Storage-Based Built-In Self-Test for Gate-Exhaustive
Faults

Irith Pomeranz

Abstract— Built-in self-test (B ST") approaches are suitable for in-field
testing since they do not require a tester for storage and application
of test data. They also reduce the security vulnerabilities associated
with loading and unloading of external test data into scan chains. As
technologies evolve, in-field testing needs to address more complex defect
and aging mechanisms that require specific deterministic tests. This can
be addressed by BI1.ST approaches that store test data on-chip, and use
the data for on-chip generation of both random and deterministic tests.
In this case, there is a tradeoff between the amount of stored test data
and the comprehensiveness of the test set that can be applied. This paper
explores this tradeoff in a specific context that has the following main
features. (1) The initial stored test data is based on a stuck-at test set. (2)
The target faults are single-cycle gate-exhaustive faults. (3) The stored
test data is enhanced gradually by test data based on a gate-exhaustive
test set to increase the coverage of gate-exhaustive faults.

Index Terms— Built-in self-test (B ST, gate-exhaustive faults, on-chip
test generation, stuck-at faults.

I. INTRODUCTION

Built-in self-test (BIST) approaches are suitable for in-field
testing since they do not require a tester for storage and application
of test data [1]-[10]. They also reduce the security vulnerabilities
associated with loading and unloading of external test data into scan
chains [3].

As technologies evolve, in-field testing needs to address more
complex defect and aging mechanisms that require specific tests [11]-
[14]. This can be addressed by BIST approaches that store test data
on-chip, and use the data for on-chip generation of both random and
deterministic tests.

Different from hybrid approaches that combine test data compres-
sion with on-chip test generation [15]-[18], a BI.ST approach stores
all the test data on-chip. This is the type of approach considered in
this paper. In this approach, there is a tradeoff between the amount
of stored test data and the comprehensiveness of the test set that can
be applied. The paper explores this tradeoff in the following context.

The circuit under consideration has n scan chains of length [. One
component of the stored test data is a set S; of scan vectors. Using
only scan vectors from S;, an on-chip test generation logic applies a
fixed number of tests referred to as random, where scan vectors are
selected randomly from S;, and a small number of tests referred to
as deterministic that consist of specific scan vectors from S;. The set
of deterministic tests is denoted by 7 g:rm, and it requires additional
storage of test data (indices of scan vectors from S; that form the tests
in T; 4trm). The test set produced on-chip is denoted by 73, and it
changes with S; and 15 q¢rm. The on-chip test generation logic is the
same for every S; and T} 4¢rm, and every circuit. Only its parameters
(e.g., memory and multiplexer sizes) are circuit-dependent.

A deterministic test set T, for single stuck-at faults is used as an
initial source for test data. The test data is a set Sp of scan vectors
based on T, and a set T, q¢rm Of deterministic tests to complement
the random tests based on Sp. With So and To,qirm, and the on-
chip test generation logic, Tp detects all the detectable single stuck-
at faults. The set of single stuck-at faults is denoted by Fi,. The
effectiveness of the random tests is enhanced by using stored scan
vectors from Tsq.

Irith Pomeranz is with the School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, IN 47907, U.S.A. (e-mail: pomer-
anz@ecn.purdue.edu).

The work was supported in part by NSF Grant No. CCF-2041649.

100%7 6

» bits

Fig. 1. Tradeoff between fault efficiency and stored test data.

In addition to stuck-at faults, the set of target faults includes
single-cycle (static) gate-exhaustive faults [19]. These are used for
representing the need to cover a large number of defects with specific
behaviors that are more difficult to detect than stuck-at faults. Gate-
exhaustive faults are suitable for this purpose since their number is
large, and they require more values to be assigned by a test. The
set of detectable gate-exhaustive faults is denoted by Fyc,n, and a
deterministic test set for gate-exhaustive faults is denoted by Tgexp.-
It is also possible to consider a test set for transition faults as an
initial source for test data, and two-cycle (dynamic) gate-exhaustive
faults as additional target faults.

When the pair (So, To,dtrm) is used for on-chip test generation,
the coverage of gate-exhaustive faults may not be complete. An
iterative software procedure produces a series of pairs (So, 70, dtrm),
(S1, Tt dtrm)s - (Sm—1,Tm—1,dtrm). For i > 0, the procedure
obtains S; from S;_1 by adding at least one new scan vector based
on Tyezn. The scan vectors added to S; allow the coverage of gate-
exhaustive faults to be increased when the on-chip test generation
logic is used for (S;, T} dtrm). With (Sm—1, Tn—1,dtrm), complete
coverage of gate-exhaustive faults is achieved. In many cases, the
increased fault coverage is achieved by random tests that use scan
vectors from S;, and T girm = 0.

Figure 1 illustrates the tradeoff explored by the software procedure
that produces the pairs (Si, T} a¢rm) for @ > 0. Figure 1 is based on
the results obtained later for benchmark circuit s1423. A circle with
i above it corresponds to a test set 7;. The horizontal axis in Figure
1 shows the number of storage bits for 7;. The vertical axis shows
the fault efficiency, which is the percentage of detected faults out of
the detectable faults, achieved for gate-exhaustive faults by T;. The
fault efficiency reaches 100% in iteration ¢ = 7.

In Figure 1, when the pair (S1,71,dtrm) is computed in iteration
1, it has a lower number of storage bits than (So, To,dtrm), and a
higher fault efficiency. Therefore, the solution obtained in iteration 1
is preferred over the solution obtained in iteration 0. Overall, there
are seven viable solutions in Figure 1, corresponding to (Si, T5,atrm)
fori=1,2,3,4,5 6and 7.

The approach described in this paper is developed for the case
where a circuit has a large number of scan chains, making the scan
chain length small enough for storage of scan vectors to be feasible.
A large number of scan chains is also used by test data compression
approaches to control the test application time.

The paper is organized as follows. The on-chip test generation logic
is described in Section II. A software procedure for computing the
sets S; and 75 g¢rm is described in Section III. Experimental results
for benchmark circuits are presented in Section IV.

II. ON-CHIP TEST GENERATION

The scan configuration assumed in this paper has n scan chains.
For simplicity it is assumed that all the scan chains have the same
length, [. This can be achieved by padding each scan chain until its

TABLE I
EXAMPLE TEST SET

(a) Scan Vectors

p | O 1 2 3 4 5
sp | OI1 110 000 101 010 001
(b) Test Set
J | 7™ | Jo g1 g2 | tjo tja tjo
0 0 4 1 5 010 110 001
1 0 1 1 3 110 110 101
2 0 2 1 5 000 110 001
3 0 2 2 0 000 000 011
4 1 5 4 5 001 010 001
5 1 5 5 5 001 001 001

length reaches (. Padding is not needed for the physical circuit, only
for the model used by the software procedure to compute the test
data for the on-chip test generation logic.

One component of the test data stored on-chip is a set of scan
vectors, S; = {so, S1, ..., Su—1}. For illustration, Table I(a) shows
the set So obtained for a circuit with n = 3 scan chains of length
l=3.

A test t; is formed by selecting n scan vectors from S;, one for
every scan chain. With scan vectors sj,, Sj;, ..., Sj,,_,, we have that
t; = (Sjo, Sj1s s Sjn_q). For 0 < k < m, the scan vector for scan
chain k is denoted by ¢, = s, .

Table I(b) shows a test set T obtained for the circuit from Table
I(a). For every test t;, Table I(b) shows the indices jo, ji, j2, and
the subtests t; 0, tj,1 and ¢;2. The variable 7; is explained next.

The on-chip test generation logic applies two types of tests. A
random test t; = (Sjq, Sjys .-, Sj,_,) is designated by 7; = 0. In
this case, for 0 < k < n, the scan vector sj, for the subtest ¢; is
selected randomly.

A deterministic test t; = (Sjy,8j,,-.-, 85, _,) is designated by
m; = 1. In this case, the set of indices jo, j1, ..., jn—1 1S stored in an
on-chip memory.

The on-chip test generation logic is illustrated by Figure 2. The
lower part of Figure 2 shows the memory storing the set of scan
vectors S;. The size of the memory is v x [. It also shows scan chain
k of length I. A multiplexer called MU X2k selects one of the scan
vectors from S; depending on the variable called addrk. The number
of bits in addrk is logz(v). The selected scan vector is scanned into
scan chain k. For a test ¢; it defines the subtest ¢; .

The value of addrk is computed by the logic in the upper part of
Figure 2. If only random tests are applied, the dashed part of Figure
2 is not needed, and an LFSR produces the values for addrk. In
general, the deterministic part of the test set T3, T d¢rm, is stored
in a memory of size d X n X logz(v), where d is the number of
deterministic tests. The entries inside 75 q¢rm in Figure 2 correspond
to scan chain k. These are indices of scan vectors that need to be
loaded into scan chain k under the deterministic tests to, ¢1, ..., tqg—1.

A counter denoted by cnt determines which test is applied through
a multiplexer denoted by MUX1k. A count value between 0 and
d—1 corresponds to a deterministic test from 7 g¢rm. A count value
of d corresponds to a random test. In this case, the LF'SR provides
log2(v) bits selecting a scan vector randomly from S;. The counter
stays at d to apply R random tests, for a parameter R.

The memories S; and T g¢rm, as well as the counter and LF SR,
are common to all the scan chains. In the case of the LF'SR, each
scan chain uses a distinct subset of bits to obtain a different random
number. In addition, each scan chain requires two multiplexers.

The overall storage requirements for the two memories are v - | +
d - n -log2(v) bits. The memories dominate the size of the on-chip
test generation logic.

The entire test generation logic, including both multiplexers for

r-—-——>"">">"~>">"777 A
| |
1 Tdom 1 TGL
| |
| |
Fﬁi—r**‘r**—ri*‘{
0k Lk h
:"\74‘* 7\74L774L7\7<{
P L
Lo - - — - -
| | |
r—— r j7 - j 777777 v 7777777 -
be ! ! 0 1 d-1 d !
[MUX1k I
| t | | |
T J
addr &
jj scan chain k
s MUX2k
Fig. 2. On-chip test generation logic.

every scan chain, resides close to the memories, within the outline
marked T'GL in Figure 2. Each scan chain is driven by a single
line, represented by the output of MU X 2k in Figure 2. The routing
overhead is similar to that of test data decompression logic that drives
all the scan chains.

For the output response it is assumed that sequential output
compaction will be performed by output compaction logic such as a
multiple-input shift-register (M ISR) [1].

III. PROCEDURE FOR COMPUTING STORED TEST DATA

This section describes an iterative software procedure for comput-
ing sets of scan vectors S; and deterministic tests 75 q¢rm for on-chip
test generation. For simplicity of discussion, .S; is associated with a
test set 7T; that consists of both random and deterministic tests. The
non-random tests in 75 define T g¢rm.-

A. Overview

The procedure accepts a test set T’s, for single stuck-at faults, and
a test set Tyern, for gate-exhaustive faults. It produces sets of scan
vectors So, S1, ..., Sm—1, with test sets To, 11, ..., Tm—1.

At the beginning of iteration ¢ = 0, the procedure initializes So
based on Ts,, as follows. All the distinct scan vectors of T, are
included in So, and To = T, initially. With this initialization, every
test in Ty can be expressed in terms of scan vectors from So.

At the beginning of iteration ¢ > 0, S; = S;—1 and T; = T;_1.
At the end of iteration 0 < ¢ < m — 2, the procedure adds at least
one scan vector to S;. It adds tests that use the new scan vectors to
T;. The procedure terminates when, at the end of iteration m — 1, it
does not add any scan vectors to Sy,—1.

An arbitrary iteration ¢ proceeds as described next. The procedure
referred to as Procedure 0 is applied first to remove unnecessary scan
vectors from S;. The test set 75 is modified to ensure that it uses only
scan vectors from S;.

The procedure referred to as Procedure 1 first stores the current
test set T; in a test set denoted by T,4nq, and initializes T; to be
empty. All the target single stuck-at faults are included in F,, and
all the target gate-exhaustive faults are included in Fgeqp.

For a parameter R, Procedure 1 includes R random tests in 7;. For
every test it performs fault simulation with fault dropping of F, and
Fyeon. It then uses deterministic tests from T.qnq to detect additional
faults from Fls, and Fyezn using only scan vectors from S;.

All the detectable stuck-at faults from F,, are guaranteed to be
detected by 7 after Procedure 1 is applied. The procedure terminates
if all the detectable gate-exhaustive faults from F.., are detected
by T; as well. Otherwise, Procedure 2 adds to 7} a limited number
of additional deterministic tests based on Ty, to detect additional
gate-exhaustive faults. As much as possible, Procedure 2 uses only
scan vectors that are already included in \S;. When this is not possible,
Procedure 2 adds to 75 tests that require new scan vectors, which are
added to S;. The procedure prefers tests that require the smallest
possible numbers of new scan vectors.

As T; is modified, the procedure maintains fault detection in-
formation for 7;. Fault detection information is obtained by fault
simulation with fault dropping of Fiyq U Fyeqpn under T5. For a fault
f € Fsa U Fyeqn, the first test in T; that detects it is denoted by
taet(r)- For an undetected fault, det(f) = —1. Fault simulation with
fault dropping is also applied at the end of every procedure.

B. Procedure 0

For Procedure 0O all the tests in T; are considered as deterministic.
Procedure 0 associates with every scan vector s, € .S; the number of
times it is used by a test in 7;. This number is denoted by a(sp). The
procedure considers the scan vectors by increasing order of a(sp).
This is based on the expectation that it will be easier to remove
from S; a scan vector that is used fewer times by tests from 7;. The
procedure maintains the variables a(sp) up-to-date as it modifies the
test set. A scan vector s, with a(s,) = 0 is removed from S;.

When the procedure considers s, for removal, let the subset of
tests where s, appears be T'(sp). Let the subset of faults that the
tests in T'(sp) detect be F'(sp). To facilitate the modification of the
tests in 7'(sp), the procedure simulates F'(sp) under T3\ T'(sp). If a
fault f € F(s;) is detected by a test t; € T; \ T'(sp), the procedure
assigns det(f) = 7, and removes the fault from F'(sp).

The procedure considers every subtest t;j such that ¢;, = s,
separately. For ¢; 1, it considers as an alternative every scan vector
sq € S; such that a(sq) # 0 and ¢ # p. To check whether s, is
an acceptable alternative, the procedure assigns ¢; = sq. It then
simulates every fault f € Fsq U Fyepn such that det(f) = j under
the modified ¢;. The modification of ¢; is accepted if all the faults
with det(f) = j are detected. Otherwise, the procedure reassigns
t; 1k = sp. If none of the alternatives to s, is acceptable, the procedure
concludes that s, cannot be removed, and it does not consider other
subtests where s, appears.

The procedure considers the tests in 7'(sp) by decreasing order of
the number of faults they detect. This is based on the expectation
that tests with larger numbers of detected faults are more difficult
to modify. If such a test cannot be modified, the procedure will not
consider other tests in T'(sp).

The procedure considers the replacement scan vectors s, by
increasing order of the number of appearances in T;, a(sq). This
is based on the expectation that a more uniform use of scan vectors
allows faults to be detected more uniformly, and makes it easier to
modify the test set.

After considering all the scan vectors in S; for removal, if any
scan vector was removed from .S;, the procedure performs another
pass over the scan vectors in S;, in case additional scan vectors can
be removed after modifying the test set. Procedure O terminates after
a pass that does not reduce the number of scan vectors in S;.

C. Procedure 1

Procedure 1 initially assigns Teqna = T3, T; = @, and includes all
the target faults in Fis, and Fyeup.

Procedure 1 includes R random tests in 7;, for a parameter R.
A random test t; is constructed by selecting t; ; randomly from S;
(or using the LFSR in Figure 2), for 0 < k < n. The procedure
performs fault simulation with fault dropping of ¢; under FsqoUFgeun,
for every random test ¢;.

Next, the procedure uses tests from Tcqnq as deterministic tests
to detect additional faults from Fsq U Fyezrn. The goal is to ensure
that both the stuck-at and gate-exhaustive fault coverages of T
are not lower than those of T..nq. This ensures that the stuck-at
fault coverage is maintained, and the gate-exhaustive fault coverage
increases monotonically with every iteration until all the detectable
gate-exhaustive faults are detected in the last iteration. For every test
t; € Tcand, the procedure applies the following steps.

The procedure simulates Fsq U Fgepn under ¢;. If no faults are
detected, the procedure does not consider t; further. Otherwise, it
attempts to modify ¢; to increase the number of faults it detects out
of Fsq U Fyeqn. For this purpose, the procedure includes in F'(t;)
all the faults that ¢; detects. It then considers every scan chain 0 <
k < n, and every scan vector s, € S;. If t; x # sp, the procedure
defines a test t;-”Od that is equal to ¢;, except that t;’f,?d = sp. It
simulates the faults in F'(t;) under ¢}y 4 1f all the faults are detected,
it also simulates the faults in Fq U Fiyerp, under ¢;. Let the subset of
detected faults be F(t;’wd). The procedure accepts the modification
of t; if F(t;) C F(¢t]"°%). In this case, it assigns t; = 7" and
F(t;) = F(t7"°%). Otherwise, it discards ¢}

If the number of faults detected by ¢; was increased, the procedure
performs another pass over all the scan chains and all the scan vectors
in S;. The final test ¢; is added to T3, and the faults it detects are
removed from Fs, and Fyeqhn.

After considering every test t; € Tiqna, 13 detects all the faults
from Fsq U Fgegn that Teqnq detects, and possibly additional faults
from Fyern.

D. Procedure 2

Procedure 2 adds to 7; a limited number of tests based on Tyezn.
Its goal in selecting which tests will be added is to detect as many
additional gate-exhaustive faults as possible using only scan vectors
that are already included in S;, or require the addition of as few new
scan vectors to S; as possible. It stops after a limited increase in the
gate-exhaustive fault efficiency is achieved to avoid a large increase
in the storage requirements in a single iteration. The number of tests
from Tyerp that the procedure uses depends on the circuit and the
iteration. The tests are modified as described below to ensure that as
few new scan vectors as possible are added to .S;.

Procedure 2 is applied iteratively until it achieves its goal. In each
pass of Procedure 2, it considers every test t; € Tgeorn. When it
considers t;, it first performs fault simulation of Fye,n under ¢;. If
any faults are detected, the procedure continues with ¢; as follows.

It assigns ¢ = t;, and includes the faults detected by ¢; in a
set F'(t7°"). It also assigns j;“* = —1 for 0 < k < n to indicate
that the scan vectors of t?ew may not be included in S;. It then
considers every scan chain 0 < k < n, and every scan vector s, € S;.
The procedure defines a test t;’wd that is equal to ¢7°*, except that
74 = s, and j;*°* = p. It simulates the faults in F'(¢;) under
t;’wd. If all the faults are detected, it also simulates the faults in Fiyeqp
under ¢;. Let the subset of detected faults be F' (t;’“’d). The procedure
accepts the modification of ¢} if F(t}*) C F(¢7"°). In this
case, it assigns ¢7°* = t7"°% and F(t}°") = F(t}"°?). Otherwise,
it discards t;’wd.

-new -new

If the procedure modified j;“* = —1 into j,;*° > O for at least
one scan chain k, it performs another pass over all the scan chains
with j;““ = —1. When modification of ¢7* ends, let n(t7 ") be the
number of detected gate-exhaustive faults, and m(t7") the number
of scan chains k for which 57 = —1.

If m(t7°) = 0, t7“ uses only scan vectors from .S;, and detects
n(t7") gate-exhaustive faults. In this case, the procedure adds 7"
to T3, and removes the faults it detects from Flc.p. Otherwise, the
procedure defers the decision on ¢7°* to the end of the pass.

At the end of the pass, if no test with m(t7“"") = 0 was added
to T}, the procedure selects the test t?"‘“’ with the smallest value of
m(t;°"), and the largest value of n(¢7“*). It adds to .S; all the new
scan vectors used by 7, i.e., S; = S U{t}5” : 0 <k <n,jr =
—1}. It also adds t7°* to T;.

After adding at least one new scan vector to S;, Procedure 2
terminates if the gate-exhaustive fault efficiency is increased by a
parameter denoted by Agesn. This parameter is needed to ensure
that the gate-exhaustive fault efficiency increases substantially with
every iteration. Procedure 2 also terminates when all the faults in
Fyexn are detected. Before using T in iteration ¢ + 1, the procedure
performs forward-looking reverse order fault simulation to remove
unnecessary tests from 75.

IV. EXPERIMENTAL RESULTS

The software procedure for computing the sets S; and T; was
applied to benchmark circuits.

The following parameter values were used. For a circuit with K
flip-flops, the flip-flops were partitioned into n scan chains such that
n? > K. If necessary, n®> — K flip-flops were added for padding.
The length of a scan chain was [= n. This yields a large number of
short scan chains. Other configurations with the same property can
be used instead.

The required increase in the gate-exhaustive fault efficiency for
every iteration, Agezn, Was set as follows. When the gate-exhaustive
fault efficiency after the first application of Procedure 1 is at least
95%, Agewn = 0.2%. Otherwise, Agezrn = 1%. The circuit name
is followed by ”.1” in this case. These values prevent the procedure
from performing an excessive number of iterations.

When the fault efficiency after the first application of Procedure
1 is lower than 95%, Procedure 2 selects a deterministic test after
considering ten tests from Tye,n that detect new faults. This is
important for limiting the computational effort of the procedure.

To define gate-exhaustive faults, the circuit was partitioned into
two-level subcircuits with at most 10 inputs. Each subcircuit was used
as a gate, and all its gate-exhaustive faults were added to Fyepp. Test
generation was carried out to produce the test set Ty, . Undetectable
faults were eliminated from Fyepp.

The number of random tests was R = 4000|Tsq|. This number
was selected based on experimental results indicating that a small
number of deterministic tests is typically needed for complementing
this number of random tests.

The results for iteration ¢ of the procedure are reported before
Procedure 2 adds new scan vectors to S;. Up to this point, the
procedure utilizes the scan vectors in S; for both random and
deterministic tests (new scan vectors that are added to S; are utilized
for random tests only in iteration i + 1).

Referring to Figure 1, not every iteration yields improved results
compared with later iterations. The results are reported only for
iterations with improved results.

The results are reported in Table II as follows. For most of the
circuits in Table II, there is a row for every iteration that yields an
improved solution until 100% fault efficiency is reached for gate-
exhaustive faults. These circuits are arranged by increasing number

TABLE 11
EXPERIMENTAL RESULTS
bits gexh

circuit K n [i dum vect tot tot/gexh fee. ntime
535932 1764 42 0 0 444 | 18648 0.392 | 100.000 | 9505.74
b04 81 9 |1 1 30 315 0.017 | 100.000 | 1394.00
des_area 400 20| 0 0 431 8620 0.057 | 100.000 | 1659.84
sasc 144 120 0 112 1344 0.089 | 100.000 | 1023.12
simplespi | 169 13] 1 0 47 611 0.015 | 100.000 [8612.06
spi 289 17| 4 1 241 4233 0.008 | 100.000 | 63387.09
systemedes | 324 18| 0 0 224 | 4032 0.125 | 100.000 | 1753.96
usb_phy 121 11] 0 0 43 473 0.049 | 100.000 | 484.20
i2c 169 13| 1 0 60 780 0.022 | 99.339 | 3217.24
i2c 169 13| 3 2 57 897 0.025 99.807 | 7068.20
i2c 169 13| 4 5 60 1170 0.032 | 100.000 | 8998.16
tv80 400 20| 1 128 260 | 28240 0.049 | 99.574 [12073.79
tv80 400 20| 2 129 262 | 28460 0.050 | 99.778 | 24388.65
tv80 400 20| 4 134 287 | 29860 0.052 | 100.000 | 33120.68
bl5 484 22| 1 1503 221 | 269390 0.261 99.539 | 52786.41
bl5 484 22| 2 1626 214 | 290884 0.282 | 99.705 | 76645.83
bl5 484 22| 3 1768 212 | 315832 0.306 | 99.932 | 115207.67
bl5 484 22| 4 1802 206 | 321684 0.312 | 100.000 | 146831.08
wb_dma 784 28| 1 14 209 8988 0.039 | 99.455 | 11906.35
wb_dma 784 28| 2 17 229 | 10220 0.044 | 99.660 | 19847.86
wb_dma 784 28| 3 17 257 | 11480 0.049 | 99.865 | 25788.47
wb_dma 784 28| 4 22 266 | 12992 0.056 | 100.000 | 30586.44
$5378 225 15] 1 0 159 | 2385 0.028 98.833 3729.10
$5378 225 15| 3 0 171 2565 0.030 | 99.238 9174.20
$5378 225 15| 4 0 179 | 2685 0.031 99.440 | 10663.98
$5378 225 15| 5 0 183 2745 0.032 | 99.642 | 13204.55
$5378 225 15| 7 0 193 2895 0.034 | 100.000 | 16628.05
$9234 256 16| 0 145 303 | 25728 0.117 98.493 2576.53
$9234 256 16 | 1 213 232 | 30976 0.141 99.181 8841.67
§9234 256 16 | 2 234 222 | 33504 0.152 | 99.632 | 14736.02
§9234 256 16| 3 262 224 | 37120 0.169 | 99.941 | 20309.77
§9234 256 16| 4 264 221 | 37328 0.170 | 100.000 | 25101.02
51423 100 10| 1 0 53 530 0.067 | 98.609 1241.20
51423 100 10| 2 1 53 590 0.075 98.851 1936.00
s1423 100 10| 3 1 57 630 0.080 | 99.093 2473.00
s1423 100 10| 4 1 59 650 0.082 | 99.335 3153.60
51423 100 10| 5 1 63 690 0.087 | 99.577 | 3681.20
51423 100 10| 6 1 67 740 0.093 99.819 | 4205.00
51423 100 10| 7 1 69 760 0.096 | 100.000 | 4861.20
§13207.1 729 27| 1 0 484 | 13068 0.026 | 90.974 | 26106.04
$13207.1 729 27| 2 0 498 | 13446 0.027 91.992 | 40675.93
$13207.1 729 27| 3 0 522 | 14094 0.028 93.148 | 49713.95
$13207.1 729 27| 4 0 548 | 14796 0.030 | 94.176 | 62855.36
§13207.1 729 27| 5 0 586 | 15822 0.032 | 95.232 | 73768.11
§13207.1 729 27| 6 0 611 16497 0.033 96.345 | 87076.30
$13207.1 729 27| 7 0 633 | 17091 0.034 | 97.420 | 96723.46
$13207.1 729 27| 8 0 648 | 17496 0.035 98.444 | 103565.09
§13207.1 729 27| 9 0 714 | 19278 0.039 | 99.472 | 112481.73
513207.1 729 27|10 0 737 | 19899 0.040 | 100.000 | 122845.27
515850.1 625 25| 0 3 288 7875 0.013 86.801 1509.86
515850.1 625 25| 1 32 349 | 15925 0.025 88.121 5625.45
$15850.1 625 25| 2 60 433 | 24325 0.039 89.297 | 10849.58
$15850.1 625 25| 3 46 521 | 24525 0.039 | 90.465 | 19150.70
$15850.1 625 25| 4 59 607 | 29925 0.048 91.554 | 25021.39
515850.1 625 25| 5 75 699 | 36225 0.058 92.622 | 31400.64
515850.1 625 25| 7 72 908 | 40700 0.065 94.663 | 46743.86
$15850.1 625 25| 8 66 1002 | 41550 0.066 | 95.694 | 59461.09
$15850.1 625 25|10 66 1233 | 48975 0.078 | 97.706 | 83019.74
$15850.1 625 25|11 81 1356 | 56175 0.089 | 98.709 | 96543.31
515850.1 625 25|12 88 1420 | 59700 0.095 99.733 | 114753.56
515850.1 625 25|13 95 1448 | 62325 0.099 | 100.000 | 127918.80
bl4.1 2890 17| 0 216 250 | 33626 0.045 85.838 7310.89
bl4.1 2890 17| 1 287 218 | 42738 0.057 86.705 | 16520.68
bl4.1 289 17 | 2 377 225 | 55097 0.074 87.892 | 25899.69
bl4.1 289 17 | 3 477 243 | 69003 0.093 88.984 | 36228.38
bl4.1 280 17| 4 662 278 | 106012 0.142 90.216 | 49101.41
bl4.1 2890 17| 5 804 281 | 127789 0.172 | 91.122 | 64176.50
bl4.1 289 17| 6 991 284 | 156451 0.210 | 92.200 | 77742.39
bl4.1 289 17 | 7 1148 309 | 180897 0.243 93.202 | 92378.23
bl4.1 289 17 | 8 1287 341 | 202708 0.272 | 94.152 | 109924.09
bl4.1 280 17| 9 1453 346 | 228191 0306 | 95.172 | 126674.31
bl4.1 280 17 | 10 1602 349 | 251039 0.337 | 96.212 | 148285.70
bl4.1 289 17 | 11 1793 366 | 280551 0.377 97.381 | 170142.53
bl4.1 289 17 | 12 1928 377 | 301393 0.405 98.318 | 190629.62
bl4.1 289 17 | 13 2057 398 | 321487 0.432 | 99.242 | 219983.75
bl4.1 280 17 | 14 2181 414 | 340731 0.457 | 100.000 | 240957.95
538417 1681 41| 0 53 1393 | 81016 0.029 | 96.530 | 20061.56
538584 1521 39| 0 36 577 | 36543 0.043 99.509 | 5836.27

of iterations that produce improved solutions. Additional circuits
are considered with a single iteration to demonstrate the results
achievable for them.

After the circuit name, column K shows the number of flip-flops.
Column n shows the number of scan chains. This is also the number
of flip-flops in a scan chain.

Column ¢ shows the iteration. Column dtrm shows the number
of deterministic tests in 75 g¢rm. Column vect shows the number of
scan vectors in .S;.

Column bits shows the number of storage bits required for S; and
T3, datrm (subcolumn tot), and the number of storage bits divided by
the number of bits required for storing Tyeqn (subcolumn tot/gexh).

The stuck-at fault coverage of 7T; is always equal to the fault
coverage of T,,, which detects all the detectable stuck-at faults.
Column gexh f.e. shows the gate-exhaustive fault efficiency achieved
by T;. Column ntime shows the normalized runtime of the software
procedure, which is the runtime divided by the runtime for fault
simulation with fault dropping of Fs, under 7., and Fyc,, under
Tgexn. Since the software procedure is based on repeated fault
simulation, normalizing its runtime to fault simulation time provides
an indication of its computational effort.

The following points can be seen from Table II. The on-chip test
generation logic is able to achieve 100% gate-exhaustive fault effi-
ciency. This is a benefit of storing test data and allowing deterministic
tests to be applied.

The number of on-chip stored bits is a small fraction of the
number of bits in a deterministic gate-exhaustive test set. This is
made possible by the on-chip generation of random tests.

Figure 1 is based on s1423 and demonstrates the tradeoff between
the number of storage bits and the fault efficiency obtained for gate-
exhaustive faults. A similar tradeoff exists for other circuits in Table
IL. There is only a small number of circuits for which the best solution
is obtained in iteration 0, and additional iterations are not required.

The normalized runtime is that of the software procedure. The
procedure is based on fault simulation of large numbers of tests to
select the best stored data for the on-chip test generation logic. The
normalized runtime is similar for circuits of different sizes, indicating
that the procedure scales similar to a fault simulation procedure.

The number of deterministic tests in Table II is typically small,
implying that the number of storage bits for deterministic tests is
kept low. When it is zero, the logic in the upper part of Figure 2
consists only of an LFSR. The number of deterministic tests can
be reduced further by increasing the number of random tests applied
based on S;.

The random tests produced by the on-chip test generation logic are
different from the conventional random tests in that they are formed
by random combinations of stored scan vectors, which are derived
from a deterministic test set. The more effective the random tests are
for a circuit, the lower the sizes of S; and 75, 4¢rm . This is independent
of other parameters such as the size of the circuit.

V. CONCLUDING REMARKS

This paper described a BIST approach that stores test data on-
chip, and uses the stored test data to generate both random and
deterministic tests on-chip. This approach offers a tradeoff between
the amount of stored test data and the comprehensiveness of the
test set that can be applied. The paper explored this tradeoff in a
specific context where the circuit under consideration has a large
number of short scan chains, allowing storage of scan vectors. The
initial stored test data is based on a stuck-at test set, but the set
of target faults includes single-cycle gate-exhaustive faults. Under
the approach described in the paper, the stored test data is enhanced
gradually by test data from a gate-exhaustive test set, and the coverage

of gate-exhaustive faults is increased gradually. Experimental results
demonstrated this tradeoff for benchmark circuits.

REFERENCES

[1] P. H. Bardell, W. H. McAnney and J. Savir, Built—In Test for VLSI

Pseudorandom Techniques, Wiley Interscience, 1987.

I. Pomeranz and S. M. Reddy, A Storage Based Built-In Test Pattern

Generation Method for Scan Circuits Based on Partitioning and Reduction

of a Precomputed Test Set”, IEEE Trans. on Computers, Nov. 2002, pp.

1282-1993.

S. Pateras, "Security vs. Test Quality: Fully Embedded Test Approaches

are the Key to Having Both”, Intl. Test Conf., 2004, Panel P2.2, p. 1413.

D. Xiang, M. Chen and H. Fujiwara, “Using Weighted Scan Enable

Signals to Improve Test Effectiveness of Scan-Based BIST”, in IEEE

Trans. on Computers, Dec. 2007, Vol. 56, No. 12, pp. 1619-1628.

[5] R. S. Oliveira, J. Semiao, I. C. Teixeira, M. B. Santos and J. P. Teixeira,
”On-line BIST for Performance Failure Prediction under Aging effects in
Automotive Safety-critical Applications”, in Proc. Latin American Test
Workshop, 2011, pp. 1-6.

[6] F. Reimann, M. Glas, J. Teich, A. Cook, L. Rodrguez Gmez, D. Ull, H.-
J. Wunderlich, P. Engelke and U. Abelein, ”Advanced Diagnosis: SBST
and BIST Integration in Automotive E/E Architectures”, in Proc. Design
Autom. Conf., 2014, pp. 1-9.

[7]1 S. U. Hussain, S. Yellapantula, M. Majzoobi and F. Koushanfar, ”"BIST-
PUF: Online, Hardware-Based Evaluation of Physically Unclonable Cir-
cuit Identifiers”, in Proc. Intl. Conf. on Computer-Aided Design, 2014,
pp. 162-169.

[8] R. Wang, K. Chakrabarty and S. Bhawmik, ”Built-In Self-Test and

Test Scheduling for Interposer-Based 2.5D IC”, ACM Trans. on Design

Automation, Vol. 20, No. 4, Sep. 2015, Art. 58.

D. Xiang, X. Wen and L. Wang, "Low-Power Scan-Based Built-In Self-

Test Based on Weighted Pseudorandom Test Pattern Generation and

Reseeding”, in IEEE Trans. on VLSI Systems, March 2017, Vol. 25,

No. 3, pp. 942-953.

[10] O. E. Erol and S. Ozev, "Knowledge- and Simulation-Based Synthesis
of Area-Efficient Passive Loop Filter Incremental Zoom-ADC for Built-
In Self-Test Applications”, ACM Trans. on Design Automation, Vol. 24,
No. 1, Jan. 2019, Art. 3.

[11] A. H. Baba and S. Mitra, "Testing for Transistor Aging”, in Proc. VLSI
Test Symposium, 2009, pp. 215-220.

[12] Y. Sato, "Circuit Failure Prediction by Field Test - A New Task of
Testing”, in Proc. Intl. Symp. on Defect and Fault Tolerance in VLSI
Systems, 2010, pp. 69-70.

[13] S. Jin, Y. Han, H. Li and X. Li, “Unified Capture Scheme for Small
Delay Defect Detection and Aging Prediction”, IEEE Trans. on VLSI
Systems, May 2013, Vol. 21, No. 5, pp. 821-833.

[14] A. Sivadasan, R. J. Shah, V. Huard, F. Cacho and L. Anghel, "NBTI
Aged Cell Rejuvenation with Back Biasing and Resulting Critical Path
Reordering for Digital Circuits in 28nm FDSOI”, in Proc. Design,
Automation & Test in Europe Conf., 2018, pp. 997-998.

[15] A.Jas, C. V. Krishna and N. A. Touba, "Weighted Pseudorandom Hybrid
BIST”, IEEE Trans. on VLSI Systems, Dec. 2004, Vol. 12, No. 12, pp.
1277-1283.

[16] S. Wang, K. J. Balakrishnan and S. T. Chakradhar, ”XWRC: Externally-
Loaded Weighted Random Pattern Testing for Input Test Data Compres-
sion”, Intl. Test Conf., 2005, Paper 24.2, pp. 1-10.

[17] M. Filipek, G. Mrugalski, N. Mukherjee, B. Nadeau-Dostie, J. Rajski,
J. Solecki and J. Tyszer, "Low-Power Programmable PRPG With Test
Compression Capabilities”, IEEE Trans. on VLSI Systems, June 2015,
Vol. 23, No. 6, pp. 1063-1076.

[18] Y. Liu, N. Mukherjee, J. Rajski, S. M. Reddy and J. Tyszer, "Deter-
ministic Stellar BIST for In-System Automotive Test”, in Proc. Intl. Test
Conf., 2018, pp. 1-9.

[19] E. J. McCluskey, ”Quality and Single-stuck Faults”, in Proc. Intl. Test
Conf., 1993, p. 597.

[2

—

3

—

[4

finar}

[9

—

