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Abstract. The paper deals with cubic 1-variable polynomials
whose Julia sets are connected. Fixing a bounded type rotation
number, we obtain a slice of such polynomials with the origin being
a fixed Siegel point of the specified rotation number. Such slices as
parameter spaces were studied by S. Zakeri, so we call them Zakeri
slices. We give a model of the central part of a slice (the subset
of the slice that can be approximated by hyperbolic polynomials
with Jordan curve Julia sets), and a continuous projection from
the central part to the model. The projection is defined dynami-
cally and agrees with the dynamical-analytic parameterization of
the Principal Hyperbolic Domain by Petersen and Tan Lei.

1. Introduction

In this introduction we assume a certain level of familiarity with
complex dynamics; detailed definitions will be given later on.

For a polynomial P denote by rP s its affine conjugacy class. By
the degree d polynomial parameter space one understands the space of
such classes of polynomials of degree d. Similarity between quadratic
dynamical planes and slices of parameter spaces of higher degree poly-
nomials is a recurring topic of research. A now standard mechanism
(found in [BH01]) uses holomorphic renormalization. If, say, a cu-
bic polynomial P is immediately renormalizable (i.e., has a connected
quadratic-like filled Julia set K�pP q), then one critical point of P be-
longs to K�pP q. The other critical point of P may eventually map to
K�pP q in which case P belongs to a quasiconformal copy of K�pP q
contained in the parameter space of cubic polynomials. A more gen-
eral renormalization scheme established in [IK12] allows to find copies
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of M2�M2 (where M2 is the quadratic Mandelbrot set) or MK (the
set of pairs pc, zq, where c P M2, and z belongs to the filled Julia set
KpPcq of Pcpwq � w2 � c) in the cubic connectedness locus. In the
non-renormalizable case, things are much subtler.

Suppose that a cubic polynomial P has a non-repelling fixed point
a. It can always be arranged by a suitable affine conjugacy that a � 0;
one can consider this point as marked and, hence, instead of affine
conjugacies work with linear conjugacies Apzq � αz, where α P Czt0u,
that leave 0 fixed. Much is known if P is renormalizable; this case,
under the additional assumption that P tunes a hyperbolic polynomial,
is considered in [IK12, SW20]. The remaining, non-renormalizable case,
needs closer attention. Consider the set of all affine conjugacy classes
rP s of cubic polynomials P with P p0q � 0 and |P 1p0q| ¤ 1. A central
part of this parameter space, analogous to the interior of the main
cardioid, is the principal hyperbolic component consisting of classes rP s
for all hyperbolic P with |P 1p0q|   1 and Jordan curve Julia set. An
analytic parametrization of the principal hyperbolic component with
dynamical meaning is given in [PT09] where the authors were able to
describe pieces of the boundary of the principal hyperbolic component
contained in the locus of classes rP s with |P 1p0q|   1. This paper aims
at a similar description in the Siegel case under the assumption that
the associated rotation number has bounded type.

A powerful method of studying polynomials with non-repelling peri-
odic points is based upon linearizations. Consider a polynomial f with
attracting or neutral fixed point a (we discuss polynomials, but a lot
of the results are in fact more general). A linearization is a holomor-
phic map ψ of an open disk Dprq of radius r ¡ 0 around 0 such that
ψp0q � a, and ψpλzq � f � ψpzq for all z P Dprq where λ � f 1paq.
Assume that r ¡ 0 is the radius of convergence of the power series of
ψ at 0. It is known that ψ : Dprq Ñ C is an embedding, cf. [Che20].
Then ψpDprqq is called the linearization domain ∆pf, aq of f around
a. If |λ|   1, then ∆pf, aq is compactly contained in the attracting
basin of a, and B∆pf, aq contains a critical point. In the case a � 0,
the domain ∆pf, aq is denoted by ∆pfq.

Fix λ with |λ| ¤ 1. Let Cλ be the space of complex linear conjugacy
classes of complex cubic polynomials with fixed point 0 of multiplier λ
(alternatively, Cλ consists of affine conjugacy classes of cubic polyno-
mials with marked fixed point of multiplier λ). For a cubic polynomial
P pzq � λz � . . . , let rP s0 be its class in Cλ. Write Cλ � Cλ for the
connectedness locus in Cλ. That is, rP s0 P Cλ if the Julia set JpP q of
P is connected. A central part of Cλ is the set Pλ of all rP s0 P Cλ that
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lie in the closure of the principal hyperbolic component. We are inter-
ested in understanding the topology and combinatorics of Pλ through
a comparison with a suitable dynamical object.

As the basis for comparison, consider the space of quadratic poly-
nomials Qpzq � Qλpzq � λzp1 � z{2q. Then λ is the multiplier of the
fixed point 0 of Q. Suppose that either |λ|   1 or λ � e2πiθ, where
θ P R{Z is of bounded type. Let ψ � ψQ : D Ñ ∆pQq be the cor-
responding linearization (here D � Dp1q). The set ∆pQq is a Jordan
disk — this is a classical result of Douady–Ghys–Herman–Shishikura,
see [Dou87, Her87, Swi98]. Therefore, the Riemann map extends to a
homeomorphism ψ : D Ñ ∆pQq. The finite critical point of Q is 1, thus
the linearizatiton domain ∆pQq around 0 contains 1 in its boundary.
We normalize ψ so that ψp1q � 1. If |λ| � 1, then the map ψ conju-
gates the rigid rotation by angle θ with the restriction of Q to ∆pQq.
Consider the quotient K̃pQq of the set KpQqz∆pQq by the equivalence
relation � defined as follows. Two different points z, w are equivalent

if both belong to B∆pQq, and Repψ
�1
pzqq � Repψ

�1
pwqq.

There is a partially defined correspondence — stated as Property
D below — between the dynamical plane of P and that of Q. Recall
that a continuous map η : X Ñ Y between two compacta is said to be
monotone if, for every connected subset B � Y , the set η�1pBq � X
is connected. In order to verify that η is monotone, it suffices to check
that all point preimages are connected.

Property D. For any cubic polynomial P with rP s0 P Pλ, there exist
a full P -invariant continuum XpP q containing both critical points of P
and a continuous map ηP : XpP q Ñ KpQq that semi-conjugates f |XpP q
with Q|ηP pXpP qq. If both critical points of P are in the Julia set, then
the map ηP is monotone.

The letter D in Property D stands for “Dynamics” (or “Douady”).
This property will be used to, quoting Douady, “seed in the dynamical
plane and reap the harvest in the parameter plane”.

Main Theorem. Suppose that θ P R{Z is of bounded type, and λ �
e2πiθ. Let Q � Qλ be a quadratic polynomial with a fixed point of
multiplier λ. Then there is a continuous map Φλ : Pλ Ñ K̃pQq taking
rP s0 to the ηP -image of some critical point of P .

The map Φλ is illustrated in Figure 1.
In this paper we do not address the issue of Φλ being surjective or

monotone — a discussion of these properties is postponed to a later
publication. It can be observed that the Main Theorem is a direct
(partial) extension of [PT09]. According to [PT09], C. Petersen, P.
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Figure 1. Left: the parameter plane Cλ with λ �
exppπi?2q. We used the parameterization, in which every
linear conjugacy class from Cλ is represented by a polynomial
of the form fpzq � λz�?

az2� z3, where a is the parameter
(that is, the figure shows the a-plane). The conjugacy class
of f is independent on the choice between the two values of
the square root. Regions with light uniform shading are inte-
rior components of Pλ. There are also various “decorations”
of Pλ (that is, components of CλzPλ) shown in black; these
decorations contain copies of the Mandelbrot set. Right: the
dynamical plane of Q � Qλ. The bounded white region near
the center is the Siegel disk ∆pQq. A conjectural model of
Pλ is obtained from KpQq by removing this white region and
gluing its boundary into a simple curve. Our main theorem
provides a continuous map from Pλ to this conjectural model.

Roesch and Tan Lei planned a continuation that should have contained
an analog of the above Main Theorem for parabolic slices. Apparently,
this continuation never appeared in print.

Observe also that while this paper concentrated on the set Pλ, the
structure of the entire parameter λ-slice Cλ with the corresponding
λ-slice of the connectedness locus Cλ � Cλ was studied in [BOT21].

2. Background and a specification of the Main Theorem

Take λ � e2πiθ, where θ P RzQ. Let pn{qn be the sequence of rational
approximations of θ based on the continued fraction expansion. By the
Brjuno–Yoccoz theorem [Brj71, Yoc95], a holomorphic germ f with
fp0q � 0 and f 1p0q � λ is linearizable at 0 if and only if

8̧

n�1

log qn�1

qn
  8.
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The latter condition is called the Brjuno condition; if θ satisfies it, θ is
said to be a Brjuno number. So, if θ is a Brjuno number, then a poly-
nomial f with fp0q � 0 and f 1p0q � λ has a Siegel disk ∆pfq around 0.
Say that θ is bounded type if the continued fraction coefficients of θ are
bounded. Any bounded type irrational number is Brjuno; the converse
is not true. From now on and throughout the paper, we set λ � e2πiθ

and assume that θ is bounded type.
Let us discuss the parameter slices that are of interest in this paper,

and how to parameterize them. Start with the quadratic case. Recall
that a quadratic polynomial with a fixed point of multiplier λ is unique
up to an affine conjugacy. We use the normalization Qλpzq � λzp1 �
z{2q with the property that 0 is the fixed point of multiplier λ and the
finite critical point of Qλ is 1. Some known results about JpQλq are
summarized in the following theorem.

Theorem 2.1. The Julia set JpQλq is locally connected and has zero
Lebesgue measure. Moreover, the Siegel disk ∆pQλq is a quasidisk.

The second part of Theorem 2.1 is in fact a theorem of Douady–
Ghys–Herman–Shishikura (a proof can be obtained as a combination

of [Dou87] and a Theorem of Herman and Świa̧tek [Her87, Swi98]).
The first part is Theorem A of [Pet96].

To parameterize cubic polynomials with fixed point at 0 and marked
critical points, we work with the space C�

λ of polynomials

Pc,λpzq � Pcpzq � λz

�
1 �

1

2

�
1 �

1

c



z �

1

3c
z2



(we often fix λ and then omit it in the notation). The parameter c is
chosen so that Pc has critical points 1 and c, and λ is the multiplier
of the fixed point 0. It is easy to verify that Pc and P1{c are linearly
conjugate and, hence, rPcs0 � rP1{cs0. The map c ÞÑ Pc establishes an
isomorphism between C� � Czt0u and C�

λ.
If |λ|   1, then 0 is an attracting fixed point of Pc. Let us now

fix λ � e2πiθ, where θ P R{Z is of bounded type, and describe the
results of [Zak99] where this case was studied in great detail. First,
the disk ∆pPcq is non-degenerate, at least one critical point of Pc
still belongs to B∆pPcq, and ∆pPcq is a quasidisk. Let Zc

λ be the set
tPc P C�

λ | tc, 1u � B∆pPcqu. The set Zc
λ, called the Zakeri curve, is a

Jordan curve. It divides the punctured plane C�
λ into two components,

O�
λp0q and O�

λp8q, each isomorphic to the punctured disk Dzt0u. The
corresponding punctures are c � 0 and c � 8, respectively.

Since Pc and P1{c are linearly conjugate, the involution c ÞÑ 1{c
interchanges the punctured disks O�

λp0q and O�
λp8q and maps Zc

λ to
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itself. Observe that P1 and P�1 always belong to Zc
λ. Moreover, the

following holds:

(1) if c P O�
λp0q then c P B∆pPcq and 1 R B∆pPcq,

(2) if c P Zc
λ then c, 1 P B∆pPcq, and

(3) if c P O�
λp8q then c R B∆pPcq and 1 P B∆pPcq.

Every class in Cλ is represented by polynomials Pc, P1{c P C�
λ (with

suitable c). Thus, the space Cλ identifies with a quotient of C�
λ. The

corresponding quotient map τ identifies Pc with P1{c. It restricts to
homeomorphisms on O�

λp0q and on O�
λp8q and folds Zc

λ to a simple arc
Zλ. Moreover, the quotient projection is two-to-one on Zc

λ except two
points P1 and P�1. The space Cλ can be described as τpO�p8q YZc

λq;
this description will be often used in the sequel.

Recall that Cλ � Cλ is the connectedness locus in Cλ; write Ccλ � C�
λ

for the corresponding connectedness locus in O�
λp8q Y Zc

λ. In other
words, Ccλ consists of polynomials P P O�

λp8q Y Zc
λ such that KpP q is

connected. The superscript “c” in the notation Ccλ means that c is the
free critical point (the other critical point 1 is associated with the Siegel
point 0). More generally, this superscript appears in the notation of
a parameter space object if this object belongs to (or is contained in)
C�
λ (in particular, critical points are marked), and c can be regarded

as a free critical point. Note that Zc
λ � Ccλ as for c P Zc

λ we have
c, 1 P B∆pPcq (and, hence, both critical points of Pc are non-escaping).
The set Cλ coincides with the image of Ccλ under the quotient map τ .
We want to describe the structure of the connectedness loci Ccλ and Cλ.
Theorem 2.2 ([Zak99]). If P P Ccλ, then 1 P B∆pP q and B∆pP q is a
quasicircle depending continuously on P P Ccλ in the Hausdorff metric.

Define the set Pc
λ as the subset of Ccλ consisting of polynomials that

can be approximated by sequences Pn P Ccλn with |λn|   1 and both
critical points of Pn in the immediate basin of 0. This is the central
part of Ccλ which we want to model. It is easy to see that Pc

λ is a
compactum containing P1 (indeed, polynomials Prλ,1 converge to P1 as
r Õ 1 and, on the other hand, are such that both critical points belong
to the immediate basin of 0).

Lemma 2.3. The sets Pc
λ and Pλ are connected.

Proof. The quotient projection τ from C�
λ to Cλ is a branched 2-1 cover-

ing with the only branch points at P�1 P Pc
λ. Therefore, connectedness

of Pc
λ is equivalent to connectedness of Pλ. For every λ1 P Dp1q, the

principal hyperbolic component Hc
λ1 of C�

λ1 is defined as the set of all
hyperbolic P P C�

λ1 such that JpP q is a Jordan curve. It follows from
[PT09] (and the fact that branch points of τ : C�

λ1 Ñ Cλ1 lie in Hc
λ1)
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that Hc
λ1 is connected. Now consider a sequence Ppnq Ñ P P Pc

λ, where
Ppnq P Pc

λn
and |λn|   1. It follows that λn Ñ λ. It suffices to find a

connected subset of Pc
λ containing both P and P1. Then every point

P P Pc
λ is connected to P1, hence Pc

λ is connected.
Passing to a subsequence, we may assume that continua Hc

λn
con-

verge in the Hausdorff metric. Moreover, each Hc
λn

contains a unicrit-
ical (i.e., with a multiple critical point in C) polynomial P1,pnq Ñ P1.
The limit continuum then contains both P and P1, as desired. �

Since λ is fixed, it can be omitted from the notation of Q � Qλ.
We will define a continuous map Φc

λ from Pc
λ to the model space

KpQqz∆pQq. Note that, in the case of marked critical points, the
model space is simpler as we do not pass to a quotient. This map
is conjecturally a homeomorphism. As often happens in holomorphic
dynamics, the definition of Φc

λ depends on a certain map between dy-
namical planes. More precisely, we will define a P -invariant continuum
XpP q � KpP q and a continuous map ηP : XpP q Ñ KpQq such that
ηP � P � Q � ηP on XpP q. The following theorem makes the Main
Theorem more specific.

Theorem 2.4. The map ηP : XpP q Ñ KpQq is monotone for every
P P Ccλ except when c P XpP qzJpP q. For every Pc P Pc

λ, the criti-
cal point c is in XpPcq. The map Φc

λ : Pc ÞÑ ηPcpcq is defined and
continuous on Pc

λ. It takes values in KpQqz∆pQq.

The Main Theorem follows directly from Theorem 2.4 by applying
the quotient projection τ from C�

λ to Cλ.

Plan of the paper. In Section 3, the principal tools of this paper are
developed. These include bubbles, legal arcs, and Siegel rays. To an
extent, Siegel rays compensate for the absence of repelling cutpoints
in the central part of KpPcq (here Pc P Ccλ). They form a controllable
combinatorial structure, map forward in a regular way, and divide the
central part of KpP q into smaller pieces. Section 4 discusses the issues
of stability. Roughly speaking, a dynamically defined set is stable if it
moves continuously as we change the parameters. Outside of the Zakeri
curve, stability can be defined in customary language of holomorphic
motions. However, since Ccλ is not a Riemann surface at points of
the boundary curve Zc

λ, we need to consider a more general notion
of an equicontinuous motion. The principal results of Section 4 claim
that Siegel rays are stable. Section 5 deals with the dynamical map
ηP : XpP q Ñ KpQq defined on the central part XpP q of KpP q. In
particular, property D is established for this map. Finally, Section 6
concludes the proof of Theorem 2.4 and the Main Theorem.



8 A. BLOKH, L. OVERSTEEGEN, A. SHEPELEVTSEVA, AND V. TIMORIN

3. Bubbles

3.1. An overview of [Zak99]. Consider Blaschke fractions, i.e., prod-
ucts of generalized Blaschke factors z�p

1�pz
without assuming that |p|  

1 (in a classical Blaschke factor, p has to belong to D). The Blaschke
fractions have some common properties with the classical Blaschke
products. In particular, they have the inversion self-conjugacy: if Bpzq
is a Blaschke fraction, then 1

Bpzq
� Bp1

z
q, i.e., the inversion z ÞÑ 1

z
con-

jugates B with itself. It follows that critical points of B are split in
two groups: critical points inside D and their inversions with respect
to S1 that are located outside D.

In order to describe the structure of Ccλ, Zakeri introduced an auxil-
iary family of degree 5 Blaschke fractions given by

Bpzq � e2πitz3

�
z � p

1 � pz


�
z � q

1 � qz



,

where |p| ¡ 1, |q| ¡ 1. In addition to the inversion self-conjugacy (and,
hence, the inversion symmetry of their critical points) the restrictions
of these maps on S1 (which is invariant) are homeomorphisms. Indeed,
by the Argument Principle, the topological degree of B : S1 Ñ S1

is equal to the number of zeros minus the number of poles (counting
multiplicities) of B in D. The latter number is 3 � 2 � 1 (triple zero
at 0 and simple poles at 1{p and 1{q).

Zakeri chooses p and q so that B has a multiple critical point in S1

and two critical points cB, 1{cB that may or may not belong to S1. The
angle t P R{Z is adjusted so that B : S1 Ñ S1 has rotation number θ.
Consider the Blaschke products B as above, with marked critical points
and normalized (via conjugation by a rigid rotation) so that one of the
critical points is 1. Then the space Bλ of all such B’s is parameterized
by a single complex parameter µ P CzD (recall that λ � e2πiθ; thus the
dependence on θ is expressed through λ) such that the critical points
of Bµ are µ and 1. Note also that Bµ and B1{µ are linearly conjugate
for µ P S1 but we distinguish them as elements of Bλ.

By a theorem of Herman and Świa̧tek [Swi98], the map B : S1 Ñ S1

is quasi-symmetrically (qs) conjugate to a rigid rotation. Consider a
qc-extension H � HB : D Ñ D of this quasi-symmetric conjugacy (take
the Douady–Earle extension [DE86] to make the construction unique),
and define the modified Blaschke product B̃ as Bpzq for |z| ¥ 1 and
H�1 � Rotθ �Hpzq for |z|   1. Here Rotθ is the rigid rotation about 0
by angle θ. Finally, B̃ is shown to be qc conjugate to a cubic polynomial
P P Ccλ by finding a certain B̃-invariant conformal structure σ on C,
and straightening it. Here the critical point c of P corresponds to the



MODELING CORE PARTS OF ZAKERI SLICES I 9

critical point µ of B. Define the non-escaping locus of Bλ as the set of
Bµ P Bλ for which the orbit of µ is bounded. Set P � SpBq; the map
S from the non-escaping locus of Bλ to Ccλ is called the surgery map.
The following proposition is Corollary 10.5 of [Zak99].

Proposition 3.1. There is an equicontinuous family of qc homeomor-
phisms ϕB : C Ñ C parameterized by B in the non-escaping locus of
Bλ such that SpBq � ϕB � B̃ � ϕ�1

B , and normalized so that ϕBp1q � 1.

Set P � SpBq. Note that the Siegel disk ∆pP q of P equals ϕBpDq,
and the Riemann map ψ∆pP q : D Ñ ∆pP q coincides with ϕB �H

�1
B . All

HB are quasi-conformal with the same qc constant that depends only
on θ. It follows (cf. Theorem 4.4.1 of [Hub06]) that HB and H�1

B form
an equicontinuous family. We obtain the following corollary.

Corollary 3.2. The extended Riemann maps ψ∆pP q (where P varies
through Ccλ) form an equicontinuous family.

Let CpD,Cq be the space of all continuous maps from D to C with
the sup-norm. Corollary 3.2, in turn, implies the following.

Corollary 3.3. The map from Ccλ to CpD,Cq taking P to ψ∆pP q is
continuous.

Proof. Suppose that a sequence Pn P Ccλ converges to P P Ccλ. We
want to prove that ψn � ψ∆pPnq converge uniformly to ψ � ψ∆pP q.

First note that ψnp1q � ψp1q � 1 by the chosen normalization of the
Riemann maps. Now fix a positive integer k and consider the point
z � P kp1q P B∆pP q. Clearly, for fixed k and all large n, the points
zn � P k

n p1q P B∆pPnq are close to z. Since ψn conjugate the rotation
by angle θ with Pn|∆pPnq

, we necessarily have ψnpe
2πikθq � zn. Similarly,

ψpe2πikθq � z. Thus ψn Ñ ψ point-wise on a dense subset of S1. By
equicontinuity, it follows that ψn Ñ ψ uniformly on S1. Finally, by the
Maximum Modulus Principle, ψn Ñ ψ on D. �

3.2. Polar coordinates and bubbles. Let U � C be an open topo-
logical disk equipped with a distinguished center a P U , a certain
radius rU P p0,8q and a base point b P BU accessible from U . An
open topological disk U equipped with these data is called a framed
domain. These data constitute a framing of U . For a framed domain
U , consider the Riemann map ψU : DprUq Ñ U such that ψp0q � a and
limuÑrU ψUpuq � b with u converging to rU radially. If U is a Jordan
disk, then ψU extends to a homeomorphism ψU : DprUq Ñ U .
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Definition 3.4 (Polar coordinates, internal rays). Let U be a framed
domain with center a P U , root point b, and radius rU . A point z P U
has the form ψUpρze

2πiθzq for some ρz P r0, rUq and θz P R{Z. The polar
radius function is by definition the function z ÞÑ ρz on U . We always
extend this function (keeping the notation) to U by setting ρz � rU for
all z P BU . The polar angle function is by definition the function z ÞÑ θz
on Uztau. Note that this function is undefined when ρz � 0. If U is a
Jordan disk (and only in this case), we extend the polar angle function
to U by continuity. Then, for z P BU , the angle θz is determined by the
relation z � ψUprUe

2πiθzq. Given any α P R{Z define the internal ray
RUpαq as the set tz P U | θz � αu. Say that RUpαq lands at a point
w P BU if w is the only point in RUpαqzU . If U is a Jordan disk, then
every internal ray RUpαq lands at the point ψUprUe

2πiαq.

Assume now that either f : C Ñ C is in Ccλ, or f � Qλ. Recall
that λ � e2πiθ is fixed. Write ∆pfq for the Siegel disk of f , and ψf :
D Ñ ∆pfq for the Riemann map normalized so that ψf p0q � 0 and

ψf p1q � 1; recall that 1 is a critical point of f .
Define a pullback of a connected set A � C under a polynomial f as

a connected component of f�1pAq. An iterated pullback of A under f
is by definition an fn-pullback of A for some n ¡ 0.

Definition 3.5 (Bubbles and polar coordinates on bubbles). Bubbles
of f are iterated pullbacks of ∆pfq (thus, bubbles are open Jordan
disks). Let A be a bubble of f , and let n be the smallest integer with
fnpAq � ∆pfq. Such n is called the generation of A and denoted by
GenpAq. For z P Azf�np0q, set θz � θfnpzq � nθ and ρz � ρfnpzq. Now,
if z has polar coordinates ρ and α, then fpzq has polar coordinates
ρ and α � θ. Equivalently, the complex coordinate ρe2πiα multiplies
by λ under the action of f . Note that the polar radius extends as a
continuous function on the union of the closures of all bubbles.

If a bubble A is a homeomorphic iterated pullback of ∆pfq, then
we define a framing of A as follows. The center oA of A is defined as
the only iterated preimage of 0 in A. If fnpAq � ∆pfq, then the base
point of BA is defined as the point bA with fnpbAq � fnp1q. With this
framing, internal rays of A are defined. By definition, an internal ray
of A consists of all points with a fixed value of polar angle. Then in A
there is one internal ray of a given polar argument, and all internal rays
connect the center of A with appropriate points on BA. In particular,
this picture holds for all bubbles in the quadratic case.

In the case of a cubic polynomial Pc there might be a bubble B
which contains c and, hence, maps forward two-to-one. In that case
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the picture with polar angle function, the center and the internal rays
is a bit different. More precisely, if c maps into the center of PcpBq,
then the pullbacks of an internal ray are two internal rays connecting
c with appropriate points on BB. Now, suppose that Pcpcq is not the
center of PcpBq. Then the center x � oPcpBq of PcpBq has two preimages
x1, x2 P B. Hence, with one exception, each internal ray of PcpBq pulls
back to two internal rays, each connecting the appropriate pullback of
the center of PcpBq with the appropriate point on BB. The exception
is the internal ray R � xy, of argument, say, α, passing through Pcpcq;
its pullback is a “cross” with endpoints at x1, x2 and at two preimages
of y, and with vertex at c.

Given pρ, αq, there is unique point z P ∆pfq and a lot of other points
with coordinates pρ, αq. Any point with polar coordinates pρ, αq maps
to fnpzq under fn, for some n depending on the point.

The terms “bubbles” and “bubble rays” were introduced in the The-
sis of J. Luo [Luo95] (cf. [AY09, Yan17] for a development of these
ideas). However, the difference with our setup is that bubbles in the
sense of Luo are Fatou components that are eventually mapped to a su-
perattracting rather than a Siegel domain. Also, similar ideas are used
in [BBCO10] where some quadratic Cremer Julia sets were studied by
approximating them with Siegel Julia sets with specific properties.

If fn : A Ñ ∆pfq is a conformal isomorphism, then it also defines
a framing of A so that the polar coordinates on A just defined are
consistent with this framing. By an oriented arc we mean an arc I
whose one endpoint is marked as initial and the other is marked as
terminal.

Let A be a bubble of a cubic polynomial Pc P Ccλ. Evidently, a point
z P A can be connected with 0 by an arc I � KP with initial point 0
and terminal point z. While such an arc is not unique, it is easy to
see that for any bubble A the intersection I X A is a subarc of I. In
what follows we will only consider arcs such that for all of the bubbles
involved (except possibly for one) the intersection I X A is contained
in the union of toAu and the closures of two internal rays of A. More
precisely, let us now define legal arcs.

Definition 3.6 (Legal arcs). Consider an oriented topological arc I �
Kpfq. Suppose that I� is an open dense subset of I such that the
following holds:

(1) the set IzI� can accumulate only at the terminal point of I;
(2) each component of I� is contained in one bubble A and coincides

with a component of pAz
�
n¥0 f

�np0qq X I.
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Figure 2. A schematic illustration of legal arcs in the dy-
namical plane of Qλ. Three legal arcs are shown, connecting
0 with points z1, z2, and z3. Observe that the legal arcs from
0 to z2 and from 0 to z3 have an initial segment in common.

(3) the polar angle function is defined and constant on each com-
ponent of I�;

(4) P npIq is not separated by c for n ¥ 0.

Then I is called a legal arc (see Fig. 2). Let α0, . . . , αk, . . . be the
values of the polar angle on I� taken in the order they appear on I�.
A linear order of αis is well defined since I is oriented. The finite or
infinite sequence pα0, . . . , αk, . . . q is called the (polar) multi-angle of I.

Typically, we deal with legal arcs with initial point 0. In the multi-
angle pα0, . . . , αk, . . . q of I we will always have that α0 � α1, α2 � α3

etc because these pairs of angles correspond to pairs of internal rays
of adjacent bubbles that eventually map onto the same internal ray of
∆pfq and, hence, have the same polar argument (we make this more
precise in Lemma 3.7). Legal arcs for polynomials, under the name of
regulated arcs, were introduced by Douady and Hubbard in [DH85a];
they play a key role in the definition of a Hubbard tree for a post-
critically finite polynomial. We use legal arcs in an essentially different
way.

If z P Kpfq is such that there is a legal arc Iz from 0 to z, then
the polar multi-angle (or just multi-angle) of z is defined as the polar
multi-angle of Iz. Note that if Iz exists, then it is unique.

Lemma 3.7. For any z P KpQq, there is a legal arc Iz from 0 to z.
Let pα0, . . . , αk, . . . q be the multi-angle of z. Then each term αi, except
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possibly the last term, has the form αi � �miθ. Here mi are nonneg-
ative integers such that m2i�1 � m2i and m2i�2 ¡ m2i�1. Moreover,
z is uniquely determined by the multi-angle and (if the multi-angle is
finite) by ρz.

A sequence pα0, . . . , αk, . . . q with the properties listed in Lemma 3.7
is called a legal sequence of angles. We also define a legal angle as an
angle of the form �mθ, where m is a nonnegative integer.

Proof. Suppose first that z is in the closure of a bubble A of Q. The
argument will use induction on GenpAq. If A � ∆pQq, then Iz is a
segment or the closure of some internal ray of ∆pQq, the multi-angle of z
is pθzq, and z is determined by θz and ρz. Thus we now assume that A �
∆pQq. Then Iz intersects B∆pQq at a point x that is eventually mapped
to 1. Let m0 be the non-negative integer with Qm0pxq � 1, then α0 �
�m0θ. The arc Qm0pIzq � IQm0 pzq contains R∆pQqp0q, and Qm0�1pIzq �

IQm0�1pzq Y R∆pQqpθq. The multi-angle of Qm0pzq starts with 0, 0 since
both initial components of I�Qm0 pzq map onto R∆pQqpθq. We may assume

by induction that the multi-angle of Qm0�1pzq is pα̃2, . . . , α̃kq, where
α̃i � �m̃iθ for 2 ¤ i   k, and m̃i satisfy the desired properties. In this
case the multi-angle of z is pα0, . . . , αkq, where α0 � α1 � �m0θ and
αi � α̃i � pm0 � 1qθ � �miθ with mi � m̃i � m0 � 1 for i ¥ 2 and
2 ¤ i   k. Thus, we proved that every point from the closure of every
bubble of Q has a multi-angle. Moreover, the latter is a legal sequence
of angles.

Suppose now that z P KpQq is not in the closure of a bubble. Then
there is a sequence of pairwise different bubbles A0, . . . , Ak, . . . such
that Ak Ñ tzu in the Hausdorff metric. Moreover, we can assume that
A0 � ∆pQq and Ai X Ai�1 � tziu, where zi is eventually mapped to
1. Clearly, Izi is an initial segment of Izj with j ¡ i. Set Iz to be the
closure of the union of all Izi ; then Iz is a legal arc from 0 to z. It
follows that there is an infinite legal sequence of angles such that the
multi-angle zi is an initial segment of this sequence. This infinite legal
sequence is then the multi-angle of z. Thus, all points of KpQq have
well-defined multi-angles.

Given a legal sequence of angles pα0, . . . , αk, . . . q, there is a unique
sequence of bubbles A0, . . . , Ai, . . . such that the point zi P Ai X
Ai�1 has multi-angle pα0, . . . , α2iq. If the sequence pαiq is infinite, then
the corresponding sequence of bubbles converges to a unique point z
determined by the infinite multi-angle pαiq. If the sequence pαiq is
finite, then it defines a unique last bubble An in the corresponding
sequence of bubbles and an internal ray R � RAnpα2nq or RAnpα2n�1q in
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An. All points of R together with the landing point of R (and no other
points) have the given multi-angle. These points are then determined
by the legal sequence pα0, . . . , αk, . . . q and the polar radius. �

Sequences of bubbles defined in the proof of Lemma 3.7 for points
z P KpQq, are called bubble rays.

3.3. Bubble rays and bubble chains. Take P � Pc P Ccλ and set
Q � Qλ. Define Y pP q as the set of all points z P KpP q for which there
is a legal arc Iz from 0 to z. Note that, by definition, Y pP q includes
∆pP q and is forward invariant: P pY pP qq � Y pP q. However, in general,
Y pP q does not have to be closed.

Every z P Y pP q has a multi-angle and, if the latter is finite, the polar
radius ρz. Moreover, it is not hard to see that the multi-angle of z is a
legal sequence of angles. Set ρz � 8 if the multi-angle of z is infinite.
Similarly, we set ρw � 8 for points w P KpQq not on the boundary
of a bubble of Q. The map ηP : Y pP q Ñ KpQq takes z P Y pP q to a
unique point w � ηP pzq with the same multi-angle and polar radius.
By definition of Y pP q and properties of multi-angles and polar radii,
ηP � P � Q � ηP on Y pP q.

Let A be a bubble of generation n. If P n : AÑ ∆pP q is one-to-one,
then A is called off-critical. If c P A, then A is called critical. Finally, if
A is a pullback of a critical bubble, it is said to be precritical. For any
bubble A, one can define its root point rpAq. When A is off-critical, the
root point is uniquely defined by the formula P n�1prpAqq � 1. When
A is critical or precritical, there may be legal paths from 0 to some
points in A. All these paths intersect the boundary of A at the same
point; this point is by definition the root point rpAq. There are two
points z1, z2 P BA such that P n�1pz1q � P n�1pz2q � 1, and the point
rpAq is one of them.

Definition 3.8 (Legal bubbles and bubble correspondence). A bubble
A of P with AX Y pP q � ∅ is called legal. Thus, A is legal if and only
if rpAq P Y pP q, and P iprpAqq � c for i   GenpAq. If a legal bubble A
is off-critical, then A � Y pP q. Clearly, ηP pA X Y pP qq lies in a unique
bubble AQ of Q. Say that A and AQ correspond to each other. This
correspondence between some bubbles of P and bubbles of Q is called
the bubble correspondence. By definition, if A is a legal bubble of P ,
then P pAq is also a legal bubble of P . Moreover, if A corresponds to
AQ, then P pAq corresponds to QpAQq.

Define pR{Zq� as the set of nonempty finite sequences of angles and
pR{ZqN as the set of infinite sequences of angles. The map

Π : pR{Zq�ztp0q, p0, 0qu Ñ pR{Zq�
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acts as follows. Take ~α � pα0, α1, α2, . . . q P pR{Zq�. If α0 � α1 � 0,
then Πp~αq � pα2�θ, . . . q, otherwise Πp~αq � pα0�θ, α1�θ, α2�θ, . . . q.
Then any legal sequence in pR{Zq� of length ¡ 1 is eventually mapped
to p0q or p0, 0q under Π. On p0q and p0, 0q, the map Π is undefined.
Clearly, Π can be also defined as a self-map of pR{ZqN, by the same
rule.

Let A be a legal bubble of P of generation n. If A is off-critical,
recall that the center of A is by definition the preimage of 0 under
P n : A Ñ ∆pP q. The incoming radius of any off-critical bubble A is
its radius RpAq connecting rpAq to its center. Now, if c P A then P |A
is two-to-one. To define the center of A, recall the earlier analysis of
pullbacks of radii into critical bubbles. It follows from that analysis
that there are two cases depending on the mutual location of RpP pAqq
and P pcq. If RpP pAqq does not contain P pcq, or P pcq is the center of
P pAq, then there is a unique pullback of RpP pAqq that connects rpAq
with a preimage of the center of P pAq, and this preimage of the center
of P pAq is said to be the center of A. The remaining case is when
RpP pAqq contains P pcq but P pcq is not the center of P pAq. In that
case the center of A is not defined.

Finally, let A be precritical; then P |A is one-to-one. If the center of
P pAq is defined, set the center of A to be the pullback of the center of
P pAq into A; if the center of P pAq is not defined, then the center of A
is not defined either. If the center of A is defined, it is denoted oA.

The multi-angle of A is defined as the multi-angle of the root point
of A. If A has multi-angle ~α, then P pAq has multi-angle Πp~αq. We can
now describe multi-angles of legal bubbles.

Proposition 3.9. Let ~α be a finite legal sequence of angles of odd length
starting with �mθ for a nonnegative m P Z. Then ~α is a multi-angle
of some legal bubble if and only if no eventual Π-image of an initial
subsequence of ~α is the multi-angle of c.

The assumption that ~α starts with �mθ is essential if ~α has length
1 (otherwise it follows from the definition of a legal sequence).

Proof. By Definition 3.8, a bubble A is legal if and only if no image
P ipIrpAqq with 0 ¤ i   GenpAq contains c. On the other hand, c P
P ipIrpAqq if and only if the Πi-image of an initial subsequence of ~α is
the multi-angle of c. �

The concept of a bubble ray was used in the proof of Lemma 3.7.

Definition 3.10 (Bubble rays, bubble chains, core curves). Take a
legal bubble A of P and a point z P A X Y pP q, z � rpAq . A legal arc



16 A. BLOKH, L. OVERSTEEGEN, A. SHEPELEVTSEVA, AND V. TIMORIN

Iz from 0 to z passes through bubbles A0 � ∆pP q, . . . , An � A in this
order and through no other bubbles. The sequence A0, . . . , An is called
a bubble chain (to z). A bubble ray is a sequence A � pA0, A1, . . . q of
legal bubbles Ai such that A0, . . . , An is a bubble chain, for every finite
n. Set

�
A �

�
i¥0 Ai. Bubble chains and bubble rays for Q � Qλ are

defined similarly. The core curve of A is defined as the union of Izi ,
where zi P Ai X Ai�1. (Note that Izi � Izj for i   j.)

Definition 3.11 (Landing bubble rays). Consider a bubble ray A �
pAiq for P . We say that A lands at a point z if tzu is the upper limit
of the sequence Ai, that is

tzu �
£
i

Ai Y Ai�1 Y . . ..

In general, the right hand side is denoted by limA and is called the
limit set of A. If A lands at z, then we also say that A is a bubble ray
to z. Similar definitions apply to the dynamical plane of Q.

Consider a bubble ray A � pAiq for P . If P pA1q � A0, then we
define P pAq as pA0, P pA1q, P pA2q, . . . q. Otherwise, P pA1q � A0, and
we define P pAq as pA0, P pA2q, P pA3q, . . . q. If Pm p

�
Aq �

�
A, then

A is said to be periodic of period m. Let I be the core curve of A.
If m is the minimal period of A under P , then PmpIq � I. However,
Pm : I Ñ I is not one-to-one; I is folded at critical points of Pm.

Lemma 3.12. For z in the dynamical plane of P , there is at most one
bubble chain or a bubble ray to z.

Proof. Suppose that A1 and A2 are different bubble rays or bubble
chains to z. If A1 is a bubble ray, then set I 1 to be its core curve; other-
wise set I 1 � Iz. The arc I2 is defined similarly, with A1 replaced by A2.
If A1 � A2, then there is a bounded open set U in C whose boundary is
contained in I 1YI2. By the Maximum Modulus Principle, the sequence
P n is bounded on U , hence equicontinuous. We conclude that U is in
the Fatou set, that is, U is in a single bubble, a contradiction. �

3.4. Landing of bubble rays. Recall that P P Ccλ. If A � pAnq is a
periodic bubble ray for P of minimal period m, then, clearly, Pm takes
several first bubbles A0, . . . , Ak to A0, and Ak�1 to A1. In this case
we say that Pm shifts bubbles of A by k. We always have k ¥ 1.

The main result of this subsection is Theorem 3.15. Theorem 3.13
will be used in the proof of Theorem 3.15. If X � C is a contin-
uum, THpXq stands for its topological hull, i.e., the union of X and all
bounded complementary components of X.
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Theorem 3.13 (Theorem 7.5.2 [BFMOT13]). Let f be a polynomial,
let Kpfq be connected, and let X � Jpfq be an invariant continuum.
Suppose that X is not a singleton. Then THpXq contains a rotational
fixed point or an invariant parabolic domain.

Here a rotational fixed point means one of the following:


 an attracting fixed point;

 a repelling or parabolic fixed point where no invariant external

ray lands;

 a Siegel point;

 a Cremer point.

In other words, a fixed point is rotational unless it is the landing point
of some invariant external ray.

Theorem 3.13 is related to the following result of [GM93]. Let f be
a polynomial of any degree ¡ 1. Consider the union Σf of all invariant
external f -rays with the set Fixf of their landing points. In other
words, Fixf is the set of all repelling or parabolic fixed points of f . A
rotational object of f is defined as either a rotational fixed point or an
invariant parabolic domain.

Theorem 3.14 ([GM93]). Every component of CzΣf contains a unique
invariant rotational object of f .

A subset of Σf consisting of two rays landing at the same point
and their common landing point is called a cut. Theorem 3.14 can be
restated as follows: any pair of different invariant rotational objects for
f is separated by a cut from Σf .

Theorem 3.15. Let A be a periodic bubble ray for P . Then A lands
at a periodic repelling or parabolic non-rotational point of P .

Proof. Let L be the limit set of A. It is easy to see that L and ∆pP q
are disjoint as otherwise some boundary points of some bubbles from
A will be shielded from infinity, a contradiction.

Let L be of minimal period m, and consider the map f � Pm.
It suffices to prove that L is a singleton. Suppose otherwise. Then
by Theorem 3.13, the set L contains an f -invariant rotational object
T (rotational f -fixed point or an f -invariant parabolic domain). As
above, construct the set Σf ; by Theorem 3.14, one of its cuts separates
T and 0. Evidently, A cannot intersect this cut which implies that L
must be located on one side of the cut while T is located on the other
side. A contradiction. Hence L is an f -fixed point. Since it belongs to
JpP q, it is not attracting. If it is Cremer or Siegel, then, again relying
on Theorem 3.14, we separate L from 0 with a rational cut, again a
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contradiction. Hence L is an f -fixed repelling or parabolic point a.
If a is rotational, then periodic rays landing at a undergo a nontrivial
combinatorial rotation under f (since, by definition of a rotational fixed
point, no invariant external ray can land at a). Let W �

�
A be a

wedge bounded by two consecutive f -rays landing at a. Locally near
a, the wedge W is mapped to some other wedge disjoint from W . A
contradiction with

�
A � W . �

4. Stability

We start with a very general continuity property. Let Ratd be the
space of all degree d rational self-maps of C with the topology of uni-
form convergence. We also write Comp for the space of all compact
subsets of C with the Hausdorff metric. Note that the Hausdorff met-
ric on Comp as well as the uniform convergence on Ratd are associated
with the spherical metric on C. The following lemma is basically a
consequence of the Open Mapping property of holomorphic functions.

Lemma 4.1. Consider the map from Ratd �Comp Ñ Comp given by

pf,Xq ÞÑ f�1pXq.

This map is continuous.

Proof. In what follows, “ε-close” means “at distance at most ε”. Fix
pf,Xq P Ratd � Comp. Choose ε ¡ 0. We need to show that, if
δ � δpεq ¡ 0 is sufficiently small and pg, Y q is δ-close to pf,Xq, then
g�1pY q is ε-close to f�1pXq. Here pg, Y q being δ-close to pf,Xq means
that g is δ-close to f and Y is δ-close to X. By definition, g�1pY q
being ε-close to f�1pXq means that for every point x P f�1pXq, there
is y P g�1pY q that is ε-close to x, and vice versa: for every y with
gpyq P Y , there is x P f�1pXq that is ε-close to y.

First, take x P f�1pXq. Then gpxq is δ-close to fpxq. There is a point
y� P Y that is δ-close to fpxq, since Y is δ-close to X. Finally, y� being
2δ-close to gpxq implies the existence of y P g�1py�q that is ε-close to
x. Moreover, the corresponding choice of δ can be made independent
of g. Indeed, by the Open Mapping property, the f -image of the ε-
neighborhood of x includes the 4δ-neighborhood of fpxq. Hence, the
g-image of the ε-neighborhood of x incudes the 3δ-neighborhood of
fpxq, and the latter includes the 2δ-neighborhood of gpxq.

Now take y P g�1pY q; the argument is similar to the above. By the
assumption, gpyq is δ-close to fpyq, and there is a point x� P X that
is δ-close to gpyq. Since x� is 2δ-close to fpyq, there is a point x such
that fpxq � x� and x is ε-close to y. �
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We will need the following corollary of Lemma 4.1.

Corollary 4.2. Suppose that pf,Xq P Ratd � Comp, that X is con-
nected, and that A is a component of f�1pXq. If there are no critical
points of f in A, then for all pg, Y q close to pf,Xq there is a component
of g�1pY q close to A and not containing critical points of g.

Proof. For some ε ¡ 0, the 5ε-neighborhood of A maps homeomorphi-
cally onto a neighborhood of X. Take pg, Y q so close to pf,Xq that
g�1pY q is ε-close to f�1pXq. This is possible by Lemma 4.1. Moreover,
we may assume that g is injective on the 4ε-neighborhood of A. Let
B be a component of g�1pY q intersecting the 2ε-neighborhood of A.
It follows that B lies entirely in the 2ε-neighborhood of A. Indeed,
if a point of B is at distance 2ε from A, then it cannot be ε-close to
f�1pXq by the assumption that f is injective on the 5ε-neighborhood
of A. In particular, the closest point to any b P B is in A, and this
closest point is ε-close to b. Observe also that B is the only component
of g�1pY q in the 2ε-neighborhood of A, since the restriction of g to the
latter neighborhood is injective. Now take any a P A, and let b be the
closest to a point of g�1pY q. Then b is ε-close to a, hence b P B. We
see that A and B are ε-close, as desired. �

4.1. Equicontinuous motion. Let A � C be any subset and Λ be a
metric space with a marked base point τ0. A map pτ, zq ÞÑ ιτ pzq from
Λ � A to C is an equicontinuous motion (of A over Λ) if ιτ0 � idA,
the family of maps τ ÞÑ ιτ pzq parameterized by z P A is equicontinu-
ous, and ιτ is injective for every τ P Λ. An equicontinuous motion is
holomorphic if Λ is a Riemann surface, and each function τ ÞÑ ιτ pzq,
where z P A, is holomorphic. By the λ-lemma of [MSS83], to define a
holomorphic motion, it is enough to require that every map ιτ is injec-
tive, and ιτ pzq depends holomorphically on τ , for every fixed z. Then
the family of maps ιτ is automatically equicontinuous. Suppose now
that Fτ : C Ñ C is a family of rational maps such that Fτ0pAq � A.
An equicontinuous motion pτ, zq ÞÑ ιτ pzq is equivariant with respect to
the family Fτ if ιτ pFτ0pzqq � Fτ pιτ pzqq for all z P A. If the family Fτ is
clear from the context, then we also say that the holomorphic motion
commutes with the dynamics.

We first study the equicontinuous motion of the Siegel disk ∆pP q.
The following theorem is an easy consequence of known results.

Theorem 4.3. Choose an arbitrary base point P0 P Ccλ and an arbitrary
point z P ∆pP0q. There is an equivariant equicontinuous motion ιP of
∆pP q over Ccλ such that ιP0 � id. Moreover, ιP pzq has the same polar



20 A. BLOKH, L. OVERSTEEGEN, A. SHEPELEVTSEVA, AND V. TIMORIN

coordinates in ∆pP q as z in ∆pP0q. If P0 R Zc
λ, then this equicontinuous

motion is holomorphic on CcλzZc
λ.

Proof. Set ιP pzq � ψ∆pP q � ψ
�1

∆pP0q
. By Corollary 3.3, the function ιP

depends continuously on P with respect to the sup-norm. This means
that ιP is an equicontinuous motion. The equivariance follows from the
fact that ψ∆pP q conjugates the rotation by θ with P |∆pP q.

Suppose now that P0 R Zc
λ and P runs through CcλzZc

λ. The P -orbit
of 1 moves holomorphically with P P CcλzZc

λ; By [MSS83], this motion
extends to an equivariant holomorphic motion of B∆pP q, cf. [Che20].
By a remark of D. Sullivan [Sul] (see [Zak16] for a published proof),
there exists an equivariant holomorphic motion ιP : ∆pP0q Ñ ∆pP q
that extends the holomorphic motion of B∆pP q and is such that ιP :
∆pP0q Ñ ∆pP q is a conformal isomorphism taking 0 to 0 and 1 to
1. By the uniqueness of the Riemann map the map ιP is the same as
before. In particular, ιP preserves the polar coordinates. �

4.2. Stability of legal arcs. The equicontinuous motion of ∆pP q ex-
tends to some other dynamically defined subsets.

Definition 4.4 (Stability). Consider P0 P Ccλ and a subset A � Y pP0q.
Since Y pP0q is by definition forward invariant, it follows that P n

0 pAq �
Y pP0q for all n ¥ 0. Set B �

�
n¥0 P

n
0 pAq. Say that A is stable (or

λ-stable) if there is an equivariant equicontinuous motion tιBP u of B
over an open neighborhood of P0 in Ccλ such that, for every z P B,
the point zxP y � ιBP pzq has the same multi-angle and the same polar
radius as z. Clearly, if such an equicontinuous motion exists, then it is
unique. Write AxP y for ιBP pAq etc. If the equicontinuous motion is in
fact holomorphic, then say that A is holomorphically stable.

Lemma 4.5. Take P0 P Ccλ and a point z P Y pP0q that has a finite

multi-angle. If z is never mapped to c, or if c P ∆pP0q, then the legal
arc Iz from 0 to z in KpP0q is stable. It is holomorphically stable if
P0 R Zc

λ.

Proof. Suppose that ~α � pα0, . . . , αkq is the multi-angle of z. If k � 0,
then the statement follows from Theorem 4.3. If ~α � p0, 0q, then
the statement follows from Theorem 4.3 and Lemma 4.1. Thus we
assume that k ¡ 0 and ~α � p0, 0q. Since ~α is a legal sequence of
angles, Πmp~αq � p0q or p0, 0q for some minimal integer m ¡ 0. The
subsequent argument employs induction on both m and k. Let w be
the last (closest to z) point of Iz with multi-angle pα0, . . . , αk�1q. Then
Iz is the concatenation of Iw (=the legal arc from 0 to w), and Irw,zs
(=the legal arc from w to z). By induction on k, assume that Iw is



MODELING CORE PARTS OF ZAKERI SLICES I 21

stable. In particular, wxP y is defined for all P close to P0, and wxP y
has the same multi-angle and polar radius as w.

By induction on m, assume that P0pIzq, hence also T � P0pIrw,zsq,
are stable. Thus T xP y depends continuously on P in the Hausdorff
metric. Define Irw,zsxP y as the P -pullback of T xP y containing wxP y.
Note that T xP y is free from critical values of P by our assumptions.
If P is close to P0, then, by Corollary 4.2, the set Irw,zsxP y is close
to Irw,zs. In particular, Irw,zsxP y connects wxP y with a point zxP y
that is close to z. Moreover, Irw,zsxP y contains no critical points of P
and maps forward by P in a homeomorphic fashion. It follows that a
suitable inverse branch of P on T xP y defines an equicontinuous motion
of Irw,zs.

Thus both Iw and Irw,zs are stable. It follows that their concatenation
Iz is also stable, as desired. If P0 R Zc

λ, then the argument goes through
with “equicontinuous” replaced by “holomorphic”. �

We now discuss stability of infinite periodic legal arcs.

Theorem 4.6. Let A be a periodic bubble ray for P0 P Ccλ landing at a
repelling periodic point x. Suppose that P i

0pIxq does not contain c for
i ¥ 0. Then Ix is stable; it is holomorphically stable if P0 R Zc

λ.

Note that, under assumptions of Theorem 4.6, the arc Ix is the core
curve of A.

Proof. Let m be the minimal P0-period of A, then Pm
0 pxq � x. Since

x is repelling, there is a small round disk D around x such that D �
Pm

0 pDq, and the map Pm
0 : D Ñ Pm

0 pDq is a homeomorphism. Suppose
that A � pAnq. Since A lands at x, then An � D for all n ¥ N for
some N . Also, Pm

0 shifts bubbles of A by a certain integer k ¥ 1.
Clearly, there is a point y P Ix such that

Iy � Ix X A0 Y � � � Y AN�k.

By Lemma 4.5, the legal arc Iy is stable. In particular, for P close to
P0, there is a legal arc IyxP y close to Iy and with the same multi-angle.
Moreover, IyxP y passes through legal bubbles A0xP y, . . . , AN�kxP y
of P and terminates at yxP y. Consider the point z � Pm

0 pyq P Iy
and the segment Irz,ys of Ix from z to y. Then Irz,ys is also stable, the
corresponding segment Irz,ysxP y for P connects zxP y with yxP y. Note
also that Irz,ws � D (the point z belongs to the closure of AN).

If P is close to P0, then D � PmpDq, and Pm : D Ñ PmpDq is a
homeomorphism. Write P�m

D for the inverse of this homeomorphism.
Then P�m

D is a well-defined holomorphic map on D depending analyt-
ically on P . Since x is repelling, it is stable, so that there is a nearby
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repelling point xxP y for P of the same period. Set

IxxP y � IyxP y Y

�
8¤
k�1

pP�m
D qkpIrz,ysxP yq

�
Y txxP yu.

Every term in the right-hand side moves equicontinuously with P as
long as P stays close to P0. The infinite union moves equicontinu-
ously since for P�m

D the point xxP y is attracting (the iterates cannot
inflate the modulus of continuity). It is also clear that the motion is
holomorphic provided that P0 R Zc

λ and P is close to P0. �

4.3. Stability of Siegel rays. Theorem 4.6 parallels a classical result
on stability of periodic external rays landing at repelling points.

Lemma 4.7 ([DH85a], cf. Lemma B.1 [GM93]). Let P0 be a poly-
nomial, and z be a repelling periodic point of P0. If an external ray
RP0pθq with rational argument θ lands at z, then, for every polynomial
P sufficiently close to P0, the ray RP pθq lands at a repelling periodic
point zxP y of P close to z, and zxP y depends holomorphically on P .

Consider a periodic bubble ray A for P0 and its core curve I. By
Theorem 3.15, the bubble ray A lands at a repelling or parabolic point
a. Let m be the minimal period of A, then Pmpaq � a. Clearly, I also
lands at a, and it is easy to see that I � Ia is a legal arc from 0 to a.

Definition 4.8 (Siegel rays). Let I and a be as above. By the classical
Landing Theorem for polynomials (see e.g. [Mil06, Theorem 18.11]),
one or several periodic external rays for P land at a. Let R be an
external ray landing at a. Then IYtauYR is a simple curve connecting
0 with 8. It is called a Siegel ray. The argument of the Siegel ray
I Y tau YR is defined as the argument of R.

The following are immediate properties of Siegel rays. Every Siegel
ray originates at 0 and extends to 8. Every Siegel ray contains precisely
one periodic point a � 0; this point a is repelling or parabolic. Two
different Siegel rays may have some initial segment in common. They
branch off either at an iterated preimage of 0 or at a landing point of
some bubble ray. An external ray for P0 is either disjoint from a Siegel
ray or lies in the Siegel ray.

Theorem 4.9 below follows from Theorem 4.6 and Lemma 4.7.

Theorem 4.9. Let Σ be a Siegel ray for P0 P Ccλ. Suppose that the non-
zero periodic point in Σ is repelling. Then, for all P P Ccλ sufficiently
close to P0, there is a Siegel ray ΣxP y close to Σ in the spherical metric
and having the same argument. Moreover, the periodic point in ΣxP y
depends holomorphically on P provided that P R Zc

λ.
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Figure 3. A Siegel wedge W in the dynamical plane of Q.
Here, W is bounded by Siegel rays Σ and Σ1 that have the
legal arc Ib from 0 to b as the common initial segment and
that branch off at point b.

The only reason we require that P R Zc
λ in Theorem 4.9 is that

holomorphic functions are defined on Riemann surfaces, and CcλzZc
λ

rather than Ccλ has a natural structure of a Riemann surface.

4.4. Siegel wedges. Let Σ and Σ1 be two Siegel rays for P . By def-
inition, they originate at 0 and extend all the way to infinity. Let b
be the point where Σ and Σ1 branch off. Assume that b is an iterated
preimage of 0 rather than a periodic repelling or parabolic point. Con-
sider a wedge W bounded by segments of Σ and Σ1 from b to infinity.
Notice that there are two such wedges; either wedge is called a Siegel
wedge (bounded by Siegel rays Σ and Σ1), see Fig. 3. We also say that
b is the root point of W . Set Ib � Σ X Σ1; of the two wedges bounded
by Σ and Σ1 one contains Ib and the other one is disjoint from Ib. If W
is a Siegel wedge bounded by Σ and Σ1 and disjoint from Ib, call the
multi-angle of b the multi-angle of W . Otherwise (i.e. if W contains
Ibztbu), we set the multi-angle of W to be pq (the empty sequence). If
Σ X Σ1 � t0u, we set the multi-angle of W to be pq too. The following
property of Siegel wedges is immediate from the definitions.

Proposition 4.10. Let W be a Siegel wedge of multi-angle ~α. Then the
multi-angles of all points in W XY pP q contain ~α as an initial segment.

Fix a Siegel wedge W . Recall that BW X KpP q � Y pP q; the map
ηP : Y pP q Ñ KpQq takes z P Y pP q to a unique point w � ηP pzq with
the same multi-angle and polar radius. Then ηP pBW X KpP qq is the
union of the core curves of two periodic bubble rays for Q. These core
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curves land at some repelling periodic points, say, x and y of Q (these
are endpoints of KpQq as KpQq has no periodic cutpoints). There
are unique external rays landing at x and y. The union ΓQ of these
external rays and ηP pBW XKpP qq bounds a unique Siegel wedge WQ

of Q that contains points of ηP pW X Y pP qq. The wedge WQ is said
to correspond to the Siegel wedge W of P . Observe that since the
endpoints of BW X KpP q may be cutpoints of KpP q, there may be
several Siegel wedges of P corresponding to the same Siegel wedge of
Q.

5. The dynamical map ηP

We now define a P -invariant continuum XpP q � Y pP q and extend

the map ηP : Y pP q Ñ KpQq to XpP q. If Y pP q contains no parabolic

points of P , then we set XpP q � Y pP q. Suppose now that there is a

parabolic periodic cycle in Y pP q; let a be a point in this cycle. By the
Fatou–Shishikura inequality, the cycle of a is the only parabolic cycle
of P . In this case, let XpP q be the union of Y pP q and the closures of
all immediate parabolic basins associated with the cycle of a. Clearly,
XpP q is a forward invariant continuum.

5.1. The structure of XpP q. Consider possible intersections of XpP q
with bubbles of P .

Lemma 5.1. Let A be a bubble of P . Suppose that a point z P AXXpP q
is different from the root point rpAq of A. Then A is a legal bubble,
and the entire bubble chain to z consists of legal bubbles.

Proof. Since z � rpAq, then rpAq P YP (otherwise points like z would
not exist) and the legal arc Iz � KP from 0 to z is non-disjoint from
A; hence A XXpP q � ∅. Since A is open, A X Y pP q � ∅, that is, A
is legal. Also, Iz intersects every bubble in the bubble chain to z, it
follows that all bubbles in this chain are legal. �

The following is an immediate corollary of Lemma 5.1.

Corollary 5.2. Let A be a bubble of P . Either A is legal, or A has no
points of XpP q except possibly rpAq in which case rpAq is eventually
mapped to c, non-strictly before it is mapped to 1 and strictly before A
is mapped to ∆pP q.

Suppose now that A is legal but A � Y pP q. Then there is a point
z P A that is eventually mapped to c, say P npzq � c. The intersection
A X Y pP q is then a proper subset of A whose geometry is described
below in Theorem 5.3. The radial vector field B{Bρ is well-defined on
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P n�1pAqztou, where o is the center of P n�1pAq. The integral curves of
B{Bρ are precisely the internal rays of P n�1pAq. The pullback of B{Bρ
to A is also a well-defined vector field v on AzP�pn�1qpoq. However,
v has zero at z, and there are two special integral curves of v whose
α-limit set coincides with tzu and whose ω-limit sets are in BA. These
integral curves are called separatrices.

Theorem 5.3. Let A be a legal bubble of P such that a point z P A is
eventually mapped to c, and AQ be the corresponding bubble of Q. Then
ηP : Y pP qXAÑ AQ extends to a continuous map ηP : XpP qXAÑ AQ,
and one of the following two cases holds:

(1) The set XpP q X A is the closure of a separatrix. The map
ηP : XpP q X A Ñ AQ is one-to-one, and ηP pXpP q X Aq is a
terminal segment of the internal ray of AQ landing at the root
point of AQ.

(2) The set XpP q X A is a sector of A bounded by the two sepa-
ratrices together with z. It is mapped under ηP onto AQ, the
boundary of the sector mapping two-to-one, and otherwise the
map being one-to-one.

Cases (1) and (2) of Theorem 5.3 are illustrated in Fig. 4.

Proof. Since P n : A Ñ P npAq is a homeomorphism mapping points of
Y pP q to points of Y pP q and vice versa, it is enough to consider the
case c P A (then z � c). Since A is open, it follows that AXY pP q � ∅.
Recall that the multi-angle of A is the multi-angle of its root point rpAq.
Since it takes two radii to pass through a bubble, we may assume that
~α � pα0, . . . , α2kq is the multi-angle of A. Then there are two cases: (1)
the multi-angle of any point in AXY pP q looks like p~α.α2kq, or (2) some
points in A have multi-angles p~α.α2kq while others have multi-angles
p~α.α2kα2k�1q. Consider these cases separately.

(1) In this case, c also has multi-angle ~α.pα2kq. Since all points
AX Y pP q have polar angle α2k with respect to A, the set AXXpP q is
the legal arc from the root point of A to c. It is also clear that ηP is
defined and continuous on this legal arc. The ηP -image of A X XpP q
is a legal arc in the closure of the bubble of Q corresponding to A.

(2) Choose a point of A X Y pP q with multi-angle ~α.pα2k, α2k�1q;
evidently, α2k�1 � α2k. Set B � P pAq, then B � Y pP q. Let us describe
the P -image of A X Y pP q as a subset of B. Let R be the internal ray
of B containing the critical value P pcq. Then P pA X Y pP qq includes
the center of B and all internal rays of B but R. On R, a segment T
from P pcq to the boundary of B is not in P pA X Y pRqq; other points
of R are in. Call T the special segment.
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Figure 4. Left: case (1) of Theorem 5.3. Right: case (2)
of Theorem 5.3. These illustrations are schematic (they show
the right topology but not the right geometry of A and AQ).
In both cases, the top figure shows A and the bottom figure
shows AQ. The root points rpAq and rpAQq are marked by
stars. Left: the set XpP qXA is shown as the vertical segment
connecting rpAq with z, and the ηP -image of this set is shown
as the vertical segment connecting rpAQq with ηP pzq. Right:
the set XpP q XA is the shaded region of the top figure, and
the ηP -image of it is the shaded region of the bottom figure.

The pullback of T is an arc T 1 � A that is the union of tcu and the
two separatrices. (Fig. 4, top right, shows the arc T 1 as the vertical
segment through z.) The arc T 1 divides A in two disjoint pullbacks
of BzT , and A X Y pP q is one of them. The set A X XpP q contains a
unique P -preimage of the center of B and (initial segments of) rays of
all arguments emanating from this point; all rays but one extend to BA,
and one exceptional ray crashes into c and then splits into two branches
(the separatrices). Here by rays we mean integral curves of the radial
vector field v in A. The set BpA X Y pP qq X A equals T 1. Clearly, the
map ηP extends to the separatrices. The image ηP pAXXpP qq coincides
with the entire bubble of Q corresponding to A. In this Q-bubble one
radial segment (from ηP pcq to the boundary of the bubble) is covered
twice. Otherwise, the map is one-to-one. �

Here, a terminal segment of an internal ray of A means a segment
from some point in the ray to BA. Part p2q of Theorem 5.3 describes
the map ηP in the case c P XpP qzJpP q. Note that the map is not
monotone in this case as it double folds an arc on the boundary of
XpP q.
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5.2. A separation property. Suppose that W is a Siegel wedge of
P . Consider the corresponding wedge WQ in the dynamical plane of
Q. Such wedge is called P -adapted (this notion depends on the choice
of P ). Say that a P -adapted wedge WQ separates a point x from a
point x1 if x P WQ and x1 R WQ. This relation is symmetric: the wedge
CzWQ is also P -adapted, and it separates x1 from x.

Note that, since KpQq is locally connected, any two points of KpQq
can be connected by a legal arc. The set ηP pY pP qq � KpQq is legal
convex, that is, any two points of this set can be connected by a legal
arc lying entirely in this set.

Lemma 5.4. The set ηP pY pP qq � KpQq is legal convex.

Proof. This follows from a more general observation: the closure of a
legal convex set is a legal convex set. Indeed, if xn, x1n P KpQq are two
sequences converging to x, x1, respectively, then the legal arc from xn
to x1n converges to the legal arc from x to x1. �

Separation of points within the closure of the same bubble of Q is
given by the following lemma.

Lemma 5.5. Let AQ � ∆pQq be a bubble of Q, and x P BAQ X

ηP pY pP qq be a point different from the root point of AQ. Then, for
any other point x1 P BAQ, there is a P -adapted wedge WQ with root
point in the center of AQ such that WQ separates x from x1. Any pair
of different points in B∆pQq is also separated by a P -adapted wedge
unless c P B∆pP q and P kpcq � 1 for some k ¥ 0.

Proof. Suppose first that AQ � ∆pQq and x � rpAQq is a point of

BAQXηP pY pP qq. The legal arc Ix in KpQq from 0 to x lies in ηP pY pP qq,
by Lemma 5.4. By Lemma 5.1 and since x is not the root point of
AQ, the bubble AQ corresponds to some legal bubble A of P . Since

x P BAQ X ηP pY pP qq is not equal to rpAQq, then case (2) of Theorem
5.3 holds. Hence the ηP -image of AX Y pP q is AQ except for at most a
subarc of R (where R is an internal ray of AQ) not reaching the center
of AQ. Points of BAQ that are root points of other bubbles attached
to AQ are dense in BAQ. All these points except possibly one are in
ηP pY pP qq. Therefore, there is a pair of such points b, b1 in BAQ that
separate x from x1. The legal arcs from the center a of AQ to b and b1

can be extended to periodic Siegel rays. Moreover, there are periodic
Siegel rays Γb and Γb1 for P such that the wedge W bounded by Γb
and Γb1 corresponds to a wedge WQ whose boundary intersects BAQ at
points b and b1. Thus there is a P -adapted wedge WQ that separates x
from x1, as desired.
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Suppose now that x, x1 P B∆pQq but either c R B∆pP q or c P B∆pP q
is never mapped to 1 under iterates of P . Then there are two iterated
preimages b, b1 of 1 separating x and x1 in B∆pQq. The corresponding
points of B∆pP q are root points of legal bubbles attached to ∆pP q, and
the same argument as above works. �

The following is a more general separation property.

Proposition 5.6. A pair of distinct points x, x1 P JpQq X ηP pY pP qq
is separated by a P -adapted wedge, except when both x and x1 are in
B∆pQq, and c P B∆pP q is eventually mapped to 1.

Proof. First assume that for some bubble AQ the point x belongs to AQ
and the legal arc I from x to x1 intersects AQ. Let a be the center of
AQ. Let x2 be the point of BAQ, where I intersects BAQ; we necessarily
have x � x2. Lemma 5.5 is applicable to x and x2 since at least one
of these two points is different from rpAQq. By Lemma 5.5, there is a
P -adapted wedge WQ with root point a separating x from x2. Then
WQ will also separate x from x1 since the legal arc from x1 to x2 cannot
intersect BWQ.

If neither x nor x1 belongs to the boundary of a bubble, then there
are bubble rays AQ and A1

Q (not necessarily periodic) landing at x and
x1, respectively (since JpQq is locally connected, then any bubble ray

lands). Since x P ηP pY pP qq, it follows that there are infinitely many
bubbles in AQ intersecting ηP pY pP qq. Then in fact all bubbles in AQ

intersect ηP pY pP qq, by Lemma 5.1. It follows that there is a bubble
ray A for P corresponding to AQ (recall that, by definition, a bubble
ray for P consists of legal bubbles). Similarly, there is a bubble ray A1

for P corresponding to A1
Q. Take a bubble BQ P AQ but not in A1

Q.
By the above, BQ corresponds to some legal bubble B of P . Therefore,
there exists a P -adapted wedge WQ separating x (equivalently, the
point where the legal arc from the center of BQ to x intersects BBQ)
from the root point of BQ. Then WQ also separates x from x1. �

5.3. Continuous extension of ηP . In this section, we complete the
proof of the following theorem.

Theorem 5.7. The map ηP : Y pP q Ñ KpQq extends to a continu-
ous map ηP : XpP q Ñ KpQq. Unless c P XpP qzJpP q, this map is
monotone.

The extended map is denoted by the same letter.

Proof of Theorem 5.7, definition of ηP and its continuity. We start by
proving that ηP extends continuously to Y pP q. Take y P BY pP qzY pP q;
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by Theorem 5.3, it is enough to assume that y is not in a bubble. We
need to prove that, for all sequences yn P Y pP q converging to y, the
images ηP pynq converge to the same limit. Assume the contrary: yn,
y1n P Y pP q are two sequences converging to y such that

lim
nÑ8

ηP pynq � x � x1 � lim
nÑ8

ηP py
1
nq.

Set xn � ηP pynq and x1n � ηP py
1
nq.

By Proposition 5.6, there is a P -adapted wedge WQ in the dynamical
plane of Q that separates x from x1 so that x P WQ and x1 R WQ. Since
WQ is open, xn P WQ for all large n. By definition of a P -adapted
wedge, WQ corresponds to some legal wedge W for P . Thus, yn P W
for large n, and these yn are in some compact subset of W . It follows
that y P W , hence also y1n P W for large n. We conclude that x1n P WQ

for large n, therefore, x1 P WQ, a contradiction.

Suppose now that XpP q � Y pP q, that is, there is a parabolic cycle

in Y pP q. Every point z P XpP qzY pP q belongs to the closure of a
parabolic domain at a parabolic point az. Set ηP pzq � ηP pazq. The
extension thus defined is continuous. �

As usual, fibers of ηP are defined as preimages of points under ηP .
We now address the issue of connectedness of fibers.

Lemma 5.8. A nonempty intersection of finitely many Siegel wedges
for P is connected and has a connected intersection with XpP q.

Proof. Define a quasi-chord in C as the image of R under some proper
topological embedding into C. Then a quasi-chord divides the plane C
into two open unbounded regions. Consider a Siegel wedge W bounded
by two Siegel rays Σ, Σ1. Let b be the root point of W , that is, the
point where Σ and Σ1 branch off. The boundary of W is a quasi-chord
containing b as well as pieces of Σ and Σ1 connecting b to infinity. Define
a Siegel quasi-chord as a quasi-chord in C that is the boundary of some
Siegel wedge.

Suppose now that U is a nonempty intersection of finitely many
Siegel wedges. Then, clearly, U is an unbounded connected and simply
connected domain whose boundary is a union of finitely many quasi-
chords. Each boundary quasi-chord of U has its own root point. Either
0 P U , or there is a unique boundary quasi-chord of U whose root
point bU has multi-angle different from pq. The lemma follows from the
observation that any point of Y pP q X U can be connected to 0 or bU
by a legal arc lying in Y pP q. �

Proof of Theorem 5.7, the monotonicity part. Take xQ P ηP pXpP qq; con-
sider the fiber η�1

P pxQq. If xQ is in a bubble of Q, then the fiber of xQ
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is a singleton by Theorem 5.3. Thus we may assume that xQ P JpQq.
First suppose that xQ P B∆pQq and c P B∆pP q is eventually mapped
to 1. Note that ηP : B∆pP q Ñ B∆pQq is a homeomorphism. Hence
there is a unique point x P B∆pP q such that ηP pxq � xQ. Suppose
that some point y R ∆pP q is mapped to xQ. Since y P XpP q, there is
a sequence yn P Y pP q converging to y; let Iyn be the legal arcs from
0 to yn. Obviously, y P JpP q, and it is possible to arrange that all
yn P JpP q as well. Passing to a subsequence, we may assume that Iyn
converge to a continuum Cy Q y.

If y is on the boundary of a legal bubble A of P , then A can be
chosen so that y � rpAq. Then ηP pyq is on the boundary of the bubble
AQ of Q corresponding to A, and ηP pyq � rpAQq. A contradiction with
ηP pyq � x. Thus we assume that y is not on the boundary of a bubble.

Let An be the bubble attached to ∆pP q and such that Iyn XAn � ∅.
If there are only finitely many different bubbles An, then, passing to a
subsequence, we may assume that all An are the same bubble A; set
AQ to be the corresponding bubble of Q. The intersection Iyn X A is
the union of two internal rays landing at rpAq P ∆pP q and bn � rpAq.
If bn Ñ rpAq, then we can replace Cy with C�

y � CyzA. The latter
is a continuum containing y, and C�

y ztxu is disjoint from all bubbles.
If bn �Ñ rpAq, then, passing to a subsequence, assume that bn Ñ b �
rpAq. It follows that ηP pCyzAq is attached to AQ at ηP pbq; it does not
accumulate on B∆pQq. A contradiction with xQ � ηP pyq P B∆pQq.
Finally, if there are infinitely many pairwise different Ans, then we
set C�

y � Cy. In any case, C�
y is a continuum containing y such that

C�
y ztxu is disjoint from all bubbles. It follows that ηP pC

�
y q � txQu.

Since η�1
P pxQq is the union of txu and C�

y over all y P η�1
P pxQqztxu, the

fiber η�1
P pxQq is connected.

Now assume that xQ R B∆pQq or that c R B∆pP q or that c P B∆pP q
is never mapped to 1. Let ZQ be the intersection of all P -adapted
wedges containing xQ. By the separation property, Proposition 5.6,
we have ZQ X JpQq � txQu. Apart from xQ, the set ZQ may include
certain external rays of Q as well as certain internal rays in bubbles of
Q. Thus ZQ XKpQq is the union of txQu and one or two internal rays
in bubbles AQ such that x P BAQ. Moreover, every such bubble may
intersect ZQ by at most one internal ray.

Consider the full preimage Z � η�1
P pZQ XKpQqq. This is the union

of η�1
P pxQq and one or two internal rays in legal bubbles A of P . Every

such bubble may intersect Z by at most one internal ray. It follows
that connectedness of Z will imply connectedness of the fiber η�1

P pxQq.
The rest of the proof deals with connectedness of Z.
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Take any x P η�1
P pxQq X JpP q. Note that Z is the intersection of all

Siegel wedges of P containing x with XpP q. Moreover, it is enough to
intersect countably many Siegel wedges W1, . . . , Wn, . . . :

Z � XpP q X
8£
n�1

Wn � XpP q X
8£
n�1

Un, Un � W1 X � � � XWn.

The sets XpP q X Un are connected by Lemma 5.8 and form a nested
sequence. Therefore, their intersection is also connected. �

6. The parameter maps Φc
λ and Φλ

Consider a map P � Pc P Ccλ. Suppose that c P XpP q. Define Φc
λpP q

as ηP pcq. Let Dc
λ denote the domain of the map Φc

λ, that is, the set of
all P P Ccλ such that c P XpP q. Observe that Zc

λ � Dc
λ.

6.1. Immediate renormalization. Recall the notions of a polynomial-
like map and an immediate renormalization. Write U � V if U � V .
Let U � V be Jordan disks in C. The following classical definitions
are due to Douady and Hubbard [DH85].

Definition 6.1 (Polynomial-like maps [DH85]). Let f : U Ñ V be a
proper holomorphic map. Then f is said to be polynomial-like (PL).
By definition, a quadratic-like (QL) map is a PL map of degree two.
The filled Julia set Kpfq of f is defined as the set of points in U , whose
forward f -orbits stay in U .

Similarly to polynomials, the set Kpfq is connected if and only if all
critical points of f are in Kpfq. The following is a greatly simplified
and weakened version of a much stronger classical theorem of Douady
and Hubbard [DH85].

Theorem 6.2 (PL Straightening Theorem [DH85]). A PL map f :
U Ñ V is topologically conjugate to a polynomial of the same degree
restricted on a Jordan neighborhood of its filled Julia set.

Theorem 6.3 below appears to be a folklore result. It is formally
proved, e.g., in [BOPT16] (Theorem B).

Theorem 6.3. Let P : C Ñ C be a polynomial, and Y � C be a full
P -invariant continuum. The following assertions are equivalent:

(1) the set Y is the filled Julia set of some polynomial-like map
P : U� Ñ V � of degree k,

(2) Y is a component of the set P�1pP pY qq, and, for every attract-
ing or parabolic point y of P in Y , the immediate attracting
basin of y or the union of all parabolic domains at y is a subset
of Y .



32 A. BLOKH, L. OVERSTEEGEN, A. SHEPELEVTSEVA, AND V. TIMORIN

A cubic polynomial P P Ccλ is immediately renormalizable if P : U Ñ
V is a QL map for some U , V .

Proposition 6.4. Suppose that P P CcλzDc
λ. Then P is immediately

renormalizable with XpP q being the corresponding quadratic-like Julia
set.

Proof. Since P P CcλzDc
λ, then c R XpP q. The setXpP q is compact; also,

it is easy to see that XpP q is a component of P�1pXpP qq (it suffices to
consider the set Y pP q). There are no parabolic periodic points of P in
XpP q; otherwise c would be in one of the parabolic domains added to
XpP q. By Theorems 6.2 and 6.3, there is a Jordan domain U � XpP q
such that P : U Ñ P pUq is a quadratic-like map whose filled Julia set
coincides with XpP q. �

Recall that the set Pc
λ is the subset of Ccλ consisting of polynomials

that can be approximated by sequences Pn P Ccλn with |λn|   1 and
both critical points of Pn in the immediate basin of 0.

Corollary 6.5. The set Pc
λ is a subset of Dc

λ.

Proof. We will prove an equivalent statement: if P P CcλzDc
λ, then

P R Pc
λ. By Proposition 6.4, there is a quadratic-like map P : U Ñ V

with filled Julia set XpP q, and we may choose U and V so that c R V .
There is ε ¡ 0 with the following property: if a cubic polynomial f is
ε-close to P , then, setting Uf to be a component of f�1pV q containing
0, we obtain a quadratic-like map f : Uf Ñ V . This follows, e.g.,
from Lemma 4.1. On the other hand, since |λ| � 1, we can choose
f in Cµ with |µ|   1. The filled Julia set K�

f of the quadratic-like
map f : Uf Ñ V then contains the immediate attracting basin of
0. It follows from the Douady–Hubbard straightening theorem [DH85]
that K�

f is a Jordan disk on which f is two-to-one. In particular, it is
impossible that f is in the principal hyperbolic component, and P R Pc

λ,
as claimed. �

6.2. Continuity. It will be established in this section that Φc
λ is con-

tinuous. Recall that P1 is the polynomial in C�
λ such that c � 1 is a

multiple critical point. The next lemma deals with continuity of Φc
λ at

P1.

Lemma 6.6. Suppose that a sequence Pcn P Dc
λ converges to P1 (so

that cn Ñ 1). If ηPcn
pcnq converges, then the limit is equal to 1.

Proof. Assume the contrary: cQ,n � ηPcn
pcnq converges to a point cQ

different from 1. Let yn P Y pPcnq be a sequence of points such that yn
is very close to cn, in particular, yn Ñ 1.
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Suppose first that cQ P B∆pQq; let pα0q be the multi-angle of cQ.
Let y be the point where the internal ray in ∆pP1q of argument α0

lands. There are two internal rays RQ, LQ in ∆pQq such that RQ Y LQ
separates 1 from cQ in ∆pQq. There is a simple unbounded curve ΓQ (a
closed subset of C homeomorphic to R) separating 1 from cQ in C and
such that RQ, LQ � ΓQ. Moreover, we can assume that ΓQ consists
of internal rays in various bubbles, centers of those bubbles, landing
points of those rays, a couple of repelling periodic points of Q, and a
couple of external rays of Q landing at these repelling points. In other
words, ΓQ is the union of two legal arcs from 0 to repelling periodic
points of Q and the external rays of Q landing at these repelling points.
Thus ΓQ is similar to the boundary of an adapted wedge except that
it is not adapted for P1.

To ΓQ, we want to assign a curve Γ in the dynamical plane of P1. If
is natural to require that Γ consist of internal rays in various bubbles
of P1, centers of those bubbles, landing points of those rays, a couple
of repelling periodic points of P1, and a couple of external rays of P1

landing at these repelling points. Also, we require that there is a bijec-
tive correspondence between bubbles A intersecting Γ and bubbles AQ
intersecting ΓQ so that AX Γ includes internal rays of the same argu-
ments as AQ X ΓQ, adjacent bubbles correspond to adjacent bubbles,
and ∆pP1q corresponds to ∆pQq. There is indeed such a curve Γ. The
existence of Γ relies on the landing theorem, Theorem 3.15, which is
also valid in our case. On the other hand, Γ as above is not unique.

The problem is, no matter which Γ we choose, it is not stable. If P1 is
replaced with Pc, where c is close to 1, then there is a set Γc close to Γ.
However, Γc may become disconnected (two adjacent bubbles through
which Γ goes may detach). On the other hand, for each particular c
close to 1, we may choose Γ so that Γc stays connected. This amounts
to choosing, for every bubble A through which Γ passes, a next bubble
A1 attached to the point of Γ X A different from rpAq so that A1 does
not detach from A in the dynamical plane of Pc. Thus we choose both
Γ and Γc depending on c. These curves are close to each other (in the
spherical metric), and both separate 1 from y. By the choice of yn, it
has multi-angle pα0,n, . . . q with α0,n close to α0, for large n. It follows
that y and yn are on the same side of Γcn , and 1 is on the other side.
Moreover, Γcn cannot accumulate on 1. A contradiction with yn Ñ 1.

Suppose now that cQ R B∆pQq; we may assume that cQ P JpQq. Let
pα0, α1, α2, . . . q be the multi-angle of cQ. Recall that α2 � α1 � α0.
Denote the multi-angle of yn as pα0,n, α1,n, α2,n, . . . q. Choose a large
n so that the first three terms in the multi-angle of cQ,n are close to
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α0, α1, α2. For this n, by continuity of ηPcn
, we can also arrange that

αi,n are close to αi at least for i � 0, 1, 2. In particular, αi,n Ñ αi as
n Ñ 8. If α0 � 0, then the same separation argument as above is
applicable. Thus we assume α0 � 0; it follows that α0,n � 0 for large
n.

Let AQ,1 be the bubble of Q with multiangle p0q. Suppose that xQ
is the landing point of the internal ray in AQ,1 of argument α2. There
is an unbounded simple curve ΓQ that includes the center oAQ,1

of AQ,1
and a pair of internal rays in AQ,1 and that separates xQ from 1. It
then also separates cQ from 1. We may assume that ΓQ XKpQq is the
union of two legal arcs from oAQ,1

to certain repelling periodic points
of Q and the external rays of Q landing at these repelling points. In
other words, ΓQ is almost as above except that it is now centered at
oAQ,1

rather than 0. The rest of the proof is the same as above. �

Theorem 6.7 completes the proof of Theorem 2.4.

Theorem 6.7. The map Φc
λ : Dc

λ Ñ KpQq is continuous.

Proof. Take P P Dc
λ. Suppose that Pcn P Dc

λ converge to P � Pc. We
show that cQ,n � Φc

λpPnq converge to cQ � Φc
λpP q. If not, then by

choosing a suitable subsequence, we may assume that cQ,n Ñ c1Q � cQ.
Now consider several cases.

First, suppose that cQ belongs to a bubble AQ of Q. By definition,
AQ corresponds to a legal bubble A of P containing c. The sequence
cn converges to c. The bubble P pAq is stable, in particular, there is
a unique bubble Bn of Pcn close to P pAq, for large n. Moreover, Bn

contains the critical value Pcnpcnq. By Lemma 4.1 it follows that a
component An of P�1

cn pBnq contains the critical point cn and is close
to A. All An have the same multi-angle, thus they all correspond to
AQ. Now, since both cQ and c1Q lie in the same bubble AQ, they have

different images QpcQq � Qpc1Qq. On the other hand, ηP̃ pP̃ pc̃qq depends

continuously on P̃ � Pc̃ near P (because of the stability of P pAq). It
follows that QpcQ,nq � ηPcn

pPcnpcnqq Ñ ηP pP pcqq � Qpcq. On the other
hand, QpcQ,nq Ñ Qpc1Qq since cQ,n Ñ c1Q. Thus we must have cQ � c1Q
in the considered case.

Suppose now that cQ P JpQq and either c R B∆pP q or c P B∆pP q is
never mapped to 1 under P . By Proposition 5.6, there is an adapted
wedge WQ separating c1Q from cQ. Since WQ is open, cQ,n P WQ for all
sufficiently large n. In fact, cQ,n even lie in some compact subset CQ
of WQ for all large n. Let W be the Siegel wedge of P corresponding
to WQ. Since the boundary of W is stable, there are Siegel wedges Wn
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for Pcn close to W that correspond to the same WQ. It follows from
cQ,n P CQ that cn P Wn for large n. Then c P W , a contradiction.

Finally, suppose that c P B∆pP q and P kpcq � 1. If k � 0, then the
theorem follows from Lemma 6.6. If k ¡ 0, then P is conjugate to
another polynomial P̃ P Zc

λ via a linear map that takes c to 1. This

conjugacy takes 1 to a critical point c̃ of P̃ such that P̃ kp1q � c̃. Since c̃
is never mapped to 1 under P̃ , the argument given above is applicable
to P̃ . �

6.3. The unmarked map Φλ. We now study the unmarked map Φλ :
Pλ Ñ K̃pQq. Recall that K̃pQq was defined as a model space obtained
as a quotient of KpQqz∆pQq. Namely, points of B∆pQq that are ψQ-

images of complex conjugate points in S1 are identified in K̃pQq. Let
π : KpQqz∆pQq Ñ K̃pQq be the quotient map. The map π �Φc

λ : Pc
λ Ñ

K̃pQq is then well defined and continuous. It suffices to prove that Pc
and P1{c have the same images under π � Φc

λ. Then the map π � Φc
λ

descends to a continuous map Φλ from Pλ to K̃pQq, as is claimed in
the following lemma.

Lemma 6.8. The points Φc
λpPcq and Φc

λpP1{cq have the same π-images

in K̃pQq.

The proof of this lemma uses the notion of the angular difference
between two points a, b P B∆pP q. This is the difference α � β P R{Z,
where a � ψ∆pP qpe

2πiαq and b � ψ∆pP qpe
2πiβq.

Proof of Lemma 6.8. Note that Pc and P1{c are affinely conjugate; the
difference is only in how the critical points are marked. Thus the
angular difference between the two critical points in the boundary of
the Siegel disk is the same up to a sign for Pc and P1{c. It follows that
Φc
λpPcq and Φc

λpP1{cq have the same angular difference with 1 up to a

sign in B∆pQq. By definition, such points are identified in K̃pQq. �

Lemma 6.8 implies the Main Theorem.
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