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ABSTRACT
To achieve high accuracy in machine learning (ML) systems, practi-
tioners often use complex “black-box” models that are not easily
understood by humans. The opacity of such models has resulted in
public concerns about their use in high-stakes contexts and given
rise to two conflicting arguments about the nature — and even
the existence — of the accuracy-explainability trade-off. One side
postulates that model accuracy and explainability are inversely
related, leading practitioners to use black-box models when high
accuracy is important. The other side of this argument holds that
the accuracy-explainability trade-off is rarely observed in practice
and consequently, that simpler interpretable models should always
be preferred. Both sides of the argument operate under the assump-
tion that some types of models, such as low-depth decision trees
and linear regression are more explainable, while others such as
neural networks and random forests, are inherently opaque.

Our main contribution is an empirical quantification of the trade-
off between model accuracy and explainability in two real-world
policy contexts. We quantify explainability in terms of how well
a model is understood by a human-in-the-loop (HITL) using a
combination of objectively measurable criteria, such as a human’s
ability to anticipate a model’s output or identify the most important
feature of a model, and subjective measures, such as a human’s
perceived understanding of the model. Our key finding is that
explainability is not directly related to whether a model is a black-
box or interpretable and is more nuanced than previously thought.
We find that black-box models may be as explainable to a HITL
as interpretable models and identify two possible reasons: (1) that
there are weaknesses in the intrinsic explainability of interpretable
models and (2) that more information about a model may confuse
users, leading them to perform worse on objectively measurable
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explainability tasks. In summary, contrary to both positions in the
literature, we neither observed a direct trade-off between accuracy
and explainability nor found interpretable models to be superior in
terms of explainability. It’s just not that simple!
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1 INTRODUCTION
The current resurgence of research in Artificial Intelligence (AI)
and in particular, in the sub-discipline of machine learning (ML),
has resulted in ML systems being widely adopted in various or-
ganizations within society [18, 50, 52, 56, 58, 60]. Public policy
programs responsible for high-stakes decisions in critical domains
such as education [6, 34, 37, 59] and housing [7, 57] are increasingly
relying on the predictions made by ML models to assist in decision-
making alongside human users. This interaction model, where an
ML system makes a prediction and a human ultimately makes a
final determination informed by the system’s predictions, is com-
monly referred to as a “human-in-the-loop” (HITL) system. For
example, a school administrator may use an ML system to predict
the risk that a student will drop out of school and then assign an
at-risk student to a special tutoring program [2]. Similarly, a doctor
may use an ML system to forecast a patient’s risk of developing a
particular disease for early intervention [3].

In tandem with this uptick in adoption, researchers, AI practi-
tioners, and journalist alike have shown that ML systems operating
in public policy contexts run the risk of causing significant harm
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to members of already marginalized and underrepresented groups
[13, 25, 40, 51]. For example, a recent study revealed that lending
algorithms may discriminate against Latinx and African-American
borrowers [7, 26], and that educational risk-assessment algorithms
have performed worse for minority students [37, 59]. The imple-
mentation of problematic ML models in public policy use-cases is,
among many factors, due to the increased use of opaque models.
Such models, commonly referred to as “black-boxes”, are based on
complex predictive algorithms that are not always intelligible to
humans, posing both practical and ethical concerns [58, 61, 71].
Black-box models exist in contrast to “interpretable” models, which
can be more easily understood by humans. In an effort to under-
stand black-box models, there has been an increase in research
and tooling developed around interpretability and explainability
[29, 42], leading to the development of commonly used toolkits
such as LIME, SHAP, and SAGE [16, 45, 55]. Interpretability and
explainability are seen as a means to surface and address fairness
concerns, to help in ML system debugging, to facilitate auditing and
oversight, to improve trust and increase adoption by HITL users,
and to support recourse for those affected by model decisions like
appealing a loan denial [5].

Terminology. In this work, we use Rudin’s definition of “in-
terpretability”, who states that “interpretable ML focuses on de-
signing models that are inherently [human]-interpretable” [58].
Importantly, the terms “interpretable” and “interpretability” refer
to a specific class of models, like decision trees, linear models, and
rules-lists. While there is no universal definition of “explainabil-
ity” [46, 46], it generally refers to the extent to which ML models
are understandable to humans. We use an adaptation of Miller’s
work, and define “explainability” as the extent to which someone
can accurately predict and understand the output of an ML model
[47, 48].

Claims About the Accuracy vs. Explainability Trade-off.
The ML community is entertaining two contrasting claims about
the trade-offs between interpretable and black-box models. The
first is that, while interpretable models are more explainable they
lack the accuracy of black-box models, suggesting that accuracy
and explainability are inversely related [38]. The second and con-
trary claim is that there is little observable trade-off in accuracy
between black-box and interpretable models and that consequently,
interpretable models should be favored. Rudin [58] has advocated
that the ML community abandons the use of black-box models in
high-stakes decision contexts in favor of using human-interpretable
models. The latter claim is supported by an increasing number of
cases showing that the difference in the accuracy of black-box mod-
els as compared to simpler interpretable models is often negligible
in public policy contexts [9, 20, 62]. Yet, there is a significant gap
in the literature on empirically characterizing the this trade-off
[24, 28], in part due to the difficulty of quantifying the explainabil-
ity of both interpretable and black-box models.

Research Questions. In this paper, we take steps to fill this
research gap. We study the trade-off between accuracy and explain-
ability for the end users of black-box and interpretable models in
public policy use-cases and seek to answer two related research
questions: (1) how can we quantify explainability? and (2) how can
we quantify the trade-off between accuracy and explainability?

Summary of Findings. We conducted a large user study to
measure explainability of 4 model types (2 interpretable and 2 black-
box). We quantified explainability using two objectively measurable
tasks: (1) anticipating the output of a model; and (2) identifying the
most important feature. We also used two subjective measures: (1)
the user’s perceived understanding of the model; and (2) the user’s
perceived confusion.

Key finding. We found that there is no statistically significant
difference in explainability for HITL users working with black-box
models versus interpretable ones. In fact, black-box models, both
with and without SHAP explanations, lead to the best performance
by users on both objectively-quantifiable tasks in both policy do-
mains. Figure 1 summarizes this key finding.

Additional findings. Our key finding was driven by two factors.
The first is that additional information about a model may not
improve its explainability. Providing more information to a HITL
(e.g., SHAP explanations for black-box models or “intrinsic” ex-
plainability mechanisms such as a tree diagram for decision trees)
was only useful if it did not confuse the user. Local explanations,
like those from SHAP, are most useful to users in cases where these
explanations are significantly different from global explanations
about a model (e.g., feature importance). Additionally, the utility of
these explanations is heavily dependent on the explainability task
asked of the user.

The second factor is that there are weaknesses in the intrinsic
explainability mechanisms of interpretable models. For example,
when users were asked to identify the most important feature of
a decision tree model and were presented with the tree diagram,
they often defaulted to selecting the feature found at the root of
the tree regardless of whether or not the feature was the most
important. This result was observed despite participants being
given detailed instructions about the overall system characteristics,
feature importance, and the tree diagram.

Finally, we find that model accuracy and explainability are not
necessarily inversely related. In the problem contexts we investi-
gated, black-box models only outperformed interpretable models
when accuracy was measured using a context-specific metric (e.g.,
precision score at the top 25% of the population). Otherwise, when
using more general metrics (e.g., accuracy score), black-box and
interpretable models performed similarly. Contrary to a common
belief held byML practitioners, black-box models may often be both
the most accurate and the most explainable models to end users.
With respect to black-box models, users are able to understand
what the model does without necessarily having to understand how
it works.

Importantly, we are not making a tacit endorsement of the use
black-box models in all contexts; rather, we acknowledge that black-
box models may not be as unexplainable to users as often believed.
This work represents a single step towards a larger goal of under-
standing the complexity of what explainability practically means
for HITL users.

Contributions. Our main contribution is an empirical quantifi-
cation of the trade-off between model accuracy and explainability.
We define a robust measure of explainability, consisting of two
objectively-verifiable user tasks (“Anticipating the System Output”
and “Identifying the Most Important Feature”) and two survey con-
structs concerning the users’ perceived understandings of themodel.
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(a) (b)

Figure 1: (a)Mean performance and 95%CI of participants on explainability Task 1: Anticipating the SystemOutput, where par-
ticipantswere presentedwith the profile of a student (or house) and asked to identify how themodelwould classify that profile;
(b) Mean performance and 95% CI of participants on explainability Task 2: Identifying the Most Important Feature, where par-
ticipants were presented with the profile of a student (or house) and the model output, then asked to identify the most impor-
tant feature contributing to that output. (Number of observations in each group: Education|BB = 160, Education|Interpretable
= 160, Housing|BB = 160, Housing|Interpretable = 160)

We present a novel and generalizable methodology for empirically
quantifying this trade-off and use this method in two real-world
public policy scenarios.

2 RELATED WORK
Work in explainable AI (XAI) has expanded considerably in recent
years due to the growth and proliferation of black-box models.
ML/AI algorithms have permeated many different aspects of pub-
lic policy and are often implemented to support human decision-
making. While some ML applications may not require HITL users
to understand how these systems work, in many policy contexts,
it is critical for the human operators of these systems to have an
understanding of the models that underpin them [27, 53, 63, 65, 70].
For example, physicians prefer to use ML systems that provide
model-agnostic explanations. Researchers have also uncovered a
significant relationship between understanding and trust in ML
systems [8, 22, 44].

ML practitioners generally accept three types of models as in-
terpretable: rules-based models, decision trees, and linear models
[31]. These three model types are viewed as having intrinsically
explainable mechanisms [46], such as the tree diagram for decision
trees and the linear formula for linear models. Other model types,
like random forests and neural networks, are considered black-
boxes. Importantly, Guidotti et al. [31] point out that the distinction
between interpretable and black-box models lacks an attention to
model complexity. The technical definition of model complexity
is the number of regions (i.e., the parts of the model) for which
the boundaries are defined [33]. Here, “model boundaries” refers
to certain parameters of a model that influence how inherently
understandable that model is to humans. As an example, the model
complexity of a decision tree is proportional to the depth of the
tree. Prior research found that the understanding of a model is

negatively correlated with its complexity and that decision trees
are among the model types best understood by users [4].

Researchers have made a number of attempts to “open up” black-
box models by creating tools that provide explanations. In con-
trast to interpretability, which is inherent in low-complexity in-
terpretable models, these methods are post-hoc techniques that
are applied to already trained models. Some of the most popular
post-hoc explainability methods are LIME, QII, SHAP, and SAGE
[16, 17, 19, 45, 54]. Despite these efforts, researchers have called
into question the utility of these methods, cautioning against their
use in real-world contexts, especially for ML systems making deci-
sions in high-stakes, public policy contexts [58]. Critics of post-hoc
explainability methods point out that LIME and SHAP are designed
specifically for offering local interpretability of models and, sub-
sequently, offer explanations only about how the model works on
a particular input. Another criticism is that, in many cases, such
methods are approximations of the black-box they are trying to
explain [71] and do not reflect the actual underlying model. Finally,
these methods may be vulnerable to adversarial attacks [61].

Generally, the tension between high performing yet difficult to
understand black-box models on one hand and worse performing
yet directly interpretable models on the other, is often referred to
as the accuracy-interpretability trade-off [28, 58]. In this work and
in alignment with recent research [1, 32, 35, 43, 44, 47, 48, 67], we
seek to re-frame the conversation away from the “coarse” notion of
interpretability that relates to entire classes of models. Instead, we
couch it in terms of explainability, which is concerned with what a
model does (rather than with how it works) and with how well a
model’s decisions are understood by a user.

In part, the scarcity of empirical research on the accuracy-
explainability trade-off is a result of the difficulty of effectively
quantifying explainability [32]. Explanations in ML are intended
for end-users and, therefore, efforts to quantify explainability often
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involve user studies during which users complete tasks and answer
questions [1, 35, 67]. User studies on explainability often include
subjective and objective measures of user understanding. Subjec-
tive measures include questionnaires about the users’ point of view,
such as perceptions of their understanding or ratings on the quality
of an explanation [43, 44]. In contrast, objective measures include
the performance of explainability-related tasks, such as identifying
the most important feature of a model [32].

Another consideration is how the design of ML systems impacts
explainability [23, 68]. For example, practitioners need to be cog-
nizant of an explanation’s scope - whether the explanation is local
(the explanation is about a single instance or model output) or
global (the explanation is about the entire model). In one study,
researchers found that varying the scope of an explanation between
local and global influenced individuals’ perceptions of whether or
not an ML model was fair—even when the underlying model did
not change [42]. Other studies have found that the implementation
of explainability mechanisms varies widely among industry experts
but that most techniques focus on features, such as model feature
importance [10, 36]. Other studies note that while post-hoc explain-
ability techniques such as SHAP and LIME are useful, they also
contain issues with regards to model volatility and have outlined
how LIME has given unexpected results [10, 36]. Furthermore, re-
searchers have found that blindly deploying post-hoc explainability
techniques can actually hurt users’ performance on certain tasks
related to their understanding of ML models [39].

Lastly, the literature on explainability for HITL users is filled
with counter-intuitive results. For example, research shows that
providing more information in ML model explanations can actually
decrease users’ perceived understandings due to information over-
load [42, 49]. Researchers have also found that ML explanations
can generate positive increases in user confidence but that this
effect is negligible with respect to the quality of their final deci-
sions [69]. The latter finding is an extension of the performance-use
paradox, wherein the users of an ML system in an employment
setting preferred using a system where the explanations made no
sense to them, as opposed to not having the explanations at all [70].
Furthermore, there is evidence that explanations can have the posi-
tive effect of increasing trust in ML systems, but also the negative
effect of facilitating a false sense of trust in the same type of sys-
tems [8, 22, 30, 44]. Overall, a nuanced approach to explainability,
and generally to the design and implementation of ML systems, is
paramount to understanding the accuracy-explainability trade-off.

3 PUBLIC POLICY USE-CASES
This work focuses on ML for public policy, an area of which
problems have special considerations that impact the accuracy-
explainability trade-off. Three such considerations are: (1) ML sys-
tems in public policy settings are almost always implemented along-
side a human user who must understand the system sufficiently to
take responsibility for the decisions, (2) the transparency of these
systems is often (and with increasing frequency) legally mandated
due to their public and high-stakes nature, and (3) accuracy is typi-
cally measured relative to a resource constraint (see section 4.2).

The two problem contexts we selected consist of a Portuguese
student performance system [15], where the prediction task is to

identify students at risk of failure in order to provide additional
school resources (referred to as the “education” problem) and a
housing price estimation system from King County, WA, USA [64],
where the model estimates the market value of the property in
order to prioritize tax assessor inspections (referred to as the “hous-
ing” problem). In the proposed housing problem, the objective is
to predict what the property price would be if the home had sold
in the previous year. This information is important because homes
are taxed as a function of their market value in King County, WA.
Property taxes fund a large portion of local government and for
property owners this is a large and visible tax payment. Taxpay-
ers have the right to know if they are paying their “fair share” of
property taxes but due to governmental resource constraints, local
governments need some way to prioritize how property tax asses-
sors are deployed into the field to evaluate or re-evaluate the homes
in question. The problem domains and the datasets used to build
these systems are summarized in Table 1.

We chose these two contexts because they use publicly available,
real-world data. When selecting domains to study, we only consid-
ered problems where we felt that the use of responsibly designed
and thoroughly validated ML systems was ethical. For this reason,
problem spaces such as criminal justice systems like COMPAS [40],
where the objective is to make recidivism risk-predictions were ex-
cluded. Furthermore, researchers have demonstrated issues caused
by similar systems in education [6, 34, 37, 59] and housing [7, 57],
highlighting the importance of understanding these types of sys-
tems to mitigate potential harms. During the use-case selection
process we only considered tabular datasets because they make
up a large portion of ML public policy problems. As evidence for
this, the organization Data Science for Social Good (DSSG) lists
approximately 80 projects on their website1 at the intersection of
ML and public policy and at least 75% of them used tabular data.

4 METHODS
The first step of our methodology involved carefully conducting
exploratory data analyses and pre-processing on the Education and
Housing datasets (section 4.1). Next, we trained numerous classifiers
(section 4.2) and quantified model accuracy based on a variety of
common accuracy metrics and ultimately selected the best models
using overall accuracy and precision@25%. We report the results of
all the accuracy metrics we measured in Appendix D. Finally, we
measured the explainability of the most accurate models in a user
study (section 4.3). Our explainability metrics are described in detail
in section 4.3.2 and combine objectively measurable factors such
as a user’s ability to anticipate a model prediction or to point out
the most salient feature as well as subjective factors that quantify a
user’s perceived understanding of a model.

4.1 Data Processing and Exploratory Data
Analysis

After selecting our two public policy use-cases (Education and
Housing), we processed the data for modeling and conducted an
Exploratory Data Analysis (EDA). Two issues were discovered dur-
ing the EDA process. First, there was a data leakage issue in the

1https://www.dssgfellowship.org/projects/
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Policy domain Education Housing

Number of records 1,044 21,613
Number of features 33 20

Target variable Grade in final year of high school (scale from 1 to 20) Sales price
Prediction task Will the student fail (grade ≤ 10)? Will the house’s sale price be ≥ $645, 000?

Timespan 2005-09-01 to 2006-06-31 2014-05-01 to 2015-05-31
Subgroups Sex, parent’s education level None

Human users School administrators, teachers Government officials, property tax assessors
Intervention High risk students will receive additional tutoring Houses will be audited by tax assessors

Resource constraint Special tutoring available for up to 25% of students Assessors can inspect up to 25% of houses

Table 1: Description of policy contexts and the associated datasets used in our evaluation.

Education dataset. Two features (absences and failures) were aggre-
gated across all three years of data, including the year for which
performance is being predicted. Unfortunately, there was no way to
disentangle these features into separate annual variables, and as a
result, the leakage improves model accuracy metrics by making the
prediction task “easier.” However, since this accuracy improvement
applies to both interpretable and black-box models, we believe it
poses no harm to our overall study objective. Second, during EDA
on the Housing dataset we noticed that several data records con-
tained errors. Subsequently, we dropped 10 data records that either
consisted of 0 bedrooms, 0 bathrooms, and/or 33 bedrooms. We
found it reasonable to assume that these were likely input errors
and that their removal would not have any significant effect on the
overall model training and prediction outcomes.

After preliminary model training, we noticed the models’ most
important features were always zip codes. For our study purposes,
this was not ideal as users would not be able to use their domain
expertise unless they were familiar with those particular zip codes.
Furthermore, using zip codes — which are strongly correlated with
race [21, 41] — to predict housing prices for tax purposes raise con-
cerns about redlining, which the Fair Housing Act of 1968 explicitly
outlawed as a practice in the United States [14]. For these reasons,
we omitted zip codes from our training data.

4.2 Model Training
For each policy use-case, we trained eight different classifier types:
three black-box models (XGBoost, extra trees, random forests),
four interpretable models (decision tree, linear regression - Ridge,
linear regression - Lasso, logistic regression), and one baseline
model (dummy classifier) to benchmark performance. We chose
these classifiers because they are representative of the types of
models commonly used in ML for public policy systems [9, 12,
20, 56]. Our model training process followed ML for public policy
industry standards and best practices. The classifiers were tuned
using a parameter sweep on a large hyperparameter grid and the
performance of each model was validated using stratified k-fold
cross-validation. To ensure the robustness of our results, the models
were also validated over a range of different random seeds and
different validation methods such as classic k-fold and train-test-
split.

Each model was evaluated on seven different metrics includ-
ing Area Under the Receiver Operating Characteristic Curve (ROC

AUC) score, F1 score, accuracy score, precision score at 10%, preci-
sion score at 25%, recall score at 10%, and recall score at 25%. These
metrics were chosen because they reflect the performance measures
typically used in ML for public policy [9, 12, 20, 56]. Importantly,
we included metrics at a certain percentage of the population (often
referred to as metrics at k) because they are more commonly used
in ML for public policy in order to specifically addresses real-world
resource constraints [2, 12, 66]. In both policy contexts, we assumed
that intervention resources were limited to 25% of the population
(see Table 1). For the sake of clarity, in this paper we will focus on
two metrics: accuracy score, computed as the overall percentage
of correct predictions, and precision@25%, computed as the per-
centage of true positives out of all predicted positives among the
top 25%, when model outputs are sorted by the score ∈ [−1, 1] asso-
ciated with the prediction. A complete list of performance results
across all metrics is available in Appendix D.

After completing model training, we selected three models for
each domain to use in the explainability survey design based on
their performance with respect to precision@25%, since this was
the most policy-relevant metric. The three models selected were
random forest, linear regression (Ridge for Education and Lasso for
Housing), and decision tree. Subsequently, these models were used
to design the survey and its materials, described next.

4.3 Survey
To measure the explainability of the chosen ML models, we con-
ducted an IRB-approved human subjects research study. We gath-
ered data on four explainability metrics including two metrics re-
quiring users to correctly perform tasks pertaining to the inputs and
outputs of the system and two subjective measures of participants’
perceived understanding and confusion about the system (these
metrics are described in detail in the section 4.3.2).

4.3.1 Recruitment.
We recruited participants through Prolific, an online research re-
cruitment platform. Participant compensation was set at $15/hour;
participants were estimated to complete the study in 15 minutes
or less (the education study average reward was $28.73/hr and the
housing study average reward was $27.44/hr). In both studies, par-
ticipants were pre-screened by current country of residence (United
States), age (over 18), and fluent languages (English). For the educa-
tion domain, participants were pre-screened as being in the Edu-
cation & Training employment-sector and the Primary/Secondary
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K-12 Education industry. For the housing study, participants were
from the Real Estate Rental & Leasing industry.

Each study had 168 participants to ensure our survey would have
statistical power. While all Prolific participants are anonymous,
we did receive some self-reported demographic data and survey-
specific metrics. The education study consisted of 129 female and
39 male respondents, who spent an average of 8 minutes and 50
seconds on the survey questions. The housing study consisted of
112 female and 54 male respondents, and 2 respondents who did not
specify their gender. Housing study participants spent an average
of 10 minutes and 14 seconds on the survey questions.

4.3.2 Survey Design.
We designed the survey to emulate how HITL users interact with
ML systems in real-world policy settings [70]. The survey began by
providing participants with a contextual overview about ML in their
respective policy domain and asked them to complete tasks about
specific ML systems. Next, we had participants interact with two
of four possible ML systems in order to measure the explainability
of 4 model types: two black-box models (one with SHAP and one
without), and two interpretable models (a decision tree and a linear
regression). Note that we chose to provide SHAP explanations for
one black-box model because it emulates how black-box models
are most commonly implemented in-practice [10, 36].

We administered two surveys that were identical except for
domain-specific details such as the features used to build the ML
models. The survey flow as well as a sample can be found in Ap-
pendix A. The main steps are detailed below:

(1) Model Type. The participants were randomly presented one
of the four ML systems being studied (black-box no SHAP,
black-box with SHAP, linear regression, or decision tree):

(a) Information about the system:
(i) Model Overview. Included details about the system’s

purpose, inputs and outputs, and the global feature im-
portance of the underlying ML model.

(ii) Additional Model-Specific Information. Information var-
ied based on the model type randomly selected in step
(1). For systems that used interpretable models, partici-
pants viewed the intrinsic explainability mechanism of
the respective model: linear formula with cut-off thresh-
old for linear regression, and the tree diagram for de-
cision tree, respectively. For the black-box model with
SHAP explanations, participants saw SHAP diagrams
presenting local feature importance. For the black-box
model without SHAP explanations, no additional infor-
mation was presented.

(b) Survey tasks and constructs:
(i) Task 1: Anticipating SystemOutput (ASO). This task

required users to anticipate the output of an ML system
given information about the system. Users received a
random data profile and were asked to determine how
the system would classify that profile. This task was
adapted from Miller’s work [47] where explainability is
the extent to which someone can accurately understand
and predict the output of an ML model. The task was
intended to measure local explainability of the model

by having participants reason about how the system
worked for a particular data point.

(ii) Task 2: Identifying the Most Important Feature
(IMIF). In this task, participants were given both a ran-
dom data profile and the corresponding system output.
They were then asked to identify the feature that was
the most important overall to the system’s prediction. In
contrast to the first task, this task measured the global
explainability of the model since the model’s feature
importance did not vary with respect to each data point.
Overall, there were four random data profiles and we
ensured that participants would not see the same profile
for both tasks.

(iii) System Understanding. We sought to measure the par-
ticipants’ perceived understanding of the system. To
do this, we included an eight item, 5-point Likert scale
questionnaire aimed at measuring their perceived un-
derstanding of the ML systems. The eight items were
broken into a five item construct that assessed how
well the participant felt they understood the system
(called Understood System) and a three item construct
that evaluated whether or not the participants found
the system confusing (called System Confusing). The
questions in this section were adapted from work by
Lim [43].

(2) Participants repeated step (1) but viewed a different model
type. Importantly, if the participant previously viewed an
interpretable model, they would next view a black-boxmodel
(and vice versa).

(3) Participants completed four final background questions
about their technological aptitude, industry experience, and
whether they were familiar with the data presented before
taking the survey.

To summarize our design: Each participant interacts with one
black-box and one interpretable model, in a random order. For each
model, they complete 1 ASO task, 1 IMIF task, and complete the
system understanding questionnaire. Note that by randomizing
the order in which participants see each model, we eliminate any
“learning effect” that may occur from interacting with the first
model.

5 RESULTS
Appropriately anonymized data and our analysis methodology
are available at https://github.com/DataResponsibly/accuracy-
explainability-tradeoff.

5.1 Explainability
5.1.1 Task 1: Anticipating the System Output (ASO).
In the Anticipating the System Output (ASO) explainability task,
participants were given a profile of a student or house, and then
asked to anticipate the model’s output based on the given input.
Users were asked to try and understand what the models would do
for a particular (local) data point. While one might expect users to
perform better at anticipating the output for interpretable models as
compared to black-box models, we found on average no statistically
significant difference in the ASO task performance between the
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(a) (b)

Figure 2: (a) Mean performance and 95% CI of participants on explainability Task 1: Anticipating the System Output, where
participants were presented with the profile of a student (or house) and asked to identify how the model would classify that
profile; (b) Mean performance and 95% CI of participants on explainability Task 2: Identifying the Most Important Feature,
where participantswere presentedwith the profile of a student (or house) and themodel output, then asked to identify themost
important feature contributing to that output. (Number of observations in each group: Education|BB = 69, Education|BB (w/
SHAP) = 91, Education|DT = 83, Education|LR = 77, Housing|BB = 72, Housing|BB (w/ SHAP) = 88, Housing|DT = 76, Housing|LR
= 84.)

end users of the interpretable and black-box models (all statistics
and p-values for this paper be found in Appendix B in Table 3).

However, there were significant pairwise differences when com-
paring ASO performance for specific model types (decision tree,
linear regression, black-box (no SHAP), black-box (SHAP); see Fig-
ures 2, 3). Therefore, while the explainability for the overarching
category of black-box or interpretable did not differ, the individ-
ual model types did matter. We found that participants were most
successful at completing the ASO task when presented with the
black-box model, as seen in Figure 2 (a). Interestingly, in the educa-
tion domain, participants who viewed the black-box model without
SHAP had the best ASO performance. We expound upon these
counter-intuitive results later in the discussion section of the paper.
In the housing domain, participants had best ASO performance
when presented with the black-box model with SHAP. This makes
intuitive sense, since a strength of SHAP is to assist in the local
explainability of a model.

5.1.2 Task 2: Identifying the Most Important Feature (IMIF).
In the Identifying the Most Important Feature (IMIF) explainability
task, participants were given the system input and output and
asked to identify the most important feature overall to the system.
Participants’ performance on the IMIF task is summarized in Figure
2 (b). Unlike the ASO task, the IMIF task is related to global model
explainability. The results for the IMIF task were very similiar to
those found for ASO.

We observed that there was no statistically significant differ-
ence in IMIF performance, regardless of whether a participant was
presented with an interpretable or a black-box system. However,
there were statistically significant pairwise differences across model
types (see Table 3). We found that participants were most successful
at the IMIF task when presented with either the linear regression
or a black-box with SHAP system. This finding was consistent with

our expectations. The intrinsic explainability mechanism of a linear
regression model—that is, showing the linear formula and coef-
ficient weights—lends itself well to the global explainability of a
model. Additionally, participants were highly successful at the IMIF
task when presented with the black-box with SHAP because local
explainability aligned with the models’ global explainability. The
most important feature in the SHAP diagram was almost always
the most important feature to the model overall. Unexpectedly, par-
ticipants had the lowest IMIF task performance when presented
with the decision tree system. Our hypothesis on the cause of this
phenomenon is presented in §6.

Notably, our findings indicate that our design of the IMIF task
may not be a robust measure of global model explainability. Per
our experiment design, users were presented with an individual
profile yet asked to identify the most important feature to the model
overall, as seen in Figure 8 (b). Some users were confused by this,
and instead tried to identify the most important feature for the
classification of that particular profile, rather than for the entire
model. The impact of this confusion is that the results we found for
IMIF performance are likely overly pessimistic.

5.1.3 System Understanding.
The System Understanding measure was made up of two constructs:
Understood System and System Confusing. Participants’ scores for
these measures can be seen in Figure 3. Interestingly, significant
differences were found for the System Confusing construct between
black-box and interpretable models. Users from both the housing
and education domains perceived the interpretable systems to be
more confusing than the black-box systems, as seen in Figure 3. This
result was consistent with the narrative that had emerged from
evaluating the ASO and IMIF task results, where participants were
more successful when presented with black-box systems.
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(a) (b)

Figure 3: (a) Participants’ responses to the 5-item Understood System construct [43] (b) Participants’ responses to the the 3-
item System Confusing construct [43]. (Number of observations in each group: Education|BB = 69, Education|BB (w/ SHAP) =
91, Education|DT = 83, Education|LR = 77, Housing|BB = 72, Housing|BB (w/ SHAP) = 88, Housing|DT = 76, Housing|LR = 84.)

5.2 Accuracy
The accuracy of black-box and interpretable models for the educa-
tion and housing datasets are presented in Table 2. For clarity, we
focus on two accuracy metrics (accuracy score and precision@25%).
The accuracy scores of all sevenmetrics can be found in Appendix D
in Tables 4 and 5. In investigating this accuracy data, we witnessed
two emerging narratives. First, black-box and interpretable models
performed similarly on the classification task when using a “holis-
tic” metric such as accuracy score. In both use-cases, the difference
between the most accurate black-box model and the most accurate
interpretable model was less than 0.01. Second, in the housing use-
case, there was a large difference between the accuracy of black-box
and interpretable models when using a “specific” metric such as
precision@25%. Notably, the best performing black-box model out-
performed the top interpretable model by 7%. As a result, it appears
that black-box models performed better on resource-constrained
metrics in our research.

5.2.1 Subgroups.
We believe that it is the responsibility ofML practitioners to conduct
a fairness audit whenever they are training models on real data.
Therefore, we performed a subgroup analysis in the education
domain (sex and parent’s education sensitive features) and found
that accuracy does vary with respect to subgroups. While we did
not explore this disparity further in this paper, this information
motivates the need for further research exploring the trade-offs
between fairness, explainability, and accuracy.

5.3 Accuracy-Explainability Trade-off
Our research illustrates that it is difficult tomake general statements
about the accuracy-explainability trade-off, because insights are de-
pendent on the metrics used to measure accuracy and explainability.
Figure 4 shows two such cases. In Figure 4 (a) where precision@25%
is graphed against Task 1: ASO, the black-box model performed
better with respect to both measures. This result was driven by
the fact that in both use-cases HITL users who were presented
with a black-box model were generally able to correctly complete
the ASO task. In addition to the black-box being more explainable,

they were also more accurate. In Figure 4 (b), where the accuracy
metric is accuracy score and the explainability metric is Task 2: IMIF,
there was no trade-off between black-box and interpretable models.
For both education and housing, model accuracy and ability of
HITL users to identify the top feature was the same, regardless of
whether linear regression or a black-box with SHAP was used. This
result was driven by the fact that both black-box and interpretable
models had similar accuracy on the holistic metric accuracy score.
Furthermore, as discussed in Section 5.1.2, participants who viewed
the systems with either linear regression or black-box with SHAP
models performed well on the IMIF task because the question was
related to the global explainability of the system.

6 DISCUSSION
The initial goal of this research was to quantify the accuracy-
explainability trade-off in ML public policy contexts. Our hope
was that it would lead to concrete guidelines for ML practitioners,
such as “an X% increase in explainability results a Y% decrease in
accuracy.” Instead, we observed that the accuracy-explainability
trade-off is more nuanced than initially anticipated—and in some
cases, there may be no trade-off at all.

Key finding: no difference between black-box and inter-
pretable models with respect to explainability. In §5, we show
that there was no statistical difference in explainability between
black-box and interpretable models. This result was statistically
robust with regards to four different explainability metrics, includ-
ing the two objective tasks (ASO and IMIF) and the two subjective
measures on the users’ perceived understanding and confusion.
We propose two reasons for this finding, presented in the next
subsections.

User confusion. Presenting more information about a model
may actually confuse users due to information overload. In our user
study, the inherent opacity of black-box models meant that less
information about the model was displayed. Surprisingly, this was
an advantage as users were not confused by multiple details about
the model.

Our findings suggest that user confusion may play a big role
in explainability. We found that HITL users self-reported as being
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Domain Model Type Accuracy Percision@25%

Education

Extra Trees Black-box 0.85 0.65
Random Forest Black-box 0.87 0.70

XGBoost Black-box 0.89 0.77
Decision Tree Interpretable 0.82 0.58

Linear Regression (Lasso) Interpretable 0.87 0.70
Linear Regression (Ridge) Interpretable 0.87 0.70

Logistic Regression Interpretable 0.88 0.77
Dummy Classifier Baseline 0.77 0.20

Housing

Extra Trees Black-box 0.89 0.77
Random Forest Black-box 0.89 0.78

XGBoost Black-box 0.89 0.85
Decision Tree Interpretable 0.86 0.78

Linear Regression (Lasso) Interpretable 0.87 0.74
Linear Regression (Ridge) Interpretable 0.87 0.74

Logistic Regression Interpretable 0.88 0.75
Dummy Classifier Baseline 0.75 0.20

Table 2: Accuracy and Precision@25% for trained models. Bold numbers indicate that model had the best score, for the given
model type and the given domain. Results for the Dummy Classifier model are listed for reference.

(a) (b)

Figure 4: (a) Percision@25% and participants’ mean scores for Task 1: Anticipating the System Output. Using these measures,
black-box models are both the most explainable and the most accurate. (b) Accuracy score and participants’ mean scores
for Task 2: Identifying the Most Important Feature. This Figure illustrates that there is no clear trade-off in accuracy and
explainability between black-box and interpretable models, for either housing or education.

confused (a score ≥ 4.0 on the System Confusing Likert-scale con-
struct) by the system 33.4% of the time (35.0% for education, 31.9%
for housing). This finding is in concert with similar findings from
XAI research [42, 49], some of which have found that more expla-
nations directly hurt participants’ task performance [39]. Figure 5
(a) shows the distribution of participants’ ratings for the System
Confusing construct (5 = more confused) in the education domain
when presented with the black-box model with SHAP. The distribu-
tion is bimodal, suggesting that there are two separate subgroups:
those who reported being confused by the system and those who
did not.

To test the idea of information overload empirically, we com-
pared the outcomes of confused and not-confused participants on

the objectively measurable explainability tasks. We used the thresh-
olds ≥ 4.0 for confused participants and ≤ 2.5 for not-confused par-
ticipants. Figure 5 (b) shows the performance of the ASO task when
separating out the two different subgroups. Importantly, partici-
pants from the confused subgroup performed substantially worse
at the ASO task. We conjecture that these individuals found that
having more information about the system made it more difficult
to anticipate the output of the system. Note that in Figure 5 there
is one exception: Even those users who were confused performed
well with the black-box model without SHAP explanations. This
further supports the idea that less information may be beneficial.
In contrast, the not-confused users had best performance on the
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(a) (b)

Figure 5: (a) The bimodal distribution of participants’ scores on the System Confusing construct with thresholds for the con-
fused subgroup (System Confusing ≥ 4.0) and the not-confused subgroup (System Confusing ≤ 2.5) in the education domain
and for participants viewing the black-box with SHAP model. (Number of observations = 91.) (b) Confused education partic-
ipants’ mean performance on the ASO task with 95% CI, number of observations: BB = 14, BB (w/ SHAP) = 35, DT = 22, LR =
41; versus not-confused education participants’ mean performance on the ASO task with 95% CI, number of observations: BB
= 32, BB (w/ SHAP) = 27, DT = 27, LR = 14.

ASO task, which supports the claim that for them having more
information was helpful.

Weaknesses in intrinsic explainability. The second element
driving our key finding is weaknesses in the intrinsic explainability
mechanisms of interpretable models. We uncovered two such weak-
nesses. First, decision tree diagrams confuse helpful users when it
comes to identifying the most important feature. Figure 2 (b) shows
that in both education and housing, the model with the lowest
absolute score for the IMIF task was the decision tree. The reason
behind this finding is deceptively simple: participants defaulted
to selecting the feature found at either the root of the decision tree
diagram or one its terminal nodes as the most important, despite re-
ceiving clear explanations about the model’s feature importance that
indicated otherwise. Evidence for this result can be found in Tables
6 and 7 in the Appendix that show the number of participants who
incorrectly selected the root node or a random terminal node as
the most important feature. (Tree diagrams are shown in Figures 7
and 9 in the Appendix.)

Second, the linear formula presented with linear regression
seemed to confuse the users in our study. This is evidenced in
Figure 2 (a), which shows the relatively poor performance of the
linear regression model on the ASO task. We believe that this is due
to a discrepancy between the explainability scope of the ASO task
and the intrinsic explainability mechanism of the linear regression
model. The ASO task required that participants think locally, yet
the linear formula of a linear regression model is more directly
indicative of how the model works globally. This means that ML
practitioners designing explainable systems should be thoughtful
about the alignment of different explanations

Our observations on how users interact with tree diagrams and
linear formulas lead us to two possible conclusions: First, they
may be an indictment against intrinsic explainability mechanisms,
highlighting the need to improve existing explainability approaches,
even for interpretable models. Second, they indicate the need to

invest significant resources in educating and training HITL users
on fundamental ML concepts like “feature importance.”

What it does versus how it works. More generally, when it
comes to the explainability of black-box systems, it appears that end
users do not need to understand how the system works to be able to
understandwhat the system does. As an analogy, consider that many
people understand what a TV does and how to operate it without
ever understanding how the images are created and displayed on
the screen. This observation has meaningful implications for the
accuracy-explainability trade-off. As seen in Figures 4 (a) and (b),
black-box models may be both the most accurate and the most
explainable. This is particularly true when the accuracy metric is
resource constrained (e.g., precision@25%). We currently do not
have a hypothesis for why this is occurring and believe further
investigation of the generalizability of this claim is warranted.

Implications for researchers and practitioners. Our find-
ings lead to several recommendations for practitioners. First, we dis-
courage practitioners from trying to generalize about the accuracy-
explainability trade-off — it’s just not that simple! Rather, practi-
tioners should acknowledge that the extent to which a trade-off
exists (when it exists) is dependent on the chosen accuracy metric,
on how explainability is measured, and on the context of use. Sec-
ond, our results call into question the commonly held beliefs about
the inherent pros and cons of black-box and interpretable models.
We observed that black-box models can actually be more explain-
able and less confusing to users, perhaps by avoiding overloading
users with information. This implies that there may be appropriate
contexts to implement black-box models, even when designing for
explainabilty. Third, we present several design considerations when
implementing explainability for HITL users: practitioners should
be aware of weaknesses in the intrinsic explainability mechanisms
of linear regression and decision tree models, and should consider
the scope of the explanations presented to users. Fourth, we believe
that meaningful inter-disciplinary collaboration between ML engi-
neers, domain experts, policy professionals, product designers, and
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end users is paramount to properly implementing explainability in
ML systems. This recommendation is consistent with perspectives
held by other researchers in this space [46].

Importantly, we want to make it clear that this research is not
advocating for the carte blanche use of black-box models. This
work does not abdicate practitioners’ responsibilities for ensuring
transparency and fairness. We would like for this research to be
seen as one data point that adds yet another paradoxical result that
to the literature: there are contexts where black-box models may
be as explainable to HITL users as interpretable models.

7 CONCLUSIONS, LIMITATIONS, AND
FUTURE WORK

In this work, we conducted an empirical investigation of the
accuracy-explainability trade-off in two public policy domains and
found that nterpretable models were not more explainable than
black-box models. There are several limitations of this research that
could be expounded upon in future work. First, some researchers
have challenged core components of this work, like the idea that
proxy tasks may not be accurate measures of explainability in actual
human decision-making in real-world contexts [11]. The methods
developed in this paper have only been tested in a lab environment
where there are no real stakes for users, which may impact their
robustness or validity (e.g., the teachers from our survey did not
have a connection with a real student for which the AI system was
making a prediction). Second, this work only includes two use-cases
— housing and education. To better generalize these findings, this
work should be replicated across a broader range of policy domains.
Third, this work could benefit from qualitative research to better
understand the confusion experienced by HITL users. The absence
of qualitative work leaves open questions as to how explainability
is interacting with the users own “mental models.”
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A SURVEY FLOW AND SAMPLE
This appendix contains important diagrams from our survey. First, Figure 6 illustrates the survey flow experienced by participants. Second,
Figures 7 and 8 show screenshots from the survey and provide a sample of participants’ experience.

Figure 6: Diagram illustrating the survey flow experienced by participants.
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Figure 7: An example of the decision tree model overview and tree diagram displayed to participants in the education survey.
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(a) (b)

Figure 8: (a) The Anticipating the System Output task for the black-box without SHAP system in the education survey; (b)
The Identifying the Most Important Feature task for the black-box without SHAP system in the education survey. In both (a)
and (b) participants were informed that the color saturation of the row corresponded to the importance of the feature (i.e. the
darker the color, the more important overall to the model).
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B STATISTICAL ANALYSIS
This appendix section contains our statistical analyses and resultant t-statistics and p-values.

Education Housing

Test statistic P-value Test statistic P-value

Interpretable vs black-box

Task 1 Performance2 13.000 0.296 13.000 0.296
Task 2 Performance2 9.000 0.087 14.000 0.108
Understood System3 -1.674 0.094 -2.450 0.014 **
System Confusing3 2.864 0.004 ** 3.619 < 0.000 ***

4-way model comparison

Task 1 Performance4

Decision Tree - - - -
Linear Regression -1.647 0.099 -3.091 0.002 **
Black-box (without SHAP) 1.633 0.102 -3.846 0.000 ***
Black-box (with SHAP) -1.326 0.185 1.684 0.092
Task 2 Performance4

Decision Tree - - - -
Linear Regression 3.183 0.001 ** 5.015 < 0.000 ***
Black-box (without SHAP) 1.911 0.056 3.008 0.003 **
Black-box (with SHAP) 3.763 < 0.000 *** 5.085 < 0.000 ***
Understood System4

Decision Tree - - - -
Linear Regression -3.140 0.002 ** -1.826 0.068
Black-box (without SHAP) 1.799 0.072 -1.672 0.094
Black-box (with SHAP) -2.314 0.021 * 2.441 0.015 *
System Confusing4

Decision Tree - - - -
Linear Regression 2.629 0.009 ** 0.876 0.381
Black-box (without SHAP) -3.098 0.002 ** 0.144 0.885
Black-box (with SHAP) 1.409 0.159 -3.664 < 0.000 ***

Table 3: Test statistics and p-values for various statistical analyses of the survey results.

C FULL MODEL PERFORMANCE RESULTS
This appendix section contains the full training results for both the education and housing results. The tables below show performance for 7
model types (extra trees, reandom forest, XGBoost, decision tree, linear regression (Lasso), linear regression (Ridge), and Logistic Regression)
for 7 different performance metrics (accuracy, F1 score, AUC, precision@10%, precision@25%, recall@10%, recall@25%).

2McNemar’s test
3Random effects model: outcome ∼ model type + intercept, group = participant, where model type is black box or interpretable
4Random effects model: outcome ∼ model type + intercept, group = participant, where model type is Decision Tree, Linear Regression, Black-box (without SHAP), Black-box (with
SHAP)
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Model Type Accuracy F1 Score AUC Precision
@ 10%

Precision
@ 25%

Recall @
10%

Recall @
25%

Extra Trees Black-box 0.85 0.56 0.70 0.81 0.65 0.37 0.73
Random Forest Black-box 0.87 0.67 0.77 0.87 0.70 0.40 0.79
XGBoost Black-box 0.89 0.73 0.83 0.91 0.77 0.40 0.80

Decision Tree Interpretable 0.82 0.51 0.69 0.65 0.58 0.23 0.57
Linear Regression (Lasso) Interpretable 0.87 0.65 0.76 0.88 0.70 0.40 0.78
Linear Regression (Ridge) Interpretable 0.87 0.65 0.76 0.90 0.70 0.41 0.79
Logistic Regression Interpretable 0.88 0.72 0.85 0.92 0.77 0.41 0.78

(1) Best black-box model score 0.89 0.73 0.83 0.91 0.77 0.40 0.80
(2) Mean black-box model score 0.87 0.65 0.77 0.86 0.71 0.39 0.77
Standard deviation for black-box scores 0.02 0.09 0.06 0.05 0.06 0.02 0.03

(3) Best interpretable model score 0.88 0.72 0.85 0.92 0.77 0.41 0.79
(4) Mean interpretable model 0.86 0.63 0.76 0.84 0.69 0.36 0.73
Standard deviation for interpretable scores 0.03 0.09 0.07 0.13 0.08 0.09 0.11

Absolute difference between (1) and (3) 0.01 0.02 0.02 0.02 0.00 0.01 0.01
Absolute difference between (2) and (4) 0.01 0.02 0.01 0.03 0.02 0.03 0.04

Table 4: Model performance on 7 different metrics for the 3 black-box and 4 interpretable models trained on the education
dataset. The table also lists the absolute difference between the best performing black box and interpretable models. It was
observed that regardless of the performance metric chosen, there is very little difference between the performance of the best
performing black-box and interpretable model.
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Model Type Accuracy F1 Score AUC Precision
@ 10%

Precision
@ 25%

Recall @
10%

Recall @
25%

Extra Trees Black-box 0.89 0.75 0.82 0.95 0.77 0.38 0.76
Random Forest Black-box 0.89 0.76 0.83 0.95 0.78 0.38 0.77
XGBoost Black-box 0.89 0.77 0.84 0.95 0.85 0.38 0.77

Decision Tree Interpretable 0.86 0.70 0.79 0.88 0.78 0.34 0.70
Linear Regression (Lasso) Interpretable 0.87 0.70 0.78 0.94 0.74 0.37 0.74
Linear Regression (Ridge) Interpretable 0.87 0.70 0.78 0.94 0.74 0.37 0.74
Logistic Regression Interpretable 0.88 0.74 0.85 0.94 0.75 0.37 0.74

(1) Best black-box model score 0.89 0.77 0.84 0.95 0.85 0.38 0.77
(2) Mean black-box model score 0.89 0.76 0.83 0.95 0.80 0.38 0.77
Standard deviation for black-box scores 0.00 0.01 0.01 0.00 0.05 0.00 0.01

(3) Best interpretable model score 0.88 0.74 0.85 0.94 0.78 0.37 0.74
(4) Mean interpretable model 0.87 0.71 0.80 0.92 0.75 0.37 0.73
Standard deviation for interpretable scores 0.01 0.02 0.03 0.03 0.02 0.02 0.02

Absolute difference between (1) and (3) 0.01 0.03 0.01 0.01 0.07 0.00 0.03
Absolute difference between (2) and (4) 0.02 0.05 0.03 0.03 0.05 0.01 0.04

Table 5: Model performance on 7 different metrics for the 3 black-box and 4 interpretable models trained on the housing
dataset. The table also lists the absolute difference between the best performing black box and interpretable models. It was
observed that for certain metrics, such as precision@25%, the best performing black-box outperformed the best interpretable
model by 0.07.

D IDENTIFYING THE MOST IMPORTANT FEATURE RESPONSES
This appendix section contains the number of responses for the IMIF explainability task for both the education and housing domains. It
also contains the tree diagram shown to participants in the housing domain. Taken together, the result table and tree diagram show how
participants often defaulted to picking either the top node in the tree or a random terminal node when selecting the most important feature.

First year grade Mother’s
education level

Quality of
family relationships

Number of
absences

Number of
failures

Decision Tree 65 9 7 1 1
Linear Regression 72 0 0 5 0
Black-box 60 0 0 6 3
Black-box
with SHAP 87 1 0 2 1

Table 6: Number of responses for the Identifying the Most Important (IMIF) explainability task for the education domain (row
headers are the 4 system types and column headers are the 5 response choices). The correct response is shown in bold.)
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Size of living area Size of house
above ground House grade Property view

rating

Average size
of living area for
closest 15 houses

Decision Tree 30 24 20 2 0
Linear Regression 5 3 71 3 2
Black-box 12 2 45 3 10
Black-box
with SHAP 9 0 75 3 1

Table 7: Number of responses for the Identifying the Most Important (IMIF) explainability task for the housing domain (row
headers are the 4 system types and column headers are the 5 response choices).

Figure 9: The decision tree model shown to participants in the housing domain.
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