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Abstract— Drift counteraction optimal control (DCOC) aims
at optimizing control to maximize the time (or a yield) un-
til the system trajectory exits a prescribed set, which may
represent safety constraints, operating limits, and/or efficiency
requirements. To DCOC problems formulated in discrete time,
conventional approaches were based on dynamic programming
(DP) or mixed-integer programming (MIP), which could be-
come computationally prohibitive for higher-order systems. In
this paper, we propose a novel approach to discrete-time DCOC
problems based on a nonlinear programming formulation with
purely continuous variables. We show that this new continuous
optimization-based approach leads to the same exit time as the
conventional MIP-based approach, while being computationally
more efficient than the latter. This is also illustrated by
numerical examples representing the drift counteraction control
for an indoor airship.

I. INTRODUCTION

During the operation of many systems, it is desired to
maintain the system state to stay within a prescribed oper-
ating region for safety and/or efficiency reasons. However,
due to a cumulative effect of persistent disturbances and/or
limited control authority and resources, the system state may
drift and eventually get outside the desired operating region.
The purpose of drift counteraction optimal control (DCOC)
is to maximize the time (or, more generally, a functional
representing the total yield) until the system trajectory exits
the prescribed region [1], which is referred to as the time-
before-exit in this paper.

The use of DCOC has been considered in a variety of
applications, including for hybrid electric vehicle powertrain
management [2], for satellite life extension [3], and for au-
tomated driving [4], [5]. As an example, a satellite operating
in a low Earth orbit is subject to persistent atmospheric drag.
Because the satellite has a finite amount of fuel on board, it
will eventually fall out of orbit. In [3], DCOC is considered
to maximize the time for the satellite to stay in its orbit
(within a deviation tolerance).

DCOC problems can be formulated either in continuous
time or in discrete time. Solving a continuous-time DCOC
problem typically involves solving the Hamilton-Jacobi-
Bellman (HJB) equation [6], [7], [8], which is in general
very difficult. Therefore, recent studies have been focused
on DCOC problems formulated in discrete time, where a
larger set of optimization algorithms and computation tools
are available. Approaches based on dynamic programming
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(DP) to discrete-time DCOC problems are proposed in [2],
[9], [10]. Although these approaches can treat quite general
DCOC problems in theory, they become computationally
prohibitive when the system order is high, due to the curse
of dimensionality associated with DP iterations [11]. It is
shown in [12] that a discrete-time DCOC problem can
be equivalently expressed as a mixed-integer programming
(MIP) problem. In this MIP formulation, the number of
integer variables grows linearly with the length of the
planning horizon. Consequently, for problems requiring a
longer planning horizon, such as in the case of higher-order
systems, the resulting MIP problem is still quite difficult
to handle due to the combinatorial worst-case complexity
for optimizing over the integer variables [13]. Therefore, to
reduce computational complexity, a continuous relaxation of
this MIP problem is proposed in [12]. In particular, for linear
systems with prescribed operating regions defined by affine
constraints, the relaxed problem is a linear programming
(LP) problem and hence can be efficiently solved. However,
an optimal solution to this relaxed problem may only be a
sub-optimal solution to the original MIP problem, i.e., not
leading to the maximum time-before-exit that can be possibly
achieved.

In this paper, we present a novel approach to discrete-
time DCOC problems based on a nonlinear programming
(NLP) formulation with purely continuous variables. The
proposed NLP formulation is essentially an improved version
of continuous relaxation of the MIP formulation introduced
in [12]. However, we show that an optimal solution to this
new relaxation guarantees to be an optimal solution to the
original MIP problem, and hence achieves the maximum
time-before-exit. The proposed approach is motivated by
the NLP formulation for minimum-time optimal control
problems recently introduced in [14]. In particular, the above
optimality guarantee relies on a cost function with exponen-
tial weighting and is established by a sensitivity analysis.
Furthermore, using numerical examples representing the drift
counteraction control for an indoor airship, we show that
solving for a maximum time-before-exit solution with this
new NLP-based approach takes considerably less computa-
tion time than through solving the original MIP problem.

This paper is organized as follows. In Section II, we
introduce the DCOC problem and present an equivalent MIP
formulation developed in previous literature. In Section III,
we propose a novel NLP formulation of the DCOC problem
and analyze the relationship between the original DCOC
problem and the new NLP problem. In Section IV, we use
examples representing the drift counteraction control for an
indoor airship to illustrate the proposed approach, where the



drift is caused by wind and temperature disturbances. The
paper is concluded in Section V.

II. DRIFT COUNTERACTION OPTIMAL CONTROL

Consider a system represented by the following discrete-
time model,

xk+1 = fd(xk,uk), (1)

where xk ∈ Rnx denotes the state vector at the discrete time
instant k, uk ∈Rnu denotes the control input vector at k, and
fd : Rnx ×Rnu → Rnx is assumed to be a twice continuously
differentiable function (i.e., fd ∈C2(Rnx ×Rnu → Rnx)).

Consider the following prescribed set for the state,

X = {x ∈ Rnx : H(x)≤ h}, (2)

where H ∈ C2(Rnx → Rnh) and h ∈ Rnh . Assume that the
initial state x0 belongs to X . The objective of drift coun-
teraction optimal control (DCOC) is to maximize the time,
k∗, before the system trajectory exits X , with control inputs
uk, k = 0,1, ..., taking values in an admissible set U ⊂ Rnu ,
which is assumed to be compact and convex.

Formally, the DCOC problem can be formulated as fol-
lows,

max
u0,u1,...,uN−1

κ(x0,{uk}N−1
k=0 ) (3a)

subject to xk+1 = fd(xk,uk), (3b)
uk ∈U, k = 0,1, ...,N−1, (3c)

where x0 is a given initial condition, and κ(x0,{uk}N−1
k=0 ) is

defined as

κ(x0,{uk}N−1
k=0 ) = max

{
k ∈ Z[0,N] : xi ∈ X , i = 0,1, ...,k

}
.
(4)

It was shown in [12] that the above DCOC problem can
be equivalently expressed as the following mixed-integer
programming (MIP) problem,

min
u0,u1,...,uN−1

δ0,δ1,...,δN

N

∑
k=0

δk (5a)

subject to xk+1 = fd(xk,uk), (5b)
uk ∈U, (5c)
δk ≤ δk+1, k = 0,1, ...,N−1, (5d)
H(xk)≤ h+1Mδk, (5e)
δk ∈ {0,1}, k = 0,1, ...,N, (5f)

where x0 is the given initial condition, 1 denotes the
nh-dimensional vector of ones, and M > 0 is a suffi-
ciently large positive number. Specifically, a global optimizer
({u∗k}

N−1
k=0 ,{δ

∗
k }N

k=0) of the MIP problem (5) provides a global
optimizer {u∗k}

N−1
k=0 of (3), and furthermore, the maximum

time-before-exit, κ∗(x0) = κ(x0,{u∗k}
N−1
k=0 ), satisfies κ∗(x0) =

max{k : δ ∗k = 0} (see Theorem 1, [12]).
Solving mixed-integer problems is computationally chal-

lenging [13]. Therefore, it was proposed in [12] to approxi-
mately solve the MIP problem (5) through solving a relaxed
version of (5), which dropped the integer constraints (5f) and
was thereby a continuous optimization problem. Although

such a technique demonstrated reasonably good performance
in simulation examples, there was no guarantee that the
control input sequence {uk}N−1

k=0 obtained from the relaxed
problem necessarily lead to the maximum time-before-exit
κ∗ of the original DCOC problem (3). The major contribution
of this paper is to introduce an improved version of the
relaxed problem such that the above guarantee is achieved
with rigorous proof.

III. CONTINUOUS OPTIMIZATION APPROACH TO DCOC
Consider the following problem,

min
u0,u1,...,uN−1

ε0,ε1,...,εN

J(6) =
N

∑
k=0

θ
N−k

εk, (6a)

subject to xk+1 = fd(xk,uk), (6b)
uk ∈U, (6c)
0≤ εk ≤ εk+1, k = 0,1, ...,N−1, (6d)
H(xk)≤ h+1Mεk, k = 0,1, ...,N, (6e)

where εk ∈ R, and θ > 1 is a weighting parameter which is
chosen to be sufficiently large.

The problem (6) is a nonlinear programming (NLP) prob-
lem with purely continuous variables. A connection between
problems (5) and (6) is stated in the following theorem.

Theorem 1: Given x0 ∈ X , there exists a number θ0 > 1
such that if θ ≥ θ0, then any global minimizer of (6),
({u∗k}

N−1
k=0 ,{ε

∗
k }N

k=0), satisfies ε∗k = 0 for all k = 0, ...,κ∗(x0),
where κ∗(x0) is the maximum time-before-exit introduced
below (5). In turn, the control input sequence {u∗k}

N−1
k=0 is a

global optimizer of the DCOC problem (3).
To prove Theorem 1, we introduce a cost function

φ(εκ∗(x0)+1, ...,εN) , ∑
N
k=κ∗(x0)+1 θ N−kεk and start with the

following related problem,

min
u0,u1,...,uN−1

ε0,ε1,...,εN

φ(εκ∗(x0)+1, ...,εN) =
N

∑
k=κ∗(x0)+1

θ
N−k

εk (7a)

subject to xk+1 = fd(xk,uk), (7b)
uk ∈U, (7c)
εk ≤ εk+1, k = κ

∗(x0), ...,N−1, (7d)
H(xk)≤ h+1Mεk, k = 0,1, ...,N, (7e)
εk = ηk, k = 0,1, ...,κ∗(x0), (7f)

where ηk, k = 0,1, ...,κ∗(x0), are parameters.
For convenience, we let ε = [εκ∗(x0)+1, ...,εN ]

>,
η = [η0,η1, ...,ηκ∗(x0)]

>, and η(k) = ηkek, where ek,
k = 0,1, ...,κ∗(x0), are the standard basis vectors of
Rκ∗(x0)+1. It is clear that the minimizers of (7) depend
parametrically on η .

We now make the following assumption:
Assumption 1: For η = 0, we let z(0) =(
{uk(0)}N−1

k=0 ,{εk(0)}N
k=0

)
∈ Rnz denote a minimizer of

(7) and let λ (0) ∈ Rnλ denote its associated Lagrange
multiplier vector. The pair (z(0),λ (0)) is assumed to satisfy
the strong second-order sufficient conditions (see Theorem 2
of [15]).

Under Assumption 1 and according to Theorem 3 of
[15], there exists a neighborhood of 0, V ⊂ Rκ∗(x0)+1, and



continuously differentiable functions z :V →Rnz and λ :V →
Rnλ such that for all η ∈ V , the pair (z(η),λ (η)) satisfies
the strong second-order sufficient conditions. In this case, the
following sensitivity result holds [15]: For k= 0,1, ...,κ∗(x0),

lim
ηk→0+

φ(ε(η(k)))−φ(ε(0))
ηk−0

=−λk(0), (8)

where λk(0) is the Lagrange multiplier associated with the
equality constraint εk = ηk = 0.

Furthermore, we make the following assumption on ε(η):
Assumption 2: There exists L > 0 such that,∣∣∣∣ lim

ηk→0+

εi(η
(k))− εi(0)
ηk−0

∣∣∣∣≤ L, (9)

for all i = κ∗(x0) + 1, ...,N, all k = 0,1, ...,κ∗(x0), and all
θ > 1.

We now consider the following problem, which replaces
the constraints εk = ηk = 0, k = 0,1, ...,κ∗(x0), in (7) with
the penalties θ N−k|εk| in the cost function,

min
u0,u1,...,uN−1

ε0,ε1,...,εN

J(10) =
κ∗(x0)

∑
k=0

θ
N−k|εk|+φ(εκ∗(x0)+1, ...,εN)

(10a)
subject to xk+1 = fd(xk,uk), (10b)

uk ∈U, (10c)
εk ≤ εk+1, k = κ

∗(x0), ...,N−1, (10d)
H(xk)≤ h+1Mεk, k = 0,1, ...,N. (10e)

The relationship between the problems (7) and (10) is stated
in the following lemma,

Lemma 1: Under Assumptions 1 and 2, there exists θ0 >
1 such that if θ ≥ θ0, then (7) with η = 0 and (10) are
equivalent, i.e., the minimizers of (7) with η = 0 are all
minimizers of (10), and vice versa.

Proof: For each k = 0,1, ...,κ∗(x0), the combination of
(8) and (9) yields the following bound on λk(0),

|λk(0)|=
∣∣∣∣ lim

ηk→0+

φ(ε(η(k)))−φ(ε(0))
ηk−0

∣∣∣∣
=

∣∣∣∣ lim
ηk→0+

∑
N
i=κ∗(x0)+1 θ N−i

(
εi(η

(k))− εi(0)
)

ηk−0

∣∣∣∣
≤

N

∑
i=κ∗(x0)+1

θ
N−i
∣∣∣∣ lim

ηk→0+

εi(η
(k))− εi(0)
ηk−0

∣∣∣∣
≤ θ N−κ∗(x0)−1

θ −1
L <

L
θ −1

θ
N−κ∗(x0).

Now let θ0 = L + 1 > 1. If θ ≥ θ0, then for each
k = 0,1, ...,κ∗(x0), the weight associated with |εk| in the
cost function (10a), θ N−k, satisfies θ N−k ≥ θ N−κ∗(x0) ≥

L
θ−1 θ N−κ∗(x0) > |λk(0)|. This means θ N−k|εk| is an exact
penalty function [16] for the constraint εk = ηk = 0. Since
(10) treats the constraints εk = ηk = 0, k = 0,1, ...,κ∗(x0),
in (7) with exact penalties, according to Theorem 14.3.1 of
[16], the second-order sufficient conditions of (7) and (10)
are equivalent.

Now we are ready to prove Theorem 1. We will show that
any global minimizer of (6) must also be a global minimizer
of (10). Then, according to the equivalence relation between
(7) with η = 0 and (10), such a global minimizer of (6) must
satisfy the conditions εk = ηk = 0 for k = 0,1, ...,κ∗(x0) in
(7f). Hence, Theorem 1 is proven.

Proof: Let z∗ = ({u∗k}
N−1
k=0 ,{ε

∗
k }N

k=0) be a global mini-
mizer of (6). Since the set of constraints of (10) is a subset
of the constraints of (6), z∗ is a feasible point of (10). Let
z′ = ({u′k}

N−1
k=0 ,{ε

′
k}N

k=0) be a global minimizer of (10). By
Lemma 1, z′ is at least a local minimizer of (7) with η = 0,
and hence satisfies ε ′k = ηk = 0 for k = 0,1, ...,κ∗(x0). In
turn, z′ is a feasible point of (6). Since z∗ and z′ are global
minimizers of (6) and (10), respectively, and are feasible
points of (10) and (6), respectively, we have J(6)(z∗)≤ J(6)(z′)
and J(10)(z′) ≤ J(10)(z∗). However, for any point z that is
feasible to (6) (and hence is also feasible to (10)), we have

J(6)(z) =
κ∗(x0)

∑
k=0

θ
N−k

εk +
N

∑
k=κ∗(x0)+1

θ
N−k

εk

=
κ∗(x0)

∑
k=0

θ
N−k|εk|+

N

∑
k=κ∗(x0)+1

θ
N−k

εk = J(10)(z).

Note that εk ≥ 0 due to the constraints in (6d). This implies
J(6)(z∗)≤ J(6)(z′) = J(10)(z′)≤ J(10)(z∗) = J(6)(z∗). Therefore,
we have J(6)(z∗) = J(6)(z′) and J(10)(z′) = J(10)(z∗), which
implies z′ and z∗ are not only feasible points but indeed also
global minimizers of (6) and (10), respectively. This proves
Theorem 1.

Theorem 1 guarantees that a global minimizer of the NLP
problem (6) provides a control input sequence {u∗k}

N−1
k=0 that

maximizes the time-before-exit (4), i.e., solves the DCOC
problem (3). In practice, NLP problems are typically solved
using gradient-based algorithms such as the interior-point
method and the sequential quadratic programming method,
which converge to only local minimizers. In what follows
we extend Theorem 1 to results of local minimizers. This
extension relies on the following assumption:

Assumption 3: Let Z ⊂ Rnz denote the feasible region
of (6), characterized by the constraints (6b)-(6e), and let
z∗ = ({u∗k}

N−1
k=0 ,{ε

∗
k }N

k=0) be a global minimizer of (6). It is
assumed that for any z0 ∈ Z, there exists r0(z0)> 0 such that
z0 + r(z∗− z0) ∈ Z for all r ∈ [0,r0(z0)].

Assumption 3 holds for many cases. For instance, if fd
represents a linear system and all components of H are
convex functions, then the feasible region Z is convex, and
in this case Assumption 3 holds true. More generally, if Z is
star-shaped with z∗ as a star center, then Assumption 3 also
holds true.

With Assumption 3, we have the following result:
Theorem 2: Under Assumption 3, all local minimizers of

(6) are indeed global minimizers.
Proof: Let z′ be a local minimizer of (6). Then, there

exists r1 ∈ (0,r0(z′)] such that J(6)(z′)≤ J(6)(z) for all z ∈ Z
with ‖z− z′‖2 ≤ r1‖z∗ − z′‖2, where ‖ · ‖2 refers to the
Euclidean norm. Let z′′ = z′ + r1(z∗ − z′), which satisfies
z′′ ∈ Z, by Assumption 3, and ‖z′′−z′‖2 = r1‖z∗−z′‖2. Thus,



J(6)(z′)≤ J(6)(z′′). However, because the cost function J(6) is
linear in z, we also have J(6)(z′′) = J(6)(z′+ r1(z∗− z′)) =
r1J(6)(z∗) + (1− r1)J(6)(z′) ≤ r1J(6)(z′) + (1− r1)J(6)(z′) =
J(6)(z′), where the inequality in the middle is due to the fact
that z∗ is a global minimizer. In this case, it must hold that
J(6)(z′) = J(6)(z′′) = J(6)(z∗). This proves that z′ is indeed a
global minimizer of (6).

Theorem 2 guarantees that, under Assumption 3, any local
minimizer of the NLP problem (6), obtained using gradient-
based algorithms, solves the DCOC problem (3).

IV. NUMERICAL EXAMPLES

Numerical examples are developed based on a drift coun-
teraction control problem of an indoor airship to illustrate the
proposed NLP-based approach (6), and also to compare this
new approach with the previous MIP-based approach (5).

A. Dynamics Model of an Indoor Airship

The model representing the indoor airship dynamics is
derived based on the one developed in [17]. The airship
is depicted in Fig. 1, where two motors are attached to a
horizontal bar below the ellipsoidal hull, and one motor is
mounted on the vertical fin at the back. The center of gravity
is assumed to be below the center of buoyancy. As a result,
most of the pitch and roll motion will be filtered out, i.e., the
angular velocities about the x- and y-axes of the body-fixed
frame are assumed to be 0.

Under the assumption ωb
x = ωb

y = 0, the transformation
from the ground-fixed frame to the body-fixed frame reduces
to a rotation φ about the z-axis. Define the state and control
input vectors as follows,

x = [x f ,y f ,z f ,φ ,vb
x ,v

b
y ,v

b
z ,ωz]

>, u = [F1,F2,F3]
>, (11)

where (x f ,y f ,z f ) represents the position of the airship in the
ground-fixed frame, and (vb

x ,v
b
y ,v

b
z ) represents the velocity of

the airship in its body-fixed frame.

Fig. 1: A diagram of the airship model.

Then, the airship dynamics can be described by the

following set of equations of motion,

ẋ f = vb
x cosφ − vb

y sinφ

ẏ f = vb
x sinφ + vb

y cosφ

ż f = vb
z

φ̇ = ωz

v̇b
x =

1
mx

(
(F1 +F2)cosγ +Fdrag,xb

)
v̇b

y =
1

my

(
F3 +mxvb

xωz +Fdrag,yb
)

v̇b
z =

1
mz

(
(F1 +F2)sinγ +ρV g−mg+Fdrag,zb

)
ω̇z =

(F1−F2)ly cosγ−F3lx+(mx−my)vb
xvb

y+τdrag,zb
Jz

,

(12)

where mx,my,mz,Jz are the augmented masses and inertia
[18], γ is the tilt angle of the lower-mounted propellers,
Fdrag,ib,τdrag,ib, i = x,y,z are the drag forces acting along
each axis of the body-fixed frame, F1,F2,F3 are the propeller
thrusts, and lx, ly are the acting lengths of the propellers. Note
that the air in the room is assumed to be dry air with constant
atmosphere pressure. By the ideal gas law, the air density ρ

can be calculated as follows,

ρ = p/(Rdry airT ), p = 1[atm] = 101.325[kPa], (13)

where T represents the temperature, and Rdry air is the
specific gas constant for dry air.

Since it is unclear whether laminar or turbulent boundary
layers are dominant at the airship surfaces in an indoor
environment, we model the drag force as a second order
Taylor series of the airship’s relative speed to the wind [18].
Suppose the ambient wind has a spatially distributed velocity
profile vw(x,y,z) = [wx,wy,wz]

> in the ground-fixed frame,
the drag forces can be modeled as follows,

Fdrag,xb = Bx(vb
x−wx cosφ −wy sinφ)

+Dx(vb
x−wx cosφ −wy sinφ)2,

Fdrag,yb = By(vb
y +wx sinφ −wy cosφ)

+Dy(vb
y +wx sinφ −wy cosφ)2,

Fdrag,zb = Bz(vb
z −wz)+Dz(vb

z −wz)
2,

τdrag,zb = Bτ ωz +Dτ ω
2
z , (14)

where Bx,By,Bz,Bτ ,Dx,Dy,Dz,Dτ are negative constants
proportional to their corresponding cross-section areas.

B. Counteraction of Spatially Distributed Wind Disturbance

The first example considers the case where the airship
is operating in a hallway where wind disturbance is present.
Due to the friction caused by the side walls, the wind velocity
is assumed to be distributed linearly from the center to both
sides, as described by the following function,

vw(x f ,y f ,z f ) =
[
0,−6+ |x f |,0

]>
[m/s]. (15)

The prescribed set for the state vector and the admissible
set for the control input are defined in (16). Note that
the maximum propeller thrust cannot counteract the wind
drift, and therefore, the state vector will eventually exit the
prescribed set X .

X = {x : |x(1)| ≤ 3, |x(2)| ≤ 3}, U = {u : ||u||∞ ≤ 2}. (16)



We consider an initial condition x(0) = [0,0,2,π/2,
0,0,0,0]>, with which the airship is heading toward the
wind. To solve the DCOC problem, we first discretize the
continuous-time model (12) using the solver “CVODE” [19]
with a sampling period ∆T = 0.06[s] to get the function fd .
Then, when formulating the problem (6), we choose N = 50
and θ = 1.6.
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Fig. 2: Counteraction of wind drift.

The simulation results are presented in Fig. 2. The pro-
jections of the airship trajectories onto the x f −y f plane are
shown in (a). It can be observed that the trajectories given by
the MIP (red line) and the NLP (blue line) formulations are
almost identical before exiting the prescribed set X (light
blue region). The time histories of the obtained δk from
(5) and the obtained εk from (6) are shown in (b). It can
be observed that both formulations result in the same time-
before-exit κ∗(x0) = 26. The control input trajectories and
the airship heading angle trajectory φk are shown in (c, d, e)
and (f), respectively. It can be observed from these control
and state trajectories that the lower-mounted propeller pair
is used to push the airship against the wind drift, while the
back-mounted propeller is used to turn the airship and drive
it to the region where the wind speed is lower. As a result, the
controls represent a strategy to counteract wind disturbance
by both pushing against head wind and moving to a position
where the disturbance is smaller. Note also that because the
MIP formulation (5) concerns itself only with whether the
constraints are violated or not, while the NLP formulation
(6) also penalizes the extents of constraint violation, their
resulting state and control trajectories are not exactly the
same, especially after the time-before-exit κ∗(x0) = 26.

C. Counteraction of Temperature Disturbance

The second example considers the case where the airship is
operated in a ventilated room. During a summer day, part of
the room under direct sunlight can be heated up, where high
temperature results in low air density, leading to a lack of
buoyancy for the airship. Typically the temperature gradient
in a ventilated room is around 2[◦C/m], along with low speed
air flow, around 0.3[m/s] [20]. We consider the following
spatial temperature distribution and the air flow profile in

the room,

vw(x f ,y f ,z f ) = [−0.3,0,0]>[m/s],

T (x f ,y f ,z f ) = 273+25−3x f +2z f [K]. (17)

The prescribed set for the state vector and the admissible
set for the control input are defined as follows,

X = {x : |x(1)+2| ≤ 1, |x(2)| ≤ 2, |x(3)−2| ≤ 0.1},
U = {u : ||u||∞ ≤ 2}. (18)

We consider an initial condition x(0) = [−2.5,0.5,2,
0,0,0,0,0]>, with which the airship is heading toward the
wind. After discretizing the model (12) with a sampling
period ∆T = 0.1[s], we choose N = 60 and θ = 1.6 to
formulate the problem (6).
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Fig. 3: Counteraction of spatial temperature disturbance.

The simulation results are shown in Fig. 3. The red and
blue lines represent trajectories given by the MIP and the
NLP formulations, respectively. The (x f ,y f ,z f ) trajectories,
control input F1(k) time histories, and the time histories of
δk and εk obtained by the two formulations are presented in
(a), (b), and (c), respectively. The control input trajectories
generated by both formulations result in the same time-
before-exit κ∗(x0) = 36. For both formulations, system states
x f ,y f are maintained within their prescribed ranges over the
horizon while the range |z f −2| ≤ 0.1 is violated at k = 37.
Although the state trajectories of both simulations are quite



similar before they exit the prescribed set X , significant
discrepancies between the control input trajectories of the
MIP and NLP formulations can be observed in (b) after
k = 26. Note that the MIP formulation (5) typically has many
distinct solutions for the continuous variables {uk}N−1

k=0 , since
the cost function is determined only by the integer variables
{δk}N

k=0. For instance, if a solution for {uk}N−1
k=0 is perturbed

by a little bit, the cost value will be very likely unchanged.
Depending on the numerical solver used to solve (5) as well
as the initial guess for the solution, the MIP formulation
could lead to different solutions, which is a reason for the
discrepancies observed in (b).

D. Computation Time Comparison

The computation times required to solve one instance of
the MIP and the NLP formulations are reported in Table I.
The numerical computations are implemented using the open
source tool “CasADi” [21]. We use the solvers “bonmin”
and “ipopt” embedded in CasADi to solve the MIP and the
NLP problems. All results reported here correspond to the
MATLAB 2019b platform on a Windows 10 PC with an
i5-7400 CPU and 16GB RAM.

Example MIP Time [s] NLP Time [s]
B 91 6
C 1190 11

TABLE I: Computation time for the numerical examples.

For each example, the computation time for solving the
NLP problem (6) is significantly less than that for solving
the MIP problem (5). Furthermore, the computation time for
solving the MIP problem of Example C is 12 times longer
than that of Example B, while this ratio corresponding to the
NLP formulation is below 2. These results illustrate that the
MIP formulation can be computationally challenging, espe-
cially when treating complex systems with a long horizon;
while the NLP formulation is much more computationally
scalable.

V. CONCLUSIONS

A novel continuous optimization-based approach to drift
counteraction optimal control (DCOC) problems has been
proposed in this paper. By solving a nonlinear programming
problem with an exponentially weighted cost function, the
approach guarantees to find a control input sequence that
maximizes the time-before-exit. Compared to a previous
approach based on mixed-integer programming (MIP), the
new approach has much lower computational footprint.

The new approach has been illustrated based on numerical
examples representing the drift counteraction control for an
indoor airship. Simulation results validated the effectiveness
of this approach, also demonstrated its improvement in com-
putational efficiency over the previous MIP-based approach.

Integrating the proposed approach in a model predictive
control framework to achieve closed-loop drift counteraction
control represents a natural extension and will be investigated
in detail in our future work.
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