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Shortest paths in arbitrary plane domains

L. C. Hoehn, L. G. Oversteegen, and E. D. Tymchatyn

Abstract. Let Q be a connected open set in the plane and y : [0,1] — Q a path such that y((0,1)) c
Q). We show that the path y can be “pulled tight” to a unique shortest path which is homotopic to y,
via a homotopy h with endpoints fixed whose intermediate paths h;, for ¢ € [0,1), satisfy h;((0,1)) c
Q. We prove this result even in the case when there is no path of finite Euclidean length homotopic
to y under such a homotopy. For this purpose, we offer three other natural, equivalent notions of a
“shortest” path. This work generalizes previous results for simply connected domains with simple
closed curve boundaries.

1 Introduction

Bourgin and Renz [2] proved that given a simply connected plane domain (connected
open set) Q with simple closed curve boundary, and given any two points p,q € Q,
there exists a unique shortest path in Q which is the uniform limit of paths which
(except possibly for their endpoints p and q) are contained in Q. If there is a rectifiable
such curve (i.e. one with finite Euclidean length), then by shortest is meant the one
with the smallest Euclidean length. If not, then by shortest is meant locally shortest,
which means that every subpath not containing the endpoints p and g is of finite
Euclidean length and is shortest among all such paths joining the endpoints of the
subpath.

In Theorem 1, we extend the result of Bourgin and Renz to paths in multiply
connected domains with arbitrary, in particular not necessarily locally connected,
boundaries. Along the way, we characterize the concept of a shortest path in up to four
different ways, outlined in the subsections below and stated in Theorem 2. In essence,
one may imagine starting with a path representing a given homotopy class in the
domain and pulling it tight by reeling it in at the endpoints. As we pull it tight, the path
may come into contact with the boundary of the domain, but may not move across
it. We remark that this is different from first taking the closure of the domain, and
then considering shortest paths in that space. For example, if we consider a domain
whose complement contains isolated points, such points vanish when one takes the
closure of the domain, yet in the setting we consider here, such points are obstacles
that the path will snag on as we pull it tight. For results about shortest paths in closed
subsets of the plane, or in locally connected continua, see e.g. [3] and [8]. To state
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our results precisely, we must fix some terminology and notation regarding paths and
homotopies.

For notational convenience, we identify the plane R? with the complex numbers C.
Fix a connected open set Q c C and points p, g € Q. We consider paths whose range
is contained in Q), except that the endpoints of the path may belong to dQ2. For brevity,
we use the abbreviation “e.p.e” to mean “except possibly at endpoints” Formally, a path
in Q (e.p.e.) joining p and q is a continuous function y : [0,1] - C such that y(0) = p,
y(1) = g, and y(s) € Q for all s € (0,1). When p, g € 9Q, the existence of such a path
is equivalent to the statement that p and q are accessible from Q.

We consider homotopies 4 : [0,1] x [0,1] — C such that for each t € [0,1), the path
ht :[0,1] —» C defined by h(s) = h(s, t) is a path in Q (e.p.e.) joining p and g. The
path h; may meet dQ in points other than #;(0) and h;(1). Given a path y in Q

(e.p.e.) joining p and g, let [y] denote the set of all paths homotopic to y under such

homotopies. Paths in [y] may meet the boundary dQ) in more than just the endpoints,
but for such a path, it must be possible to arrive at it via a homotopy of y of the type

described above. Let [y] denote the set of all paths in Q (e.p.e.) which belong to [y].

Note that in spite of the notation, [y] is not equal to the topological closure of [y] (e.g.
in the function space).

The main result of this paper is that if y is a path in Q (e.p.e.) joining p and g, then
[y] contains a unique shortest path. By “shortest,” we mean any one of the equivalent
notions introduced next and collected in Theorem 2 below.

First, if there is a path in [y] of finite Euclidean length, then we may consider the

path in [y] of smallest Euclidean length.
Second, we adapt Bourgin and Renz’s condition of locally shortest as follows:

Definition Let y be a path in Q (e.p.e.) joining p and g, and let A € [y].
 Given 0 < s1 < 55 < 1, we define the class [)L{Sbsz]] as follows. Let b : [0,1] x [0,1] —

Q be a homotopy such that kg = y, h; = A, and for each t € [0,1), h; is a path in Q
(e.p.e.) joining p and q. We use the homotopy h to “pull oft” the path A t(, ,; (e.p-e.)

from 0Q) as follows. Define the path A{sl’sz] :[s1,52] = Qby

/\%’51’52] (s)=h(s,1=(s=s1)(s2—5)).

See (Figure 1). Though this path is defined in terms of the homotopy 4, the class

[l%’sbsﬂ] does not depend on the choice of & (see Corollary 12 below).

« Apath A € [y] is called locally shortest if for any 0 < s; < s, <1, the path A, ;,1 has

finite Euclidean length, and this length is smallest among all paths in [A{Sl 52]].
Two further notions of “shortest path” are given in the next subsections.

1.1 Efficient paths

As above, fix a connected open set Q c C and points p, q € Q.
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Figure I: An illustration of the paths y, A, and /\{Sl o) for the definition of a locally shortest
path.

Definition Let y be a path in Q (e.p.e.) joining p and g. A path A € [y] is called
efficient (in [y]) if the following property holds:
Given any s;,s; € [0,1] with s; < 53, let A’ be the path defined by A’(s) = A(s) for

s ¢ [s1,52], and A’ [y, ;,] parameterizes the straight line segment A(s;)A(sy) or the

constant path if A(s;) = A(sz). If A" € [y], then A = A’ (up to reparameterization).
The following is the first main result of this paper. The proof is in Section 3.

Theorem 1 Let Q) c C be a connected open set, let p, Eﬁ, and let y be a path in
Q (except possibly at endpoints) joining p and q. Then [y] contains a unique (up to
parameterization) efficient path.

1.2 Alternative notion of path length

Instead of the standard Euclidean path length, which can only distinguish between
two paths if at least one of them is rectifiable, we can use an alternative notion of path
length for which all paths have finite length, and which has other useful properties
and many features in common with Euclidean length. A notion of length with such
properties was first introduced in [11] and further developed in [15]. A similar notion
is given in [3], and the authors of the present paper modified and extended that notion
in [7].

Let len refer to either the path length function introduced in [7] or in [11]. The
essential properties of len are:

(1) len(y) is finite (in fact len(y) < 1) for any path y;
(2) len(y) = 0 if and only if y is constant;
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(3) For any p, q € C, the straight line segment pq has smallest len length among all
paths from p to g. Moreover, if y is a path from p to ¢ which deviates from the
straight line segment pq, or which is not monotone, then len(y) > len(pq);

(4) If @ : C - Cis an isometry, then len(® o y) = len(y);

(5) Given 0 < ¢; < ¢y <1, len(ylyc,c,1) < len(y). This inequality is strict unless p is
constant outside of [¢y, ¢, ];

(6) Given c € (0,1), len(y) <len(ylo,c7) +len(ylc1y). This inequality is strict
unless one of the subpaths is constant; and

(7) len is a continuous function from the space of paths (with the uniform metric
dsup) to R.

Our second main result is the following. The proof is in Section 4.

Theorem 2 Let Q c C be a connected open set, let p, q € Q, and let y be a path in Q
(except possibly at endpoints) joining p and q. Then for a path A € [y], the following are
equivalent:

(1) Ais locally shortest;

(2) Ais efficient; and

(3) A has smallest len length among all paths in [y].

Moreover, if [y] contains a rectifiable path, then in addition to the above, we have

(4) A has smallest Euclidean length among all paths in [y].

2 Preliminaries on bounded analytic covering maps

Our arguments in Sections 3 and 4 make heavy use of the theory of complex analytic
covering maps. In this section, we collect the results we will use later.

Denote D = {z € C: |z] < 1}. It is a standard classical result (see e.g. [1]) that for any
connected open set Q) c C whose complement contains at least two points, and for
any zg € (), there is a complex analytic covering map ¢ : D - Q such that ¢(0) = z,.
Moreover, this covering map ¢ is uniquely determined by the argument of ¢’(0).

Many of the results below hold only for analytic covering maps ¢ : D - Q to
bounded sets Q. For the remainder of this subsection, let Q c C be a bounded
connected open set, and let ¢ : D — Q be an analytic covering map.

We first state three classic results about the boundary behavior of ¢. All of the
subsequent results in this section will be derived from these and from standard
covering map theory.

Theorem 3 (Fatou [5], see e.g. [4, p. 22])  The radial limits lim,_,;- ¢(ra) exist for all
points a € 0D except possibly for a set of linear measure zero in oD.

It can easily be seen that if a € 9D is such that lim,_,;- ¢(ra) exists, then the limit
belongs to 0.

Theorem 4 (Riesz [13, 14], see e.g. [4, p. 22])  For each z € 0Q), the set of points o € 0D
for which lim,_,;- (ra) = z has linear measure zero in oD.
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Theorem 5 (Lindelof [10], see e.g. [4, p. 23]) Let y:[0,1] — D be a path such that
7([0,1)) c D and y(1) = a € JD. Suppose that lim;_,1- ¢ o Y(t) exists. Then the radial
limit lim,_,1- ¢(ra) exists and is equal to lim;_1- ¢ o P(¢).

We define the extended covering map
9:Du {oc edD: linll o(ra) exists} -Q
by

o z, ifZeD
()= 19 ey
im,1- ¢(ra) ifZ=acdD.

By Theorem 3, this function is defined on I plus a full measure subset of oID. Note
that this function ¢ is not necessarily continuous at points where it is defined in oD.
It is, however, continuous by definition along each radial segment from the center 0
of D to any point « € 0D where it is defined. In fact, more is true: if ¢ is defined at «,
then its restriction to any Stolz angle at « is continuous (see e.g. [4, p. 23]); however,
we will not need this concept in this paper.

As a general convention, we will put hats on symbols, as in Z, 4, or 3, to refer to
points, subsets, or paths in I, and use symbols without hats to refer to points, subsets,
or paths in Q c C, with the understanding that if both z and Z appear in an argument,
they are related by z = ¢(2) (and likewise for sets and paths). If z = (p(z) for points
zeQandZeD (respectively, A = (p(@ for sets A c O and A c D), we say z is a lift of
z (vespectively, A is a lift of A). Similarly, if y = g o 7 for paths y in Q and 7 in D, we
say y is a lift of y.

The next result about lifts of paths is very similar to classical results for covering
maps. Since our extended map ¢ is not necessarily continuous at points in dD, it is
not a simple consequence of basic covering map theory. It is proved in [6], and we
also include a proof here to convey the flavor of working with the extended map ¢.

Theorem 6 Let p,q € Q, let z € Q, and let Z € D such that ¢(Z) = z.

(1) Lety be a path in Q (e.p.e.) joining p and q, and suppose y(so) = z for some s €
[0,1]. Then there exists a unique pathyin D (e.p.e.) such that ¢ oy =y and J(so) =
Z.

(2) Let h:[0,1] x [0,1] - C be a homotopy such that for each t € [0,1], the path
hi(s) = h(s, t) is a path in Q (e.p.e.) joining p and q, and suppose h(sy,0) = z for
some s € [0,1]. Then there exists a unique homotopy h : [0,1] x [0,1] - D such
that h(s,t) €D and ¢ o h(s,t) = h(s, t) for each (s,t) € (0,1) x [0,1], ({0} x
[0,1]) is a single point B in D with ¢(P) = p, h({1} x [0,1]) is a single point G in
D with 9(q) = g, and h(so,0) = Z.

Proof Observe that (1) follows from (2), by using the constant homotopy h(s, t) =
y(s) for all # € [0,1]. Thus, it suffices to prove (2).
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Since ¢ is a covering map and h((0,1) x [0,1]) c Q, it follows from standard
covering space theory that there is a unique homotopy % : (0,1) x [0,1] = I such
that ¢ o h(s, t) = h(s, t) for each (s,t) € (0,1) x [0,1], and T (sy,0) = Z It remains
to prove that there are points p, g € D such that defining h({0} x [0,1]) = {p} and
h({1} x [0,1]) = {7} makes 7 into a continuous function from [0,1] x [0,1] to . This
is immediate if p and g belong to Q, so we assume p, g € 0Q.

Observe that the set 71((0, 11 % [0,1]) compactifies on a continuum K c 9. We
need to prove that K is a single point {p}. Suppose for a contradication that K contains
more than one point. Then there exists by Theorem 3 a set E of positive measure in
the interior of K so that for each « € E, the radial limit lim,_,;- ¢(ra) exists. Since
the set h1( (0, 11 % [0,1]) compactifies on K, we can choose, for each « ¢ E, a sequence
(sn>ty) in (0, %] x [0,1] such that s, — 0 and E(s,,, tn) = rpa, with r, — L It follows
that the radial limit lim,_,;- ¢(ra) = p for each a € E, a contradiction with Theorem
4. Thus K is a single point {$}, and so we can continuously extend % to {0} x [0,1] by
defining 1({0} x [0,1]) = {P}. By Theorem 5 it follows that $(5) = p.

Likewise, by considering 71 ([ 1,1) x [0,1]), we obtain by the same argument a point
7 € D such that h extends continuously to {1} x [0,1] by defining & ({1} x [0,1]) =
{g},and 9(q) = q. n

Theorem 6(2) implies that if p, g € Q, y is a path in Q (e.p.e.) joining p and g, 7 is
a lift of y with endpoints p,7 € I, and A € [y], then there exists a lift A of A with the
same endpoints p, 7 as J. We will prove a stronger statement in Theorem 11 below.

The next result follows immediately from Theorem 6(1).

Corollary 7  Let L be an open arc in Q whose closure is an arc with distinct endpoints
in 0Q). Let L be a component of 9"*(L). Then L is an open arc in D whose closure in D
is an arc with distinct endpoints in dD.

We next prove a result about the existence of small “crosscuts” in D straddling any
point a € dD for which ¢(a) € 0Q is not isolated in 9Q). For one-to-one analytic maps
¢ : D — C, this result is standard; see e.g. [12]. We were unable to find a reference for
the case of a bounded analytic covering map ¢, so we include a proof for completeness.

Theorem 8 Let o € 0D be such that the radial limit lim,_- ¢(ra) exists, and let p €
0Q) be the limit.

(1) If p is not isolated in 0Q), then for any sufficiently small simple closed curve S in C
containing p in its interior, there is a component S of 9" (S) whose closure is an arc
separating o from the center 0 of D) in D.

(2) If p is isolated in 0Q), then for any sufficiently small simple closed curve S in Q
containing p in its interior, there is a component S of ¢~'(S) whose closure is a
circle whose intersection with oD is {a}.

Moreover, in both cases, the diameter of S can be made arbitrarily small by choosing S
sufficiently small.

https://doi.org/10.4153/S0008414X20000784 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X20000784

Shortest paths in arbitrary plane domains 355

Proof Let S be small enough so that ¢(0) is not in the closed topological disk
bounded by S. Let ry <1 be close enough to 1 so that ¢(ra) is in the interior of S
for all r € [ro,1). The closed (in D) set ¢ ~(S) must separate roa from 0 in D), since
otherwise there would be a path from 0 to oo which would project to a path in Q
from ¢(0) to ¢(roa) without intersecting S, a contradiction. Therefore, there must be
a component Sof ¢~(S) which separates roa from 0 in D (see e.g. [9, p. 438, Section
57 111, Theorem 1]).

For (1), suppose that p is not isolated in 9Q2. Assume first that S N 0Q # &. Let Cbe
the component of § N Q) containing ¢(3). The closure of this C is a path in Q (e.p.e.)
joining two points (not necessarily distinct) a, b € 0Q with a # p # b. By Theorem 6
and the fact that C is an open arc in (), we have that the closure of each component
of p7!(C) is an arc in ID joining points @, b € A at which the radial limits exist and
are equal to a and b, respectively; in particular, we have @ # a # b. It follows that the
closure of S is an arc with endpoints distinct from a, which separates « from 0 in D,
as desired.

Now choose & > 0 small enough so that ¢(0) is not in the closed disk B(p, ¢;) and
such that 0B(p, &1) N 0Q # @. Assume that S c B(p, €1). If SN 9Q # @, then we are
done by the previous paragraph; hence, suppose that S 0 0Q) = @. Choose g > 0 small
enough so that B(p, &) is contained in the interior of S, and such that dB(p, &) N
0Q * @. By the previous paragraph, there are components S and S; of 9™ (3B(p, &) )
and ¢~ 1(dB(p, ¢1)), respectively, which are arcs separating « from 0. As above, there
is a component S of ¢! ($) which separates a tail end of the radial segment at & from 0
in D, and which separates §0 from §1 in D (i.e. lies between §o and E). This implies the
endpoints of the closure of S are distinct, hence the closure of S is an arc, as desired.

For (2), let S be small enough so that p is the only point of 0Q in the closed
topological disk bounded by S. As above, we obtain a component S of ¢~(S) which
separates a tail end of the radial segment at « from 0 in ID. Since ¢ is a covering map,
this S must be an open arc in D whose two ends both accumulate on continua K; and
Kz in oD.

We first argue that K and K are single points. Suppose f1, 82 € Ki with f; # ;.
Then by Theorem 3, there exists f € K; between f; and 5, where the radial limit
lim, ;- ¢(rp) exists. However, this radial segment meets S arbitrarily close to 8, hence
lim,_1- ¢(rf3) ¢ 0Q, a contradiction. Thus, K is a single point {@}. Similarly, K; is a
single point {b}.

If @ + a, by Theorem 3 and Theorem 4, we can find f € dD) between @ and « such
that the radial limit lim, ;- ¢(rB) exists and is different from p. The path ¢(rf3), 0 <
r <1, is homotopic to one which does not enter the interior of S. By Theorem 6, we
can lift this homotopy, to obtain a path from 0 to 8 in D which does not meet S. But
this is a contradiction since S separates  from 0. Therefore, @ = a, and likewise b = a.
Thus the closure of S is a circle meeting D at & only, as desired.

For the moreover part, we argue as in the proof of Theorem 6 that if these
components S did not converge to 0 in diameter as the diameter of S is shrunk
toward 0, then they would accumulate on a nondegenerate continuum K c JD, and we
would obtain a contradiction by Theorem 3 and Theorem 4. The details are left to the
reader. ]
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Lemma9 Let S be a straight line or round circle in C, and let € > 0. Then there are only
finitely many lifts of components of S 1 Q with diameter at least e.

Proof Suppose the claim is false, so that there exists ¢ > 0 and infinitely many lifts
S, n=12,... of components of S N Q such that the diameter of S,, is at least ¢ for
each n. These lifts accumulate on a non-degenerate continuum K c D.

IfKND # @, thenletZe KnDandlet Vbea neighborhood of Z which maps one-
to-one under ¢ to a small round disk V ¢ Q. Then V meets infinitely many of the lifts
S,.. On the other hand, because V is a round disk contained in Q and S is a round
circle or straight line, it follows that V can only meet one component of S n Q. This is
a contradiction since ¢ is one-to-one on V.

Suppose then that K c dD. Then there exists by Theorem 3 a set E of positive
measure in the interior of K so that for each « € E, the radial limit lim,_,;- ¢(ra)
exists.

If there is a single component S’ of S N Q such that ¢(S,,) = &’ for infinitely many
n, then it is clear that the radial limit of ¢ at each a € E must belong to §’ n 9Q, which
contains at most two points. But this contradicts Theorem 4.

Therefore, we may assume that the components ¢(S,, ) are all distinct, which means
their diameters must converge to 0. By passing to a subsequence if necessary, we may
assume that the components go(§,,) converge to a single point a € § N dQ). Then it is
clear that the radial limit of ¢ at each & € E must equal g, again a contradiction by
Theorem 4. ]

Recall that the function ¢ is not necessarily continuous at points « € 0D where it
is defined. However, the next result shows that the restriction of ¢ to the region in
between two lifted paths with the same endpoints is continuous.

Given a continuum X in C, the topological hull of X, denoted Hull(X), is the
smallest simply connected continuum in C containing X. Equivalently, Hull(X) is
equal to C\U, where U is the unbounded component of C\ X.

Lemma 10 Suppose X :[0,1] — D is a path such that g oA is a path in Q (i.e. is
continuous). Let X be the union of A([0,1]) with the two radial segments from the center
0 of D to p = A(0) and to = A(1), and let A = Hull(X). Then A is simply connected
and locally connected, and the restriction @1 5 is continuous on A.

Proof Note that A is simply connected by definition, and it is straightforward to
see that the topological hull of any locally connected continuum is locally connected.
Since ¢ is continuous and ¢ = ¢ in I, it remains to prove that the restriction of ¢ to
A is continuous at each point of A n dD.

Let a € A n dD, and suppose for a contradiction that the restriction of ¢ to A is not
continuous at a. Then there exists ¢ > 0 and a sequence of points (W, )2, in A such
that W, — «, but [p(a) — ¢(W,)| > ¢ for all n.

Note that since AnaD c A([0,1]) and Eo/): is continuous, we have that the
restriction of ¢ to AndD is continuous. Hence, we may assume that w, e AnD
for each n. Moreover, since the restriction of ¢ to the radial segment from 0 to « is
continuous, we may also assume that W, does not belong to this segment for all n.
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For each n, there is a lift C, of a component of Q n dB(¢(a), &) which separates
W, from « in D, where B(¢(a), ¢) is the open disk centered at ¢(a) of radius e. By
Theorem 8, this lift C,, is either an arc with endpoints in 9D, or, in the case that o(a)
is the only point of Q) in the closed disk B(¢(«), €), a circle with one point on 9I). By
passing to a subsequence if necessary, we may assume that all of the C,, are distinct,
hence they are pairwise disjoint. According to Lemma 9, the diameters of the lifts C,,
converge to 0 as n — oco. Let X be as in the statement of the lemma, and for each n
choose a pointz,, € X N C,.ThenZz, - a.

Suppose first that there is a subsequence z,,, of z,, such that for each k, z;,, belongs
to the radial segment from 0 to p. It follows that a = p. Since ¢ is continuous on this
radial segment, we have ¢(Z,,, ) = ¢(«) as k — co. But ¢(z,,) € 9B(p(«), ¢) for each
n, so this is a contradiction. Likewise, we encounter a contradiction if infinitely many
of the points Z,, belong to the radial segment from 0 to g.

Thus we may assume that all of the points Z, belong to the set 1([0,1]). Let s, €
[0,1] such thatZ, = A(sn) By passing to a subsequence if necessary, we may assume
that s, — Ses> and A(5..) = &. Since g o A is continuous, it follows that ¢(Z,) —
¢(a) as n — oo. But again this is a contradiction because ¢(z,) € dB(p(«a),¢)
for each n. [ ]

In the next result, we characterize paths in [y] in terms of lifts.

Theorem 11  Let y be a path in Q (e.p.e.) joining p and q, and let y be a lift of y with
endpoints p, g € D. If A € [y], then there exists alift A of A (to D) with the same endpoints
$,G. Conversely, if A : [0,1] — Q is a path joining p and q which has alift X : [0,1] - D
with the same endpoints P, G, then A € [y].

Proof LetA € [y], and let & be a homotopy such that kg = y, h; = A, and h, is a path
in Q (e.p.e.) joining p and q for each t € [0, 1) For each s € [0 1], consider the path
t > hy(s). Apply Theorem 6 to obtain a lift h¢(s) such that kg (s) = 7(s). Define A :
[0, 1] - D by )L(S) h1(s). By Theorem 5, we have ¢ o A(s) = A(s) for all s € [0,1],
and 1(0) = pand A(1) = 7.

It remains to prove that A is continuous. Let s € [0,1]. If A(s) €D, then 1 is
continuous at s by standard covering space theory. Suppose for a contradiction that
71\(5) ¢ 9D and A is not continuous at s. We proceed with an argument similar to the one
given for Theorem 6. The sets ’};( [s- %, s+ %] x[1- % 1),n=1,2,...,accuamulate on
anondegenerate continuum K c 0D, which contains, by Theorem 3, a set E of positive
measure such that the radial limit lim, ;- ¢(ra) exists for each « € E. We can choose,
for each « € E, a sequence (sy, t,) converging to (s, 1) such that h(s,, t,) = r,a, with
rn = 1. It follows that the radial limit lim,_,;- ¢(ra) is equal to

lim ¢(rya) = lim @ o h(s,,t,) = im h(s,, ty) = A(s),
a contradiction with Theorem 4. Therefore, A is a continuous lift of 1.

Conversely, suppose A : [0,1] - Q is a path joining p and g which has a lift A
[0,1] » D with the same endpoints p,q as y. Let € be the path in D (e.p.e.) such
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that €(0) = p, ©(3) = 0, €(1) = ; and € linearly parameterizes the straight segments
in between these points. Let c = ¢ o C.

Let X = A([0,1]) ue([0,1]), and let A = Hull(X). Since A is simply connected, it
follows that there is a homotopy/h\ between Cand A within A, such that /h\o =5 7’1\1 =1,
and h, is a path in D (e.p.e.) joining p and ¢ for all ¢ € [0,1). Since ¢ is continuous
on A by Theorem 10, the composition @ o  is a homotopy between ¢ and A which

establishes that A € [c]. By the same reasoning, we can show that y € [c]. Therefore,

Ae[y] |

We now have the machinery in place to conclude that the class [A{sl,Sz]] described

in the definition of a locally shortest path is well-defined.

Corollary 12 Let y be a path in Q (e.p.e.) joining p and q, and let y be a lift of y with
endpoints p, G e D. Let A € [y], and let A be a lift of A (to D) with the same endpoints
D,q. Let 0 < 51 < s < L. A path p belongs to [AE’SI»SZ]] if and only if there is a lift p of p
(to D) with endpoints (s1), A(s2).

In particular, the definition of the class [A{Shsz]] is independent of the choice of
homotopy h between y and A.

3 Proof of Theorem 1

Let Q c C be a connected open set, p, g € Q, and let y be a path in Q (e.p.e.) joining p
and g. We may assume that either p # g or y is a non trivial loop, so that [y] contains
no constant path, since otherwise this is obviously the unique efficient path.

Let Dq be a large round disk in C which contains the entire path y([0,1]). We may
assume, without loss of generality, that Q) is contained in Dg, hence in particular is a

bounded subset of C. Indeed, any efficient path in [y] with respect to Q also belongs to

[y] with respect to O N Dq and vice versa. To see this, suppose h : [0,1] x [0,1] - Q
is a homotopy between two paths, y; and y,, in Q n Dg. Consider another disk Dy,
which is large enough to contain Dg U h([0,1] x [0,1]), let ¢’ : D - Q n DY, be an
analytic covering map onto the component of Q n Dy, containing y; and y,, and lift
h to a homotopy & in I of paths joining 5 and . Clearly no lift of a component C of
D¢, N dDq separates p from g is . It follows that one can retract the homotopy/h\ 0
that it does not intersect any of these lifts. Composing the retracted homotopy with
¢’ yields a homotopy from y; to y, in Q N Dg. The same goes for the other notions of
shortest path used in this paper. Hence, we assume Q c D, for the remainder of this
paper.

Let ¢ : D — Q be an analytic covering map, and let ¢ denote the extension of ¢ to
those points in JID where the radial limit is defined, as in Section 2. Choose any lift
7:[0,1] - D of y under ¢ (see Theorem 6(1)). So Jis a path in D (e.p.e.) and p 0 = y.
Letp =7(0) e Dand g = (1) € D. Since [y] does not contain a constant path, we have
P # q (cf. Theorem 11).

In Section 3.2 and Section 3.3 below, we will establish the existence of an efficient
path in [y] via a recursive construction in which we repeatedly replace subpaths by
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straight line segments, when doing so does not change the homotopy class. We begin
with some preliminary results in Section 3.1.

3.1 Lifts of lines

Throughout this paper, when we use the word line, we mean straight line in C. In
this subsection, we consider lines L in C which intersect Q) and lifts of closures of
components of L N Q under ¢. By abuse of terminology, any such lift will be called a
lift of L. For a given line L, L N Q) has at most countably many components, and each
of these components has at most countably many lifts, each of which is, by Corollary
7,an arc in D whose (distinct) endpoints are in 0D, and which is otherwise contained
in . Observe that if L, and L, are distinct lifts of lines, then L; n L, contains at most
one point; moreover, if NI, = {Z} for someZ € D, then T;and T, cross transversally
atz.

Our construction later in this section of an efficient path is based on the following
reformulation of the definition of an efficient path.

Proposition 13 Let A € [y], and let A be a lift of A (under @) joining P to q. Then A is
an efficient path in [y] if and only if for any lift T of a line intersecting Q, the set YD)
is connected (possibly empty).

We next make a detailed study of lifts of lines, focusing on whether they separate p
from 7 in D or not.

Definition Let L be a line which intersects (0 and which does not contain p or ¢, and
let L be a lift of L.

« We call T a separating lift if it separates p from §in ID. The component of D\L whose
closure contains pis called the p-side of L, and the component of D\L whose closure
contains G is called the G-side of L.

« We call T a nonseparating lift if it does not separate p from g in . The component of
D\L whose closure does not contain p, 7 is called the shadow of L, denoted Sh(T).

Given two lines L;, L, which intersect Q, the distance between L; and L, is the
Hausdorff distance between L; n Dq and L, n Dg (recall that D, is a fixed large disk
in C containing Q); that is, the infimum of all § > 0 such that each point of L, n Do
is within & of a point in L, n D, and vice versa.

Definition

« Let V c D be an open set which maps one-to-one under ¢ to an open set V c Q,
and let L be a line which intersects V. Let ¢ > 0, and assume ¢ is small enough so
that every line L’ which is within distance ¢ of L must also intersect V. The family
of all lifts I, of such lines L', which intersect V will be called a basic open set of lifts
of lines , and denoted N(I, V, ¢).

o Let ZeD. We say 7 is a stable point if there exists a basic open set of lifts of lines
N(L, V, ), each element of which is nonseparating and contains Z in its shadow.
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Figure 2: The configuration of lines described in the proof of Lemma 14.

Lemma 14 A point Z € D is a stable point if and only if there are two intersecting
nonseparating lifts L, L, of distinct lines Ly, L, such that Z is in the shadow of both
f] and fz.

Furthermore, whenever Ly, L, are intersecting nonseparating lifts of distinct lines, the
point of intersection of Ly and L, is also a stable point.

Proof That any stable point has this property is immediate, since any basic open set
of lifts of lines clearly contains pairs of distinct intersecting lifts.

Conversely, suppose Ly, L, are intersecting nonseparating lifts of distinct lines L; o
¢(L,), Ly o ¢(L,), and let Z be any point in the shadow of both I; and I,. Let # be
the point of intersection of L, and L,, and let V be a neighborhood of # which maps
one-to-one under ¢ to a round disk V centered at w = ¢(W).

Consider a line L not contammg w which intersects L; n V and L, n V, and such
that the lift I of L which intersects V does not contain any point in the intersection
of the shadows of L; and of L,. Let & > 0 be small enough so that any line L’ within
distance ¢ of L has these same properties. Let L’ be an arbitrary element of the basic
open set of lifts of lines N(I, V, ¢); that is, L' is the lift of a line L’ within distance &
of L such that L n V # @. Since L’ intersects fl and fz inside V, it cannot cross them
again, and so one endpoint of T’ is in the closure of Sh(Ll)\Sh(Lz) and the other is in
the closure of Sh(Lz)\Sh(Ll) see Figure 2). It follows that L' is a nonseparating lift
and Sh(L') contains Sh(L;) n Sh(Z,) (in particular, it contains the point Z), as well as
the point w. Thus Z'and W are both stable points. ]

Lemma 15 The set of stable points is a dense open subset of .
Moreover, except for a countable set of lines, every line L has the property that for each

lift T of L, the set of stable points in L is a dense open subset of L.

Proof It follows immediately from Lemma 14 that the set of stable points is open
in D.
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et (z,8)

\ %
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i> ( z® Y |
\
S ~ o - f
~(@,B)
PN >~ (W, a) / \
e (Z,a) > (3, 5) L(z,a) L(w, a)

Figure 3: The configuration of lines described in the proof of Lemma 15.

Now let Z € I, and let V be a neighborhood of Z. Suppose Z is not a stable point. By
shrinking V, we may assume that V maps one-to-one under ¢ to a disk V centered at
z = ¢(2).

For a given 0 € R, let L(z, 8) denote the straight line through z making angle 6
with the positive real axis. Let L(Z, 8) be the lift containing Z of the component of
L(z,0) N Q containing z. Denote the endpoints of L(Z, 8) by e* (%, 0) and e™(Z, ),
where e*(Z, ) corresponds to following the line L(z, 8) to 9Q in the direction 6 from
z,and e”(Z, 0) corresponds to following the line L(z, 6) to 0Q in the direction 0 + 7
from z. As 0 increases, the line L(z, 8) revolves about the point z. Correspondingly,
the lift T(Z, 8) “revolves” about Z. The endpoints of L(Z, 8) move monotonically in
the circle dID, but not necessarily continuously, as 8 increases.

Since Z'is not stable, by Lemma 14, there can be at most one nonseparating lift of a
line which contains Z. It follows that if we consider the line L(z, 8) and increase 0 to
revolve the line about z, at some moment, the endpoint e*(Z, ) must cross or “jump
over” P, and at that same moment e (Z, 8) must cross or “jump over” g. That is, there
exists 0y such that for all «, 8 sufficiently close to 8y with a < 8y < f8, we have that p
is on the “left” side of the arc L(Z, a) (thinking of this arc as oriented from e~ (Z, &)
to e*(Z, «)) and 7 is on the “right” side, and P is on the “right” side of L(Z, ) and §
is on the “left” side (see Figure 3).

Let W be any point in V\L(Z, 6) and let w = (). Let &, 8 be as above and
sufficiently close to 8y so that the lines L(w, «) and L(w, 8) do not intersect either
of the lines L(z, a) or L(z, ) inside Dg (recall that Dy, is a fixed large disk in C
containing ). This means that the lifts Z(#, a) and L(#, ) do not cross either of the
lifts L(Z, «) or L(Z, B). Because of the locations of p and 7 with respect to the lines
L(Z, «) and L(Z, B), it follows that L(#, &) and L(i, ) are both nonseparating lifts
(see Figure 3). Hence, by Lemma 14, # is a stable point. Thus, the set of stable points
is dense in ID.

For the second statement, we may apply the above argument at each Z € D to obtain
a countable cover {V; : i =1,2,...} of D by open sets with the property that for each i
there is at most one lift of a line, L;, such that every point of V,'\’L\i is stable. Consider
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the countable family of lines {¢(L;) : i = 1,2,...}. Let L be any line not in this family,
let L be any lift of L, and let Z € L. Choose i so that Z € V;. If Z is not stable, it must
be the (unique) point of intersection of L and L;, hence every other point in LnV;is
stable. Therefore the set of stable points in L is a dense open subset of L. [ ]

We remark that since in the proof of Lemma 15, the point # could be chosen on
either side of L(Z, 6 ), it follows from Proposition 13 and the proof of Lemma 15 that
if Yy is a lift of an efficient path in [y] with endpoints p and g, then %,([0,1]) nD
coincides with the set of nonstable points. This observation will not be used in the

proof of Theorem 1.

3.2 Sequence of approximations of the efficient path

Let £ be a countable dense (in the sense of Hausdorff distanct) family of distinct

straight lines which intersect Q and do not contain p or g, and such that for each

lift L of a line L € £, the set of stable points in L is a dense open subset of L (this is
possible by Lemma 15). Let L denote the (countable) set of all lifts of lines in £. We
enumerate the elements of this set: £ = (L; )Zl

We construct a sequence of paths y;, i > 1, by recursion. To begin, let y; = y and

71 = 7. Having defined y; and its lift j;, we define y;,; and 9;; as follows:

. Ifﬁl(fi) has cardinality < 1, then put y;,; = y; and ¥;41 = J;. Otherwise, let s; and
s, be the smallest and largest (respectively) s € [0,1] such that J;(s) € T;. Let Vil
be the path in D (e.p.e.) defined by yi41(s) =7i(s) for s ¢ [s1,52], and Yis1 1,5
parameterizes the subarc of L; with endpoints 7;(s;) and 7;(s2) (or P Msisa] 18
constantly equal to w if J;(s1) = yi(s2) = W). Let ;11 = @ 0 Pisa.

Lemma 16 Let L be a lift of a line L. If i is such that 7:74(T) c [0,1] is connected
(respectively, empty), then 5/71(L) is connected (respectively, empty) for all j > i.

In particular, forall j > i > 1, 5/71(7:,') is connected (or empty).

Proof Let L be a lift of a line L, and fix i. We will argue that if 7;(T) c [0,1] is
connected (respectively, empty), then 7}, (T) is connected (respectively, empty). The
claim then follows by induction. To this end, given the definition of ¥;., clearly we
may assume L+ f,-, so that either L N fi NnD=gorLand f,- cross transversally in ID.

Assume first that 7;([0,1]) N T = @. This means in particular that p,§¢ L, L is a
nonseparating lift, and 7; ([0,1]) is disjoint from the shadow of L. If L; does not meet
L in D, then clearly 9;,,([0,1]) N T = & as well. If L; meets L in I, then these two
lifts cross transversally. If 7;,, ([0, 1]) meets L, we must have that 7;,,([s1,5,]) N L #
@ where s, = min{s € [0,1] : 7;(s) € L;} and s, = max{s € [0,1] : 7;(s) € L;}, since
Pi+1 = 7 outside of [s1,s,]. Since Pi41([s1,52]) parameterizes a subarc of L;, which
crosses L transversally, it follows that either ¥;.1(s1) or J;41(s2) is in the shadow of
L.But9;,1(s1) = i (s1) and 541(s2) = 7;(s2), so this contradicts the assumption that
7:([0,1]) T = @. Thus 7;,1([0,1]) N L = @, as desired.

Now assume that 7;([0,1]) N L # @, and 7; (L) is an interval [a, b] (here we allow
the possibility that a = b, which means [a, b] = {a}). Suppose ¥}, is obtained from
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7; by replacing the subpath of 7; from s, to s, (0 < s, < s, < 1) with a segment of L;.
We leave it to the reader to confirm the following claims:

o Ifs, <a, then ;) (L) = [a, bl

o Ifs;<a<s, <b, then yHl(L) [s2,b];

o« If s1<a<b<s, then 7:1(T) is either empty (if the section 3;41([s1,52]) of L;
does not meet L), or consists of the single point where the section 7;;([s1,5,]) of
L; crosses L;

o It is not possible that a < s; < s, < b, since L +1; (unless ¥: is constant on [sy, s3],
in which case y;41 = ¥;);

« Ifa<s <b<s,, theny; ! (T) = [a,5];and

e Ifb <sp, then;(T) = [a, b].

In all cases, 77}, (T) is connected (possibly empty), as desired. [ ]

3.3 Convergence to the efficient path

Foreach n =1,2,..., we choose sets G, of lines in £ with the following properties:

« G, is a finite subset of £ for each #;
e G, c G, foreach n;
« each component of Q\ U G, has diameter less than %; and

e if G;, G, € G, are distinct lines and G, and G, are separating lifts of G; and G,
respectively, then G; and G; are either disjoint or meet in a stable point.

Let G, be the set of all lifts of lines in G,,. By Lemma 9 only finitely many of the
elements of G,, intersect the original lifted path 3;, and among them are those that are
separating lifts. We denote the set of all separating lifts in G, by G,

We define an order < on 93 as follows. Let Gl, G2 € 95 be distinct separatlng lifts.

First suppose G1 N Gz = ¢. Then G1 < Gz if Gz is on the g-side of Gl, otherwise
G, < Gi.

Now suppose G, NG, = {Z} for some stable point ZeD. Since Z is stable, it
follows from density of the family of lines £ that there exists W € £ such that W is

nonseparating and contains Z in its shadow. Then Gy < G, if G,\Sh(W) is on the G-
side of Gy; otherwise G, < G;.

It is straightforward to see that this relation < is a well-defined linear order on G,.

For each n = 1,2,..., choose a finite set W,, of lifts of lines from £ such that for
each pair of distinct 1ntersect1r1g separating lifts G1, G, € G5, there is a lift W e W,
witnessing that G, < G, or that G, < G; (i.e. such that Sh(W) contains G; N G,). Let
i(n) belarge enough so that W, c{Li:i=1,...,i(n) —1},and alsoall of the (finitely
many) elements of G, which intersect the original lifted path 7; are contained in {Z; :
i=1...,i(n) -1}

Take an arbitrary », and let Gy, ...,G,, enumerate the elements of 93 listed in
< order. For any i > i(n), by Lemma 16, the lifted path ¥; does not cross any of the
nonseparating lifts in G, UW,, and has connected intersection with all the lifts that
it meets, in partlcular with the elements of 93 Thus there are m +1 components
Ri,..., Rysy of D\U(S, uW,) such that for any i > i(n), the lifted path 7; starts
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Figure 4: An illustration depicting a possible configuration of the lifts of lines Gy and regions
Ry in between, as described in Section 3.3. The thick curve represents a path ; (for i > i(n)),
the dashed arcs represent elements of G,, (including the separating lifts G), and the dotted arcs
represent elements of W,,.

at p then runs in Rl, until it crosses Gl and enters Rz, then crosses Gz and enters R3,
and so on, until it crosses G,, to enter R,,,; and ends at 7 (see Figure 4).

For each of these regions R; P o(R j) is contained in a component of O\ U G,,, hence

has diameter less than l . Therefore, provided we parameterize the path y; so that if

Vi) (t) € R; then y; (t) € R, for all i > i(n), we have that deyp (yir i,) < 1 for all
iy, ip > z(n) in fact there is a homotopy between y;, and y;, which moves no point
more than 1, obtained by moving ¥;, (¢) to ¥;,(¢) within the closure of a region R;
which contains ;) (t).

We remark that according to Proposition 13, if A € [y] is any efficient path, it must
follow this same pattern traversing through the (closures of the) regions Ri,..., R
in the same monotone order. Therefore, any two such efficient paths, if parameterized
appropriately, are within % of each other. Since n is arbitrary, this establishes that there
can be at most one efficient path in [y] (up to reparameterization).

It remains to confirm that our construction above yields an efficient path in [y].
Since n was arbitrary, we now have that (y;):2; is a Cauchy sequence of paths, hence
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it converges to a path y. from p to q. Moreover, by putting together the (smaller and
smaller) homotopies between the paths in this sequence, we have that y., € [y].

Lemmal7 Yy, is an efficient path in [y].

Proof This follows from Proposition 13: if L is any line intersecting Q which has a
lift T such that 7., ([0,1]) N T is not connected, then by density of the family £ it is
easy to see there must be a line L’ € £ close to L, with a lift T’ close to f, such that
750 ([0,1]) NI is also not connected. But if L' = L; in the enumeration of £, then for
all j > i,7;([0,1]) n T’ is connected according to Lemma 16. Since J; — Jeo, the same
must be true for J., a contradiction. [ ]

This completes the proof of Theorem 1.

4 Proof of Theorem 2

Having established the existence of a unique efficient path A in [y], we now prove
Theorem 2 using Theorem 1 and its proof. In particular, we observe that in the
construction of the efficient path in the proof of Theorem 1, we started with a path
in [y] (such as y itself) and constructed a sequence of paths converging to the efficient
path, where each path in the sequence is obtained from the previous one by replacing
a subpath with a straight segment. Such a replacement will always decrease the len
length of the path and also, when finite, the Euclidean length.

It is clear that any path in [y] of smallest len length (or Euclidean length if finite)
must be efficient, because replacing a subpath with a straight segment decreases the
length. Thus we have (3) = (2) and (4) = (2).

For (2) = (3), suppose for a contradiction that there is a path p € m with strictly
smaller len length than the efficient path A € [y]. By continuity of the function len,
it follows that there exists p’ € [y] whose len length is also strictly smaller than A. If
we follow the construction in the proof of Theorem 1 starting with p’ instead of y,
we would then obtain an efficient path in [y] of len length strictly smaller than A,
contradicting the uniqueness of the efficient path.

For (2) = (4), suppose for a contradiction that there is a path p € [y] with finite
Euclidean length E which is strictly smaller than the Euclidean length of the efficient
path A € [y]. This means there exists ¢ > 0 and values 0 = sy < s < --- < sjy = 1 such that
YN IA(si) = A(si1)| > E + &. Let g be alift of y with endpoints B, § € D, and let A and
p be lifts of A and p with the same endpoints P, q.

We will replace sections of the path p with straight line segments to obtain a new
path p’ € [y] which goes within 5% of each of the points A(s;), in order. To obtain p,

we proceed as follows. For each i = 1,..., N — 1, consider the point A(s;) € D.
« If A(s;) € D, by Lemma 15, we can choose two stable points i, W, in a small

neighborhood V' of /)L\(s,') which projects one-to-one under ¢ to a small disk
centered at A(s;) of radius less than %, so that W, and W, are on opposite sides

of 1([0,1]) N V. Let L, and L, be nonseparating lifts of lines such that w; € Sh(ZL;)
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and W, € Sh(fz). By Proposition 13, 2 does not cross L, or L,. It follows that if we
replace the section of 5 between its first and last intersections with L; with an arc
in fl, and likewise for 7:2, then the resultant path must meet V.

« If 7(s;) € aD, choose an arc A such that 5(2{) has diameter less than 5%, with
endpoints A(s; ) and a stable point # € . Let L be alift of a line such that # ¢ Sh(T).
By Proposition 13, X does not cross L. It follows that if we replace the section of p'
between its first and last intersections with L with an arc in L, then the resultant
path must meet A.

After making the finitely many replacements of subpaths of p with segments of lifts
of lines as described above, the resultant path p is such that p’ = ¢ o p’ is continuous,
and p’ € [y] by Theorem 11. Clearly, the Euclidean length of p’ is not greater than E.
On the other hand, by construction there are values 0 = 53 < s{ < --- < s}y = L such that
lp"(s;) = A(si)| < 5 foreach i = ., N. It follows that the Euclidean length of p’ is
at least

N

> 16/ (s 1l > 2 (s - Al -2+ 5

i=1 2N

= (2 A(si) = A(5i1)|) -
>(E+e)-e=E

a contradiction. Therefore, A has smallest Euclidean length among all paths in [y].

The proof that (1) = (2) is straightforward and left to the reader.

Finally, for (2) = (1),1et 0 < s; < s, < 1and consider the path A Moisa]- We claim that
there exist s/, s; such that 0 < s| <s; < s, < s, <1and A(s}) and A(s}) can be joined
by a path in D which projects under @ to a path of finite Euclidean length. We rely on
the fact that any two points Wy, W, € D can be joined by a path in D which projects to a
path of finite Euclidean length (e.g. a piecewise linear path) IfA([0,5]) N D # @, then
let 0 < 5] < s, be such that 1(s]) € I, and let w; = A(s}). If A([0,5;]) c 9, we choose
sy and w as follows. Note that in this case, A(s;) is not isolated in €, so we can apply
Theorem 8 to obtain a component C; of 91 (dB(A(s1), €)), for some sufficiently small

¢ > 0, whose closure is an arc which separates A(s,) from 7 in D. In particular, there
exists 0 < s < s; such that A(s]) is in the closure of Cy. Let ; be any point in C;. Thus,
we have established that there exists 0 < s, < s; and w; € ID such that either A(s]) = W,
or I(s{) can be joined to #; by a path in D which projects to a circular arc. By the same
reasoning, there exists s, < s; < 1and W, € D such that either A(s}) = W, or A(s}) can
be joined to i, by a path in D which projects to a circular arc. It follows that A(s]) can
be joined to A(s}) by a path in I which projects to a path of finite Euclidean length.

Therefore, by Corollary 12, there exists a path of finite Euclidean length in [)L[ , s,]]
2
Since A is efficient, it follows from Proposition 13 that A I/ ;1 is the efficient path in
[AE’S,’S, ] ], hence has smallest Euclidean length in this class according to the implication

(2) = (4). In particular, A Mstsg] has finite Euclidean length in light of the previous
paragraph. This in turn implies that the subpath Al(, ,] has finite Euclidean length.
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Again by Proposition 13, we have that A, ] is the efficient path in [A{sl,sﬂ]’ hence
has smallest Euclidean length in this class according to the implication (2) = (4), as
required. Therefore, A is locally shortest.
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