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ABSTRACT. The paper deals with cubic 1-variable polynomials
whose Julia sets are connected. Fixing a bounded type rotation
number, we obtain a slice of such polynomials with the origin being
a fixed Siegel point of the specified rotation number. Such slices as
parameter spaces were studied by S. Zakeri, so we call them Zakeri
slices. We give a model of the central part of a slice (the subset
of the slice that can be approximated by hyperbolic polynomials
with Jordan curve Julia sets), and a continuous projection from
the central part to the model. The projection is defined dynami-
cally and agrees with the dynamical-analytic parameterization of
the Principal Hyperbolic Domain by Petersen and Tan Lei.

1. INTRODUCTION

In this introduction we assume a certain level of familiarity with
complex dynamics; detailed definitions will be given later on.

For a polynomial P denote by [P] its affine conjugacy class. By
the degree d polynomial parameter space one understands the space of
such classes of polynomials of degree d. Similarity between quadratic
dynamical planes and slices of parameter spaces of higher degree poly-
nomials is a recurring topic of research. A now standard mechanism
(found in [BHO1]) uses holomorphic renormalization. If, say, a cu-
bic polynomial P is immediately renormalizable (i.e., has a connected
quadratic-like filled Julia set K*(P)), then one critical point of P be-
longs to K*(P). The other critical point of P may eventually map to
K*(P) in which case P belongs to a quasiconformal copy of K*(P)
contained in the parameter space of cubic polynomials. A more gen-
eral renormalization scheme established in [IK12] allows to find copies
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of My x My (where My is the quadratic Mandelbrot set) or M/ (the
set of pairs (¢, z), where ¢ € My, and z belongs to the filled Julia set
K(P.) of P.(w) = w? + ¢) in the cubic connectedness locus. In the
non-renormalizable case, things are much subtler.

Suppose that a cubic polynomial P has a non-repelling fixed point
a. It can always be arranged by a suitable affine conjugacy that a = 0;
one can consider this point as marked and, hence, instead of affine
conjugacies work with linear conjugacies A(z) = az, where o € C\{0},
that leave 0 fixed. Much is known if P is renormalizable; this case,
under the additional assumption that P tunes a hyperbolic polynomial,
is considered in [IK12, SW20]. The remaining, non-renormalizable case,
needs closer attention. Consider the set of all affine conjugacy classes
| P] of cubic polynomials P with P(0) = 0 and |P’(0)| < 1. A central
part of this parameter space, analogous to the interior of the main
cardioid, is the principal hyperbolic component consisting of classes [P]
for all hyperbolic P with |P’(0)| < 1 and Jordan curve Julia set. An
analytic parametrization of the principal hyperbolic component with
dynamical meaning is given in [PT09] where the authors were able to
describe pieces of the boundary of the principal hyperbolic component
contained in the locus of classes [P] with |P'(0)| < 1. This paper aims
at a similar description in the Siegel case under the assumption that
the associated rotation number has bounded type.

A powerful method of studying polynomials with non-repelling peri-
odic points is based upon linearizations. Consider a polynomial f with
attracting or neutral fixed point a (we discuss polynomials, but a lot
of the results are in fact more general). A linearization is a holomor-
phic map ¢ of an open disk D(r) of radius » > 0 around 0 such that
¥(0) = a, and P(A\z) = fo(z) for all z € D(r) where A = f'(a).
Assume that r > 0 is the radius of convergence of the power series of
¢ at 0. It is known that ¢ : D(r) — C is an embedding, cf. [Che20].
Then ¢(D(r)) is called the linearization domain A(f,a) of f around
a. If |\| < 1, then A(f,a) is compactly contained in the attracting
basin of a, and dA(f,a) contains a critical point. In the case a = 0,
the domain A(f,a) is denoted by A(f).

Fix A with |[A| < 1. Let C, be the space of complex linear conjugacy
classes of complex cubic polynomials with fixed point 0 of multiplier A
(alternatively, C, consists of affine conjugacy classes of cubic polyno-
mials with marked fixed point of multiplier \). For a cubic polynomial
P(z) = Az + ..., let [P]y be its class in C,. Write C, < C, for the
connectedness locus in Cy. That is, [P]o € Cy if the Julia set J(P) of
P is connected. A central part of C, is the set P, of all [P]y € C, that
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lie in the closure of the principal hyperbolic component. We are inter-
ested in understanding the topology and combinatorics of P, through
a comparison with a suitable dynamical object.

As the basis for comparison, consider the space of quadratic poly-
nomials Q(z) = Qx(z) = Az(1 — z/2). Then A is the multiplier of the
fixed point 0 of ). Suppose that either |A\| < 1 or A\ = €™ where
6 € R/Z is of bounded type. Let ¢ = g : D — A(Q) be the cor-
responding linearization (here D = D(1)). The set A(Q) is a Jordan
disk — this is a classical result of Douady-Ghys-Herman—Shishikura,
see [Dou87, Her87, Swig8|. Therefore, the Riemann map extends to a
homeomorphism ¢ : D — A(Q). The finite critical point of @ is 1, thus
the linearizatiton domain A(Q) around 0 contains 1 in its boundary.
We normalize v so that (1) = 1. If |\| = 1, then the map ¢ conju-
gates the rigid rotation by angle § with the restriction of Q to A(Q).
Consider the quotient K(Q) of the set K (Q)\A(Q) by the equivalence
relation ~ defined as follows. Two different points z, w are equivalent

if both belong to dA(Q), and Re(v) " (z)) = Re(v) 1(w)).

There is a partially defined correspondence — stated as Property
D below — between the dynamical plane of P and that of (). Recall
that a continuous map 7 : X — Y between two compacta is said to be
monotone if, for every connected subset B < Y, the set 7'(B) < X
is connected. In order to verify that n is monotone, it suffices to check
that all point preimages are connected.

Property D. For any cubic polynomial P with [Py € Py, there exist
a full P-invariant continuum X (P) containing both critical points of P
and a continuous map np : X (P) — K(Q) that semi-conjugates f|xp)
with Qlypxpyy- If both critical points of P are in the Julia set, then
the map np is monotone.

The letter D in Property D stands for “Dynamics” (or “Douady”).

This property will be used to, quoting Douady, “seed in the dynamical
plane and reap the harvest in the parameter plane”.
Main Theorem. Suppose that 6 € R/7Z is of bounded type, and \ =
2™ Let Q = Q\ be a quadratic polynomial with a fized point of
multiplier \. Then there is a continuous map P, : Py — f((Q) taking
[Plo to the np-image of some critical point of P.

The map @, is illustrated in Figure 1.

In this paper we do not address the issue of ®, being surjective or
monotone — a discussion of these properties is postponed to a later
publication. It can be observed that the Main Theorem is a direct
(partial) extension of [PT09]. According to [PT09], C. Petersen, P.
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FIGURE 1. Left: the parameter plane C, with \ =
exp(miy/2). We used the parameterization, in which every
linear conjugacy class from C, is represented by a polynomial
of the form f(z) = Az +1/az? + 23, where a is the parameter
(that is, the figure shows the a-plane). The conjugacy class
of f is independent on the choice between the two values of
the square root. Regions with light uniform shading are inte-
rior components of Py. There are also various “decorations”
of Py (that is, components of Cy\Py) shown in black; these
decorations contain copies of the Mandelbrot set. Right: the
dynamical plane of QQ = @». The bounded white region near
the center is the Siegel disk A(Q). A conjectural model of
P, is obtained from K (Q) by removing this white region and
gluing its boundary into a simple curve. Our main theorem
provides a continuous map from P, to this conjectural model.

Roesch and Tan Lei planned a continuation that should have contained
an analog of the above Main Theorem for parabolic slices. Apparently,
this continuation never appeared in print.

Observe also that while this paper concentrated on the set Py, the
structure of the entire parameter A-slice C, with the corresponding
A-slice of the connectedness locus Cy, < C, was studied in [BOT21].

2. BACKGROUND AND A SPECIFICATION OF THE MAIN THEOREM

Take A = €™ where 6 € R\Q. Let p,, /g, be the sequence of rational
approximations of # based on the continued fraction expansion. By the
Brjuno—Yoccoz theorem [Brj71, Yoc95], a holomorphic germ f with
f(0) =0 and f’(0) = A is linearizable at 0 if and only if

= 1o
Z g gn+1 <o
an

n=1
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The latter condition is called the Brjuno condition; if 6 satisfies it, 0 is
said to be a Brjuno number. So, if 8 is a Brjuno number, then a poly-
nomial f with f(0) = 0 and f'(0) = X has a Siegel disk A(f) around 0.
Say that 0 is bounded type if the continued fraction coefficients of § are
bounded. Any bounded type irrational number is Brjuno; the converse
is not true. From now on and throughout the paper, we set \ = ™
and assume that ¢ is bounded type.

Let us discuss the parameter slices that are of interest in this paper,
and how to parameterize them. Start with the quadratic case. Recall
that a quadratic polynomial with a fixed point of multiplier A is unique
up to an affine conjugacy. We use the normalization Q)(z) = Az(1 —
z/2) with the property that 0 is the fixed point of multiplier A and the
finite critical point of @) is 1. Some known results about J(Q,) are
summarized in the following theorem.

Theorem 2.1. The Julia set J(Q)) is locally connected and has zero
Lebesgue measure. Moreover, the Siegel disk A(Qy) is a quasidisk.

The second part of Theorem 2.1 is in fact a theorem of Douady—
Ghys—Herman—Shishikura (a proof can be obtained as a combination
of [Dou87] and a Theorem of Herman and Swiatek [Her87, Swi9s]).
The first part is Theorem A of [Pet96].

To parameterize cubic polynomials with fixed point at 0 and marked
critical points, we work with the space C} of polynomials

1 1 1
Fea(z) = Pe(z) = Az (1 3 (1 + E) z+ 3—022)

(we often fix A and then omit it in the notation). The parameter c is
chosen so that P, has critical points 1 and ¢, and A is the multiplier
of the fixed point 0. It is easy to verify that P. and Py are linearly
conjugate and, hence, [F.]o = [Pi/c]o. The map ¢ + P, establishes an
isomorphism between C* = C\{0} and C3.

If |A] < 1, then 0 is an attracting fixed point of P.. Let us now
fix A\ = ¥ where § € R/Z is of bounded type, and describe the
results of [Zak99] where this case was studied in great detail. First,
the disk A(P.) is non-degenerate, at least one critical point of P,
still belongs to dA(P.), and A(P.) is a quasidisk. Let Z§ be the set
{P. € C} | {c,1} < 0A(P.)}. The set Z5, called the Zakeri curve, is a
Jordan curve. It divides the punctured plane Cf into two components,
O%(0) and O3(w0), each isomorphic to the punctured disk D\{0}. The
corresponding punctures are ¢ = 0 and ¢ = o0, respectively.

Since P, and Py, are linearly conjugate, the involution ¢ — 1/c
interchanges the punctured disks O3(0) and O3(e0) and maps Z§ to
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itself. Observe that P, and P_; always belong to Z§. Moreover, the
following holds:

(1) if ¢ € O3(0) then c € OA(FP,) and 1 ¢ 0A(P.),

(2) if ¢ € Z§ then ¢, 1 € 0A(P.), and

(3) if ¢ € O3(o0) then ¢ ¢ OA(P.) and 1 € 0A(P,).
Every class in C, is represented by polynomials P., Py, € C§ (with
suitable ¢). Thus, the space C, identifies with a quotient of C§. The
corresponding quotient map 7 identifies P, with P;,. It restricts to
homeomorphisms on O3(0) and on O% () and folds Zf to a simple arc
Zy. Moreover, the quotient projection is two-to-one on Z§ except two
points P; and P_;. The space C, can be described as 7(O*(w0) U Z5);
this description will be often used in the sequel.

Recall that Cy < C, is the connectedness locus in Cy; write C§ < C3
for the corresponding connectedness locus in Of(w) U Z5. In other
words, C§ consists of polynomials P € O (o) u Z5 such that K(P) is
connected. The superscript “c” in the notation C{ means that c is the
free critical point (the other critical point 1 is associated with the Siegel
point 0). More generally, this superscript appears in the notation of
a parameter space object if this object belongs to (or is contained in)
C3 (in particular, critical points are marked), and ¢ can be regarded
as a free critical point. Note that Z{ < Cf as for ¢ € Z{ we have
¢,1 € OA(P.) (and, hence, both critical points of P, are non-escaping).
The set Cy coincides with the image of C§ under the quotient map 7.
We want to describe the structure of the connectedness loci C§ and C,.

Theorem 2.2 ([Zak99]). If P € C§, then 1 € dA(P) and 0A(P) is a
quasicircle depending continuously on P € C§ in the Hausdorff metric.

Define the set P§ as the subset of C§ consisting of polynomials that
can be approximated by sequences P, € C5 with [A\,| < 1 and both
critical points of P, in the immediate basin of 0. This is the central
part of C{ which we want to model. It is easy to see that Py is a
compactum containing P; (indeed, polynomials P, ; converge to P, as
r /1 and, on the other hand, are such that both critical points belong
to the immediate basin of 0).

Lemma 2.3. The sets P§ and Py are connected.

Proof. The quotient projection 7 from Cj to C, is a branched 2-1 cover-
ing with the only branch points at P,; € P§. Therefore, connectedness
of P5 is equivalent to connectedness of Py. For every X € D(1), the
principal hyperbolic component H¢, of C3, is defined as the set of all
hyperbolic P € C%, such that J(P) is a Jordan curve. It follows from
[PT09] (and the fact that branch points of 7 : C}, — Cy lie in H$))
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that HS, is connected. Now consider a sequence P,y — P € Pf, where
Ppy € P and |A,| < 1. Tt follows that A\, — A. It suffices to find a
connected subset of P§ containing both P and P;. Then every point
P e P5 is connected to P, hence Py is connected.

Passing to a subsequence, we may assume that continua H_in con-
verge in the Hausdorfl metric. Moreover, each HS contains a unicrit-
ical (i.e., with a multiple critical point in C) polynomial P,y — P;.
The limit continuum then contains both P and P;, as desired. 0

Since A is fixed, it can be omitted from the notation of @ = @,.
We will define a continuous map ®§ from P§ to the model space
K(Q)\A(Q). Note that, in the case of marked critical points, the
model space is simpler as we do not pass to a quotient. This map
is conjecturally a homeomorphism. As often happens in holomorphic
dynamics, the definition of ®§ depends on a certain map between dy-
namical planes. More precisely, we will define a P-invariant continuum
X(P) ¢ K(P) and a continuous map np : X(P) — K(Q) such that
npo P = @Qonp on X(P). The following theorem makes the Main
Theorem more specific.

Theorem 2.4. The map np : X(P) — K(Q) is monotone for every
P € C§ except when ¢ € X(P)\J(P). For every P. € P, the criti-
cal point ¢ is in X(P.). The map ® : P. — np(c) is defined and
continuous on P5. It takes values in K(Q)\A(Q).

The Main Theorem follows directly from Theorem 2.4 by applying
the quotient projection 7 from Cf to C,.

Plan of the paper. In Section 3, the principal tools of this paper are
developed. These include bubbles, legal arcs, and Siegel rays. To an
extent, Siegel rays compensate for the absence of repelling cutpoints
in the central part of K(P.) (here P. € C§). They form a controllable
combinatorial structure, map forward in a regular way, and divide the
central part of K (P) into smaller pieces. Section 4 discusses the issues
of stability. Roughly speaking, a dynamically defined set is stable if it
moves continuously as we change the parameters. Outside of the Zakeri
curve, stability can be defined in customary language of holomorphic
motions. However, since C§ is not a Riemann surface at points of
the boundary curve Z§, we need to consider a more general notion
of an equicontinuous motion. The principal results of Section 4 claim
that Siegel rays are stable. Section 5 deals with the dynamical map
np : X(P) — K(Q) defined on the central part X(P) of K(P). In
particular, property D is established for this map. Finally, Section 6
concludes the proof of Theorem 2.4 and the Main Theorem.
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3. BUBBLES

3.1. An overview of [Zak99|. Consider Blaschke fractions, i.e., prod-
ucts of generalized Blaschke factors {—L without assuming that Ip| <
1 (in a classical Blaschke factor, p has to belong to D). The Blaschke
fractions have some common properties with the classical Blaschke
products. In particular, they have the inversion self-conjugacy: if B(z)
is a Blaschke fraction, then ﬁ =B (%), i.e., the inversion z — % con-
jugates B with itself. It follows that critical points of B are split in
two groups: critical points inside I and their inversions with respect
to S! that are located outside ID.

In order to describe the structure of C§, Zakeri introduced an auxil-

iary family of degree 5 Blaschke fractions given by

B(Z):e%itZB =P Z—q
1-pz) \1-gqz)’

where |p| > 1,|¢| > 1. In addition to the inversion self-conjugacy (and,
hence, the inversion symmetry of their critical points) the restrictions
of these maps on S! (which is invariant) are homeomorphisms. Indeed,
by the Argument Principle, the topological degree of B : S* — S!
is equal to the number of zeros minus the number of poles (counting
multiplicities) of B in D. The latter number is 3 — 2 = 1 (triple zero
at 0 and simple poles at 1/p and 1/7).

Zakeri chooses p and ¢ so that B has a multiple critical point in S*
and two critical points cg, 1/¢5 that may or may not belong to S'. The
angle t € R/Z is adjusted so that B : S' — S! has rotation number 6.
Consider the Blaschke products B as above, with marked critical points
and normalized (via conjugation by a rigid rotation) so that one of the
critical points is 1. Then the space B, of all such B’s is parameterized
by a single complex parameter y € C\D (recall that A\ = €>™; thus the
dependence on 6 is expressed through A) such that the critical points
of B, are u and 1. Note also that B, and By, are linearly conjugate
for ;1 € S! but we distinguish them as elements of By.

By a theorem of Herman and Swiatek [Swi98], the map B : St — S!
is quasi-symmetrically (qs) conjugate to a rigid rotation. Consider a
qc-extension H = Hp : D — D of this quasi-symmetric conjugacy (take
the Douady—Earle extension [DE86] to make the construction unique),
and define the modified Blaschke product B as B(z) for |z = 1 and
H'oRotg o H(z) for |z| < 1. Here Roty is the rigid rotation about 0
by angle §. Finally, B is shown to be qc conjugate to a cubic polynomial
P e C§ by finding a certain B-invariant conformal structure o on C,
and straightening it. Here the critical point ¢ of P corresponds to the
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critical point p of B. Define the non-escaping locus of By as the set of
B,, € By for which the orbit of ;i is bounded. Set P = S(B); the map
S from the non-escaping locus of By to Cf is called the surgery map.
The following proposition is Corollary 10.5 of [Zak99].

Proposition 3.1. There is an equicontinuous family of qc homeomor-
phisms pp : C — C parameterized by B in the non-escaping locus of
By, such that S(B) = pp o Bowy', and normalized so that pp(1) = 1.

Set P = S(B). Note that the Siegel disk A(P) of P equals pp(D),
and the Riemann map ¢ap) : D — A(P) coincides with ¢p o Hy'. All
Hp are quasi-conformal with the same qc constant that depends only
on 6. Tt follows (cf. Theorem 4.4.1 of [Hub06]) that Hgz and Hz' form
an equicontinuous family. We obtain the following corollary.

Corollary 3.2. The extended Riemann maps EA(P) (where P varies
through C5) form an equicontinuous family.

Let C(D, C) be the space of all continuous maps from D to C with
the sup-norm. Corollary 3.2, in turn, implies the following.

Corollary 3.3. The map from C§ to C(D,C) taking P to EA(P) is
continuous.

Proof. Suppose that a sequence P, € C§ converges to P € C{. We
want to prove that ¢, = JA(PH) converge uniformly to ¢ = @A(P).
First note that 1, (1) = ¢(1) = 1 by the chosen normalization of the
Riemann maps. Now fix a positive integer k£ and consider the point
z = P*(1) € 0A(P). Clearly, for fixed k and all large n, the points
z, = P*(1) € 0A(P,) are close to z. Since 9, conjugate the rotation
by angle 6 with P,|z(p, ), We necessarily have 1), (e2™*9) = z,,. Similarly,
(e?™*9) = 2. Thus 1, — 1 point-wise on a dense subset of S'. By
equicontinuity, it follows that v, — 1 uniformly on S'. Finally, by the
Maximum Modulus Principle, ¥, — 1 on D. 0

3.2. Polar coordinates and bubbles. Let U < C be an open topo-
logical disk equipped with a distinguished center a € U, a certain
radius ry € (0,00) and a base point b € OU accessible from U. An
open topological disk U equipped with these data is called a framed
domain. These data constitute a framing of U. For a framed domain
U, consider the Riemann map ¢y : D(ry) — U such that ¢(0) = a and
limy, ., Yuv(u) = b with u converging to ry radially. If U is a Jordan
disk, then vy extends to a homeomorphism 1, : D(ry) — U.
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Definition 3.4 (Polar coordinates, internal rays). Let U be a framed
domain with center a € U, root point b, and radius ry. A point z € U
has the form 1y (p.e**#) for some p, € [0, ry) and 0, € R/Z. The polar
radius function is by definition the function z — p, on U. We always
extend this function (keeping the notation) to U by setting p, = 7 for
all z € oU. The polar angle function is by definition the function z — 6,
on U\{a}. Note that this function is undefined when p, = 0. If U is a
Jordan disk (and only in this case), we extend the polar angle function
to U by continuity. Then, for z € dU, the angle 6, is determined by the
relation z = ¢ (rye?=). Given any a € R/Z define the internal ray
Ry(a) as the set {z € U | 0, = a}. Say that Ry(«) lands at a point
w € oU if w is the only point in Ry (a)\U. If U is a Jordan disk, then
every internal ray Ry () lands at the point ¢ (rge?™®).

Assume now that either f : C — C is in C§, or f = Q\. Recall
that A = €™ is fixed. Write A(f) for the Siegel disk of f, and vy :
D — A(f) for the Riemann map normalized so that 1¢(0) = 0 and
Ef(l) = 1; recall that 1 is a critical point of f.

Define a pullback of a connected set A < C under a polynomial f as
a connected component of f~1(A). An iterated pullback of A under f
is by definition an f"-pullback of A for some n > 0.

Definition 3.5 (Bubbles and polar coordinates on bubbles). Bubbles
of f are iterated pullbacks of A(f) (thus, bubbles are open Jordan
disks). Let A be a bubble of f, and let n be the smallest integer with
f"(A) = A(f). Such n is called the generation of A and denoted by
Gen(A). For z € A\f ™(0), set 0. = Opn(y —nb and p, = psn(z). Now,
if z has polar coordinates p and «, then f(z) has polar coordinates
p and o + 0. Equivalently, the complex coordinate pe*™® multiplies
by A under the action of f. Note that the polar radius extends as a
continuous function on the union of the closures of all bubbles.

If a bubble A is a homeomorphic iterated pullback of A(f), then
we define a framing of A as follows. The center o4 of A is defined as
the only iterated preimage of 0 in A. If f*(A) = A(f), then the base
point of A is defined as the point by with f"(bs) = f™(1). With this
framing, internal rays of A are defined. By definition, an internal ray
of A consists of all points with a fixed value of polar angle. Then in A
there is one internal ray of a given polar argument, and all internal rays
connect the center of A with appropriate points on dA. In particular,
this picture holds for all bubbles in the quadratic case.

In the case of a cubic polynomial P. there might be a bubble B
which contains ¢ and, hence, maps forward two-to-one. In that case
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the picture with polar angle function, the center and the internal rays
is a bit different. More precisely, if ¢ maps into the center of P.(B),
then the pullbacks of an internal ray are two internal rays connecting
¢ with appropriate points on dB. Now, suppose that P.(c) is not the
center of P.(B). Then the center x = op,(p) of P.(B) has two preimages
x', " € B. Hence, with one exception, each internal ray of P.(B) pulls
back to two internal rays, each connecting the appropriate pullback of
the center of P.(B) with the appropriate point on 0B. The exception
is the internal ray R = Ty, of argument, say, «, passing through P.(c);
its pullback is a “cross” with endpoints at z’, ” and at two preimages
of y, and with vertex at c.

Given (p, «v), there is unique point z € A(f) and a lot of other points
with coordinates (p, ). Any point with polar coordinates (p, o) maps
to f™(z) under f", for some n depending on the point.

The terms “bubbles” and “bubble rays” were introduced in the The-
sis of J. Luo [Luo95] (cf. [AY09, Yanl7] for a development of these
ideas). However, the difference with our setup is that bubbles in the
sense of Luo are Fatou components that are eventually mapped to a su-
perattracting rather than a Siegel domain. Also, similar ideas are used
in [BBCO10] where some quadratic Cremer Julia sets were studied by
approximating them with Siegel Julia sets with specific properties.

If f: A — A(f) is a conformal isomorphism, then it also defines
a framing of A so that the polar coordinates on A just defined are
consistent with this framing. By an oriented arc we mean an arc [
whose one endpoint is marked as initial and the other is marked as
terminal.

Let A be a bubble of a cubic polynomial P, € C§. Evidently, a point
z € A can be connected with 0 by an arc I ¢ Kp with initial point 0
and terminal point z. While such an arc is not unique, it is easy to
see that for any bubble A the intersection I n A is a subarc of I. In
what follows we will only consider arcs such that for all of the bubbles
involved (except possibly for one) the intersection I n A is contained
in the union of {04} and the closures of two internal rays of A. More
precisely, let us now define legal arcs.

Definition 3.6 (Legal arcs). Consider an oriented topological arc I
K(f). Suppose that I° is an open dense subset of I such that the
following holds:

(1) the set I\I° can accumulate only at the terminal point of I;
(2) each component of I° is contained in one bubble A and coincides
with a component of (A\(J,~, f7"(0)) n 1.
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FIGURE 2. A schematic illustration of legal arcs in the dy-
namical plane of @)». Three legal arcs are shown, connecting
0 with points z1, 22, and z3. Observe that the legal arcs from
0 to 22 and from 0 to z3 have an initial segment in common.

(3) the polar angle function is defined and constant on each com-
ponent of I°;
(4) P™(I) is not separated by ¢ for n = 0.

Then I is called a legal arc (see Fig. 2). Let ag, ..., ag, ... be the
values of the polar angle on I° taken in the order they appear on I°.
A linear order of «;s is well defined since I is oriented. The finite or
infinite sequence («, ..., q, ...) is called the (polar) multi-angle of I.

Typically, we deal with legal arcs with initial point 0. In the multi-
angle (g, ...,qx,...) of I we will always have that oy = a1, 0 = a3
etc because these pairs of angles correspond to pairs of internal rays
of adjacent bubbles that eventually map onto the same internal ray of
A(f) and, hence, have the same polar argument (we make this more
precise in Lemma 3.7). Legal arcs for polynomials, under the name of
regulated arcs, were introduced by Douady and Hubbard in [DH85al;
they play a key role in the definition of a Hubbard tree for a post-
critically finite polynomial. We use legal arcs in an essentially different
way.

If z € K(f) is such that there is a legal arc I, from 0 to z, then
the polar multi-angle (or just multi-angle) of z is defined as the polar
multi-angle of I,. Note that if I, exists, then it is unique.

Lemma 3.7. For any z € K(Q), there is a legal arc I, from 0 to z.
Let (ag, - .., Qg, - .. ) be the multi-angle of z. Then each term «;, except
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possibly the last term, has the form a; = —m;0. Here m; are nonneg-
ative integers such that mo; 1 = mg; and Mmo; o > Mo 1. Moreover,
z is uniquely determined by the multi-angle and (if the multi-angle is

finite) by p,.

A sequence (ay, . .., q, ... ) with the properties listed in Lemma 3.7
is called a legal sequence of angles. We also define a legal angle as an
angle of the form —m6, where m is a nonnegative integer.

Proof. Suppose first that z is in the closure of a bubble A of Q). The
argument will use induction on Gen(A). If A = A(Q), then I, is a
segment or the closure of some internal ray of A(Q), the multi-angle of z
is (A,), and z is determined by 6, and p,. Thus we now assume that A
A(Q). Then I, intersects 0A(Q) at a point x that is eventually mapped
to 1. Let mgo be the non-negative integer with Q™°(z) = 1, then oy =
—mof. The arc Q™ (I.) = Igmo(») contains Ra(g)(0), and Q™ (1,) =
Igmo+1(zy U Ra(@)(f). The multi-angle of Q™ (z) starts with 0, 0 since
both initial components of I Omo(z) Map onto Ra(q) (0). We may assume
by induction that the multi-angle of Q™ %1(2) is (ds,...,ds), where
a; = —m;b for 2 < i < k, and m; satisfy the desired properties. In this
case the multi-angle of z is (ayp, ..., ), where ap = a3 = —myf and
a; = a; — (mo + 1)0 = —m;0 with m; = m; + mo + 1 for ¢ > 2 and
2 < i < k. Thus, we proved that every point from the closure of every
bubble of ) has a multi-angle. Moreover, the latter is a legal sequence
of angles.

Suppose now that z € K(Q) is not in the closure of a bubble. Then
there is a sequence of pairwise different bubbles Aq, ..., Ag, ... such
that Ay — {z} in the Hausdorff metric. Moreover, we can assume that
Ay = A(Q) and A; n A; 1 = {z}, where z; is eventually mapped to
1. Clearly, I, is an initial segment of I, with j > 4. Set I, to be the
closure of the union of all I,; then I, is a legal arc from 0 to z. It
follows that there is an infinite legal sequence of angles such that the
multi-angle z; is an initial segment of this sequence. This infinite legal
sequence is then the multi-angle of z. Thus, all points of K(Q) have
well-defined multi-angles.

Given a legal sequence of angles (ay, ..., ax,...), there is a unique
sequence of bubbles Ay, ..., A;, ... such that the point z; € A; N
A; 11 has multi-angle (ay, ..., ay;). If the sequence (o) is infinite, then

the corresponding sequence of bubbles converges to a unique point z
determined by the infinite multi-angle (a;). If the sequence (q;) is
finite, then it defines a unique last bubble A, in the corresponding
sequence of bubbles and an internal ray R = Ra, (a2,) or Ra, (e,—1) in
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A,,. All points of R together with the landing point of R (and no other
points) have the given multi-angle. These points are then determined
by the legal sequence (ap, ..., ax,...) and the polar radius. O

Sequences of bubbles defined in the proof of Lemma 3.7 for points
z € K(Q), are called bubble rays.

3.3. Bubble rays and bubble chains. Take P = P, € C§ and set
Q = Q). Define Y(P) as the set of all points z € K(P) for which there
is a legal arc I, from 0 to z. Note that, by definition, Y (P) includes
A(P) and is forward invariant: P(Y (P)) = Y (P). However, in general,
Y (P) does not have to be closed.

Every z € Y (P) has a multi-angle and, if the latter is finite, the polar
radius p,. Moreover, it is not hard to see that the multi-angle of z is a
legal sequence of angles. Set p, = oo if the multi-angle of z is infinite.
Similarly, we set p,, = oo for points w € K(Q) not on the boundary
of a bubble of Q. The map np : Y(P) — K(Q) takes z € Y(P) to a
unique point w = np(z) with the same multi-angle and polar radius.
By definition of Y (P) and properties of multi-angles and polar radii,
npo P =QonponY(P).

Let A be a bubble of generation n. If P*: A — A(P) is one-to-one,
then A is called off-critical. If c € A, then A is called critical. Finally, if
A is a pullback of a critical bubble, it is said to be precritical. For any
bubble A, one can define its root point r(A). When A is off-critical, the
root point is uniquely defined by the formula P""!(r(A)) = 1. When
A is critical or precritical, there may be legal paths from 0 to some
points in A. All these paths intersect the boundary of A at the same
point; this point is by definition the root point r(A). There are two
points 2/, 2” € dA such that P""!(z') = P"(2") = 1, and the point
r(A) is one of them.

Definition 3.8 (Legal bubbles and bubble correspondence). A bubble
A of P with AnY(P) # @ is called legal. Thus, A is legal if and only
if 7(A) € Y(P), and P(r(A)) # c for i < Gen(A). If a legal bubble A
is off-critical, then A < Y (P). Clearly, np(A n Y (P)) lies in a unique
bubble Ag of ). Say that A and Ag correspond to each other. This
correspondence between some bubbles of P and bubbles of @) is called
the bubble correspondence. By definition, if A is a legal bubble of P,
then P(A) is also a legal bubble of P. Moreover, if A corresponds to
Ag, then P(A) corresponds to Q(Ag).

Define (R/Z)* as the set of nonempty finite sequences of angles and
(R/Z)YN as the set of infinite sequences of angles. The map

I (R/Z)"\{(0), (0,0)} — (R/Z)*
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acts as follows. Take & = (ap, a1, 9,...) € (R/Z)*. If oy = oy = 0,
then I1(a@) = (ax+0,...), otherwise II(@) = (ag+ 0,1 +0,a5+0, ... ).
Then any legal sequence in (R/Z)* of length > 1 is eventually mapped
to (0) or (0,0) under II. On (0) and (0,0), the map II is undefined.
Clearly, IT can be also defined as a self-map of (R/Z)Y, by the same
rule.

Let A be a legal bubble of P of generation n. If A is off-critical,
recall that the center of A is by definition the preimage of 0 under
P : A — A(P). The incoming radius of any off-critical bubble A is
its radius R(A) connecting r(A) to its center. Now, if ¢ € A then P4
is two-to-one. To define the center of A, recall the earlier analysis of
pullbacks of radii into critical bubbles. It follows from that analysis
that there are two cases depending on the mutual location of R(P(A))
and P(c). If R(P(A)) does not contain P(c), or P(c) is the center of
P(A), then there is a unique pullback of R(P(A)) that connects r(A)
with a preimage of the center of P(A), and this preimage of the center
of P(A) is said to be the center of A. The remaining case is when
R(P(A)) contains P(c) but P(c) is not the center of P(A). In that
case the center of A is not defined.

Finally, let A be precritical; then P|, is one-to-one. If the center of
P(A) is defined, set the center of A to be the pullback of the center of
P(A) into A; if the center of P(A) is not defined, then the center of A
is not defined either. If the center of A is defined, it is denoted 04.

The multi-angle of A is defined as the multi-angle of the root point
of A. If A has multi-angle &, then P(A) has multi-angle II(@). We can
now describe multi-angles of legal bubbles.

Proposition 3.9. Let @ be a finite legal sequence of angles of odd length
starting with —m@ for a nonnegative m € Z. Then & is a multi-angle
of some legal bubble if and only if no eventual 11-image of an initial
subsequence of a is the multi-angle of c.

The assumption that @ starts with —m@ is essential if @ has length
1 (otherwise it follows from the definition of a legal sequence).

Proof. By Definition 3.8, a bubble A is legal if and only if no image
Pi(I.(4)) with 0 < ¢ < Gen(A) contains ¢. On the other hand, ¢ €
P'(I,(4)) if and only if the IT*-image of an initial subsequence of & is
the multi-angle of c. O

The concept of a bubble ray was used in the proof of Lemma 3.7.

Definition 3.10 (Bubble rays, bubble chains, core curves). Take a
legal bubble A of P and a point z€ AnY(P),z # r(A) . A legal arc
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I, from 0 to z passes through bubbles Ay = A(P), ..., A, = A in this
order and through no other bubbles. The sequence Ay, ..., A, is called
a bubble chain (to z). A bubble ray is a sequence A = (Ag, Ay,...) of
legal bubbles A; such that Ay, ..., A, is a bubble chain, for every finite
n. Set | JA = J;>¢ Ai- Bubble chains and bubble rays for Q = Q, are
defined similarly. The core curve of A is defined as the union of I,
where z; € A; n A; 1. (Note that I, c I, fori<j.)

Definition 3.11 (Landing bubble rays). Consider a bubble ray A =
(A;) for P. We say that A lands at a point z if {z} is the upper limit
of the sequence A;, that is

{Z}:ﬂAiUAiJrlU....

In general, the right hand side is denoted by lim A and is called the
limit set of A. If A lands at z, then we also say that A is a bubble ray
to z. Similar definitions apply to the dynamical plane of Q).

Consider a bubble ray A = (A;) for P. If P(A;) # Ay, then we
define P(A) as (Ao, P(Ay), P(Ay), ...). Otherwise, P(A;) = Ap, and
we define P(A) as (Ao, P(As), P(As), ...). It P"(|JA) = J A, then
A is said to be periodic of period m. Let I be the core curve of A.
If m is the minimal period of A under P, then P™(I) = I. However,
P™ I — I is not one-to-one; I is folded at critical points of P™.

Lemma 3.12. For z in the dynamical plane of P, there is at most one
bubble chain or a bubble ray to z.

Proof. Suppose that A" and A" are different bubble rays or bubble
chains to z. If A’ is a bubble ray, then set I’ to be its core curve; other-
wise set I' = I,. The arc I” is defined similarly, with A’ replaced by A”.
If A" # A", then there is a bounded open set U in C whose boundary is
contained in I’ U I”. By the Maximum Modulus Principle, the sequence
P" is bounded on U, hence equicontinuous. We conclude that U is in
the Fatou set, that is, U is in a single bubble, a contradiction. U

3.4. Landing of bubble rays. Recall that P € C{. If A = (4,) is a
periodic bubble ray for P of minimal period m, then, clearly, P™ takes
several first bubbles Ag, ..., A; to Ay, and A1 to A;. In this case
we say that P™ shifts bubbles of A by k. We always have k > 1.

The main result of this subsection is Theorem 3.15. Theorem 3.13
will be used in the proof of Theorem 3.15. If X < C is a contin-
uum, TH(X) stands for its topological hull, i.e., the union of X and all
bounded complementary components of X.
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Theorem 3.13 (Theorem 7.5.2 [BFMOT13]). Let f be a polynomial,
let K(f) be connected, and let X < J(f) be an invariant continuum.
Suppose that X is not a singleton. Then TH(X) contains a rotational
fixed point or an invariant parabolic domain.

Here a rotational fixed point means one of the following:

e an attracting fixed point;
e a repelling or parabolic fixed point where no invariant external
ray lands;

¢ a Siegel point;

¢ a Cremer point.
In other words, a fixed point is rotational unless it is the landing point
of some invariant external ray.

Theorem 3.13 is related to the following result of [GM93]. Let f be

a polynomial of any degree > 1. Consider the union Y of all invariant
external f-rays with the set Fix; of their landing points. In other
words, Fix; is the set of all repelling or parabolic fixed points of f. A
rotational object of f is defined as either a rotational fixed point or an
invariant parabolic domain.

Theorem 3.14 (|[GM93]). Every component of C\X; contains a unique
invariant rotational object of f.

A subset of ¥ consisting of two rays landing at the same point
and their common landing point is called a cut. Theorem 3.14 can be
restated as follows: any pair of different invariant rotational objects for
f is separated by a cut from .

Theorem 3.15. Let A be a periodic bubble ray for P. Then A lands
at a periodic repelling or parabolic non-rotational point of P.

Proof. Let L be the limit set of A. It is easy to see that L and A(P)
are disjoint as otherwise some boundary points of some bubbles from
A will be shielded from infinity, a contradiction.

Let L be of minimal period m, and consider the map f = P™.
It suffices to prove that L is a singleton. Suppose otherwise. Then
by Theorem 3.13, the set L contains an f-invariant rotational object
T (rotational f-fixed point or an f-invariant parabolic domain). As
above, construct the set ¥ ;; by Theorem 3.14, one of its cuts separates
T and 0. Evidently, A cannot intersect this cut which implies that L
must be located on one side of the cut while T is located on the other
side. A contradiction. Hence L is an f-fixed point. Since it belongs to
J(P), it is not attracting. If it is Cremer or Siegel, then, again relying
on Theorem 3.14, we separate L from 0 with a rational cut, again a
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contradiction. Hence L is an f-fixed repelling or parabolic point a.
If a is rotational, then periodic rays landing at a undergo a nontrivial
combinatorial rotation under f (since, by definition of a rotational fixed
point, no invariant external ray can land at a). Let W > | JA be a
wedge bounded by two consecutive f-rays landing at a. Locally near
a, the wedge W is mapped to some other wedge disjoint from W. A
contradiction with | J A < W. O

4. STABILITY

We start with a very general continuity property. Let Rat,; be the
space of all degree d rational self-maps of C with the topology of uni-
form convergence. We also write Comp for the space of all compact
subsets of C with the Hausdorff metric. Note that the Hausdorff met-
ric on Comp as well as the uniform convergence on Rat, are associated
with the spherical metric on C. The following lemma is basically a
consequence of the Open Mapping property of holomorphic functions.

Lemma 4.1. Consider the map from Raty; x Comp — Comp given by
(f, X) = fH(X).
This map is continuous.

Proof. In what follows, “c-close” means “at distance at most £”. Fix
(f,X) € Raty x Comp. Choose ¢ > 0. We need to show that, if
d = d(g) > 0 is sufficiently small and (g,Y") is d-close to (f, X), then
g (V) is e-close to f~1(X). Here (g,Y) being d-close to (f, X) means
that g is d-close to f and Y is d-close to X. By definition, g~ (V)
being e-close to f~!(X) means that for every point z € f~'(X), there
is y € ¢g71(Y) that is e-close to z, and vice versa: for every y with
g(y) € Y, there is z € f~1(X) that is e-close to y.

First, take x € f~1(X). Then g(x) is 6-close to f(x). There is a point
y* € Y that is d-close to f(z), since Y is d-close to X. Finally, y* being
20-close to g(z) implies the existence of y € g~ '(y*) that is e-close to
x. Moreover, the corresponding choice of § can be made independent
of g. Indeed, by the Open Mapping property, the f-image of the e-
neighborhood of x includes the 4é-neighborhood of f(z). Hence, the
g-image of the e-neighborhood of x incudes the 3d-neighborhood of
f(z), and the latter includes the 2§-neighborhood of g(x).

Now take y € g71(Y); the argument is similar to the above. By the
assumption, g(y) is d-close to f(y), and there is a point z* € X that
is 0-close to g(y). Since z* is 20-close to f(y), there is a point = such
that f(z) = 2* and z is e-close to y. O
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We will need the following corollary of Lemma 4.1.

Corollary 4.2. Suppose that (f,X) € Raty x Comp, that X is con-
nected, and that A is a component of f~1(X). If there are no critical
points of f in A, then for all (g,Y") close to (f, X) there is a component
of g YY) close to A and not containing critical points of g.

Proof. For some € > 0, the be-neighborhood of A maps homeomorphi-
cally onto a neighborhood of X. Take (g,Y’) so close to (f, X) that
g 1Y) is e-close to f~*(X). This is possible by Lemma 4.1. Moreover,
we may assume that ¢ is injective on the 4e-neighborhood of A. Let
B be a component of g7*(Y) intersecting the 2e-neighborhood of A.
It follows that B lies entirely in the 2e-neighborhood of A. Indeed,
if a point of B is at distance 2¢ from A, then it cannot be e-close to
f1(X) by the assumption that f is injective on the 5e-neighborhood
of A. In particular, the closest point to any b € B is in A, and this
closest point is e-close to b. Observe also that B is the only component
of g71(Y) in the 2e-neighborhood of A, since the restriction of g to the
latter neighborhood is injective. Now take any a € A, and let b be the
closest to a point of g7*(Y’). Then b is e-close to a, hence b € B. We
see that A and B are e-close, as desired. 0

4.1. Equicontinuous motion. Let A — C be any subset and A be a
metric space with a marked base point 75. A map (7, 2) — ¢,(z) from
A x A to C is an equicontinuous motion (of A over A) if 1, = id,
the family of maps 7 +— ¢,(z) parameterized by z € A is equicontinu-
ous, and ¢, is injective for every 7 € A. An equicontinuous motion is
holomorphic if A is a Riemann surface, and each function 7 — ¢.(2),
where z € A, is holomorphic. By the A-lemma of [MSS83], to define a
holomorphic motion, it is enough to require that every map ¢, is injec-
tive, and ¢,(z) depends holomorphically on 7, for every fixed z. Then
the family of maps ¢, is automatically equicontinuous. Suppose now
that F, : C — C is a family of rational maps such that F, (A) < A.
An equicontinuous motion (7, z) — ¢.(2) is equivariant with respect to
the family F. if ¢, (F,,(2)) = Fr(1,(2)) for all z € A. If the family F; is
clear from the context, then we also say that the holomorphic motion
commutes with the dynamics.

We first study the equicontinuous motion of the Siegel disk A(P).
The following theorem is an easy consequence of known results.

Theorem 4.3. Choose an arbitrary base point Py € C§ and an arbitrary
point z € A(Py). There is an equivariant equicontinuous motion tp of
A(P) over C§ such that vp, = id. Moreover, tp(z) has the same polar
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coordinates in A(P) as z in A(Py). If Py ¢ 25, then this equicontinuous
motion is holomorphic on CS\Z5.

Proof. Set 1p(z) = EA(P) o E;%PO). By Corollary 3.3, the function ¢p
depends continuously on P with respect to the sup-norm. This means
that ¢p is an equicontinuous motion. The equivariance follows from the
fact that EA( p) conjugates the rotation by 6 with P|xp).

Suppose now that P ¢ Z5 and P runs through C{\Z5. The P-orbit
of 1 moves holomorphically with P € C{\Z§; By [MSS83], this motion
extends to an equivariant holomorphic motion of A(P), cf. [Che20].
By a remark of D. Sullivan [Sul] (see [Zak16] for a published proof),
there exists an equivariant holomorphic motion tp : A(Fy) — A(P)
that extends the holomorphic motion of JA(P) and is such that ¢p :
A(Py) — A(P) is a conformal isomorphism taking 0 to 0 and 1 to
1. By the uniqueness of the Riemann map the map ¢p is the same as
before. In particular, tp preserves the polar coordinates. O

4.2. Stability of legal arcs. The equicontinuous motion of A(P) ex-
tends to some other dynamically defined subsets.

Definition 4.4 (Stability). Consider P € C§ and a subset A < Y(F).
Since Y (F) is by definition forward invariant, it follows that P}'(A) <
Y(FRy) for all n = 0. Set B = |-, F5'(A). Say that A is stable (or
A-stable) if there is an equivariant equicontinuous motion {2} of B
over an open neighborhood of F, in C§ such that, for every z € B,
the point z{P) = (5(z) has the same multi-angle and the same polar
radius as z. Clearly, if such an equicontinuous motion exists, then it is
unique. Write A(P) for (5(A) etc. If the equicontinuous motion is in
fact holomorphic, then say that A is holomorphically stable.

Lemma 4.5. Take Py € C§ and a point z € Y (Fy) that has a finite

multi-angle. If z is never mapped to ¢, or if c € A(Fy), then the legal
arc I, from 0 to z in K(Fy) is stable. It is holomorphically stable if
Py ¢ Z5.

Proof. Suppose that @ = (ay, . .., ay) is the multi-angle of z. If k = 0,
then the statement follows from Theorem 4.3. If @ = (0,0), then
the statement follows from Theorem 4.3 and Lemma 4.1. Thus we
assume that £k > 0 and @ # (0,0). Since @ is a legal sequence of
angles, II"™ (&) = (0) or (0,0) for some minimal integer m > 0. The
subsequent argument employs induction on both m and k. Let w be
the last (closest to z) point of I, with multi-angle (ay, ..., ax_1). Then
I, is the concatenation of I,, (=the legal arc from 0 to w), and T,z
(=the legal arc from w to z). By induction on k, assume that I, is
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stable. In particular, w(P) is defined for all P close to Fy, and w(P)
has the same multi-angle and polar radius as w.

By induction on m, assume that Py(I;), hence also T' = Py(I[u,~),
are stable. Thus T(P) depends continuously on P in the Hausdorff
metric. Define I, .)(P) as the P-pullback of T(P) containing w{P).
Note that T(P) is free from critical values of P by our assumptions.
If P is close to P, then, by Corollary 4.2, the set Ij,, .;(P) is close
to Ijw.. In particular, Ij, .;(P) connects w(P) with a point 2(P)
that is close to z. Moreover, Ij,, .j(P) contains no critical points of P
and maps forward by P in a homeomorphic fashion. It follows that a
suitable inverse branch of P on T(P) defines an equicontinuous motion
of Ity .-

T[hu; both I,, and I}, ;) are stable. It follows that their concatenation
I, is also stable, as desired. If Fy ¢ Zf, then the argument goes through
with “equicontinuous” replaced by “holomorphic”. O

We now discuss stability of infinite periodic legal arcs.

Theorem 4.6. Let A be a periodic bubble ray for Py € C§ landing at a
repelling periodic point x. Suppose that Pi(I,) does not contain ¢ for
t = 0. Then I, is stable; it is holomorphically stable if Py ¢ Z5.

Note that, under assumptions of Theorem 4.6, the arc I, is the core
curve of A.

Proof. Let m be the minimal Py-period of A, then Pj*(x) = z. Since

x is repelling, there is a small round disk D around z such that D &

Py(D), and the map P}" : D — Py*(D) is a homeomorphism. Suppose

that A = (A,). Since A lands at x, then A, = D for all n > N for

some N. Also, Pj" shifts bubbles of A by a certain integer k£ > 1.
Clearly, there is a point y € I, such that

]y=IzﬁAQU"'UAN+k.

By Lemma 4.5, the legal arc I, is stable. In particular, for P close to
Py, there is a legal arc I,{P) close to I, and with the same multi-angle.
Moreover, I,(P) passes through legal bubbles Ao(P), ..., Anx(P)
of P and terminates at y(P). Consider the point z = F}"(y) € I,
and the segment I,y of I, from z to y. Then I}, is also stable, the
corresponding segment Iy, ,,(P) for P connects z(P) with y(P). Note
also that I.,,) = D (the point z belongs to the closure of Ay).

If P is close to Py, then D € P™(D), and P™ : D — P"™(D) is a
homeomorphism. Write P,™ for the inverse of this homeomorphism.
Then P,™ is a well-defined holomorphic map on D depending analyt-
ically on P. Since z is repelling, it is stable, so that there is a nearby
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repelling point z(P) for P of the same period. Set

0

L(P) = I,(P) v (U(Ppm)k(f[z,yKP») v {z(P)}-

k=1
Every term in the right-hand side moves equicontinuously with P as
long as P stays close to Fy. The infinite union moves equicontinu-
ously since for P,™ the point z(P) is attracting (the iterates cannot
inflate the modulus of continuity). It is also clear that the motion is
holomorphic provided that Fy ¢ Z§ and P is close to Fj. U

4.3. Stability of Siegel rays. Theorem 4.6 parallels a classical result
on stability of periodic external rays landing at repelling points.

Lemma 4.7 ([DHS85a], c¢f. Lemma B.1 [GM93]). Let Py be a poly-
nomial, and z be a repelling periodic point of Py. If an external ray
Rp,(0) with rational argument 6 lands at z, then, for every polynomial
P sufficiently close to Py, the ray Rp(0) lands at a repelling periodic
point z(P) of P close to z, and z{P) depends holomorphically on P.

Consider a periodic bubble ray A for Py and its core curve /. By
Theorem 3.15, the bubble ray A lands at a repelling or parabolic point
a. Let m be the minimal period of A, then P™(a) = a. Clearly, I also
lands at a, and it is easy to see that I = I, is a legal arc from 0 to a.

Definition 4.8 (Siegel rays). Let I and a be as above. By the classical
Landing Theorem for polynomials (see e.g. [Mil06, Theorem 18.11}),
one or several periodic external rays for P land at a. Let R be an
external ray landing at a. Then I u{a}uU R is a simple curve connecting
0 with oo. It is called a Siegel ray. The argument of the Siegel ray
I'u{a} U R is defined as the argument of R.

The following are immediate properties of Siegel rays. Every Siegel
ray originates at 0 and extends to co. Every Siegel ray contains precisely
one periodic point a # 0; this point a is repelling or parabolic. Two
different Siegel rays may have some initial segment in common. They
branch off either at an iterated preimage of 0 or at a landing point of
some bubble ray. An external ray for F, is either disjoint from a Siegel
ray or lies in the Siegel ray.

Theorem 4.9 below follows from Theorem 4.6 and Lemma 4.7.

Theorem 4.9. Let X be a Siegel ray for Py € CS§. Suppose that the non-
zero periodic point in ¥ is repelling. Then, for all P e C§ sufficiently
close to Py, there is a Siegel ray 3{P) close to ¥ in the spherical metric
and having the same arqument. Moreover, the periodic point in S(P)
depends holomorphically on P provided that P ¢ Z5.
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FIGURE 3. A Siegel wedge W in the dynamical plane of Q.
Here, W is bounded by Siegel rays ¥ and ¥’ that have the
legal arc I from 0 to b as the common initial segment and
that branch off at point b.

The only reason we require that P ¢ Z{ in Theorem 4.9 is that
holomorphic functions are defined on Riemann surfaces, and C{\Z§
rather than C§ has a natural structure of a Riemann surface.

4.4. Siegel wedges. Let ¥ and ¥’ be two Siegel rays for P. By def-
inition, they originate at 0 and extend all the way to infinity. Let b
be the point where ¥ and ¥’ branch off. Assume that b is an iterated
preimage of 0 rather than a periodic repelling or parabolic point. Con-
sider a wedge W bounded by segments of ¥ and ¥’ from b to infinity.
Notice that there are two such wedges; either wedge is called a Siegel
wedge (bounded by Siegel rays ¥ and X'), see Fig. 3. We also say that
b is the root point of W. Set I, = 3 n 3'; of the two wedges bounded
by ¥ and ¥’ one contains [, and the other one is disjoint from [,,. If W
is a Siegel wedge bounded by ¥ and ¥’ and disjoint from I, call the
multi-angle of b the multi-angle of W. Otherwise (i.e. if W contains
I,)\{b}), we set the multi-angle of W to be () (the empty sequence). If
¥ n Y = {0}, we set the multi-angle of W to be () too. The following
property of Siegel wedges is immediate from the definitions.

Proposition 4.10. Let W be a Siegel wedge of multi-angle &. Then the
multi-angles of all points in W nY (P) contain d as an initial segment.

Fix a Siegel wedge W. Recall that oW n K(P) < Y(P); the map
np : Y (P) — K(Q) takes z € Y(P) to a unique point w = np(z) with
the same multi-angle and polar radius. Then np(dW n K(P)) is the
union of the core curves of two periodic bubble rays for (). These core
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curves land at some repelling periodic points, say, = and y of @) (these
are endpoints of K(Q) as K (@) has no periodic cutpoints). There
are unique external rays landing at  and y. The union I'g of these
external rays and np(0W n K(P)) bounds a unique Siegel wedge W
of @ that contains points of np(W n Y (P)). The wedge Wy is said
to correspond to the Siegel wedge W of P. Observe that since the
endpoints of 6W n K(P) may be cutpoints of K(P), there may be
several Siegel wedges of P corresponding to the same Siegel wedge of

Q.

5. THE DYNAMICAL MAP 7p

We now define a P-invariant continuum X (P) > Y (P) and extend

the map np : Y(P) —» K(Q) to X(P). If Y(P) contains no parabolic

points of P, then we set X(P) = Y(P). Suppose now that there is a
parabolic periodic cycle in m; let a be a point in this cycle. By the
Fatou—Shishikura inequality, the cycle of a is the only parabolic cycle
of P. In this case, let X(P) be the union of Y (P) and the closures of
all immediate parabolic basins associated with the cycle of a. Clearly,

X(P) is a forward invariant continuum.

5.1. The structure of X (P). Consider possible intersections of X (P)
with bubbles of P.

Lemma 5.1. Let A be a bubble of P. Suppose that a point z € AnX (P)
is different from the root point r(A) of A. Then A is a legal bubble,
and the entire bubble chain to z consists of legal bubbles.

Proof. Since z # r(A), then r(A) € Yp (otherwise points like z would
not exist) and the legal arc I, ¢ Kp from 0 to z is non-disjoint from
A; hence A n X(P) # @. Since A is open, A nY(P) # &, that is, A
is legal. Also, I, intersects every bubble in the bubble chain to z, it
follows that all bubbles in this chain are legal. 0

The following is an immediate corollary of Lemma 5.1.

Corollary 5.2. Let A be a bubble of P. Fither A is legal, or A has no
points of X(P) except possibly r(A) in which case r(A) is eventually
mapped to ¢, non-strictly before it is mapped to 1 and strictly before A
is mapped to A(P).

Suppose now that A is legal but A ¢ Y(P). Then there is a point
z € A that is eventually mapped to ¢, say P"(z) = c¢. The intersection
A N Y(P) is then a proper subset of A whose geometry is described
below in Theorem 5.3. The radial vector field d/0p is well-defined on
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P (A)\{o}, where o is the center of P""'(A). The integral curves of
0/0p are precisely the internal rays of P"*!'(A). The pullback of 0/dp
to A is also a well-defined vector field v on A\P~("*1(0). However,
v has zero at z, and there are two special integral curves of v whose
a-limit set coincides with {z} and whose w-limit sets are in 0A. These
integral curves are called separatrices.

Theorem 5.3. Let A be a legal bubble of P such that a point z € A s
eventually mapped to c, and Ag be the corresponding bubble of Q). Then
np Y (P)nA — Ag extends to a continuous map np : X (P)nA — Ag,
and one of the following two cases holds:

(1) The set X(P) n A is the closure of a separatriz. The map
np : X(P)n A — Ag is one-to-one, and np(X(P) n A) is a
terminal segment of the internal ray of Ag landing at the root
point of Ag.

(2) The set X(P) n A is a sector of A bounded by the two sepa-
ratrices together with z. It is mapped under np onto Ag, the
boundary of the sector mapping two-to-one, and otherwise the
map being one-to-one.

Cases (1) and (2) of Theorem 5.3 are illustrated in Fig. 4.

Proof. Since P™ : A — P"(A) is a homeomorphism mapping points of
Y (P) to points of Y(P) and vice versa, it is enough to consider the
case ¢ € A (then z = ¢). Since A is open, it follows that AnY (P) # @.
Recall that the multi-angle of A is the multi-angle of its root point r(A).
Since it takes two radii to pass through a bubble, we may assume that
a = (ap, ..., ag) is the multi-angle of A. Then there are two cases: (1)
the multi-angle of any point in AnY (P) looks like (d.az), or (2) some
points in A have multi-angles (&.cg;) while others have multi-angles
(@.ciapigp+1). Consider these cases separately.

(1) In this case, ¢ also has multi-angle @.(ag;). Since all points
A NY(P) have polar angle agy, with respect to A, the set A n X (P) is
the legal arc from the root point of A to c. It is also clear that np is
defined and continuous on this legal arc. The np-image of A N X (P)
is a legal arc in the closure of the bubble of ) corresponding to A.

(2) Choose a point of A n Y (P) with multi-angle &.(aak, aor41);
evidently, g1 # agg. Set B = P(A), then B < Y(P). Let us describe
the P-image of A nY(P) as a subset of B. Let R be the internal ray
of B containing the critical value P(c). Then P(A n Y(P)) includes
the center of B and all internal rays of B but R. On R, a segment T’
from P(c) to the boundary of B is not in P(A n Y (R)); other points
of R are in. Call T the special segment.
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FIGURE 4. Left: case (1) of Theorem 5.3. Right: case (2)
of Theorem 5.3. These illustrations are schematic (they show
the right topology but not the right geometry of A and Ag).
In both cases, the top figure shows A and the bottom figure
shows Ag. The root points 7(A) and r(Ag) are marked by
stars. Left: the set X (P)n A is shown as the vertical segment
connecting r(A) with z, and the np-image of this set is shown
as the vertical segment connecting r(Aqg) with np(z). Right:
the set X(P) n A is the shaded region of the top figure, and
the np-image of it is the shaded region of the bottom figure.

The pullback of T is an arc T < A that is the union of {c} and the
two separatrices. (Fig. 4, top right, shows the arc T" as the vertical
segment through z.) The arc 7" divides A in two disjoint pullbacks
of B\T, and A n Y (P) is one of them. The set A n X(P) contains a
unique P-preimage of the center of B and (initial segments of ) rays of
all arguments emanating from this point; all rays but one extend to 0A,
and one exceptional ray crashes into ¢ and then splits into two branches
(the separatrices). Here by rays we mean integral curves of the radial
vector field v in A. The set d(A N Y (P)) n A equals T". Clearly, the
map 1p extends to the separatrices. The image np(An X (P)) coincides
with the entire bubble of () corresponding to A. In this ()-bubble one
radial segment (from 7p(c) to the boundary of the bubble) is covered
twice. Otherwise, the map is one-to-one. O

Here, a terminal segment of an internal ray of A means a segment
from some point in the ray to dA. Part (2) of Theorem 5.3 describes
the map np in the case ¢ € X(P)\J(P). Note that the map is not
monotone in this case as it double folds an arc on the boundary of
X(P).
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5.2. A separation property. Suppose that W is a Siegel wedge of
P. Consider the corresponding wedge Wy in the dynamical plane of
Q. Such wedge is called P-adapted (this notion depends on the choice
of P). Say that a P-adapted wedge W( separates a point z from a
point 2’ if x € Wy and 2’ ¢ W . This relation is symmetric: the wedge
C\W is also P-adapted, and it separates 2’ from .

Note that, since K(Q) is locally connected, any two points of K(Q)
can be connected by a legal arc. The set np(Y(P)) < K(Q) is legal
convex, that is, any two points of this set can be connected by a legal
arc lying entirely in this set.

Lemma 5.4. The set np(Y(P)) € K(Q) is legal conver.

Proof. This follows from a more general observation: the closure of a
legal convex set is a legal convex set. Indeed, if z,,, 2/, € K(Q) are two
sequences converging to x, x’, respectively, then the legal arc from x,,
to x], converges to the legal arc from z to 2’. O

Separation of points within the closure of the same bubble of @) is
given by the following lemma.

Lemma 5.5. Let Ag # A(Q) be a bubble of Q, and v € 0Ag N

np(Y(P)) be a point different from the root point of Ag. Then, for
any other point x' € 0Aq, there is a P-adapted wedge Wq with root
point in the center of Ag such that Wq separates x from x'. Any pair
of different points in 0A(Q) is also separated by a P-adapted wedge
unless c € OA(P) and P*(c) = 1 for some k = 0.

Proof. Suppose first that Ag # A(Q) and = # r(Ag) is a point of
0Agnnp(Y (P)). Thelegal arc I, in K(Q) from 0 to x lies in np(Y (P)),
by Lemma 5.4. By Lemma 5.1 and since x is not the root point of
Ag, the bubble Ag corresponds to some legal bubble A of P. Since
x € dAq nnp(Y(P)) is not equal to r(Ag), then case (2) of Theorem
5.3 holds. Hence the np-image of A Y (P) is Ag except for at most a
subarc of R (where R is an internal ray of Ag) not reaching the center
of Ag. Points of 0Ag that are root points of other bubbles attached
to Ag are dense in 0Agp. All these points except possibly one are in
np(Y(P)). Therefore, there is a pair of such points b, ¥’ in 0Ay that
separate x from 2’. The legal arcs from the center a of Ag to b and V/
can be extended to periodic Siegel rays. Moreover, there are periodic
Siegel rays I'y, and I'y for P such that the wedge W bounded by I,
and I'y corresponds to a wedge Wy whose boundary intersects dAg at
points b and b'. Thus there is a P-adapted wedge Wy, that separates
from 2/, as desired.
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Suppose now that z, 2’ € 0A(Q) but either ¢ ¢ A(P) or c € IA(P)
is never mapped to 1 under iterates of P. Then there are two iterated
preimages b, b’ of 1 separating x and 2’ in dA(Q). The corresponding
points of A(P) are root points of legal bubbles attached to A(P), and
the same argument as above works. U

The following is a more general separation property.

Proposition 5.6. A pair of distinct points x, ' € J(Q) nnp(Y (P))
is separated by a P-adapted wedge, except when both x and ' are in
0A(Q), and c € A(P) is eventually mapped to 1.

Proof. First assume that for some bubble A the point = belongs to A_Q
and the legal arc I from x to 2’ intersects Ag. Let a be the center of
Ag. Let 2” be the point of 0Ag, where I intersects 0Ag; we necessarily
have = # z”. Lemma 5.5 is applicable to z and z” since at least one
of these two points is different from r(Ag). By Lemma 5.5, there is a
P-adapted wedge W with root point a separating = from z”. Then
Wq will also separate = from ' since the legal arc from 2’ to 2" cannot
intersect dWj,.

If neither z nor 2’ belongs to the boundary of a bubble, then there
are bubble rays Ag and Aj (not necessarily periodic) landing at = and
', respectively (since J(Q) is locally connected, then any bubble ray
lands). Since x € np(Y(P)), it follows that there are infinitely many
bubbles in Ag intersecting np(Y (P)). Then in fact all bubbles in Ag
intersect np(Y'(P)), by Lemma 5.1. It follows that there is a bubble
ray A for P corresponding to Ag (recall that, by definition, a bubble
ray for P consists of legal bubbles). Similarly, there is a bubble ray A’
for P corresponding to Ap. Take a bubble By € Ag but not in Ay,
By the above, By corresponds to some legal bubble B of P. Therefore,
there exists a P-adapted wedge W separating = (equivalently, the
point where the legal arc from the center of By to x intersects 0Bg)
from the root point of Bg. Then Wy, also separates x from 2’ U

5.3. Continuous extension of 7np. In this section, we complete the
proof of the following theorem.

Theorem 5.7. The map np : Y(P) — K(Q) extends to a continu-
ous map np : X(P) —» K(Q). Unless c € X(P)\J(P), this map is
monotone.

The extended map is denoted by the same letter.

Proof of Theorem 5.7, definition of np and its continuity. We start by
proving that np extends continuously to Y (P). Take y € Y (P)\Y (P);
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by Theorem 5.3, it is enough to assume that y is not in a bubble. We
need to prove that, for all sequences y, € Y (P) converging to y, the
images np(y,) converge to the same limit. Assume the contrary: y,,
yl € Y(P) are two sequences converging to y such that

lim np(y,) = x # 2’ = lim np(y)).

Set x, = np(yn) and i, = np(yy,)-

By Proposition 5.6, there is a P-adapted wedge Wy in the dynamical
plane of () that separates = from 2’ so that x € Wy and 2’ ¢ WQ. Since
Wq is open, z, € Wy for all large n. By definition of a P-adapted
wedge, Wq corresponds to some legal wedge W for P. Thus, y, € W
for large n, and these y, are in some compact subset of W. It follows
that y € W, hence also y/, € W for large n. We conclude that z!, € Wy
for large n, therefore, 2’ € W, a contradiction.

Suppose now that X (P) # Y(P), that is, there is a parabolic cycle

in Y(P). Every point z € X(P)\Y(P) belongs to the closure of a
parabolic domain at a parabolic point a.. Set np(z) = np(a.). The
extension thus defined is continuous. U

As usual, fibers of np are defined as preimages of points under 7p.
We now address the issue of connectedness of fibers.

Lemma 5.8. A nonempty intersection of finitely many Siegel wedges
for P is connected and has a connected intersection with X (P).

Proof. Define a quasi-chord in C as the image of R under some proper
topological embedding into C. Then a quasi-chord divides the plane C
into two open unbounded regions. Consider a Siegel wedge W bounded
by two Siegel rays X, ¥'. Let b be the root point of W, that is, the
point where ¥ and ¥ branch off. The boundary of W is a quasi-chord
containing b as well as pieces of ¥ and Y’ connecting b to infinity. Define
a Siegel quasi-chord as a quasi-chord in C that is the boundary of some
Siegel wedge.

Suppose now that U is a nonempty intersection of finitely many
Siegel wedges. Then, clearly, U is an unbounded connected and simply
connected domain whose boundary is a union of finitely many quasi-
chords. Each boundary quasi-chord of U has its own root point. Either
0 € U, or there is a unique boundary quasi-chord of U whose root
point by has multi-angle different from (). The lemma follows from the
observation that any point of Y(P) n U can be connected to 0 or by
by a legal arc lying in Y (P). O

Proof of Theorem 5.7, the monotonicity part. Take xg € np(X (P)); con-
sider the fiber 75" (zg). If 2 is in a bubble of Q, then the fiber of z¢
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is a singleton by Theorem 5.3. Thus we may assume that z¢ € J(Q).
First suppose that xg € 0A(Q) and ¢ € A(P) is eventually mapped
to 1. Note that np : 0A(P) — 0A(Q) is a homeomorphism. Hence
there is a unique point z € dA(P) such that np(x) = zg. Suppose
that some point y ¢ A(P) is mapped to xg. Since y € X(P), there is
a sequence ¥y, € Y (P) converging to y; let I, be the legal arcs from
0 to y,. Obviously, y € J(P), and it is possible to arrange that all
yn € J(P) as well. Passing to a subsequence, we may assume that [,
converge to a continuum Cj, 3 y.

If y is on the boundary of a legal bubble A of P, then A can be
chosen so that y # r(A). Then np(y) is on the boundary of the bubble
Ag of @ corresponding to A, and np(y) # r(Ag). A contradiction with
np(y) = x. Thus we assume that y is not on the boundary of a bubble.

Let A,, be the bubble attached to A(P) and such that I,, N A, # @.
If there are only finitely many different bubbles A,,, then, passing to a
subsequence, we may assume that all A, are the same bubble A; set
Ag to be the corresponding bubble of (). The intersection I, N A is
the union of two internal rays landing at r(A) € A(P) and b, # r(A).
If b, — r(A), then we can replace C, with CF = C,\A. The latter
is a continuum containing y, and Cj\{z} is disjoint from all bubbles.
If b, + r(A), then, passing to a subsequence, assume that b, — b #
r(A). Tt follows that np(C,\A) is attached to Ag at np(b); it does not
accumulate on 0A(Q). A contradiction with z¢g = np(y) € IA(Q).
Finally, if there are infinitely many pairwise different A,s, then we
set Cy = Cy. In any case, C} is a continuum containing y such that
Ci\{z} is disjoint from all bubbles. It follows that np(Cy) = {zq}.
Since np' () is the union of {z} and C} over all y € np' (zq)\{z}, the
fiber n5'(2g) is connected.

Now assume that zg ¢ 0A(Q) or that ¢ ¢ A(P) or that ¢ € IA(P)
is never mapped to 1. Let Zg be the intersection of all P-adapted
wedges containing xg. By the separation property, Proposition 5.6,
we have Zg n J(Q) = {zg}. Apart from z¢, the set Zg may include
certain external rays of () as well as certain internal rays in bubbles of
Q. Thus Zg n K(Q) is the union of {xg} and one or two internal rays
in bubbles Ag such that x € dAg. Moreover, every such bubble may
intersect Zg by at most one internal ray.

Consider the full preimage Z = np'(Zg n K(Q)). This is the union
of np'(rg) and one or two internal rays in legal bubbles A of P. Every
such bubble may intersect Z by at most one internal ray. It follows
that connectedness of Z will imply connectedness of the fiber 75" (2q).
The rest of the proof deals with connectedness of Z.
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Take any x € np' (zg) n J(P). Note that Z is the intersection of all
Siegel wedges of P containing x with X (P). Moreover, it is enough to
intersect countably many Siegel wedges W1y, ..., W,, ...:

[0¢] e 0]
Z=XP)n[(\Wa=X(P) o (\Un, Un=Win--nW,.
n=1 n=1
The sets X (P) n U, are connected by Lemma 5.8 and form a nested
sequence. Therefore, their intersection is also connected. O

6. THE PARAMETER MAPS ®§ AND &),

Consider a map P = P, € C§. Suppose that ¢ € X(P). Define ®$(P)
as np(c). Let DS denote the domain of the map @, that is, the set of
all P € C§ such that ¢ € X(P). Observe that Z§ < DS.

6.1. Immediate renormalization. Recall the notions of a polynomial-
like map and an immediate renormalization. Write U € V if U < V.
Let U € V be Jordan disks in C. The following classical definitions
are due to Douady and Hubbard [DH85].

Definition 6.1 (Polynomial-like maps [DH85]). Let f: U — V be a
proper holomorphic map. Then f is said to be polynomial-like (PL).
By definition, a quadratic-like (QL) map is a PL map of degree two.
The filled Julia set K(f) of f is defined as the set of points in U, whose
forward f-orbits stay in U.

Similarly to polynomials, the set K(f) is connected if and only if all
critical points of f are in K(f). The following is a greatly simplified
and weakened version of a much stronger classical theorem of Douady
and Hubbard [DHS85].

Theorem 6.2 (PL Straightening Theorem [DHS85]). A PL map f :
U — V is topologically conjugate to a polynomial of the same degree
restricted on a Jordan neighborhood of its filled Julia set.

Theorem 6.3 below appears to be a folklore result. It is formally
proved, e.g., in [BOPT16] (Theorem B).

Theorem 6.3. Let P : C — C be a polynomial, and Y < C be a full
P-invariant continuum. The following assertions are equivalent:

(1) the set Y s the filled Julia set of some polynomial-like map
P:U* - V* of degree k,

(2) Y is a component of the set P~*(P(Y)), and, for every attract-
ing or parabolic point y of P in Y, the immediate attracting
basin of y or the union of all parabolic domains at y is a subset

of Y.
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A cubic polynomial P € Cf is immediately renormalizable it P : U —
V is a QL map for some U, V.

Proposition 6.4. Suppose that P € C;\D5. Then P is immediately
renormalizable with X (P) being the corresponding quadratic-like Julia
set.

Proof. Since P € CS\D§, then ¢ ¢ X (P). The set X (P) is compact; also,
it is easy to see that X (P) is a component of P~*(X (P)) (it suffices to
consider the set Y (P)). There are no parabolic periodic points of P in
X(P); otherwise ¢ would be in one of the parabolic domains added to
X (P). By Theorems 6.2 and 6.3, there is a Jordan domain U > X (P)
such that P : U — P(U) is a quadratic-like map whose filled Julia set
coincides with X (P). O

Recall that the set Pf is the subset of C§ consisting of polynomials
that can be approximated by sequences P, € C§ with |\,| < 1 and
both critical points of P, in the immediate basin of 0.

Corollary 6.5. The set Py is a subset of D5.

Proof. We will prove an equivalent statement: if P e CS\D, then
P ¢ P5. By Proposition 6.4, there is a quadratic-like map P : U — V
with filled Julia set X (P), and we may choose U and V' so that c ¢ V.
There is € > 0 with the following property: if a cubic polynomial f is
e-close to P, then, setting Us to be a component of f~(V') containing
0, we obtain a quadratic-like map f : Uy — V. This follows, e.g.,
from Lemma 4.1. On the other hand, since |A| = 1, we can choose
fin C, with [u] < 1. The filled Julia set K} of the quadratic-like
map f : Uy — V then contains the immediate attracting basin of
0. It follows from the Douady-Hubbard straightening theorem [DH85]
that K} is a Jordan disk on which f is two-to-one. In particular, it is
impossible that f is in the principal hyperbolic component, and P ¢ P¥,
as claimed. U

6.2. Continuity. It will be established in this section that @ is con-
tinuous. Recall that P, is the polynomial in Cf such that ¢ = 1 is a

multiple critical point. The next lemma deals with continuity of ® at
P

Lemma 6.6. Suppose that a sequence P., € DS converges to Py (so
that ¢, = 1). If np, (cn) converges, then the limit is equal to 1.

Proof. Assume the contrary: cgn, = np,, (¢,) converges to a point cq
different from 1. Let y, € Y(P.,) be a sequence of points such that y,
is very close to ¢,, in particular, y, — 1.
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Suppose first that cg € 0A(Q); let (ap) be the multi-angle of ¢g.
Let y be the point where the internal ray in A(P;) of argument o«
lands. There are two internal rays Rg, Lg in A(Q) such that Rg U Lg
separates 1 from cq in A(Q). There is a simple unbounded curve I'q (a
closed subset of C homeomorphic to R) separating 1 from ¢g in C and
such that Ry, Lo < I'g. Moreover, we can assume that I'g consists
of internal rays in various bubbles, centers of those bubbles, landing
points of those rays, a couple of repelling periodic points of ), and a
couple of external rays of () landing at these repelling points. In other
words, I'g is the union of two legal arcs from 0 to repelling periodic
points of () and the external rays of () landing at these repelling points.
Thus TI'g is similar to the boundary of an adapted wedge except that
it is not adapted for P;.

To I'g, we want to assign a curve I' in the dynamical plane of P;. If
is natural to require that I' consist of internal rays in various bubbles
of P;, centers of those bubbles, landing points of those rays, a couple
of repelling periodic points of P;, and a couple of external rays of P;
landing at these repelling points. Also, we require that there is a bijec-
tive correspondence between bubbles A intersecting I' and bubbles Ag
intersecting I'g so that A n I includes internal rays of the same argu-
ments as Ag N I'g, adjacent bubbles correspond to adjacent bubbles,
and A(P;) corresponds to A(Q). There is indeed such a curve I'. The
existence of I' relies on the landing theorem, Theorem 3.15, which is
also valid in our case. On the other hand, I' as above is not unique.

The problem is, no matter which I' we choose, it is not stable. If P; is
replaced with P., where c is close to 1, then there is a set I'. close to I'.
However, I'. may become disconnected (two adjacent bubbles through
which T goes may detach). On the other hand, for each particular ¢
close to 1, we may choose I' so that I', stays connected. This amounts
to choosing, for every bubble A through which I' passes, a next bubble
A" attached to the point of I' n A different from r(A) so that A’ does
not detach from A in the dynamical plane of P.. Thus we choose both
[' and I'. depending on ¢. These curves are close to each other (in the
spherical metric), and both separate 1 from y. By the choice of y,, it
has multi-angle (ag,...) with ag,, close to ay, for large n. It follows
that y and y, are on the same side of I';, , and 1 is on the other side.
Moreover, I'., cannot accumulate on 1. A contradiction with y,, — 1.

Suppose now that cg ¢ 0A(Q); we may assume that cg € J(Q). Let
(ap, a1, g, ... ) be the multi-angle of ¢g. Recall that as # a; = ay.
Denote the multi-angle of y,, as (o, @15, 020, ...). Choose a large
n so that the first three terms in the multi-angle of cq, are close to
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g, 1, . For this n, by continuity of np, , we can also arrange that
o, are close to o; at least for ¢ = 0,1,2. In particular, o;,, — «; as
n — oo. If ap # 0, then the same separation argument as above is
applicable. Thus we assume ag = 0; it follows that «ag, = 0 for large
n.

Let Ag. be the bubble of () with multiangle (0). Suppose that x¢
is the landing point of the internal ray in Ag; of argument ay. There
is an unbounded simple curve I'g that includes the center o Aoa of Ag
and a pair of internal rays in Ag; and that separates zg from 1. It
then also separates cg from 1. We may assume that I'g n K(Q) is the
union of two legal arcs from o4, to certain repelling periodic points
of @ and the external rays of () landing at these repelling points. In
other words, I'g is almost as above except that it is now centered at
04, rather than 0. The rest of the proof is the same as above. O

Theorem 6.7 completes the proof of Theorem 2.4.
Theorem 6.7. The map @5 : D — K(Q) is continuous.

Proof. Take P € DS. Suppose that P, € DS converge to P = P,.. We
show that cg, = ®$(P,) converge to c¢g = ®§(P). If not, then by
choosing a suitable subsequence, we may assume that cq, — ¢ # cq.
Now consider several cases.

First, suppose that cg belongs to a bubble A of ). By definition,
Ag corresponds to a legal bubble A of P containing c. The sequence
¢, converges to ¢. The bubble P(A) is stable, in particular, there is
a unique bubble B,, of P, close to P(A), for large n. Moreover, B,
contains the critical value P, (c,). By Lemma 4.1 it follows that a
component A, of Pczl(Bn) contains the critical point ¢, and is close
to A. All A, have the same multi-angle, thus they all correspond to
Agq. Now, since both cq and cj, lie in the same bubble Ag, they have

different images Q(cq) # Q(cy). On the other hand, 15 (P(¢)) depends

continuously on P = P; near P (because of the stability of P(A)). It
follows that Q(cgn) = np,, (P, (cn)) = np(P(c)) = Q(c). On the other
hand, Q(cgn) — Q(cg) since cqn — ci. Thus we must have cq = ¢,
in the considered case.

Suppose now that cg € J(Q) and either ¢ ¢ OA(P) or ¢ € OA(P) is
never mapped to 1 under P. By Proposition 5.6, there is an adapted
wedge Wq separating cg, from cq. Since Wy is open, cq,, € Wy, for all
sufficiently large n. In fact, cg, even lie in some compact subset Cg
of Wg for all large n. Let W be the Siegel wedge of P corresponding
to Wg. Since the boundary of W is stable, there are Siegel wedges W),
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for P, close to W that correspond to the same Wy. It follows from
con € Cg that ¢, € W, for large n. Then ¢ € W, a contradiction.
Finally, suppose that ¢ € 0A(P) and P*(c) = 1. If k = 0, then the
theorem follows from Lemma 6.6. If & > 0, then P is conjugate to
another polynomial P € Z§ via a linear map that takes ¢ to 1. This
conjugacy takes 1 to a critical point ¢ of P such that P¥(1) = ¢. Since é

is never mapped to 1 under P, the argument given above is applicable
to P. U

6.3. The unmarked map ®,. We now study the unmarked map ®, :
Py — K(Q). Recall that K(Q) was defined as a model space obtained
as a quotient of K(Q)\A(Q). Namely, points of JA(Q) that are EQ—
images of complex conjugate points in S! are identified in K (Q). Let
7 K(Q\A(Q) — K(Q) be the quotient map. The map 7o ®S : P§ —
K(Q) is then well defined and continuous. It suffices to prove that P,
and P/, have the same images under 7 o ®§. Then the map 7 o @
descends to a continuous map ®, from Py to K(Q), as is claimed in
the following lemma.

Lemma 6.8. The points ®$(FP.) and ®S(Py/.) have the same m-images
The proof of this lemma uses the notion of the angular difference

between two points a, b € é‘A(PL This is the difference o — 5 € R/Z,
where a = 1ppy (€2™*) and b = hp(py(e>™7).

Proof of Lemma 6.8. Note that P, and P,/ are affinely conjugate; the
difference is only in how the critical points are marked. Thus the
angular difference between the two critical points in the boundary of
the Siegel disk is the same up to a sign for P, and Py.. It follows that
S (P.) and ®§(Py/.) have the same angular difference with 1 up to a

sign in @A(Q). By definition, such points are identified in K(Q). O

Lemma 6.8 implies the Main Theorem.

Acknowledgements. We are grateful to the referee for useful remarks.
The second named author was partially supported by NSF grant DMS-
1807558. The fourth named author has been supported by the Simons-
[UM fellowship and by the HSE University Basic Research Program.

REFERENCES

[Ahl66] L.V. Ahlfors, Lectures on quasiconformal mappings, D. Van Nostrand
Company 1966.



36 A. BLOKH, L. OVERSTEEGEN, A. SHEPELEVTSEVA, AND V. TIMORIN

[AB56] L. Ahlfors, A. Beurling, The boundary correspondence for quasiconformal
mappings, Acta Math. 96 (1956), 125-142.

[AY09] M. Aspenberg, M. Yampolsky, Mating non-renormalizable quadratic poly-
nomials, Commun. Math. Phys. 287 (2009), 1-40.

[BBCO10] A. Blokh, X. Buff, A. Cheritat, L. Oversteegen, The solar Julia sets
of basic quadratic Cremer polynomials, Ergodic Theory and Dynamical
Systems 30 (2010), 51-65

[BCOT19] A. Blokh, A. Chéritat, L. Oversteegen, V. Timorin, Location of Siegel
capture polynomials in parameter spaces, Nonlinearity 34 (2021), 2430-
2453.

[BFMOT13] A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen, E. Tymchatyn,
Fized point theorems for plane continua with applications, Memoirs of
the American Mathematical Society, 224 (2013), no. 1053.

[BHO1]  X. Buff, C. Henriksen, Julia Sets in Parameter Spaces, Commun. Math.
Phys. 220 (2001), 333-375.

[BOPT16] A. Blokh, L. Oversteegen, R. Ptacek, V. Timorin, Quadratic-Like Dy-
namics of Cubic Polynomials, Commun. Math. Phys. (2016), 341-733.

[BOT21] A. BLOkH, L. OVERSTEEGEN, AND V. TIMORIN, Slices of parameter
space of cubic polynomials, arXiv:1609.02240 (2021), to appear in Trans.
Amer. Math. Soc.

[BP08]  X. Buff, C. Petersen, On the size of linearization domains, Math. Proc.
Camb. Phil. Soc. 145, no. 2 (2008), 443-456.

[Brj71]  A.D. Brjuno, Analytical form of differential equations, Trans. Moscow
Math. Soc., 25 (1971), 131-288.

[Che20] A. Chéritat, On the size of Siegel disks with fixed multiplier for cubic
polynomials, preprint arXiv:2003.13337 (2020).

[DE86]  A. Douady, C. Earle, Conformally natural extension of homeomorphisms
of the circle, Acta Math. 157 (1986), 23-48.

[DH85]  A. Douady, J. Hubbard, On the dynamics of polynomial-like mappings,
Ann. Sci. Ec. Norm. Sup. 18 (1985), 287-343.

[DH85a] A. Douady, J. H. Hubbard, Etude dynamique des polynomes complexes
I, II, Publications Mathématiques d’Orsay 84-02 (1984), 85-04 (1985).

[Dou87] A. Douady, Disques de Siegel et anneauzr de Herman, Astérisque, 152-
153, exp. 677 (1987), 151-172.

[GM93] L.R. Goldberg, J. Milnor, “Fixed points of polynomial maps. Part II.
Fixed point portraits”, Annal. sci. de I’Ecole Normale Supérieure, 4¢
série, 26, n° 1 (1993), 51-98

[Her87] M. Herman, Conjugaison quasi symétrique des homéomorphismes du
cercle a des rotations, preliminary manuscript, https://www.math.kyoto-
u.ac.jp/ mitsu/Herman/qgsconjl/

[Hub06] J.H. Hubbard, Teichmdiiller theory and applications to geometry, topology,
and dynamics. Volume 1. Matrix Editions 2006.

[TK12] H. Inou, J. Kiwi, Combinatorics and topology of straightening maps, I:
Compactness and bijectivity, Adv. in Math. 231 (2012), 2666-2733.

[Kiw00] J. Kiwi, Non-accessible critical points of Cremer polynomials, Ergodic
Theory and Dynamical Systems, 20 (2000), no. 5, 1391-1403.

[Luo95] J. Luo, Combinatorics and Holomorphic Dynamics: Captures, Matings
and Newtons Method, PhD Thesis, Cornell University, 1995.



MODELING CORE PARTS OF ZAKERI SLICES I 37

[Lyu83] M. Lyubich, Some typical properties of the dynamics of rational map-
pings, Russian Math. Surveys 38 (1983), no. 5, 154-155.

[Lyu91] M. Lyubich, On the Lebesgue measure of the Julia set of a quadratic
polynomial, arXiv:math/9201285 (1991)

[Man93] R. Mané, On a theorem of Fatou, Bol. Soc. Brasil. Mat. (N.S.) 24 (1993),
1-11.

[MSS83] R. Mané, P. Sad, D. Sullivan, On the dynamics of rational maps, Ann.
Sci. Ecole Norm. Sup. (4) 16 (1983), no. 2, 193-217.

[McM94] C. McMullen, Complex dynamics and renormalization, Annals of Math-
ematics Studies 135, Princeton University Press, Princeton, NJ (1994)

[Mil06]  J. Milnor, Dynamics in One Complex Variable, Annals of Mathematical
Studies 160, Princeton (2006).

[Pet96]  C. Petersen, Local connectivity of some Julia sets containing a circle with
an irrational rotation, Acta Math., 177 (1996), 163-224

[PT09]  C. Petersen, Tan Lei, Analytic coordinates recording cubic dynamics. In:
Complex dynamics, Families and Friends, A K Peters, Wellesley, MA
(2009), 413-449.

[SW20] W. Shen, Y. Wang, Primitive tuning via quasiconformal surgery, preprint
arXiv:2010.05199, to appear in Israel Journal of Mathematics.

[Slo91]  Z. Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer.
Math. Soc. 111 (1991), 347-355.

[Sul] D. Sullivan, Quasiconformal homeomorphisms and dynamics I1I: Topo-
logical conjugacy classes of analytic endomorphisms, manuscript.

[Swi9g]  G. Swiatek, On critical circle homeomorphisms, Bol. Soc. Bras. Mat. 29
(1998), 329-351.

[Yanl7] J. Yang, Applications of Renormalization to Irrationally Indifferent Com-
plex Dynamics, PhD Thesis, University of Toronto, 2017.

[Yoc95]  J.C. Yoccoz, Petits Diviseurs en Dimension 1, Astérisque 231 (1995)

[Zak99]  S. Zakeri, Dynamics of cubic siegel polynomials, Commun. Math. Phys.
206 (1999), 185-233.

[Zak16] S. Zakeri, Conformal fitness and uniformization of holomorphically mov-
ing disks, Trans. Amer. Math. Soc. 368 (2016), 1023-1049.

(A. Blokh, L. Oversteegen) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF
ALABAMA AT BIRMINGHAM, BIRMINGHAM, AL 35294-1170

(A. Shepelevtseva, V. Timorin) FACULTY OF MATHEMATICS, HSE UNIVERSITY,
RuUSSIAN FEDERATION, 6 USACHEVA ST., 119048 Moscow

(A. Shepelevtseva) SCUOLA NORMALE SUPERIORE, 7 P1AzzA DEI CAVALIERI,
56126 PisA, ITALY

(Vladlen Timorin) INDEPENDENT UNIVERSITY OF MOSCOW, BOLSHOY VLASYEVSKIY
PEREULOK 11, 119002 Moscow, Russia

Email address, Alexander Blokh: ablokh@math.uab.edu

Email address, Lex Oversteegen: overstee@uab.edu

Email address, Anastasia Shepelevtseva: asyashep@gmail.com

Email address, Vladlen Timorin: vtimorin@hse.ru



	1. Introduction
	2. Background and a specification of the Main Theorem
	Plan of the paper

	3. Bubbles
	3.1. An overview of Za
	3.2. Polar coordinates and bubbles
	3.3. Bubble rays and bubble chains
	3.4. Landing of bubble rays

	4. Stability
	4.1. Equicontinuous motion
	4.2. Stability of legal arcs
	4.3. Stability of Siegel rays
	4.4. Siegel wedges

	5. The dynamical map P
	5.1. The structure of X(P)
	5.2. A separation property
	5.3. Continuous extension of P

	6. The parameter maps c and 
	6.1. Immediate renormalization
	6.2. Continuity
	6.3. The unmarked map 

	References

