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Storage-Based Built-In Self-Test for Gate-Exhaustive
Faults

Irith Pomeranz

Abstract—Built-in self-test (BIST ) approaches are suitable for in-field
testing since they do not require a tester for storage and application
of test data. They also reduce the security vulnerabilities associated
with loading and unloading of external test data into scan chains. As
technologies evolve, in-field testing needs to address more complex defect
and aging mechanisms that require specific deterministic tests. This can
be addressed by BIST approaches that store test data on-chip, and use
the data for on-chip generation of both random and deterministic tests.
In this case, there is a tradeoff between the amount of stored test data
and the comprehensiveness of the test set that can be applied. This paper
explores this tradeoff in a specific context that has the following main
features. (1) The initial stored test data is based on a stuck-at test set. (2)
The target faults are single-cycle gate-exhaustive faults. (3) The stored
test data is enhanced gradually by test data based on a gate-exhaustive
test set to increase the coverage of gate-exhaustive faults.

Index Terms—Built-in self-test (BIST ), gate-exhaustive faults, on-chip
test generation, stuck-at faults.

I. INTRODUCTION

Built-in self-test (BIST ) approaches are suitable for in-field
testing since they do not require a tester for storage and application
of test data [1]-[10]. They also reduce the security vulnerabilities
associated with loading and unloading of external test data into scan
chains [3].

As technologies evolve, in-field testing needs to address more
complex defect and aging mechanisms that require specific tests [11]-
[14]. This can be addressed by BIST approaches that store test data
on-chip, and use the data for on-chip generation of both random and
deterministic tests.

Different from hybrid approaches that combine test data compres-
sion with on-chip test generation [15]-[18], a BIST approach stores
all the test data on-chip. This is the type of approach considered in
this paper. In this approach, there is a tradeoff between the amount
of stored test data and the comprehensiveness of the test set that can
be applied. The paper explores this tradeoff in the following context.

The circuit under consideration has n scan chains of length l. One
component of the stored test data is a set Si of scan vectors. Using
only scan vectors from Si, an on-chip test generation logic applies a
fixed number of tests referred to as random, where scan vectors are
selected randomly from Si, and a small number of tests referred to
as deterministic that consist of specific scan vectors from Si. The set
of deterministic tests is denoted by Ti,dtrm, and it requires additional
storage of test data (indices of scan vectors from Si that form the tests
in Ti,dtrm). The test set produced on-chip is denoted by Ti, and it
changes with Si and Ti,dtrm. The on-chip test generation logic is the
same for every Si and Ti,dtrm, and every circuit. Only its parameters
(e.g., memory and multiplexer sizes) are circuit-dependent.

A deterministic test set Tsa for single stuck-at faults is used as an
initial source for test data. The test data is a set S0 of scan vectors
based on Tsa, and a set T0,dtrm of deterministic tests to complement
the random tests based on S0. With S0 and T0,dtrm, and the on-
chip test generation logic, T0 detects all the detectable single stuck-
at faults. The set of single stuck-at faults is denoted by Fsa. The
effectiveness of the random tests is enhanced by using stored scan
vectors from Tsa.
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Fig. 1. Tradeoff between fault efficiency and stored test data.

In addition to stuck-at faults, the set of target faults includes
single-cycle (static) gate-exhaustive faults [19]. These are used for
representing the need to cover a large number of defects with specific
behaviors that are more difficult to detect than stuck-at faults. Gate-
exhaustive faults are suitable for this purpose since their number is
large, and they require more values to be assigned by a test. The
set of detectable gate-exhaustive faults is denoted by Fgexh, and a
deterministic test set for gate-exhaustive faults is denoted by Tgexh.
It is also possible to consider a test set for transition faults as an
initial source for test data, and two-cycle (dynamic) gate-exhaustive
faults as additional target faults.
When the pair (S0, T0,dtrm) is used for on-chip test generation,

the coverage of gate-exhaustive faults may not be complete. An
iterative software procedure produces a series of pairs (S0, T0,dtrm),
(S1, T1,dtrm), ..., (Sm−1, Tm−1,dtrm). For i > 0, the procedure
obtains Si from Si−1 by adding at least one new scan vector based
on Tgexh. The scan vectors added to Si allow the coverage of gate-
exhaustive faults to be increased when the on-chip test generation
logic is used for (Si, Ti,dtrm). With (Sm−1, Tm−1,dtrm), complete
coverage of gate-exhaustive faults is achieved. In many cases, the
increased fault coverage is achieved by random tests that use scan
vectors from Si, and Ti,dtrm = ∅.
Figure 1 illustrates the tradeoff explored by the software procedure

that produces the pairs (Si, Ti,dtrm) for i ≥ 0. Figure 1 is based on
the results obtained later for benchmark circuit s1423. A circle with
i above it corresponds to a test set Ti. The horizontal axis in Figure
1 shows the number of storage bits for Ti. The vertical axis shows
the fault efficiency, which is the percentage of detected faults out of
the detectable faults, achieved for gate-exhaustive faults by Ti. The
fault efficiency reaches 100% in iteration i = 7.
In Figure 1, when the pair (S1, T1,dtrm) is computed in iteration

1, it has a lower number of storage bits than (S0, T0,dtrm), and a
higher fault efficiency. Therefore, the solution obtained in iteration 1
is preferred over the solution obtained in iteration 0. Overall, there
are seven viable solutions in Figure 1, corresponding to (Si, Ti,dtrm)
for i = 1, 2, 3, 4, 5, 6 and 7.
The approach described in this paper is developed for the case

where a circuit has a large number of scan chains, making the scan
chain length small enough for storage of scan vectors to be feasible.
A large number of scan chains is also used by test data compression
approaches to control the test application time.
The paper is organized as follows. The on-chip test generation logic

is described in Section II. A software procedure for computing the
sets Si and Ti,dtrm is described in Section III. Experimental results
for benchmark circuits are presented in Section IV.

II. ON-CHIP TEST GENERATION

The scan configuration assumed in this paper has n scan chains.
For simplicity it is assumed that all the scan chains have the same
length, l. This can be achieved by padding each scan chain until its
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TABLE I
EXAMPLE TEST SET

(a) Scan Vectors
p 0 1 2 3 4 5
sp 011 110 000 101 010 001

(b) Test Set
j πj j0 j1 j2 tj,0 tj,1 tj,2
0 0 4 1 5 010 110 001
1 0 1 1 3 110 110 101
2 0 2 1 5 000 110 001
3 0 2 2 0 000 000 011
4 1 5 4 5 001 010 001
5 1 5 5 5 001 001 001

length reaches l. Padding is not needed for the physical circuit, only
for the model used by the software procedure to compute the test
data for the on-chip test generation logic.

One component of the test data stored on-chip is a set of scan
vectors, Si = {s0, s1, ..., sv−1}. For illustration, Table I(a) shows
the set S0 obtained for a circuit with n = 3 scan chains of length
l = 3.

A test tj is formed by selecting n scan vectors from Si, one for
every scan chain. With scan vectors sj0 , sj1 , ..., sjn−1 , we have that
tj = 〈sj0 , sj1 , ..., sjn−1〉. For 0 ≤ k < n, the scan vector for scan
chain k is denoted by tj,k = sjk .

Table I(b) shows a test set T0 obtained for the circuit from Table
I(a). For every test tj , Table I(b) shows the indices j0, j1, j2, and
the subtests tj,0, tj,1 and tj,2. The variable πj is explained next.

The on-chip test generation logic applies two types of tests. A
random test tj = 〈sj0 , sj1 , ..., sjn−1〉 is designated by πj = 0. In
this case, for 0 ≤ k < n, the scan vector sjk for the subtest tj,k is
selected randomly.

A deterministic test tj = 〈sj0 , sj1 , ..., sjn−1〉 is designated by
πj = 1. In this case, the set of indices j0, j1, ..., jn−1 is stored in an
on-chip memory.

The on-chip test generation logic is illustrated by Figure 2. The
lower part of Figure 2 shows the memory storing the set of scan
vectors Si. The size of the memory is v× l. It also shows scan chain
k of length l. A multiplexer called MUX2k selects one of the scan
vectors from Si depending on the variable called addrk. The number
of bits in addrk is log2(v). The selected scan vector is scanned into
scan chain k. For a test tj it defines the subtest tj,k.

The value of addrk is computed by the logic in the upper part of
Figure 2. If only random tests are applied, the dashed part of Figure
2 is not needed, and an LFSR produces the values for addrk. In
general, the deterministic part of the test set Ti, Ti,dtrm, is stored
in a memory of size d × n × log2(v), where d is the number of
deterministic tests. The entries inside Ti,dtrm in Figure 2 correspond
to scan chain k. These are indices of scan vectors that need to be
loaded into scan chain k under the deterministic tests t0, t1, ..., td−1.

A counter denoted by cnt determines which test is applied through
a multiplexer denoted by MUX1k. A count value between 0 and
d−1 corresponds to a deterministic test from Ti,dtrm. A count value
of d corresponds to a random test. In this case, the LFSR provides
log2(v) bits selecting a scan vector randomly from Si. The counter
stays at d to apply R random tests, for a parameter R.

The memories Si and Ti,dtrm, as well as the counter and LFSR,
are common to all the scan chains. In the case of the LFSR, each
scan chain uses a distinct subset of bits to obtain a different random
number. In addition, each scan chain requires two multiplexers.

The overall storage requirements for the two memories are v · l+
d · n · log2(v) bits. The memories dominate the size of the on-chip
test generation logic.

The entire test generation logic, including both multiplexers for
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Fig. 2. On-chip test generation logic.

every scan chain, resides close to the memories, within the outline
marked TGL in Figure 2. Each scan chain is driven by a single
line, represented by the output of MUX2k in Figure 2. The routing
overhead is similar to that of test data decompression logic that drives
all the scan chains.
For the output response it is assumed that sequential output

compaction will be performed by output compaction logic such as a
multiple-input shift-register (MISR) [1].

III. PROCEDURE FOR COMPUTING STORED TEST DATA

This section describes an iterative software procedure for comput-
ing sets of scan vectors Si and deterministic tests Ti,dtrm for on-chip
test generation. For simplicity of discussion, Si is associated with a
test set Ti that consists of both random and deterministic tests. The
non-random tests in Ti define Ti,dtrm.

A. Overview

The procedure accepts a test set Tsa for single stuck-at faults, and
a test set Tgexh for gate-exhaustive faults. It produces sets of scan
vectors S0, S1, ..., Sm−1, with test sets T0, T1, ..., Tm−1.
At the beginning of iteration i = 0, the procedure initializes S0

based on Tsa, as follows. All the distinct scan vectors of Tsa are
included in S0, and T0 = Tsa initially. With this initialization, every
test in T0 can be expressed in terms of scan vectors from S0.
At the beginning of iteration i > 0, Si = Si−1 and Ti = Ti−1.

At the end of iteration 0 ≤ i ≤ m − 2, the procedure adds at least
one scan vector to Si. It adds tests that use the new scan vectors to
Ti. The procedure terminates when, at the end of iteration m− 1, it
does not add any scan vectors to Sm−1.
An arbitrary iteration i proceeds as described next. The procedure

referred to as Procedure 0 is applied first to remove unnecessary scan
vectors from Si. The test set Ti is modified to ensure that it uses only
scan vectors from Si.
The procedure referred to as Procedure 1 first stores the current

test set Ti in a test set denoted by Tcand, and initializes Ti to be
empty. All the target single stuck-at faults are included in Fsa, and
all the target gate-exhaustive faults are included in Fgexh.
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For a parameter R, Procedure 1 includes R random tests in Ti. For
every test it performs fault simulation with fault dropping of Fsa and
Fgexh. It then uses deterministic tests from Tcand to detect additional
faults from Fsa and Fgexh using only scan vectors from Si.

All the detectable stuck-at faults from Fsa are guaranteed to be
detected by Ti after Procedure 1 is applied. The procedure terminates
if all the detectable gate-exhaustive faults from Fgexh are detected
by Ti as well. Otherwise, Procedure 2 adds to Ti a limited number
of additional deterministic tests based on Tgexh to detect additional
gate-exhaustive faults. As much as possible, Procedure 2 uses only
scan vectors that are already included in Si. When this is not possible,
Procedure 2 adds to Ti tests that require new scan vectors, which are
added to Si. The procedure prefers tests that require the smallest
possible numbers of new scan vectors.

As Ti is modified, the procedure maintains fault detection in-
formation for Ti. Fault detection information is obtained by fault
simulation with fault dropping of Fsa ∪ Fgexh under Ti. For a fault
f ∈ Fsa ∪ Fgexh, the first test in Ti that detects it is denoted by
tdet(f). For an undetected fault, det(f) = −1. Fault simulation with
fault dropping is also applied at the end of every procedure.

B. Procedure 0

For Procedure 0 all the tests in Ti are considered as deterministic.
Procedure 0 associates with every scan vector sp ∈ Si the number of
times it is used by a test in Ti. This number is denoted by a(sp). The
procedure considers the scan vectors by increasing order of a(sp).
This is based on the expectation that it will be easier to remove
from Si a scan vector that is used fewer times by tests from Ti. The
procedure maintains the variables a(sp) up-to-date as it modifies the
test set. A scan vector sp with a(sp) = 0 is removed from Si.

When the procedure considers sp for removal, let the subset of
tests where sp appears be T (sp). Let the subset of faults that the
tests in T (sp) detect be F (sp). To facilitate the modification of the
tests in T (sp), the procedure simulates F (sp) under Ti \T (sp). If a
fault f ∈ F (sp) is detected by a test tj ∈ Ti \ T (sp), the procedure
assigns det(f) = j, and removes the fault from F (sp).

The procedure considers every subtest tj,k such that tj,k = sp
separately. For tj,k, it considers as an alternative every scan vector
sq ∈ Si such that a(sq) 	= 0 and q 	= p. To check whether sq is
an acceptable alternative, the procedure assigns tj,k = sq . It then
simulates every fault f ∈ Fsa ∪ Fgexh such that det(f) = j under
the modified tj . The modification of tj is accepted if all the faults
with det(f) = j are detected. Otherwise, the procedure reassigns
tj,k = sp. If none of the alternatives to sp is acceptable, the procedure
concludes that sp cannot be removed, and it does not consider other
subtests where sp appears.

The procedure considers the tests in T (sp) by decreasing order of
the number of faults they detect. This is based on the expectation
that tests with larger numbers of detected faults are more difficult
to modify. If such a test cannot be modified, the procedure will not
consider other tests in T (sp).

The procedure considers the replacement scan vectors sq by
increasing order of the number of appearances in Ti, a(sq). This
is based on the expectation that a more uniform use of scan vectors
allows faults to be detected more uniformly, and makes it easier to
modify the test set.

After considering all the scan vectors in Si for removal, if any
scan vector was removed from Si, the procedure performs another
pass over the scan vectors in Si, in case additional scan vectors can
be removed after modifying the test set. Procedure 0 terminates after
a pass that does not reduce the number of scan vectors in Si.

C. Procedure 1

Procedure 1 initially assigns Tcand = Ti, Ti = ∅, and includes all
the target faults in Fsa and Fgexh.
Procedure 1 includes R random tests in Ti, for a parameter R.

A random test tj is constructed by selecting tj,k randomly from Si

(or using the LFSR in Figure 2), for 0 ≤ k < n. The procedure
performs fault simulation with fault dropping of tj under Fsa∪Fgexh,
for every random test tj .
Next, the procedure uses tests from Tcand as deterministic tests

to detect additional faults from Fsa ∪ Fgexh. The goal is to ensure
that both the stuck-at and gate-exhaustive fault coverages of Ti

are not lower than those of Tcand. This ensures that the stuck-at
fault coverage is maintained, and the gate-exhaustive fault coverage
increases monotonically with every iteration until all the detectable
gate-exhaustive faults are detected in the last iteration. For every test
tj ∈ Tcand, the procedure applies the following steps.
The procedure simulates Fsa ∪ Fgexh under tj . If no faults are

detected, the procedure does not consider tj further. Otherwise, it
attempts to modify tj to increase the number of faults it detects out
of Fsa ∪ Fgexh. For this purpose, the procedure includes in F (tj)
all the faults that tj detects. It then considers every scan chain 0 ≤
k < n, and every scan vector sp ∈ Si. If tj,k 	= sp, the procedure
defines a test tmod

j that is equal to tj , except that tmod
j,k = sp. It

simulates the faults in F (tj) under tmod
j,k . If all the faults are detected,

it also simulates the faults in Fsa∪Fgexh under tj . Let the subset of
detected faults be F (tmod

j ). The procedure accepts the modification
of tj if F (tj) ⊆ F (tmod

j ). In this case, it assigns tj = tmod
j and

F (tj) = F (tmod
j ). Otherwise, it discards tmod

j .
If the number of faults detected by tj was increased, the procedure

performs another pass over all the scan chains and all the scan vectors
in Si. The final test tj is added to Ti, and the faults it detects are
removed from Fsa and Fgexh.
After considering every test tj ∈ Tcand, Ti detects all the faults

from Fsa ∪ Fgexh that Tcand detects, and possibly additional faults
from Fgexh.

D. Procedure 2

Procedure 2 adds to Ti a limited number of tests based on Tgexh.
Its goal in selecting which tests will be added is to detect as many
additional gate-exhaustive faults as possible using only scan vectors
that are already included in Si, or require the addition of as few new
scan vectors to Si as possible. It stops after a limited increase in the
gate-exhaustive fault efficiency is achieved to avoid a large increase
in the storage requirements in a single iteration. The number of tests
from Tgexh that the procedure uses depends on the circuit and the
iteration. The tests are modified as described below to ensure that as
few new scan vectors as possible are added to Si.
Procedure 2 is applied iteratively until it achieves its goal. In each

pass of Procedure 2, it considers every test tj ∈ Tgexh. When it
considers tj , it first performs fault simulation of Fgexh under tj . If
any faults are detected, the procedure continues with tj as follows.
It assigns tnew

j = tj , and includes the faults detected by tj in a
set F (tnew

j ). It also assigns jnew
k = −1 for 0 ≤ k < n to indicate

that the scan vectors of tnew
j may not be included in Si. It then

considers every scan chain 0 ≤ k < n, and every scan vector sp ∈ Si.
The procedure defines a test tmod

j that is equal to tnew
j , except that

tmod
j,k = sp and jmod

k = p. It simulates the faults in F (tj) under
tmod
j . If all the faults are detected, it also simulates the faults in Fgexh

under tj . Let the subset of detected faults be F (tmod
j ). The procedure

accepts the modification of tnew
j if F (tnew

j ) ⊆ F (tmod
j ). In this

case, it assigns tnew
j = tmod

j and F (tnew
j ) = F (tmod

j ). Otherwise,
it discards tmod

j .
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If the procedure modified jnew
k = −1 into jnew

k ≥ 0 for at least
one scan chain k, it performs another pass over all the scan chains
with jnew

k = −1. When modification of tnew
j ends, let n(tnew

j ) be the
number of detected gate-exhaustive faults, and m(tnew

j ) the number
of scan chains k for which jnew

k = −1.
If m(tnew

j ) = 0, tnew
j uses only scan vectors from Si, and detects

n(tnew
j ) gate-exhaustive faults. In this case, the procedure adds tnew

j

to Ti, and removes the faults it detects from Fgexh. Otherwise, the
procedure defers the decision on tnew

j to the end of the pass.
At the end of the pass, if no test with m(tnew

j ) = 0 was added
to Ti, the procedure selects the test tnew

j with the smallest value of
m(tnew

j ), and the largest value of n(tnew
j ). It adds to Si all the new

scan vectors used by tnew
j , i.e., Si = Si ∪ {tnew

j,k : 0 ≤ k < n, jk =
−1}. It also adds tnew

j to Ti.
After adding at least one new scan vector to Si, Procedure 2

terminates if the gate-exhaustive fault efficiency is increased by a
parameter denoted by Δgexh. This parameter is needed to ensure
that the gate-exhaustive fault efficiency increases substantially with
every iteration. Procedure 2 also terminates when all the faults in
Fgexh are detected. Before using Ti in iteration i+1, the procedure
performs forward-looking reverse order fault simulation to remove
unnecessary tests from Ti.

IV. EXPERIMENTAL RESULTS

The software procedure for computing the sets Si and Ti was
applied to benchmark circuits.

The following parameter values were used. For a circuit with K
flip-flops, the flip-flops were partitioned into n scan chains such that
n2 ≥ K. If necessary, n2 − K flip-flops were added for padding.
The length of a scan chain was l = n. This yields a large number of
short scan chains. Other configurations with the same property can
be used instead.

The required increase in the gate-exhaustive fault efficiency for
every iteration, Δgexh, was set as follows. When the gate-exhaustive
fault efficiency after the first application of Procedure 1 is at least
95%, Δgexh = 0.2%. Otherwise, Δgexh = 1%. The circuit name
is followed by ”.1” in this case. These values prevent the procedure
from performing an excessive number of iterations.

When the fault efficiency after the first application of Procedure
1 is lower than 95%, Procedure 2 selects a deterministic test after
considering ten tests from Tgexh that detect new faults. This is
important for limiting the computational effort of the procedure.

To define gate-exhaustive faults, the circuit was partitioned into
two-level subcircuits with at most 10 inputs. Each subcircuit was used
as a gate, and all its gate-exhaustive faults were added to Fgexh. Test
generation was carried out to produce the test set Tgexh. Undetectable
faults were eliminated from Fgexh.

The number of random tests was R = 4000|Tsa |. This number
was selected based on experimental results indicating that a small
number of deterministic tests is typically needed for complementing
this number of random tests.

The results for iteration i of the procedure are reported before
Procedure 2 adds new scan vectors to Si. Up to this point, the
procedure utilizes the scan vectors in Si for both random and
deterministic tests (new scan vectors that are added to Si are utilized
for random tests only in iteration i+ 1).

Referring to Figure 1, not every iteration yields improved results
compared with later iterations. The results are reported only for
iterations with improved results.

The results are reported in Table II as follows. For most of the
circuits in Table II, there is a row for every iteration that yields an
improved solution until 100% fault efficiency is reached for gate-
exhaustive faults. These circuits are arranged by increasing number

TABLE II
EXPERIMENTAL RESULTS

bits gexh
circuit K n i dtrm vect tot tot/gexh f.e. ntime
s35932 1764 42 0 0 444 18648 0.392 100.000 9505.74
b04 81 9 1 1 30 315 0.017 100.000 1394.00
des area 400 20 0 0 431 8620 0.057 100.000 1659.84
sasc 144 12 0 0 112 1344 0.089 100.000 1023.12
simple spi 169 13 1 0 47 611 0.015 100.000 8612.06
spi 289 17 4 1 241 4233 0.008 100.000 63387.09
systemcdes 324 18 0 0 224 4032 0.125 100.000 1753.96
usb phy 121 11 0 0 43 473 0.049 100.000 484.20
i2c 169 13 1 0 60 780 0.022 99.339 3217.24
i2c 169 13 3 2 57 897 0.025 99.807 7068.20
i2c 169 13 4 5 60 1170 0.032 100.000 8998.16
tv80 400 20 1 128 260 28240 0.049 99.574 12073.79
tv80 400 20 2 129 262 28460 0.050 99.778 24388.65
tv80 400 20 4 134 287 29860 0.052 100.000 33120.68
b15 484 22 1 1503 221 269390 0.261 99.539 52786.41
b15 484 22 2 1626 214 290884 0.282 99.705 76645.83
b15 484 22 3 1768 212 315832 0.306 99.932 115207.67
b15 484 22 4 1802 206 321684 0.312 100.000 146831.08
wb dma 784 28 1 14 209 8988 0.039 99.455 11906.35
wb dma 784 28 2 17 229 10220 0.044 99.660 19847.86
wb dma 784 28 3 17 257 11480 0.049 99.865 25788.47
wb dma 784 28 4 22 266 12992 0.056 100.000 30586.44
s5378 225 15 1 0 159 2385 0.028 98.833 3729.10
s5378 225 15 3 0 171 2565 0.030 99.238 9174.20
s5378 225 15 4 0 179 2685 0.031 99.440 10663.98
s5378 225 15 5 0 183 2745 0.032 99.642 13204.55
s5378 225 15 7 0 193 2895 0.034 100.000 16628.05
s9234 256 16 0 145 303 25728 0.117 98.493 2576.53
s9234 256 16 1 213 232 30976 0.141 99.181 8841.67
s9234 256 16 2 234 222 33504 0.152 99.632 14736.02
s9234 256 16 3 262 224 37120 0.169 99.941 20309.77
s9234 256 16 4 264 221 37328 0.170 100.000 25101.02
s1423 100 10 1 0 53 530 0.067 98.609 1241.20
s1423 100 10 2 1 53 590 0.075 98.851 1936.00
s1423 100 10 3 1 57 630 0.080 99.093 2473.00
s1423 100 10 4 1 59 650 0.082 99.335 3153.60
s1423 100 10 5 1 63 690 0.087 99.577 3681.20
s1423 100 10 6 1 67 740 0.093 99.819 4205.00
s1423 100 10 7 1 69 760 0.096 100.000 4861.20
s13207.1 729 27 1 0 484 13068 0.026 90.974 26106.04
s13207.1 729 27 2 0 498 13446 0.027 91.992 40675.93
s13207.1 729 27 3 0 522 14094 0.028 93.148 49713.95
s13207.1 729 27 4 0 548 14796 0.030 94.176 62855.36
s13207.1 729 27 5 0 586 15822 0.032 95.232 73768.11
s13207.1 729 27 6 0 611 16497 0.033 96.345 87076.30
s13207.1 729 27 7 0 633 17091 0.034 97.420 96723.46
s13207.1 729 27 8 0 648 17496 0.035 98.444 103565.09
s13207.1 729 27 9 0 714 19278 0.039 99.472 112481.73
s13207.1 729 27 10 0 737 19899 0.040 100.000 122845.27
s15850.1 625 25 0 3 288 7875 0.013 86.801 1509.86
s15850.1 625 25 1 32 349 15925 0.025 88.121 5625.45
s15850.1 625 25 2 60 433 24325 0.039 89.297 10849.58
s15850.1 625 25 3 46 521 24525 0.039 90.465 19150.70
s15850.1 625 25 4 59 607 29925 0.048 91.554 25021.39
s15850.1 625 25 5 75 699 36225 0.058 92.622 31400.64
s15850.1 625 25 7 72 908 40700 0.065 94.663 46743.86
s15850.1 625 25 8 66 1002 41550 0.066 95.694 59461.09
s15850.1 625 25 10 66 1233 48975 0.078 97.706 83019.74
s15850.1 625 25 11 81 1356 56175 0.089 98.709 96543.31
s15850.1 625 25 12 88 1420 59700 0.095 99.733 114753.56
s15850.1 625 25 13 95 1448 62325 0.099 100.000 127918.80
b14.1 289 17 0 216 250 33626 0.045 85.838 7310.89
b14.1 289 17 1 287 218 42738 0.057 86.705 16520.68
b14.1 289 17 2 377 225 55097 0.074 87.892 25899.69
b14.1 289 17 3 477 243 69003 0.093 88.984 36228.38
b14.1 289 17 4 662 278 106012 0.142 90.216 49101.41
b14.1 289 17 5 804 281 127789 0.172 91.122 64176.50
b14.1 289 17 6 991 284 156451 0.210 92.200 77742.39
b14.1 289 17 7 1148 309 180897 0.243 93.202 92378.23
b14.1 289 17 8 1287 341 202708 0.272 94.152 109924.09
b14.1 289 17 9 1453 346 228191 0.306 95.172 126674.31
b14.1 289 17 10 1602 349 251039 0.337 96.212 148285.70
b14.1 289 17 11 1793 366 280551 0.377 97.381 170142.53
b14.1 289 17 12 1928 377 301393 0.405 98.318 190629.62
b14.1 289 17 13 2057 398 321487 0.432 99.242 219983.75
b14.1 289 17 14 2181 414 340731 0.457 100.000 240957.95
s38417 1681 41 0 53 1393 81016 0.029 96.530 20061.56
s38584 1521 39 0 36 577 36543 0.043 99.509 5836.27
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of iterations that produce improved solutions. Additional circuits
are considered with a single iteration to demonstrate the results
achievable for them.

After the circuit name, column K shows the number of flip-flops.
Column n shows the number of scan chains. This is also the number
of flip-flops in a scan chain.

Column i shows the iteration. Column dtrm shows the number
of deterministic tests in Ti,dtrm. Column vect shows the number of
scan vectors in Si.

Column bits shows the number of storage bits required for Si and
Ti,dtrm (subcolumn tot), and the number of storage bits divided by
the number of bits required for storing Tgexh (subcolumn tot/gexh).

The stuck-at fault coverage of Ti is always equal to the fault
coverage of Tsa, which detects all the detectable stuck-at faults.
Column gexh f.e. shows the gate-exhaustive fault efficiency achieved
by Ti. Column ntime shows the normalized runtime of the software
procedure, which is the runtime divided by the runtime for fault
simulation with fault dropping of Fsa under Tsa, and Fgexh under
Tgexh. Since the software procedure is based on repeated fault
simulation, normalizing its runtime to fault simulation time provides
an indication of its computational effort.

The following points can be seen from Table II. The on-chip test
generation logic is able to achieve 100% gate-exhaustive fault effi-
ciency. This is a benefit of storing test data and allowing deterministic
tests to be applied.

The number of on-chip stored bits is a small fraction of the
number of bits in a deterministic gate-exhaustive test set. This is
made possible by the on-chip generation of random tests.

Figure 1 is based on s1423 and demonstrates the tradeoff between
the number of storage bits and the fault efficiency obtained for gate-
exhaustive faults. A similar tradeoff exists for other circuits in Table
II. There is only a small number of circuits for which the best solution
is obtained in iteration 0, and additional iterations are not required.

The normalized runtime is that of the software procedure. The
procedure is based on fault simulation of large numbers of tests to
select the best stored data for the on-chip test generation logic. The
normalized runtime is similar for circuits of different sizes, indicating
that the procedure scales similar to a fault simulation procedure.

The number of deterministic tests in Table II is typically small,
implying that the number of storage bits for deterministic tests is
kept low. When it is zero, the logic in the upper part of Figure 2
consists only of an LFSR. The number of deterministic tests can
be reduced further by increasing the number of random tests applied
based on Si.

The random tests produced by the on-chip test generation logic are
different from the conventional random tests in that they are formed
by random combinations of stored scan vectors, which are derived
from a deterministic test set. The more effective the random tests are
for a circuit, the lower the sizes of Si and Ti,dtrm. This is independent
of other parameters such as the size of the circuit.

V. CONCLUDING REMARKS

This paper described a BIST approach that stores test data on-
chip, and uses the stored test data to generate both random and
deterministic tests on-chip. This approach offers a tradeoff between
the amount of stored test data and the comprehensiveness of the
test set that can be applied. The paper explored this tradeoff in a
specific context where the circuit under consideration has a large
number of short scan chains, allowing storage of scan vectors. The
initial stored test data is based on a stuck-at test set, but the set
of target faults includes single-cycle gate-exhaustive faults. Under
the approach described in the paper, the stored test data is enhanced
gradually by test data from a gate-exhaustive test set, and the coverage

of gate-exhaustive faults is increased gradually. Experimental results
demonstrated this tradeoff for benchmark circuits.
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