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Abstract—To deploy an intelligent transport system in urban
environment, an effective and real-time accident risk prediction
method is required that can help maintain road safety, provide
adequate level of medical assistance and transport in case of an
emergency. Reducing traffic accidents is an important problem
for increasing public safety, so accident analysis and prediction
have been a subject of extensive research in recent time. Even if a
traffic hazard occurs, a readily deployable structure with an accu-
rate prediction of accident can contribute to better management
of rescue resources. But the significant shortcomings of current
studies are the use of small-scale datasets with minimal scope,
being based on extensive data sets, and not being applicable for
real-time purposes. To overcome these challenges, we propose
ARIS: a system for real-time traffic accident prediction built on
a traffic accident dataset named ‘US-Accidents’ which covers
49 states of United States, collected from February 2016 to
June 2020. Our approach is based on a deep neural network
model that utilizes a variety of data characteristics, such as
time-sensitive weather data, textual information, and discerning
factors. We have tested ARIS against multiple baselines through a
comprehensive series of experiments across several major cities
of USA, and we have noticed significant improvement during
inference especially in detecting accident classes. Additionally,
to make our model edge-implementable we have compressed
our model using a joint technique of magnitude-based weight
pruning and model quantization. We have also demonstrated the
inference results along with power consumption profiling after
deploying the model on a resource constrained environment that
consists of Intel Neural Compute Stick 2 (NCS2) with Raspberry
Pi 4B (RPi4). Our investigation and observations indicate major
improvements to predict unusual traffic accident event even
after model compression and deployment. We have managed to
reduce the model size and inference time by ≈ 6x, and ≈ 70 %
respectively with insignificant drop in performance. Furthermore,
to better understand the importance of each individual type of
variables used in our analysis, we have showcased a comprehen-
sive ablation study.

Index Terms—accident risk prediction, real-time, quantization,
pruning, device implementation

I. INTRODUCTION

Traffic accident is one of the most dangerous threats to
human life and statistically it has risen to the 8th leading cause
of death globally. Almost 1.35 million people die in traffic
accidents each year that stands for 3700 people everyday [1].
On average, there is a 3 percent of the gross domestic product
loss due to traffic accidents in the majority of the countries
around the world [2]. In fact even in US, despite having one
of the best traffic infrastructures, traffic accidents are a serious

problem. For example traffic accidents were responsible for
the death of 23,708 vehicle occupants in 2017 [3], [4]. Early
prediction of traffic hazards, one of the prerequisites in accident
prevention, provides emergency responders with valuable
information to determine the seriousness of injuries, assess
the possible effects of the accident, and develop appropriate
protocols for traffic system management.
At present, deep learning is attracting a great deal of

attention from the research community owing to the flexibility
it offers to address complex problems in text, image or even
speech medium relating to a variety of applications including
classification, recognition, forecasting etc. In a similar vein,
the issue of traffic accident prediction can also have a deep
learning based solution. To this extent, efforts to develop a
comprehensive dataset for traffic hazard prediction started as
soon as the concept of smart city development came into the
limelight. For instance, some dataset of this kind for United
Kingdom [5], Seattle [6], New York [7], Maryland [8] etc. are
publicly available to help the research community come up
with innovative technologies to reduce the severity and number
of accidents as a whole. However, almost all available datasets
till now provide only a fraction of the information related to
accident ferocity, location and environmental influence, road
and weather conditions etc. In general these datasets fail to
provide a comprehensive breakdown which encapsulates the
whole scenario of a traffic hazard. So, most of the existing
studies are based on small-scale datasets which covers only
one state or city, and in relation to the studies where detailed
data is available, the authors refrain from making them publicly
available due to the sensitive nature of the information. To
address these issues, our work is done on “US-Accidents"
dataset, which was collected from Feb, 2016 to July, 2020 and
covers accident details of 49 states in the US. This dataset is
unique in the sense that it covers majority of the states in a
country (US) and has almost all the possible geo-spatiotemporal
features including a brief description of the incident to clearly
illustrate the event.
Even after developing an efficient traffic hazard prediction

model, it is important to test whether the model is imple-
mentable in real environments. Most deep learning models
suffer from huge computation requirement and high inference
time. These make it difficult for real-time deployment. Hence,
generating edge-device friendly deep models, compressing
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the models to run within the limited resources of edge-
devices is essential. Many previous studies proposed different
strategies to overcome this limitation. For example, low rank
factorization [9], distributed processing [10], weight pruning
[11] based approaches were introduced for different kinds
of applications like computer vision [12], human activity
recognition [13], audio classification [14], video processing
[15], etc. Also, compression of different kinds of deep models
i.e., Convolutional Neural Network (CNN) [16], Long Short
Term Memory (LSTM) [17], Generative Adversarial Network
(GAN) [18], etc. are active research fields these days. Moreover,
replicating those compressed models into resource constrained
devices like Nvidia Jetson Nano [19], Intel Edison [20],
Snapdragon processor [21], etc. are drawing attention of
research communities of these respective fields.
The goal of this work is to develop a system that would raise
awareness among the drivers in certain accident-prone areas
particularly in bad weather or road conditions. We propose
an Accident Risk Inference System (ARIS); where we have
introduced a pruning, and quantization based joint compression
scheme to solve the issues with tight-resource edge devices.
The conventional models for this purpose are required to run
on heavy computing devices because of their computational
complexity. The use of model compression technique in our
case enables traits like low-power consumption, faster inference,
and less memory usage with insignificant drop in performance.
We utilize the Intel Neural Compute Stick (NCS2) with
Raspberry Pi 4B (RPi4) for our edge deployment. To the best of
our knowledge, this is the first study to incorporate the features
of model compression, and edge-implementation for a real-time
accident prediction application. Our main contributions are:

• Accident Risk Inference System (ARIS): We propose ARIS,
which uses a variety of data including text description
of traffic events, weather events, discerning factors, and
time to provide real-time traffic accident prediction for
every 15 minute time interval. The model consists of
LSTM and dense layers where we have introduced a
mixed approach with magnitude based weight pruning,
and quantization aware training to bring down the size
of our model (approximately one-sixth) in order to
make it deployable on low power edge devices without
compromising accuracy.

• Edge-devices implementation: To showcase the adapt-
ability of our system with real-time deployment, we
prototype ARIS using Intel Neural Compute Stick 2
(NCS2); one of the tightest inference engines available
with Raspberry Pi 4B (RPi4) as test bed. We have tested
the pliability of our system in terms of inference time,
memory requirement while running, and also provided
necessary power profiling. Across all these measuring
parameters, our system fulfills required qualities to be
considered as a real-time implementable one.

• Empirical evaluation against several baseline models and
ablation study: We have evaluated the performance of
our implemented models and illustrate comparisons with

relevant baseline models including both the statistical,
and DNN to illustrate the validity of our approach. We
have considered several widely accepted performance
metrics i.e., Area Under the Curve (AUC), F1-score, etc.
in addition to accuracy to corroborate the efficacy of our
model with skewed dataset. Detailed ablation study on
the importance of various attributes on prediction results
are also provided.

II. RELATED WORK

In this related work section we will talk about similar
datasets that were analyzed for these kinds of tasks, different
accident prediction approaches, and finally some review on the
previously explored compression techniques.

A. Literature on accident prediction

To analyze this kind of dataset, several kinds of techniques
were explored. Among them, machine/deep learning based
approaches are dominant. To provide some examples, [22]
used a SVM based analysis which takes only numerical input
and does a binary classification. Attention based works are
demonstrated by [23] which looks for the relevant data points
to predict the traffic incidents. Computer vision based [24]
techniques are also popular and they exploits the use of real
time camera even LiDAR sensor. Use of deep models like
autoencoder [25], DNN [26], LSTM [27] etc. are being popular
now-a-days due to their capability of extracting the insights
from data with different modality. Additionally, supervised
machine learning algorithms, such as AdaBoost, Logistic
Regression (LR), Naive Bayes (NB), and Random Forests
(RF) are also implemented on traffic accident data [28]. The
data used in this study was provided by the Office of Highway
Safety Planning (OHSP) and contains information about road
crashes occurred on Michigan during the period ranging from
2010 to 2016. In [29], the authors proposed three different
network architectures based on a simple NN, CNN, and RNN
models for prediction of traffic accidents. The 2009–2015
traffic accident data for the North–South Expressway (NSE),
Malaysia were used in this study. The authors deals with the
dataset of road traffic accidents that occurred in Seoul, Korea,
2017-2018 [30]. They plot the importance of variables using
Random Forest and represents that Victim’s car, Accident Type,
Attacker’s car, Block and Violation are significant variables.
In the above works, the prediction is mainly the percentage
of chance of accident occurrence; the specific cases are not
taken into account. So, accurately predicting a possible severe
accidental event can lead to efficient use of resources and can
finally result in fulfilling the goal of sustainable development.
Our plan is to combine the analytical results of both numeric
and textual parts of the main dataset so that we can showcase
a robust model for real-time accident prediction.

B. Model compression

As an attempt to bring the extraordinary characteristics
of deep learning like extracting features without domain
knowledge, capturing complex structure of dataset, accurate
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prediction, etc. into edge, the attempts are going on among
researchers for a while. Due to insufficient resources to host a
deep model in its original extent, it is imperative to find a way to
reduce the computation complex, and model size while keeping
the performance as intact as possible. Several compression
techniques have emerged in the recent years to make the deep
models to be more usable and making the inference using
a wearable device. For instance: strategically reducing some
of the model’s structure components i.e., weights, filters was
successfully documented in some research works. It is called
pruning [11] technique which search for most valuable nodes
responsible for better performance, and eliminate the others
through different ranking methods. But pruning with some
common regularization methods like L1 or L2, requires more
iterations to converge than general. Also, the pruning criteria
are required to be set manually for different layers to achieve
the auspicious result. Reducing the required bit-size to represent
the model weights and parameters is another notable approach.
This is named quantization [31] and this wording is modified
based on the used bit size like, 2-bit representation is known
as binarization [32], technique. One possible shortcoming of
this binary thresholding methods is based on simple matrix
approximations that may not capture the proper effects of
this imposed thresholding on the achievable accuracy loss. In
low-rank matrix factorization [9], the parameters of one layer
were set and the layers above were fine-tuned based on a
criterion for reconstruction error. Several different approaches
in this domain are undertaken to furnish the procedure, for
example, truncated Singular Value Decomposition (SVD) [33],
Batch Normalization (BN) based decomposition [34], etc. One
common disadvantage of these approaches is that structural
constraints may introduce bias which can degrade the model’s
performance.
In ARIS model, we have utilized a combined scheme of

pruning, and quantization aware training. This approach helps
us to apply two separate compression strategies simultaneously
checking the performance curve which in terms aids us to
select the most efficient structure.

III. DATASET DESCRIPTION

For our work we choose to use ‘US-Accidents’ dataset [35]
which is kind of self-explaining, and covers accident data of
49 states of the United States. The data is continuously being
collected from February 2016, using several data providers,
including two APIs which provide streaming traffic event data.
These APIs broadcast traffic events captured by a variety of
entities, such as the US and state departments of transportation,
law enforcement agencies, traffic cameras, and traffic sensors
within the road-networks. Currently, there are about 3.5 million
accident records in this dataset. In our knowledge, it is the first
dataset containing these comprehensive amount of information
on accidents of US. It has 49 variables in total and some of
the important variables are source of accident report, accident
description, roundabout zone, no exit zone, junction, railway
crossing in nearby location, temperature, wind flow, wind speed,
wind direction, air pressure, weather condition, etc.

A. Feature Selection

In order to better utilize the features listed in our chosen
dataset, we have categorized them as time-variant features and
time-invariant features in a broad manner. We have tagged
time, and weather as time-variant features whereas the natural
language description, and discerning factors (e.g. stop sign,
junction) were categorized as time-invariant features. We will
now briefly describe those components.

• Time-Variant Features
Time and Weather: Time indicates the period of the

day such as weekday/weekend, hour-of-day and daytime
or night. On the other hand, weather is mainly a vector
representing 10 weather attributes including temperature,
pressure, humidity, visibility, wind-speed, precipitation
amount; and four special events such as rain, snow, fog,
and hail.

• Time-Invariant Features
Textual Description: This feature refers to the natural

language description of the different traffic events. It
portraits the road scenario in a definitive manner which
we convert into a embedding vector of size 50.

Discerning Factors: Discerning factors are nothing
but the spatial characteristics of the roads. These factors
are used to analyze the effect of amenity, speed bump,
crossing, give-way sign, junction, no exit sign, railway,
roundabout, station, stop sign, traffic calming, traffic signal,
and turning loop on traffic condition. The vector size used
to represent these factors is 13.

B. Data Preprocessing

With the help of the formulation stated above, we incorporate
15 time-variant (i.e., time, and weather) and 63 time-invariant
(i.e., Discerning Factors and Description) attributes. In order
to predict the label of incident (accident/non accident) during
a given time, we use a vector representing the last 6 time
intervals (last one and half hours), including one instance of
time-invariant attributes (63 features), and 6 instances of time-
variant attributes (6 × 15 features). In the original form of
the dataset, the label distribution was among four categories.
The authors of the dataset [35] have enlisted four difference
severity levels. But we have experienced minute distinction
among these four labels. So, in order to reform the dataset
for our application, we have inspected the textual descriptions
with respective severity levels reported in the dataset. We have
found that severity level 1 and 2 stand for insignificant traffic
events that results in short delay, these events are labeled as
non-accident in our modified version of the dataset. Similarly,
severity levels with 3 and 4 are categorized as accident events
corroborated by their textual descriptions.

IV. METHODOLOGY

This section includes the detailed description of the process
of developing ARIS model as a real-time. First, the major
components of the base model will be covered, followed by
the particulars of the employed compression technique.
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A. Model Development

To make prediction with these heterogeneous types of
data, we have developed a deep neural network consists of
Multi Layer Perceptron (MLP) and Long Short Term Memory
(LSTM) architecture. The model diagram can be found in figure
1. The major components of this illustration will be described
subsequently.

Raw Dataset

Weather Textual
information

Discerning
factor

Preprocessing

FC (384)

Concatenation

FC (256)

FC (64)

Binary
Classification 

Dense (512)

Dense
(256)

Dense
(128)

Embedding

LSTM
(256)

LSTM
(128)

Time-
variant

features
LSTM
(128) 

Fig. 1: Workflow of ARIS model.

• Analyzing time-variant features: Weather with specific
time-stamps is considered as time variant feature. These
attributes are fed to this network in their temporal order
as they can be treated as a sequence. This component
consists of a long-short-term-memory (LSTM) model with
128 LSTM cells. Thus, the output is a vector of size 128.

• Analyzing discerning factors: This component utilizes
the spatial characteristics of the roads. The vector size
here is 13 as par prior description . This vector is also
processed with three feed-forward layer of size 512, 256
and 128 respectively. Thus, the output is a vector of size
128. ’ReLU’ was used as the activation function in the
first two dense layers and ’Sigmoid’ was used on the last
layer.

• Analyzing textual description: This part of the model
converts the natural language description of an event into
a embedding vector size of 50. This vector is then fed to
two LSTM layers with size of 256 and 128 respectively.
Thus, the output is a vector of size 128.

• Concatenation and classification: After gaining extracted
features from three different components, a concatenation

operation is done in order to utilize the captured inherent
structure of data from multiple types. The output will go
through the fully-connected component to make the final
prediction. We have used four dense layers of size 384,
256, 64, and 1, respectively. ’ReLU’ was used as activation
function in the first three danse layers,and ’Sigmoid’ was
used in the output layer (last layer).

B. Compression

As shown in figure 1, our ARIS model contains several
neural network layers i.e., Long Short Term Memory (LSTM),
Fully Connected (FC) layers. So, in order to reform our
model into a less computationally complex one, and with
lesser parameters, we can exploit the features of model
compression into these neural layers. In ARIS, we have used
a combined compression scheme consists of magnitude-based
weight pruning, and quantization aware training. In magnitude-
based weight pruning, unlike dropout, we have the control over
selecting the important nodes because we first let the model to
reach to certain accuracy before setting a percentage of weights
to zero. It also enables us to look into accuracy of the model
after discarding a certain portion of connections. We have used
two hyperparameters named sparsity, and scheduling. With
sparsity, we can determine what percentage of nodes we want
to keep, in our case we have used 60% sparsity. Scheduling
helps us in setting up the interval between two subsequent
pruning operations.
In addition to pruning, we have used quantization aware training.
There are two popular methods for quantization: post training
quantization, and quantization aware training. Quantization
aware training ensures that forward pass matches the precision
for both training and inference time. It is possible to generate
the quantize awareness for the entire model or only parts of
it. On the other hand, in post-training quantization, weights
are quantized post-training, and the activations are quantized
dynamically at inference time. As using quantization aware
training gives a chance to look into the training performance
directly while applying quantization, we have chosen this
one. Quantization aware training emulates inference-time
quantization which, through downstream tools, can be used
to produce actually quantized models. After going through
extensive empirical analysis to select suitable bit size for
quantization, we find that 16-bit quantized model works best
for our system. Also, we didn’t apply quantization on the layer
with data input and the last layer as it brings up the concerns of
important raw information. It aids us to achieve more accurate
results.

V. EXPERIMENTAL SETUP AND EVALUATION

This section will walk you through the procedures followed
to set up the experiments, and the evaluation results.

A. Experimental Setup

We have demonstrated our results for six major cities from
four different time zones, they are: Atlanta, Seattle, Detroit,
Miami, Denver, and Chicago. For each of them, each entry of
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TABLE I: Specifications of Intel NCS2 with RPi4 as host
board.

Metrics Specifications

Processor Intel Movidius Myriad X VPU with 16 SHAVE
cores (128-bit VLIW Vector Processors)

Operating System Raspbian Buster
Host Interface USB 3.0 Type-A port

Memory 2 GB LPDDR4 with 512 MB LPDDR4
+ 2.5 MB centralized on chip

CPU Quad-Core Cortex A 72

data is represented by 63 time-invariant and 6 × 15 time-variant
features.
For our experiment, we have chosen Logistic Regression,
Decision Tree, Random Forest, and Deep Neural Network
(four layers) as baseline models. These baseline models are
implemented using Scikit-learn library and our main deep
learning based ARIS model is implemented on Keras running
on Tensorflow backend.
The model compression segment of ARIS model is carried
out using the TensorFlow framework. We have modified
the TensorFlow Runtime package according to our input
types and application scenario. For pruning, we have chosen
‘Magnitude based Weight Pruning’ technique and tweaked
two hyperparameters named ‘Sparsity’, and ‘Scheduling’. For
quantization bit selection, we have achieved the best results
with 16 bits. The final model is saved into ‘.tflite’ format to
load and perform the inference procedure in edge device.

B. Device configuration and setting

To evaluate our model’s compatibility with resource con-
strained environment, we have showcased the deployment
results on a low power inference engine named ‘Intel Neural
Compute Stick 2 (NCS2) with Raspberry Pi 4B (RPi4) as
carrier board. Intel has made the latest Movidius deep learning
System-on-Chip (SoC) to be used for test bed designing. This
chip is adequate in the sense that it enables both the parallel
operation, and inference. It’s processing speed can be brought
up to 4 Tera Operations per Second (TOPs) within a power
consumption of 1.5-watt. This is mainly specialized with Visual
Processing Unit (VPU) and can be used with two different
RAM settings: without additional RAM in-package and with
4 Gbits (512 MBytes) in-package RAM. The host interface of
the hardware version of this package (NCS2) is a USB 3.0
dongle that houses the Movidius Myriad X VPU with 4 Gbit
of RAM. This USB stick can be used as an add-onto boost the
inference speed. Once the model is trained, the optimization
technique can be modified using the OpenVINO framework
before performing the inference operation. As a host device of
this inference engine, we have chosen Raspberry Pi 4B (RPi4).
The floating-point number for the input tensor is converted
into FP16 as it is required for compatibility issue. The whole
device implementation setup is illustrated in figure 2, and
the configuration of this aforementioned edge composition is
detailed in table I.

Fig. 2: Intel NCS2 with Raspberry Pi 4B as host board.

C. Evaluation
It is worth mentioning that the dataset used in our work is

highly skewed, and may predict better for non-accident class.
So, to deal with this issue, we have imposed class weights,
and gone through stratified cross-validation approach. We have
achieved significant improvement after adopting those strategies.
We have evaluated the performance of the implemented models
based on AUC (Area Under Curve) score, Precision, Recall,
and F1-score reported for each class separately.
For AUC score the area under the curve is computed using the
trapezoidal rule for each class (accident and non-accident). We
specifically use AUC score since, the dataset we work with
is skewed with respect to the distribution of samples and this
metric generates a more holistic insight regarding the efficacy
of our model. The respective ROC curves for each cities can
be found in figure 3. Analyzing this figure it is evident that,
AUC region for our ARIS model is always higher for all the
six cities when compared to other baseline models. Also, the
highest AUC score is achieved for the city named ’Seattle’
and ’Denver’ whereas the AUC scores for all cities range from
0.77 to 0.91 for our proposed ARIS model.

Fig. 3: Comparison of ARIS model with implemented baselines
in terms of ROC curves for both accident and non-accident
classes.

Also, the respective precision, recall and F1-score for each
city for accident class and non-accident class is plotted in
figure 4 and figure 5 respectively. The comparison of our
model with the five baselines is also shown in Figure 4 and 5.
Clearly, the ARIS model is performing better in almost all the
cases. Analyzing the F1-scores for two classes it is expected
that the results for non-accident class should be better than
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the accident class. This is because the majority of data points
belongs to non-accident class. One interesting thing to say, for
Chicago city, our model’s performances (Precision) degrades
for non-accident class compared to the baseline models. But
as described earlier, it is important to minimize type II error
that means reducing the error of predicting accident event as
non-accident event. In practical terms, the consequence of this
error is the most severe for this predictive model. By looking
into the results, we can claim that, our model successfully
meets this requirement by showing superior results for both
accident and non accident class.

Fig. 4: Comparison between the ARIS model and baseline
models based on Precision, Recall, and F1-score for Accident
Class.

Fig. 5: Comparison between the ARIS model and baseline
models based on Precision, Recall, and F1-score for Non
Accident Class.

We have tabulated a compilation of all the results from the six
cities taken into account (F1-Score) for both baseline machine
learning and deep learning models along with our proposed
ARIS model in table II. On average our model shows a 23.9%
improvement for non-accident class and 18.6% improvement
for accident class when compared to traditional machine

learning models. Finally, when compared to deep learning
frameworks, our model demonstrates 6% and 4.7% F1-score
improvement for non-accident and accident class respectively
which further justifies the effectiveness of our optimized model.

D. Ablation Study
To better understand the importance of each individual

type of variable used in our analysis, we have conducted an
extensive ablation study. This enlightens us with the effect of
a certain variable on the output. This part is divided into two
segments. First we analyzed the model performance for both
accident and non accident class by excluding one variable
each time. The resultant graphs of these experiments for the
ARIS model are shown in figure 6a. This plot signifies that,
removing text description from the model may harm the
performance in broader magnitude for both the accident and
non accident classes. The possible reason for that is using
the textual description the model can better grasp the traffic
conditions. On average, the combination of weather, and
textual description provides better results for both accident
and non-accident classes. Minor deviations can be noticed in
case of Seattle, and Miami for accident, and non-accident
classes respectively.

Secondly, for cross-verification with the previous settings,
we have implemented ARIS model with only one variable
at a time. This actually correlates with the previous results
with exclusion of one variable. Using either text description of
traffic event or weather attribute results in satisfactory results
as these two variables go hand in hand, whereas using only
discerning factor results in severe degradation on performance.
The respective plots can be found in figure 6b.

VI. EDGE-DEVICE IMPLEMENTATION

To make this system real-time, it is imperative to make the
inference stage implementable on edge devices. We envision
that this can be introduced in the form of an app on drivers’
mobile phone or smartwatch, a new dashboard feature in
vehicles or can be established as overhead billboards, containing
a resource constrained processor itself, showing prediction
ahead of time. We hypothesize that the ARIS if implemented
on the cloud compared to the edge can incur delay in prediction
by sending data to the cloud, performing computing there,
and finally sending back the information to the drivers while
rendering it to a local display.
The performance evaluation of ARIS model after implementing
it on NCS2, we have considered three significant metrics
namely: inference time, required memory while model running,
and power usage during prediction. The inference time or
running time validates the real-time capability of any model.
In our case, this inference time includes data loading time,
model loading time, and final result displaying time. We
have used the ‘time’ function of Raspbian OS to measure
the inference time. For the reported inference time here, we
have considered batch size of 1 that means time required
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TABLE II: Result compilation of all implemented models based on F1-score for both accident and non-accident classes.

City Name LR DT RF DNN ARIS
Non Accident Accident Non Accident Accident Non Accident Accident Non Accident Accident Non Accident Accident

Atlanta 0.65 0.8 0.66 0.81 0.67 0.78 0.81 0.88 0.84 0.91
Seattle 0.9 0.71 0.89 0.59 0.87 0.71 0.95 0.86 0.96 0.9
Detroit 0.69 0.76 0.72 0.78 0.69 0.87 0.85 0.86 0.89 0.9
Miami 0.69 0.76 0.72 0.78 0.69 0.77 0.86 0.88 0.89 0.9
Denver 0.76 0.74 0.74 0.72 0.77 0.8 0.87 0.86 0.91 0.9
Chicago 0.59 0.73 0.45 0.77 0.66 0.66 0.66 0.79 0.76 0.81

(a)

(b)

Fig. 6: (a) Output of ARIS model using all excluding one
variable (The leftmost plot is for accident class, the rightmost
one is for non-accident), and (b) Output of ARIS model using
only one variable at a time (The leftmost plot is for accident
class, the rightmost one is for non-accident).

to process individual data point. Another important metric
for limited resource model evaluation is the memory size
allocation while running the inference operation. The peak
memory required during inference should be within the reach
of resource constrained setup. We have defined the difference
between the idle memory value, and highest value of memory
while inference procedure operation as required memory in our
work. The results are shown in Megabytes (MB). The power
profiling of any model is also one vital factor while we proceed
for real world deployment. The running power of any deep
model should be well within the sustainable limit of the device
capability. Here, the reported value for power consumption is
achieved by subtracting the idle power value from the peak
power value displayed during inference operation. The unit
used for reporting is Watt (W), and we have used a USB power
monitor for this purpose. The achieved values in terms of these
three metrics and comparison among base, pruned, and final
pruned with quantization can be found in figure 7. For the sake
of edge-device implementation, we optimized our software

framework and compressed the size of our base model to one-
fifth. At first, we performed pruning on our base model, then
did quantization on the pruned model and achieved reasonable
model size. Besides achieving compressed size, our pruned and
quantized tflite model takes less time, lower inference power
and less memory to execute on the edge devices. Noticeably,
the inference time of the final pruned and quantized model
is less than 1.5 mS which suggests the requisite harmony for
a real-time implementable model. The results depicted in the
figure 7 clearly indicate that we gained improvement of 1.9
times on running time, 1.8 times on power consumption, 2.8
times on memory use in RPi4 device to execute the inference.
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Fig. 7: Comprehensive illustrative comparison among ARIS
model (pruned and quantized), pruned only, and uncompressed
base model with respect to running time, memory required, and
power consumption during inference. The descending shape
of legends from base to pruned and quantized model indicates
their relative difference based on model size.

VII. CONCLUSION

In this work, we have presented an edge implementable deep
learning-based technique to model the real-time traffic accident
prediction. We have used different data modality like numerical
and textual description to make our model more prevalent.
We have also compared our ARIS model with four of the
baseline models (Logistic Regression, Decision Tree, Random
Forest, and Deep Neural Network) and experimental results
demonstrate that ARIS model outperforms them in almost all
the cases for accident class prediction and also minimizes false
negative rate significantly. The documented ablation study in
this work articulates the significance of each individual variable
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for accident prediction framework. Furthermore, we have
achieved noticeable improvement among some major metrics
for resource-constrained device implementation. Especially, the
achieved inference time of 1.38s, and low power requirement
(1.01W) using our model without significant drop in prediction
performance makes ARIS a suitable one to be implemented in
real-time traffic environment. In future, we hope to develop a
dedicated hardware accelerator for real-time traffic monitoring,
and accident prediction purposes including the feature of
secure communication between deployed accelerators for a
comprehensive and more confident prediction. We hope that
this research will pave the way of designing more interactive
and efficient traffic structure which is one of the key features
of smart city development.
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