Combining Filtering and Cross-Correlation Efficiently for
Streaming Time Series

SHENG ZHONG, University of New Mexico
VINICIUS M. A. SOUZA, Pontificia Universidade Catélica do Parana
ABDULLAH MUEEN, University of New Mexico

Monitoring systems have hundreds or thousands of distributed sensors gathering and transmitting real-time
streaming data. The early detection of events in these systems, such as an earthquake in a seismic monitoring
system, is the base for essential tasks as warning generations. To detect such events is usual to compute pair-
wise correlation across the disparate signals generated by the sensors. Since the data sources (e.g., sensors)
are spatially separated, it is essential to consider the lagged correlation between the signals. Besides, many
applications require to process a specific band of frequencies depending on the event’s type, demanding a
pre-processing step of filtering before computing correlations. Due to the high speed of data generation and
a large number of sensors in these systems, the operations of filtering and lagged cross-correlation need to be
efficient to provide real-time responses without data losses. This article proposes a technique named FilCorr
that efficiently computes both operations in one single step. We achieve an order of magnitude speedup by
maintaining frequency transforms over sliding windows. Our method is exact, devoid of sensitive parame-
ters, and easily parallelizable. Besides our algorithm, we also provide a publicly available real-time system
named Seisviz that employs FilCorr in its core mechanism for monitoring a seismometer network. We demon-
strate that our technique is suitable for several monitoring applications as seismic signal monitoring, motion
monitoring, and neural activity monitoring.

CCS Concepts: « Information systems — Data streaming;

Additional Key Words and Phrases: Time series, correlation, filtering, streaming, seismic monitoring, real-
time monitoring systems

ACM Reference format:

Sheng Zhong, Vinicius M. A. Souza, and Abdullah Mueen. 2022. Combining Filtering and Cross-Correlation
Efficiently for Streaming Time Series. ACM Trans. Knowl. Discov. Data. 16, 5, Article 100 (May 2022), 24 pages.
https://doi.org/10.1145/3502738

1 INTRODUCTION

Large monitoring systems such as a network of seismic stations or forest fire detection systems
typically have hundreds of distributed sensors gathering and transmitting real-time and streaming

This material is based upon work supported by the National Science Foundation under #0IA-1757207 and #CNS-2008910.
Authors’ addresses: S. Zhong and A. Mueen, University of New Mexico, Albuquerque, New Mexico 87131; emails: {zhongs,
mueen}@unm.edu; V. M. A. Souza, Pontificia Universidade Catélica do Parana, Curitiba, Parana, Brazil; email: vinicius@
ppgia.pucpr.br.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1556-4681/2022/05-ART100 $15.00

https://doi.org/10.1145/3502738

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

https://orcid.org/0000-0002-5016-7330
https://doi.org/10.1145/3502738
mailto:permissions@acm.org
https://doi.org/10.1145/3502738

100:2 S. Zhong et al.

L
e WRA

\H‘u ‘
QMR L I i Wil
pp—— “]; ‘:‘M‘ ks S

6m 40
m sec ‘ J N U
R —— i

A |

\&5 : .. e 50 3m 16sec
- Q S MKAR

ﬁ M7.8 Earthquake

25-Apr-2015 N i
, 06:11:24.19 WRA ‘
30s L L L Il 1
‘) 06:15:43 06:16:43 06:17:43 06:18:43 06:19:43 06:20:43
v &L Time at MKAR on Apr 25, 2015

Fig. 1. (left) A M7.8 earthquake in Gurkha, Nepal, on Apr-25, 2015. (right) The signals recorded at three
different stations at different times due to the spatial separation of sensors. Data collected from IRIS [10].

data. An event in these systems, like an earthquake or an abnormal higher temperature, creates
dynamic responses at these sensors. The responses can be arbitrarily lagged because of sensors’
spatial separation and be limited to a specific band of frequencies depending on the type of event.
For these systems, real-time event detection is essential for decision-making or alert generation.
We demonstrate an algorithm to correlate streaming data generated from distributed sensors in real-
time to detect events.

A concrete application where our algorithm can be employed is seismic monitoring. In this ap-
plication, when an earthquake happens, seismometers (i.e., seismic sensors) across the earthquake
region observe the wave at varying times for varying duration, while the signals recorded at these
sensors are often correlated. For better understanding, in Figure 1, we show a magnitude 7.8 event
in Gurkha, Nepal, on April 25, 2015. Three waveforms recorded at three stations (marked red in
the map) show a high correlation when the lag due to propagation delay is considered. The seismic
wave generated in Nepal reaches Japan in about eight minutes and Australia in about 11 minutes.

In addition, filtering is a mandatory operation in seismic signal processing to remove undesired
noise from data for events. We illustrate the importance of filtering in Figure 2. The raw wave-
forms rarely demonstrate a correlation between events. In contrast, waveforms filtered between
0.4 Hz to 3 Hz achieve a higher correlation. For many applications, mainly those involving digital
signal processing, certain properties of data are made explicit when the signal is represented in the
frequency domain [25]. Thus, filtering is also essential to extract descriptive features for machine
learning models.

In a monitoring system that consumes streaming data from hundreds of sensors, computing
lagged correlation (or asynchronous correlation) can be challenging because of the fast data rate, a
large number of stations, and the necessity for accurate correlation values. Although the problem
has been studied for decades, none of the existing methods such as BRAID [21], COLR-tree [1],
or StatStream [30]), can monitor one hundred seismometers at a 10 Hz rate on a single work-
station, a usual setting for many systems. The main reason for the failure of these methods is
the data-dependent pruning, projection, or indexing technique. Seismic traces are mostly white
noise (except when events happen), stressing the algorithms falling behind the streams. In contrast,
none of these algorithms are amenable to requirements of data pre-processing, such as filtering.
Hence, pre-processing must always be done before correlation computation, resulting in a loss of
efficiency.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series 100:3

x10° x10¢
2 15 4
15 1 3
1 05 2
05 0 i
[) 05 0
r 3 3
Ey s 3
E 3

4 -
0 2000 4000 6000 8000 10000 12000 25 ¢ 2000 4000 6000 8000 10000 12000 40 2000 4000 6000 8000 10000 12000

1500 0
400
1000 300 e
500 200
0 100 200
500 0 0
-1000 3% -200
1500 3% -400

3
0 2000 4000 6000 8000 10000 12000 400 o 2000 4000 6000 8000 10000 12000 60 g 2000 4000 6000 8000 10000 12000

Fig. 2. The top row shows raw waveforms with no clear seismic signal. The bottom row shows filtered wave-
forms of the corresponding raw waveforms in the top row. Note the decrease in absolute value in the y-axis
and the increased visibility of the signal. The filter band is 0.4 Hz to 3 Hz. The average lagged correlation of
all three pairs of raw signals is zero. The average lagged correlation of all three pairs after filtering is 0.53.

In this aricle, we propose an algorithm, FilCorr—Filtered Lagged Correlation, to merge fil-
tering and lagged correlation computation to extract data-independent efficiency. Our algorithm
efficiently maintains frequency information over the stream and calculates correlation in the fre-
quency domain. The technique is exact, devoid of sensitive parameters and easily parallelizable.
FilCorr was first introduced in our previous work [28]. We experimentally show that our tech-
nique is suitable for monitoring applications where the lagged correlation of filtered time series
is required, such as seismic event monitoring, motion monitoring, and neural activity monitoring.
This article introduces a new real-time seismic events monitoring system (SeisViz) that exploits
the FilCorr algorithm to monitor high-speed data streams. Our implementation can monitor one
hundred seismic stations at a 10 Hz rate without any delay. A demonstration of Seisviz captur-
ing past earthquakes is available on our website [29], and the system for real-time monitoring is
available at www.seisviz.com. This extended version explains algorithmic details to support its im-
plementation using different programming languages. We perform new experiments concerning
the parameter sensitivity of FilCorr and discuss their parallelization on multiple processing units
and how FilCorr can work with other types of filters. Additionally, we introduce two new case
studies on neuroimaging and motion-capture data, demonstrating the applicability of FilCorr.

The main contributions of this work are summarized below:

— We demonstrate a working system to cross-correlate hundreds of high-speed streams in
real-time at 10 Hz speed using a conventional workstation;

— We merge digital filters and correlation computation in one combined step to achieve time
and space efficiency;

— We show three case studies in which such high-speed lagged correlation help to detect events
of interest.

The rest of the article is organized as follows. In Section 2, we present the general definitions
related to streaming time series and notation employed throughout the article. In Section 3, we
discuss related work. In Section 4, we introduce our proposed algorithm FilCorr. In Section 5, we
discuss the performance of our proposed algorithm. In Section 6, we present three case studies in
which FilCorr is employed to compute the lagged correlation of filtered data. Finally, our conclu-
sions and future works are presented in Section 7.

2 BACKGROUND AND NOTATION

We define time series as a sequence of observations, and they are in the form of real numbers
measuring a quantity at a fixed sampling rate. A streaming time series is an unbounded sequence
of observations generated at a fixed rate. Table 1 shows the symbols and definitions considered in
our discussions. The relationships of main variables are also illustrated in Figure 3. We use s* to

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

www.seisviz.com

100:4 S. Zhong et al.

Table 1. Symbols and Definitions

Symbol Definition
X Streaming time series with ID x

N Total number of streams that a system is processing

s*[¢] The observation value of stream s* at time ¢

f* Sampling rate of stream s*

fs Lower bound frequency of the bandpass filter in Hz

fr Upper bound frequency of the bandpass filter in Hz

m Length of basic windows in number of observations

I Lag size in number of observations

wf The basic window in s* at time ¢, includes m observations:
{s*[t—m+1]...s%[¢t]}

wry The filtered basic window, filtered version of w} in the time domain

W The frequency window, discrete Fourier transformed version of w}*

wpr I}Z The filtered frequency window of W;* which only contains coefficients

corresponding to frequencies from f to f;

sy The sliding window in s* at time ¢, covers observations in range

{s*[t = I - m+1]..s*[#]} includes (I + 1) basic windows: {wY ,..w}}
wi [j] Jjth element of the basic window wy, wr[j] = s¥[t —m + 1+ j]
lcorrfy Lagged correlation value between s} and sty at time ¢

X B
corry !t,z Correlation value of w;‘l and wty

step Gap between two successive correlation computation in number of observations.

If step = 10 and the first output is lcorrlxy then the next output is lcorrl);y

eSS
i Sliding window: s% step=2 |

[| ! 1

s*1] | s*12] | s*13] | s*141 | s*151 | s*16) | s*171 | s*18] | s*19] | s*1201 |

X
[W4_ le wx
e w%‘ e 8 wg

L wE

Basic window: w¥

Fig. 3. Examples of various windows on a stream, where m = 4,1 = 3, and step = 2.

represent a particular streaming time series x. We define the basic window as a continuous segment
of a time series using w*. A basic window of size m from time series s* at time t is denoted by wy
which contains observations from s*[t — m + 1] to s*[¢]. We can extract at most n — m + 1 basic
windows of length m from a long time series of length n >> m. Adjacent basic windows are not
independent of each other, overlapping basic windows are trivially close in the high dimensional
space.

Filtering: An essential pre-processing task for time series required by many applications. Fil-
ters are most commonly used to remove undesirable components from a time series. There are
many types of filters useful in various domains. All filters have response functions convolved with
a signal to apply the filter. Such response functions contain relative weight for each frequency.
In an analytical form, the weights are non-zero for all frequencies. However, many weights are
significantly smaller than the rest in practice, allowing us to cut off and keep only the necessary
frequencies. Most applications employ a band that focuses on the need of the application. For ex-
ample, seismic monitoring uses up to 10 Hz [23], and EEG monitoring uses a gamma activity band
between 30 Hz-50 Hz [5]. In this work, we assume that the given filter band is a contiguous set
of frequencies, and all frequencies are equally important. This is also known as a box filter or

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series 100:5

Frequency window W{* with 10 observations (1 Sec. long, f* = 10Hz), W = FFT(w{)
[wzpo) | wira) [w2 | wep3) | wiral [wes) | welel | w7y | wis] | wea |

Apply a 2-3Hz ideal bandpass filter

[0 [o [wpalwpl] o [o [o [wiz|wel[o |

l Apply Eq. 2 on non-zero terms

[wrEo | wia] [w2l | wiEs | w4l | wis) | wiitel | w71 | wxisl | wiEsl |

w'¥ filtered basic window, which is filtered version of w{

Fig. 4. Running example of how to derive the filtered frequency window and filtered basic window.

ideal bandpass filter. Our proposed method is extendable to a non-contiguous set of frequencies
with varying weights, i.e., other types of filters. We define the frequency window W as a win-
dow that contains all the frequency components of the basic window w}, and each W}*[k] where
k =0,1,2,...,m— 1 are defined in Equation (1). Note i = V=1, W*[k] is a complex number.

m—1
T %/ 4 A
= > wiljle M. (1)
J=0
We use f* in Hz to represent the sampling rate of the streaming time series s* and the filtered

basic window w; to denote the filtered version of w}. If we apply a box filter with a band from f;
to f; in Hz (0 < f5 < f3), then w7 can be derived from Equation (2):

. L m) m=Lm)

. i2m 2wy

wilil=— | > WKW T W kle W |, (2)
k=1Lm) k=m— L m]

Figure 4 shows a running example of how to derive the th | and wr}. Note that there is a corner

case when m is even and f; = g, then w¥s[j] is equals to %(ZZ Tm}sﬁ/ﬂ W [k]e o kI, The

Fourier transform of w7 will only contains non-zero components that corresponding to frequency
from f; to f; in WX If fy = 0 and f; = Nyqu1st frequency), then w; is identical to the basic
window wy.

Correlation computation in the frequency domain: If we are given two basic windows
w; and w?z, Pearson’s correlation coefficient between them is defined in the time domain as
Equation (3):

W U L] = (!

mao (wy,)o(wtyz)

Xy _
corrmz =

©)

To compute the correlation in the frequency domain, we can exploit Parseval’s theorem [16, 18],
which is expressed as Equation (4) for the discrete Fourier transformation:

m—1 1 m—1
2 WD = — 3 Wk, @)
j=0 k=0

Based on Equation (4), we can compute Equation (3) in the frequency domain: p(w;) equals

@ since W*[0] = X wy[j]. o(w})) equals \/ZWTXU]Z — [p(w})]? in the time domain and the
> w¥[j]* term can be computed in the frequency domain by directly applying Equation (4). Since

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

100:6 S. Zhong et al.

the discrete Fourier transform is a linear operation, Parseval’s theorem can also be expressed as
Equation (5) with two signals.

m—1

DUl - W = - 3 WK - WK)
j k=0

~

Based on Equation (5), we can get Equation (6) to compute Zj";)l wx[j]w! [j]. Thus, we show
how to compute each term of Equation (3) in the frequency domain.

m-1 m-1 m—1
% (Z WKL + > IWPTP = - 1w [k] - Wty[k]ﬁ), ©
k=0 k=0 k=0

Intuition: Computing correlation values in the frequency domain is more efficient when we have
a bandpass filter. Based on Equation (2), the computation of correlation in the frequency domain
only takes time O(B), where B is the bandwidth in a number of frequency components.

Problem Statement: Given N streaming time series, a frequency band (f;, f;), and a maximum
allowable lag I/, compute the Pearson’s correlation coefficients for all pairs of streaming time series
over a sliding window up to the given lag [.

We argue in this article, with the empirical case study, this problem is very practical. In most
domains, filtering can get rid of unwanted signals to compute correlation on right signals; and a
reasonable maximum lag always exists, beyond which no correlation coefficient is meaningful.

3 RELATED WORK

Lagged correlation is a problem that has been studied for decades [1, 21, 30]. However, none of the
existing methods consider a set of features required by modern applications that monitor hundred
of sensors in real-time. Based on these requirements and FilCorr properties, we categorize the
related works to our proposal according to four groups, as follows.

Lagged Correlation Computation: Computing lagged correlation, or cross-correlation, on of-
fline data is a fundamental operation that is benefited from Fast Fourier Transform. Researchers
have proposed an online algorithm for lagged correlation computation named BRAID [21]. How-
ever, the method samples frequency coefficients in a logarithmic manner to approximate the cor-
relation value. Moreover, the method computes correlations over the entire stream, unlike our
method that computes over a sliding window in real-time. For lagged correlation computation,
one may consider offline indexing methods such as iSAX [24] and COLR-tree [1]. However, such
offline indexes suffer from many modification (insert or delete) operations over correlation com-
putation.

Real-Time Correlation Computation: Efficient all-pair correlation computation for stream-
ing data is no longer an active research problem. StatStream [30] is a technique that exploits a few
Fourier coefficients to prune improbable pairs quickly. Similarly, ParCorr [27] performs random
projections to prune improbable pairs without redundancy due to the sliding window. Hardware-
based techniques are often used for computation at MHz to GHz rate [9]. However, it is necessary
to note that none of these methods consider lagged correlation after filtering.

Frequency Domain Correlation Computation: Frequency domain features are widely em-
ployed for various tasks; however, we consider our work a pre-process engine for downstream
machine learning tasks, unlike many related works that use frequency domain features in machine
learning tasks. For instance, Random Interval Spectral Ensemble (RISE) [2] uses spectral fea-
tures for classification tasks, and various techniques from [26] utilize frequency features for deep
learning. Many algorithms also exploit frequency as a computation space for dimension reduction

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series 100:7

Table 2. Capabilities of FilCorr and Related Work

FilCorr ParCorr [27] BRAID [21] COLR-Tree [1] StatStream [30]

Data-independent v X v X X
Filtering v - X X -
Lagged correlation v/ X v X X
Real-time v v - v v
Exact v v X - v
Parallel - v - - -

The symbol v'represents a claimed capability; — represents extendable capability, and
X represents unknown.

purposes, such as the techniques proposed by [14, 23] calculate the correlations in the frequency
domain. However, most of the works consider the offline nature of computation.

Filtered Correlation Computation: In this category, our method is unique. To the best of our
knowledge, no work exploits filtering operation to extract efficiency in correlation computation.
It is somewhat surprising considering the widespread filtering usage for processing real-time data
captures. The novelty in our technique is that the speedup is not data-dependent, unlike any of
the aforementioned work.

In Table 2, we present a comparison of the main capabilities of FilCorr concerning state-of-the-
art algorithms for cross-correlation computation over multiple streaming time series. Some capa-
bilities are not demonstrated but are trivially achievable with simple extensions of the algorithms.
FilCorr comprehensively covers capabilities across several existing works, making it unique in the
suite of correlation computing algorithms.

4 FILCORR: FILTERED LAGGED CORRELATION

The primary motivation of FilCorr is the need for systems to compute lagged correlation of filtered
high frequency streaming time series from distributed sensors, such as seismic event monitoring.
These systems require monitoring hundreds of sensors responsible for generating data at high
speed. Surprisingly, none of the existing methods from the literature can deal with all of these
requirements.

In this section, we present our solution in detail. For simplicity but without loss of generality,
we assume all streams have the same sampling rate f, no discontinuity (no data loss during the
transmission) and the observations are all aligned, which means they all have timestamps in set
{1,2,3...,t=2,t = 1,¢,...}.

4.1 Lagged Correlation

We use lcorr,” to denote the lagged correlation value at time ¢ between s* and sY. It is defined in
Equation (7).
lcorry? = Max(corrff:,corr;i?); tie[t—11t]. (7)

Icorr;? is the largest Pearson’s correlation coefficient value among the correlations between the
most recent basic windows at time ¢ and all the previous basic windows from time ¢ —[to t. Such a
strategy can cover all possible cases when an event appears in different streams at different time.

Case 1: No lag. The event appears in both streams at the same time. Icorr,” equals to corr,,
which is the correlation value between basic window w and w;.

Case 2: The event appears in sY first then in s* at time ¢, such scenario will be captured by
computing correlation between w; and WZ-' te[t—-1t—1].

Case 3: Similar to case 2, the event appears in s* first then in s¥ at time . Then Icorr, ¥ will be
located among correlations between w; and wr.ti € [t—1Lt—1]

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

100:8 S. Zhong et al.

Naive algorithm
wi
FFT lAlgo 1, line 13
"""""""""" FilCorralgorithm
WE
. . Update: t=t+1
Ideal Bandpass Flltcrl Algo 1, line 14-16 Wi | t Algo 2
keep non-zero) 4 fs line 12-15
f; ft . e ft
00 Wt"[m?s]...Wt"[m? 00 smd wg‘[m;]...wg‘[mT
IFFT l Algo 1, line 17
Algo 2
Wlx line 16
t
§1§°1; — orré{z - - f
11 y _S y It y
W’¥ | W [m f]. LW [m f] f |fs

Fig. 5. Comparison between Naive algorithm (left) and FilCorr (right) for computing a correlation between
two basic windows. The keep non-zero operation that bridges Naive and FilCorr only needs to perform once
to initiate the FilCorr, and then it can update the filtered frequency window from the previous one.

To combine all cases, we define the sliding window s¥ and s;. Each sliding window will cover all
(I + 1) basic windows that are necessary to compute Icorr, . The relations are shown in Figure 3.

To represent this process with code, we have line 3 to line 10 in Algorithm 1 and line 5 to line 11
in Algorithm 2. It takes the last basic window from one sliding window and computes correlation
with all basic windows in another sliding window and vice versa. It returns the largest value as
the value of the lagged correlation between the two sliding windows.

4.2 Lagged Correlation with Filtering

The following discussions are based on the ideal bandpass filter, which has frequency response
values equal to 1 for frequencies in the band, and 0 for frequencies outside the band. For any
other known frequency response, we can apply FilCorr trivially. Before diving into the details of
algorithms, Figure 5 illustrates the high-level procedures to compute the correlation between two
filtered basic windows for both Naive and FilCorr algorithms.

Naive approach: A straightforward approach to filter time series and compute lagged corre-
lation. For the filtering, the naive approach will transform each basic window to the frequency
domain, filter out frequency components outside the filter band before transforming back to the
time domain. This process shows in filter function with lower cutoff frequency as f; and higher
cutoff frequency as f; in Algorithm 1.

We define the filtered basic window wr7, as the filtered version of w}. wr¥ and w have the same
length. Unlike two successive basic windows, ws; and wr}, , are independent and do not share the
same overlapping values.

Once all the filtered windows in s¥ and s} are calculated, we can compute lcorr,” by calling
the function LagFilterCorr in Algorithm 1 with parameters (s}, sf, I, m, f, fs, ft). The oneCorr
function is based on Equation (8) derived from Equation (3) by substituting wr} for w*.

-1 Taop¥ [y
corr™Y = im0 wri lwre, U] = mp(wri) u(wry, ®
fitz mo(wl’t‘l)a(wrz)

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series 100:9

We can avoid some redundant computation by storing sums, means and standard devia-
tions of all filtered windows, which can be computed from Equations (9), (10), (11). Thus, only

j”;)l wry ']w!?2 [J] needs to be computed for each pair of filtered windows. In our implementa-
tion, only one copy of a filtered window wr} and its statistics are stored.

Z wry = ’"Z—: wr¥ [, ©)
=0

oy = 28 (10
X[i12
o) = e (1)

ALGORITHM 1: NAIVE

Function LagFilterCorr(sf, s?, Lm, f, fs, ft)
1 wir — filter(w}, f, fs, 1)
) w?/&filter(w?,f,fs,ft)

3 curMax « oneCorr (w7, wty/, m) //case 1
4 fortj=t—-1:t—1do
5 wfi/ — filter(wfi,f,fs,ft)
6 WZ_/ — filter(wi,f,fs,ft)
7 tmpl « oneCorr(w;‘/, wi/, m) //case 2
8 tmp2 «— oneCorr(w;‘l_/, w?/, m) //case 3
9 curMax = max(curMax, tmp1, tmp2)
end

10 return curMax

end

Function filter(w}, f, fs, fi)

11 LB = |mfs/f]

w | UB=lmfi/f]

13 W7 < FFT(wy)

14 W0 : LB=1] <0

15 W [UB+1 : m—UB-1] «0
16 WS [m—-LB+1: m-1] <0
17 return IFFT(W}7)

end
Function oneCorr(w;‘l, wtyz, m)

| return (w3 Ulw] = mpu(wi Ju(wi)1/[mo (i o ()]
end

Proposed approach: We propose combining the filtering and correlation computation in one
step to speedup the computation of lagged correlation on filtered time series. Such an approach
can improve not only time efficiency but also space efficiency.

We define the frequency window W, which is the Fourier transformed version of basic window

wy. WY IJJ:’ as the filtered frequency window which only contains half coefficients corresponding

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

100:10 S. Zhong et al.

to frequencies from f; to f; in W*. W}* IJJ? will only keep one half of elements to save mem-
ory space since elements in W} are complex conjugate symmetric. The main idea of our ap-
proach is to incrementally updates filtered frequency window W I}(’ from the previous filtered

frequency window W, |Jj:: instead of calculating from basic window wy. If all filtered frequency
windows in a pair of sliding windows are computed, then the lagged correlation coefficients
can be directly computed using the frequency components based on Equations (4) and (6). Thus,
our proposed method avoids computing repeated Fourier transforms and inverse Fourier trans-
forms on every basic windows and perform correlation computation directly in the frequency
domain on fewer data. The length of W}* |£ is L%mj +1, where f is the sampling rate of the
streams.

To maintain frequency components upon receiving a new observation, the algorithm removes
the quantities for each frequency that contributed by the first observation wy_[0] of basic win-
dow wy , and adds the quantities for each frequency that brought by the new observation
wy[m — 1] of basic window wj. To account for the slide of the window, the algorithm up-
dates k' coefficient by multiplying ei%, for I_J%mj <k < I_J%mj. This process is applied to
each of the frequencies from f; to f;. The steps are precisely represented by filter function in
Algorithm 2.

Once filtered frequency windows {th_ l|£ s W |]]:: } and {Wty_ Ilf: R W[y |£ } are ready, then
the lagged correlation Icorr,” can be computed by calling Algorithm 2. The function oneCorr in
Algorithm 2 will be called to compute each corrﬁz. Note that the correlation coefficients calculated
from filtered frequency windows are exactly the same as the coefficients calculated from filtered
windows in the naive algorithm. The exactness of our algorithm is directly derived from Parseval’s
theorem described earlier in Section 2.

To explain the function oneCorr in Algorithm 2, we describe how Equation (8) is evaluated using
afiltered frequency window instead of a filtered basic window. In the following, we show how each
term from Equation (8) can be expressed using frequency terms in detail.

Based on Equation (10), we can calculate the mean of filtered basic window with Equation (12).

wxlo] .

. 4= iff;=0

plwry) =9 ™ f . : (12)
0 if f; > 0 (DC term is filtered)

Based on Parseval’'s theorem in Equation (4), we can compute the Y wrf[j]* in Equa-
tion (13). We multiply a constant 2 to include the symmetric part of W}* |£ . This also applies to
Equations (14), (15). There are two special cases, one case is when the f; = 0 and another case is
when the length of a basic window is an even number and the f; equals to the Nyquist frequency,
which is one half of the sampling rate f. For both cases, W[% |] or W;*[0] need to be subtracted
after we multiply 2 since there is no symmetric value to them. Both values need to be subtracted
if conditions for both cases hold.

-1

Wil = = S WP (13)

3

~.
I}
o

Then the standard deviations can be calculated as below if f; > 0.

o) = |25 WL (19

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series 100:11

Lastly, the product term 3(wrj [j]wﬁz[j]) can be expressed in Equation (15) based on

Equation (6).
— (D WEETIE + Y W - 3 W T - W). (15)

Finally, we can derive the equation that appears in line 16 of Algorithm 2 when f; > 0. For the
case when f; = 0, it only needs to include the p(ws}) term in the computations since it is no longer
equals zero.

ALGORITHM 2: FiLCORR
Function LagFilterCorr(s}, s?, Lm f, fs, ft)
1 LB «— m|fs/f]
2 UB <« mlfi/f]
s lef‘ o Filter(W, |ﬁ m, LB, UB, w*_|[0], w¥[m - 1])

s Wyl <—filter(Wy |ff m, LB, UB, w_ [0], w![m —1])
5 curMax%oneCorr(lef‘ Wyl ,m) //case 1

fortj=t—-1:t—1do

6 w;g}ff: Filter(W," |f’ m, LB, UB, wy_[0], w} [m —1])
; Wg|£ « filter(W,_ |f’ m, LB, UB, ! _ 0], w},[m - 1])
8 tmp1 <—oneCorr(Wx|f” Wyl ,m) //case 2
9 tmp2<—oneCorr(Wx|f‘ Wyl ,m) //case 3
10 curMax = max(curMax, tmp1, tmp2)
end

11 return curMax

end

unction fllter(lef’ m, LB, UB, d, a)

//d is the element that will be deleted
//a is the element that will be added
12 for q from 0 : UB — LB do

o]

13 k< q+LB //k is the index of W}
" g = FE W g - e R
end
15 return Wt’illf !
end

Function oneCorr(W’l‘, Wtz, m)
//Assume 0 < fs < f; < f/2
g IWZqIP+34 W gl -2 g IWS [q]-W,. [q]

2\[Zq WZlalP Zq W2)2

16 return

end

In order to control the output rate, we use the parameter step. FilCorr can output all-pair corre-
lations upon receiving the next set of observations in the streams. However, the output rate does
not necessarily have to be the same as the input rate. If the current sliding window is s}, we can
slide to s, ;. ,,, where step is the number of observations in a stream the algorithm gathers before

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

100:12 S. Zhong et al.

outputting the next set of pairwise correlations. When step = 1, the algorithm outputs at the same
rate as the input. The larger the step, the slower the output rate.

4.3 Computational Complexity

FilCorr algorithm contains two stages of computation, the initial stage and the streaming process-
ing stage. In the initial stage, FilCorr utilizes the FFT algorithm to transform the beginning basic
window to the frequency window, then keeping the components within the filter band to get the
filtered frequency window. The total time complexity for this stage is O(mlogm + B) in which
the FFT algorithm contributes O(mlogm) [6, 7], and filtering contributes O(B), m is the length of

the basic window and B is the number of elements within the filter band which is 1 + L% m].
The cost for this one-time operation can be amortized among the following streaming processing
steps, thus yielding amortized time complexity O(; mlogm+B

Ten(stream)
run. Therefore, we do not count this cost to the overall time complexity.

The time complexity for streaming processing of one pair time series at any step is composed
of two parts: (i) filtering and (ii) correlation computation. For the filtering, FilCorr only takes
O(B) time based on the filter function in Algorithm 2. The worst case is O(m) when B is close
to m. Filtering in the naive algorithm will take O(mlogm) to transfer the frequency and time
domain when applying FFT and IFFT algorithm. As for the cost of computing lagged correlation
coeflicients, the oneCorr function in both algorithms will be executed ! times. Each iteration of the
naive algorithm will take O(m) based on the equation in line 18, while the FilCorr only takes O(B)
time.

The combined time complexity depends on the number of pairs of time series in the system. We
assume all permutations of O(N) time series. Thus, the time complexity to compute one lagged
correlation value for naive is O(Nmlog m +ImN?), and O(BN + [BN?) for FilCorr, O(mN + ImN?)
in the worst case. In practice, the speedup is more because the number of possible lags is much less
than the window size, and the frequency band is much smaller than the number of observations
in the signal.

The naive algorithm’s space complexity is O(NIm) to maintain all the filtered basic windows in
the most recent sliding window for all streams. The space complexity of FilCorr is O(NIB).

), this value is near zero in the long

4.4 Extensions to Our Implementation

Our proposal can be easily extended to execute in parallel and to employ different digital filters.
In this section, we discuss the properties of FilCorr that provide such flexibilities.

Parallelization: Since lagged correlation computation for one pair of streams is independent
of other pairs, we can utilize multiple processing units (i.e., thread, core, processor, etc.) to expand
the capacity to calculate multiple pairs in parallel. Each pair will maintain their sliding windows
for the streams s* and sY. In order to achieve the best real-time performance, one filtered frequency
window with its statistics can be accessed by all pairs to save more memory and avoid redundant
computation.

Different filters: Our method can adapt to other types of digital filters; for instance, the But-
terworth filter illustrated in Figure 6. We can directly apply this filter on top of the box filter by
changing each frequency weight. In this way, we can still save time from computing unnecessary
frequencies and keep the filter property within the bandwidth. This operation will not change
the overall time complexity since it is a linear operation to factor the weights in all frequencies.
Note that incrementally updating the DFT coefficients is also a linear time operation. Our method
is not limited to the digital frequency-domain filters. A time-domain digital or analog filter can
also be applied for streams passing through as pre-processing then passing into our method for
correlation computation on the targeted frequencies.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series 100:13

1
Cutoff Frequency Cutoff Frequency
0.8 _3dB

0.6

0.4

< 3 and wid th -

1 2 3 4 5] 6 7 8 9

Fig. 6. Butterworth second order bandpass filter 3-7 Hz.

corr=0.14 corr =-0.81

(a) Original, normalized (b) Hamming window (c) After Windowing, normalized

corr =0.70 corr = 0.13

(d) Original after filtering, normalized (e) Windowed after filtering, normalized

Fig. 7. Example of the Ringing effect on two uncorrelated seismic signals and how the multiplication by a
Hamming window can address the false high correlation between them.

4.5 Discussion on Data Independence

The general idea of FilCorr is to exploit the use of digital filters to achieve faster pairwise cor-
relation computation. Besides removing undesired noise, filters allow computing the correlation
between time series in a reduced dimensional space provided by the frequency domain. It turns
the time cost of our method data-independent and will be affected by neither the sparsity nor the
similarity. This cost is related to the lag and the bandwidth assumed by the filter, typically much
smaller than the original series. It is also important to note that unlike other methods that speedup
the correlation computation by pruning improbable pairs and provide approximate results, our ap-
proach efficiently calculates all possible lagged pairs and provides exact results.

4.6 Managing Spurious Correlation

Filtered correlation can occasionally be spurious because of Ringing effect [8]. It occurs due to
spectral leakage when the length of the basic window is mutually prime with the period of the
signal. For instance, in Figure 7(a), we show two uncorrelated signals (correlation = 0.14) obtained
from different seismometers. If we filter such signals by a box filter, we obtain a false high corre-
lation of 0.70 in the resulting signals, as illustrated in Figure 7(d). This high correlation is mainly
caused by similar oscillations at the edges of both signals. This effect can be addressed by “win-
dowing” (i.e., multiplying with a window function) the time series before converting them to the
frequency domain. The resulting signals after the process of windowing using a Hamming window
(Figure 7(b)) are illustrated in Figure 7(c). Finally, the filtered signals after the windowing process
are illustrated in Figure 7(e). We note that the correlation of the original signals is reduced to 0.13,
eliminating the previously observed false high correlation.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

100:14 S. Zhong et al.

Windowing on each basic window data will change the filter process since we could not main-
tain the filtered frequency window incrementally. Thus, we need to apply the filter function from
the naive algorithm.

5 EXPERIMENTAL EVALUATION

All our experiments are reproducible and the supplementary material such as code, data, and addi-
tional results are publicly available on our supporting website [29]. FilCorr is exact and determin-
istic, and the efficiency is not data-dependent.

5.1 Sanity Check

Before the experimental evaluation and comparisons with existing methods, we show a sanity
check to demonstrate that our approach is fast enough to be employed in a real-time system that
is capable of monitoring hundreds of sensors with a high sampling rate. To demonstrate this claim,
we develop a system named Seisviz (www.seisviz.com) that will render the lagged correlation val-
ues computed by FilCorr in real-time. It has been used successfully for monitoring a seismic net-
work at Yellowstone, WY, USA. This network has 30 stations, where each station has up to six
channels. Each channel represents an individual stream of observations at 100 Hz. We obtain 670
pairs if we pair the streams from different stations by the same channel type. We demonstrate
videos of detected earthquakes in real-time by Seisviz on our website [29]. In Section 6.1, we re-
turn to the discussion about our findings on seismic data and a detailed system implementation
description.

5.2 Setup

All experiments are performed on a desktop computer with an Intel i19-9900k (8 cores) processor, 32
GB of memory, running a Linux operation system. As FilCorr is data-independent, we use synthetic
data for various experiments. The performance on real-world data will be discussed in the case
studies presented in Section 6.

We create two testing scenarios to evaluate the performance of naive and FilCorr algorithm:
offline and online. In the offline scenario, all observations are available beforehand, so the system
will use its full power to compute until it finishes computation on all data. For the online scenario,
the observations are generated in a streaming fashion with the speed of sampling rate.

In the offline scenario, we measure the total execution time, including I/O operations. In the
online scenario, we seek to find the maximum number of streams that the system can compute their
pairwise lagged correlation without any delay. To measure this, we create an ideal environment
where all the streams have an equal length and the same sampling rate specified by the parameter
f. We consider the system capable of processing this number of streams if the finish time is ahead
of the expected next computation time. There is no need to measure at each step because if the
number of streams exceeds the system capability, then the extra time to finish computation will
accumulate at each step and reflect at the finish time.

For both offline and online, we run ten trials to confirm an algorithm’s capability on a certain
number of streams to account for random events in the operating system.

5.3 Efficiency

In Figure 8, we show the execution time of FilCorr and the naive algorithm in the offline scenario.
We consider three filter bands (5 Hz, 25 Hz, and 50 Hz), and five sampling rates between 100 Hz to
300 Hz with increments of 50 Hz. The results testify to the time complexity discussed in Section
4.3. The naive algorithm’s execution time remains on the same level for the same sampling rate
no matter the bandwidth size. This is because the number of observations used for correlation

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

www.seisviz.com

Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series 100:15

Number of streams: 50

FilCorr .
_ [856,975 851.731 852555 Number of pairs: 1225
T [1 naive Observations/stream: 10000
§ 67561 67438 672855 | Basic window: 10 sec.
|2} 1000 Lag: 5 sec.
E 800 481.155 482.031 264301 479.798 Step: 10 observations
= 600 123981 254.646)
= 15958 05 939 115993 59875 218157 299928 100 &
S 14142 >
= 400 184.387 250 X
E ok 80.942 &
9 7863 134796 133671 12015 134485 200
S 200 53.657 150 Q%
» 6318 : &
s : 00 §

5 5 25 25 50 50 &

Filter Bandwidth(Hz))

Fig. 8. Offline performance of FilCorr and naive algorithm.

11000

10000 142 naive Basic window: 10 Sec. Basic window: 10 Sec.
9000 FilCorr Lag: 5 Sec. Lag: 5 Sec.
£ 3000 - Filter bandwidth: 10 Hz Sampling rate: 100 Hz 127
& 7000 Output rate: 25Hz Filter bandwidth: 5 Hz
S 6000
g so00 93 Number of streams
£ 4000 y 85
2 3000 . y 1 =
2000 53 . 4
1000 25 = 39 3 - 25 39
0
25Hz 50Hz 100Hz 200Hz 100Hz 50Hz 25Hz 10Hz
Sampling rate Output Rate

Fig. 9. Online performance of FilCorr and naive algorithm. The left figure shows the results varying the sam-
pling rate and fixed values for the remaining parameters. The right figure shows the results under different
output rates. In both figures, the total number of stream pairs are computed as all possible combinations of
any two streams.

computation of the naive algorithm does not change along with the filter bandwidth in the time
domain. On the contrary, the narrower the band the fewer frequency components for FilCorr to
compute, so less execution time. Another conclusion we can draw from the figure is that the growth
rate for FilCorr is much slower than the naive for a fixed bandwidth when the sampling rate is
increasing. This is because the basic window length is calculated based on the time, which is 10
seconds in here. For FilCorr, the number of frequency components in the filter band remains the
same since B is defined as 1 + L%m], m equals 10f so B equals 1+ [10(f; — f5)]. The only extra
cost for FilCorr is coming from the longer lag. However, for the naive, it is affected by both longer
lag and more observations for computing the correlation; thus, it increases at a much higher rate
than FilCorr.

In Figure 9, we show the number of pairs that each algorithm can process without delay in
the online scenario. We vary the input sampling rate and output rate for both algorithms. In all
experimental settings, FilCorr can process (up to 4X) more sensors than the naive algorithm. The
performance gap increases with higher input or output rate. For other filter bands, the general
performance trends hold.

5.4 Comparison to Existing Method

Based on our previous comparison shown in Table 2, we argue that FilCorr is a comprehen-
sive method for streaming correlation computation. However, although not an ideal match in
capabilities, we identify ParCorr [27] as the most recent baseline with state-of-the-art perfor-
mance. ParCorr calculates pairwise correlation in parallel with the Apache Spark system based on

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

100:16 S. Zhong et al.

naive, lag = 250 Observations
naive, lag = 100
Zoom Out Il'c.liVC, lag =0
00 FilCorr, lag =250
FilCorr, lag=100
FilCorr, lag=0
ParCorr-all-candidates
ParCorr-0-candidates

= —_
w 4
(=} o

Time in Second
o

200 400 600 800 1000 1200
Parameters for naive and FilCorr
Data Length: 2000 Observations
Window: 500 Observations
—1 Filter Band: 10 Hz
Zoomin ! Sampling rate: 100 Hz

=

ONBADOON

100 200 300 400 500 600 700 800
Number of streams

Fig. 10. Comparison with ParCorr fixing step = 20. The vertical red line shows the crossing point between
ParCorr and FilCorr with lag = 0, and the vertical blue line shows the crossing point between ParCorr and
naive algorithm with lag = 0.

randomly projected sketches. Note that ParCorr does not compute lagged correlation. The follow-
ing experiments are conducted on the same setup as previous experiments.

In order to favor ParCorr’s implementation in our comparison, we perform all the experiments
in the offline scenario. To offset the Spark system’s costs, we conduct another set of experiments as
offsets. Each offset experiment will only process one time series with window size as 1, step size as
1, and the length of this time series depends on the actual corresponding experiment parameters.
Our goal is to make sure the sliding window in both offset experiments and actual corresponding
experiments move the same number of times. All the experiment results here are adjusted based
on the results of the corresponding offset experiment.

Since the ParCorr is data-dependent, we use two sets of synthetic data with 2,000 observations
in each targeted to emulate the best-case and worst-case scenarios for ParCorr. The cost of Par-
Corr depends on the number of pairs it can prune without computing the correlation coefficients.
Our first synthetic dataset contains sequences of uniformly distributed random numbers, which
is expected to contain only uncorrelated pairs. Thus, a random noise dataset is the best data for
ParCorr where it can prune all possible pairs. To further boost ParCorr’s performance, we use a
high correlation threshold (candThreshold) for better pruning. The purpose of this is to guarantee
that no two series will lead to actual correlation computation for ParCorr. Besides, we also set
the parameter candThreshold with a high value in ParCorr as double insurance. On the contrary,
the second dataset is a sinusoid that is expected to have all possible pairs of streams to be highly
correlated. In this case, ParCorr computes correlation for all possible pairs, failing to prune and
demonstrating the worst-case performance. For FilCorr and Naive, the pairs are generated based
on all possible combinations from all the streams.

We show the performance comparison in Figure 10. The light grey shaded area represents the
range of performance by ParCorr. The worst-case performance (on sinusoid data) is illustrated
by the superior grey line with solid circles, and the best-case (on random data) by ParCorr is
illustrated by the inferior grey line with solid boxes. The actual performance of ParCorr on any
other dataset should be in between the worst-case and best-case lines. Figure 10 (zoom-out) shows
that the time spent by FilCorr for various lags is well inside the shaded area. To be fair to ParCorr,
when we consider the synchronous correlation (lag = 0), FilCorr is more efficient than the best-case

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series 100:17

1400 naive, lag =250 Observations

1200 naive, lag = 100

1000 naive, lag =0
800 . _
600 Zoom Out FflCOI’l’, lag =250
- FilCorr, lag=100
< 400 .
8 200 FilCorr, lag=0
& o ParCorr-all-candidates
c
‘v ParCorr-0-candidates
g 4 6 8 0 12 14 16 18 20
F o5 Parameters for naive and FilCorr
Data Length: 2000 Observations

20 Zoom in Window: 500 Observations
; Filter bandwidth: 10 Hz

15 Sampling rate: 100 Hz

6 8 10 12 14 16 18 20
Step (number of observations)

Fig. 11. Comparison with ParCorr varying the step from 5 to 20 observations. The vertical red line shows the

crossing point between ParCorr and FilCorr with lag = 0; the arrow points the point where the output rate

is 6 Hz. The vertical blue line shows the crossing point between ParCorr and naive algorithm with lag = 0,

and the arrow points to the output rate as 7 Hz.

of ParCorr up to around 700 streams as shown in Figure 10 (zoom-in). Therefore, we recommend
FilCorr on a single desktop computer when the number of streams is less than 700, instead of using
a parallel system.

In the second experiment, we fix the total number of streams at 800 and vary the step from 5
to 20 observations, which correspond to the output rate of 20 Hz to 5 Hz, respectively. We note in
the results shown in Figure 11 that the execution time for all methods increases when the step is
getting smaller to compute more correlation coefficients for a higher output rate. However, ParCorr
increases at a higher rate compared to FilCorr. The zoom-in figure shows that FilCorr with lag = 0
has better performance than the best-case of ParCorr when the output rate is higher than 6 Hz.

5.5 Parameter Sensitivity

In this section, we discuss the algorithms’ sensitivity to three design parameters: (i) lag, (ii) filter
bandwidth, and (iii) window size. We consider the online scenario and measure the performance
between the naive algorithm and FilCorr. We fix the sampling rate at f = 100 Hz and step = 10
observations for all experiments. The results are presented in Figure 12.

Figure 12 shows that doubling either the window size or the lag size has similar effects, where
the number of pairs the algorithm can handle shrinks to half for both FilCorr and naive. The
performance of FilCorr approaches the naive when the bandwidth increases.

6 CASE STUDIES

This section discusses different scenarios that can benefit from FilCorr. We present three case
studies with data from diverse domains, such as seismic signals captured by seismometers, motion
signals captured by accelerometers, and brain activity signals from neuroimaging.

Before we dive into case studies, we would like to make a general recommendation about the
usage of FilCorr in different domains. In general, any application that needs pairwise Pearson’s
correlation values for various purposes can utilize FilCorr. However, some cases can enjoy the full
benefits from FilCorr while some are negligible. To simplify the decision-making of a domain user,

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

100:18

15000
14000 166
13000
12000
11000

I

2
=3
8

9000

8000

7000

6000 106

5000

4000

3000 74

2000 54 54

1000 38 27
0

Number of Pairs

19

5Sec 10 Sec 20 Sec 40 Sec
Lag
Basic window: 5 Sec.
Filter bandwidth: 5Hz
Sampling rate: 100Hz

165

127

S. Zhong et al.

naive = FilCorr

Number of streams

g |

27 19

54
39

5Sec 10 Sec 20 Sec 40 Sec

Basic window length
Lag: 5 Sec.

Filter bandwidth: 5SHz
Sampling rate: 100Hz

91

63
51
39 39 39 44

10Hz 20Hz 30Hz 40Hz

Filter bandwidth
Basic window: 10 Sec.

Lag: 5 Sec.
Sampling rate: 100Hz

Output rate: 10Hz Output rate: 10Hz Output rate: 10Hz

Fig. 12. Results for the parameter sensitivity test considering the online scenario.

Yes
| Do data need filtering? | mmisSems) Highly recommend
lNo
Is correlation computation N* Neutral
slow?
lYes
No
Is approximation ok? |) Neutral
Yes
Recommend

Fig. 13. Different recommendation levels on FilCorr based on the application requirements. Neutral means
there are no apparent benefits (No loss either) when compared with time domain implementation. Approxi-
mation means results are derived from fewer frequency components.

we draw a flowchart in Figure 13. Comparing the performance of FilCorr to the naive approach,
we set different recommendation levels based on the need for filtering and execution speed.

6.1 Seismic Event Monitoring

We have deployed a system for monitoring seismic events in which FilCorr is one of the core
components. We designed such a system, named Seisviz,' by following the separation of concerns
(SoC) design principle [17]. The main components of Seisviz are illustrated in Figure 14.

The system has four modules: (i) data collector, (ii) the Kafka cluster, (iii) the FilCorr com-
puting unit, and (iv) the Seisviz web server. Such a modular design is useful for developing and
maintaining the system, while robustness and scalability are improved because failures can easily
be tracked to one of the modules, and scaling each module is easier than scaling the whole system.
There are two data pipelines in the system, one path originates at the seismic sensors and ends in
the FilCorr computing unit. The other path originates at the FilCorr computing unit and ends in

IThe system is publicly available at www.seisviz.com.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

www.seisviz.com

Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series 100:19

IRIS data center Collector Kafka cluster Seisviz server
[=0 — * ok
=0 0 Oo|--- —] .
pr— . R
¥ e
*
*x e

Fig. 14. Main components of Seisviz, a real-time system for seismic event monitoring.

the Seisviz server. The seismic observations are fetched from the Incorporated Research Insti-
tutions for Seismology (IRIS)—IRIS data center [10] to the Kafka cluster, then consumed by the
FilCorr computing unit. The correlation values are computed by the FilCorr computing unit and
saved in the Kafka cluster, and finally consumed by the Seisviz web server.

The Kafka cluster was used for temporary data storage and data distribution. Kafka has essential
features that meet our requirements, such as processing streaming data in real-time, storing a
certain amount of historical data in a durable way, and allow multiple consumptions by several
applications and systems. Besides, it provides extra benefits, including fault tolerance and high
availability [22], which can enhance the reliability and the scalability of our system.

A few key points are worth discussing when using Kafka for time series data. The first thing is
the order of observations since it is natural to keep each observation in a timely order or index-
based order for time series; however, no such order can be maintained if we use multiple Kafka
topics with one partition or one topic with multiple partitions to store observations from a time
series. In other words, there is no guarantee that the order for each observation arriving at the
consumer is the same order when they are generated. So the downstream services need to restore
the order. This is because Kafka can only guarantee the records from the same topic partition
will arrive at the consumer in the same order as they were appended to the partition but not for
the records across many partitions. This leads to another approach that uses a topic with only one
partition to store observations from a time series. Such an approach can bring time efficiency to the
downstream services as they no longer need to restore each observation order. However, this may
cause a performance penalty when consuming a large number of records at a time compared with
the approach using a topic with multiple partitions on several nodes in a cluster. We choose the
latter approach for simplicity, and our system scale is not reaching that performance bottleneck.

Secondly, Kafka only supports millisecond precision for timestamp, generating losses when the
period of a stream is less than a millisecond. To solve this, we first look at the structure of the
Kafka record. Each record has three attributes: key, value, timestamp. The key attribute is free in
our case, so we can combine timestamp and key attributes to store the time information of an
observation; time components after millisecond can be saved in the key attribute. This approach
can support the precision level up to nanoseconds, which is sufficient for virtually any streaming
time series problem.

As previously stated, our system considers IRIS as a data source. IRIS provides a protocol called
SeedLink? for users to receive real-time data. The streams of time series from IRIS are sent out

Zhttps://ds.iris.edu/ds/nodes/dmc/services/seedlink/.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

https://ds.iris.edu/ds/nodes/dmc/services/seedlink/

100:20 S. Zhong et al.

* 2020-03-31T23:52:59.490Z *, %3:53:30.500z = 23:53:35.890Z + 23:53:57.590Z

Fig. 15. Pairwise correlation among 29 stations at Yellowstone, WY over different times given an M6.5 earth-
quake occurred in Challis, Idaho, at 23:52:30 2020-03-31(UTC).

in the form of batches containing a certain number of observations. Although SeedLink is based
on the TCP/IP protocol that guarantees packets transmission in order and without any loss, the
packets’ order may not be consistent with observations’ time order. To address this, we develop
a collector module to save the streams in the Kafka cluster and, most importantly, recover the
original data streams in time order. This process will encounter three different scenarios: (1) There
is a time gap between data batches; in other words, a segment of observations of a time range is
missing. (2) Two batches are overlapping. (3) There is a time shift among observations; if the time
of one observation is shifted, then the time duration between this observation and the previous
observation is no longer consistent with the sampling rate. This time shift has to be smaller than
the sampling period to distinguish this scenario from the first scenario. Once we have all the
necessary observations, we can start computing the filtered lagged correlation values using the
FilCorr algorithm.

The back-end server will read the computed correlation value from the Kafka cluster, group the
results based on the timestamp, and then send the results in a streaming manner to the front end.
The front-end website will render the correlation value on a colored line between two points on
the map, as illustrated in Figure 15. The point represents the location of a station, which consists
of various seismometers. The correlation value is depicted by the color and transparency of the
line between two stations. Since there are usually multiple seismometers at one station, if there are
multiple pairs of streams between two stations, then only the correlation with the highest value
will be rendered at the moment.

In Figure 15, we illustrate the propagation of a seismic event of magnitude 6.5 that occurred at
Challis, Idaho, on March 03, 2020° and which was observed by our system about 300 miles away in
the stations at Yellowstone. In this representation, each red location symbol represents a station,
and a colored line represents the lagged correlation between two stations. Different colors and
levels of alpha reflect the lagged correlation value. The correlation values from 0 to 0.5 to 0.9 are
mapped from green to yellow to red. A black edge represents a correlation value greater than 0.9.
We notice that the correlated edges are appearing between station pairs as the earthquake wave
reaches them. Similarly, edges become uncorrelated when the wave has passed through.

In summary, our system is monitoring a seismic network with 30 stations in Yellowstone,
Wyoming. There is a total of 98 streams, which can form a total of 670 pairs. Our system is comput-
ing the correlation of these 670 pairs at a 10 Hz rate. Correlation coefficients can capture earthquake
propagation through a region in real-time, which can easily be converted to a detector with the
rule: If more than Q% of pairs of stations are highly correlated (>0.8), an earthquake is propagating.

Shttps://earthquake.usgs.gov/earthquakes/eventpage/us70008jr5/executive.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

https://earthquake.usgs.gov/earthquakes/eventpage/us70008jr5/executive

Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series 100:21

—_ T P

X-axis y-axis z-axis

Arm iy P ek
Wrist YAV b bl
R A L e
Leg p~vrwy ity ity

Fig. 16. Motion sensor locations and examples of time series generated by each sensor in the three axes.

The utility of such a detector is massive for early warning systems because seismic wave propagate
at 8 km/s, which is much slower than electronic signals carrying the warning.

As we previously have shown in Figure 2, filtering is essential for seismic data in order to remove
noise and obtain a representation in the frequency domain that better describes the signals. For
this case study, we consider a 20 seconds window size, a box bandpass filter with a cutoff frequency
of 3 Hz and 7 Hz, and a lag of 10 seconds.

Although the Seisviz website shows the results with a few minutes lag, we still claim our system
is real-time since the delay occurs before the data arrive at our system. The delay is typically caused
at the origin (i.e., seismometer) and during the transmission process. The delay time varies and is
beyond our control. Seisviz waits initially to accumulate enough data to be able to calculate the
first set of correlations. After that, the system processes (i.e., flows data through the modules and
computes the correlations) at a faster rate than the rate of streams.

6.2 Motion Monitoring

In recent decades, the emergence of low-cost wearable devices made it easier to measure body
parts’ motion by accelerometers and gyroscope sensors. One interesting use of motion data is in
interactive systems that monitor the movement synchronization between different users in real-
time. Synchronous motion is at the heart of many art forms, including dance and music, sports
such as swimming and gymnastics, and electronic games. The monitoring of a group of users is
useful for physical activities, choreography design, precise movements evaluation, and other tasks.

In this case study, we demonstrate how our method monitors motions in real-time for dance
sessions, where slight irregularities are expected between the participants. For evaluation, we con-
sider the Dancestix data [20], which has four participants who performed a Lady Gaga’s song with
the same choreography with 21 dance steps following the 581 beats of a metronome at 2 Hz. As il-
lustrated in Figure 16, each participant has four three-axis accelerometer sensors placed on the hip,
wrist, arm, and leg. The data was recorded at 100 Hz, totaling time series with 29,255 observations
for each sensor in a given axis, while we filter the data between 1 Hz and 3 Hz.

Ideally, any pair of dancers should show a strong correlation, while a slight deviation would
suggest quality degradation. Since dance motions are repetitive, the allowable lag in detecting
correlation must not be more than the duration of a dance step. In Figure 17, we show the resulting
pairwise correlation between overall body parts of dancers, considering a 2 seconds window (200
observations), alag of 50 and 0 (no lag) observations, with a box filter (1-3 Hz) and without filtering.
The location of the dance steps is represented by the vertical lines identified by letters (A-T).

For all pairs in Figure 17, we note that when we consider the lagged correlation of filtered
data, higher values are observable over time. The correlations are close to zero when we do not
consider filter and lag, demonstrating the importance of such features for this problem. From these
correlations, we can carry out real-time analysis to identify fatigue, off-rhythm dancers, and so on.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

100:22 S. Zhong et al.

] danceri-dancer2] dancer2-dancer3] dancer2-dancer4
§ a:ac:x::m&’h:um::aum ﬁE::mmlﬁmmmm B ettty
S o winraniinden om0 WIMMMAMPNA N 0 ImAANAAAA
B / step \
0-1 ABC D EFGH|I |J/IKLMNOP QR S T -1 ABC D E FGH I | J/KILMNOP QR S T 1 ABC |[D|E|FBH|I|J|/KILMNOP QR S T
0 200 400 600 O 200 400 600 0 200 400 600
Beats
] danceri-dancer3] dancer3-dancer4 ; danceri-dancer4
\.ﬂ""“""\-‘phwmﬁhwﬁnhmm . mmlpmh*k v pe M onr A HMR... et e
N O WA i { ﬂ“wtm H\-Jhmg[\#ﬁ” Yok .m-: "
0 ﬁiumwwwmwmmwﬂ 0 ﬁmﬁWVMMMMM‘v 0 ""”’*""’W“WM“W‘"‘ M
-1 ABC D E|FGH|I |JIKLMNOP QR S T -1 ABC D E FGH|I | J KLMNOP QR S T -1 ABC D E|FGH I |J KILMNOP QR S T
0 200 400 600 O 200 400 600 0o 200 400 600
—— 1-3Hz, lag 50 no filter, lag 50 —— 1-3Hz, lag 0 no filter, lag 0

Fig. 17. Cross-correlation between pairs of dancers over all body parts considering the use and absence of
filter and lag.

For example, we see that dancer 3 is significantly less correlated to all other participants while
performing step M.

6.3 Electrophysiological Monitoring

Parkinson’s disease is the second-most common neurodegenerative disorder that affects 2-3% of
the population older than 65 years of age [19]. As the disease progresses, people may have difficulty
walking and talking. It is caused by a significant decrease in dopamine production, a neurotrans-
mitter that helps us to automatically carry out voluntary body movements without the need for
thinking about every single movement that our muscles make. In the absence of dopamine, partic-
ularly in a small brain region called the substantia nigra, the individual’s motor control is lost [13].

An essential tool for monitoring the disease’s progress and its effects is the electroencephalo-
gram (EEG) [11]. An EEG records electrical activity produced by the brain via small noninvasive
sensors attached to the scalp in different regions, offering a direct measure of neuronal activities.
The study of the correlation between EEG signals from different parts of the brain has been an
active research area in the last years [4, 12, 15]. In general, a high correlation between the signals
from different electrodes indicates similar brain activity, and a low correlation indicates that the
brain activity at the different measurement sites is relatively independent [3]. However, patients
with conditions such as Parkinson’s related dementia and Alzheimer’s disease often exhibit dif-
ferent behavior and a slow oscillatory brain activity compared with healthy subjects [12]. In EEG
data, it is expected a lag due to the time spent to transfer the signals from one brain region to
another. Also, the use of filters is essential to identify the frequencies that compose the signal. In
this direction, for better analysis, it is essential to consider the lagged correlation of filtered EEG
data, as proposed in this work.

In this case study, we consider a dataset of 25 patients with Parkinson’s disease and an equal
number of people in the control group [5]. Subjects performed a task of identifying novel sounds
in a sequence of known sounds. EEG was recorded continuously by a 64-channel system with a
sampling rate of 500 Hz. Here, we only consider the EEG responses to the novel sounds. We first
average all the trials and participants in one group then calculate pairwise lagged correlation across

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series 100:23

To2

Parkinson patients over Control group Control group over Parkinson patients
Fig. 18. Lag-correlated pairs of channels present in one group and not present in the other.

the channels. The results are for the one second window, 60 ms lag containing 30 observations, and
a box filter with a band from 0 Hz to 20 Hz.

In Figure 18, we only show the pairs that are correlated only with lag and not correlated without
lag. The left figure shows the correlated pairs of channels with lagged correlation values greater
than 0.5 in the patient group that are not correlated in the control group, and the right figure shows
the lagged correlated pairs in the control group but not in the patient group. We observe the front-
back lag-correlation in the patient group, while the control group does not show any correlation
in the frontal lobe. We do not claim any neurological significance of this finding. However, the
difference between patient and control groups suggests that filtered and lagged correlation can
support EEG analysis as a diagnostic tool.

7 CONCLUSION

This article demonstrates an algorithm, FilCorr, to compute filtered and lagged correlation over
streaming time series. FilCorr combines filtering and cross-correlation computing operations in
one step to obtain the lagged correlation between streaming time series efficiently. FilCorr is faster
than the state-of-the-art ParCorr algorithm that computes correlation in parallel. We show three
case studies where the algorithm achieves promising results towards greater societal impacts. We
also provide a publicly available real-time system named Seisviz that employs FilCorr in its core
mechanism for monitoring a seismometer network.

REFERENCES

[1] Y. Ahmad and S. Nath. 2008. COLR-Tree: Communication-efficient spatio-temporal indexing for a sensor data web
portal. In Proceedings of the IEEE International Conference on Data Engineering (ICDE). IEEE, 784-793.

[2] Anthony Bagnall, Michael Flynn, James Large, Jason Lines, and Matthew Middlehurst. 2020. On the usage and perfor-
mance of the hierarchical vote collective of transformation-based ensembles version 1.0 (hive-cote v1. 0). In Proceed-
ings of the International Workshop on Advanced Analytics and Learning on Temporal Data. Springer, 3-18.

[3] R.Bhavsar, Y. Sun, N. Helian, N. Davey, D. Mayor, and T. Steffert. 2018. The correlation between eeg signals as mea-
sured in different positions on scalp varying with distance. Procedia Computer Science 123, 1 (2018), 92-97.

[4] P.Bob, M. Susta, K. Glaslova, and N. N. Boutros. 2010. Dissociative symptoms and interregional EEG cross-correlations
in paranoid schizophrenia. Psychiatry Research 177, 1-2 (2010), 37-40.

[5] J. F. Cavanagh, P. Kumar, A. A. Mueller, S. P. Richardson, and A. Mueen. 2018. Diminished EEG habituation to novel
events effectively classifies parkinson’s patients. Clinical Neurophysiology 129, 2 (2018), 409-418.

[6] FFTW. 2002. FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more
dimensions, of arbitrary input size, and of both real and complex data. Retrieved 03 January, 2022 from http://www.
fftw.org/.

[7] M. Frigo and S. G. Johnson. 1998. FFTW: An adaptive software architecture for the FFT. In Proceedings of the 1998
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 3. IEEE, 1381-1384. DOI : https:
//doi.org/10.1109/ICASSP.1998.681704

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

http://www.fftw.org/
https://doi.org/10.1109/ICASSP.1998.681704

100:24 S. Zhong et al.

(8]
(9]

[10]

[11]
[12]
[13]
[14]
[15]

[16]
[17]

(18]

[19]
[20]
[21]
[22]

[23]

[24]
[25]

[26]

[27]

[28]
[29]

[30]

David Gottlieb and Chi-Wang Shu. 1997. On the gibbs phenomenon and its resolution. SIAM Review 39, 4 (1997),
644-668.

J. Hickish, N. Razavi-Ghods, Y. C. Perrott, D. J. Titterington, S. H. Carey, P. F. Scott, K. J. B. Grainge, A. M. M. Scaife, P.
Alexander, R. D. E. Saunders, M. Crofts, K. Javid, C. Rumsey, T. Z. Jin, J. A. Ely, C. Shaw, I. G. Northrop, G. Pooley, R.
D’Alessandro, P. Doherty, and G. P. Willatt. 2018. A digital correlator upgrade for the arcminute microkelvin imager.
Monthly Notices of the Royal Astronomical Society 475, 4 (2018), 5677-5687.

IRIS. 2018. The facilities of IRIS Data Services, and specifically the IRIS Data Management Center, were used for access
to waveforms, related metadata, and/or derived products used in this study. IRIS Data Services are funded through the
Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE) Proposal of the National Science
Foundation under Cooperative Agreement EAR-1261681. Retrieved 03 January, 2022 from https://www.iris.edu/hq/.
N. Jackson, S. R. Cole, B. Voytek, and N. C. Swann. 2019. Characteristics of waveform shape in Parkinson’s disease
detected with scalp electroencephalography. Eneuro 6, 3 (2019), 1-11.

D. Jeong, Y. Kim, I. Song, Y. Chung, and J. Jeong. 2016. Wavelet energy and wavelet coherence as EEG biomarkers for
the diagnosis of Parkinson’s disease-related dementia and alzheimer’s disease. Entropy 18, 8 (2016), 1-17.

E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. Siegelbaum, and A. J. Hudspeth. 2000. Principles of Neural Science. Vol. 4.
McGraw-hill, New York.

A. Mueen, S. Nath, and J. Liu. 2010. Fast approximate correlation for massive time-series data. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (SSIGMOD). ACM, 171-182.

S. H. Na, S. Jin, S. Y. Kim, and B. Ham. 2002. EEG in schizophrenic patients: Mutual information analysis. Clinical
Neurophysiology 113, 12 (2002), 1954-1960.

A. V. Oppenheim and R. W. Schafer. 1975. Digital Signal Processing (1 ed.). Prentice Hall, Hoboken.

H. Ossher and P. Tarr. 2001. Using multidimensional separation of concerns to (re) shape evolving software. Commu-
nications of the ACM 44, 10 (2001), 43-50.

Marc-Antoine Parseval. 1806. Mémoire sur les séries et sur I'intégration complete d’une équation aux différences
partielles linéaires du second ordre, a coefficients constants. Mém. prés. par Divers Savants, Acad. Des Sciences, Paris,(1)
1 (1806), 638—648

W. Poewe, K. Seppi, C. M. Tanner, G. M. Halliday, P. Brundin, J. Volkmann, A. Schrag, and A. E. Lang. 2017. Parkinson
disease. Nature Reviews Disease Primers 3, 1 (2017), 1-21.

Henning Pohl and Aristotelis Hadjakos. 2010. Dance Pattern Recognition using Dynamic Time Warping. In Proceed-
ings of the 7th Sound and Music Computing Conference (SMC’10). mdpi, Barcelona, Spain, 183-190.

Y. Sakurai, S. Papadimitriou, and C. Faloutsos. 2005. Braid: Stream mining through group lag correlations. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data (SIGMOD). ACM, 599-610.

M. J. Sax. 2018. Apache Kafka. Springer International Publishing, Cham, 1-8. DOI: https://doi.org/10.1007/978-3-319-
63962-8_196-1

N. S. Senobari, G. J. Funning, E. Keogh, Y. Zhu, C. M. Yeh, Z. Zimmerman, and A. Mueen. 2019. Super-efficient cross-
correlation (SEC-C): A fast matched filtering code suitable for desktop computers. Seismological Research Letters 90, 1
(2019), 322-334

J. Shieh and E. Keogh. 2008. iSAX : Indexing and mining terabyte sized time series. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD). ACM, 623-631.

D. F. Silva, V. M. A. Souza, D. Ellis, E. Keogh, and G. E. A. P. A. Batista. 2015. Exploring low cost laser sensors to
identify flying insect species. Journal of Intelligent & Robotic Systems 80, 1 (2015), 313-330.

Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu. 2021. Time series data aug-
mentation for deep learning: A survey. In Proceedings of the 30th International Joint Conference on Artificial Intelligence,
IJCAI-21, Zhi-Hua Zhou (Ed.). International Joint Conferences on Artificial Intelligence Organization, 4653-4660. DOI :
https://doi.org/10.24963/ijcai.2021/631. Survey Track.

D. E. Yagoubi, R. Akbarinia, B. Kolev, O. Levchenko, F. Masseglia, P. Valduriez, and D. Shasha. 2018. ParCorr: Efficient
parallel methods to identify similar time series pairs across sliding windows. Data Mining and Knowledge Discovery
32,5(9 2018), 1481-1507.

S. Zhong, V. M. A. Souza, and A. Mueen. 2020. FilCorr: Filtered and lagged correlation on streaming time series. In
Proceedings of the IEEE International Conference on Data Mining (ICDM). IEEE, 1436—-1441.

S.Zhong, V.M. A. Souza, and A. Mueen. 2020. Supporting website. Retrieved 03 January, 2022 from https://sites.google.
com/view/filcorr/.

Y. Zhu and D. Shasha. 2002. StatStream: Statistical monitoring of thousands of data streams in real time. In Proceedings
of the International Conference on Very Large Databases (VLDB). Elsevier, 358-369.

Received January 2021; revised October 2021; accepted November 2021

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 100. Publication date: May 2022.

https://www.iris.edu/hq/
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.24963/ijcai.2021/631
https://sites.google.com/view/filcorr/

