 (A. L. Peralta), USDA-NIFA REEport project # FLA_SWS_00573 (A.J. Reisinger), USDA National Institute of Food and Agriculture, REEport Project FLA-TRC-005764 (A. R. Smyth), Cleveland Metroparks Emerald Necklace Foundation (L.E. Kinsman-Costello, M. Stofan). One anonymous reviewer and S. Neubauer provided suggestions that substantially improved this paper. This publication was made possible in part by support from the Kent State University Open Access Publishing Fund and by the KSU Department of Biological Sciences.

Submitted 04 September 2021

Revised 29 June 2022

Accepted 05 July 2022