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Abstract

Problem: Performance variability management is an active research area in high-

performance computing (HPC). In this paper, we focus on input/output (I/O) variabil-

ity, which is a complicated function that is affected by many system factors. To study

the performance variability, computer scientists often use grid-based designs (i.e., full

factorial designs) to collect I/O variability data and use mathematical approximation

methods to build a prediction model. In statistics literature, space-filling designs (SFDs)

and surrogates are popular for data collection and building predictive models. The appli-

cability of SFDs and surrogates in HPC variability management setting, however, needs

investigation. In this case study, we investigate their applicability in HPC setting in

terms of design efficiency, prediction accuracy, and scalability.

Approach: We first customize the existing SFDs so that they can be applied in

the HPC setting. We conduct a comprehensive investigation of design strategies and

the prediction ability of approximation methods. We use both synthetic data simulated

from three test functions and the real data from HPC setting. We then compare different

methods in terms of design efficiency, prediction accuracy, and scalability.

Results: In our synthetic and real data analysis, GP with SFDs outperforms in most

scenarios. With respect to the choice of approximation models, GP is recommended

if the data are collected by SFDs. If data are collected in grid-based way, both GP

and Delaunay are worth trying. With the best choice of approximation method, the
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performance of SFDs and GBDs depends on the property of underlying surface. For the

cases where SFDs are better, we can use about half or less the design budget for the GBD

to achieve the same prediction accuracy. Although we observed that the GBD can also

beat SFDs for one case, GBD is not scalable to high-dimensional experiment regions.

Therefore, SFDs are recommended especially when large numbers of input factors need

to be considered in the model.

Key Words: Computer Experiment; Delaunay Triangulation; Gaussian Process; Linear

Shepard’s Method; MARS; Space-Filling Design.

1 Problem Description

The computing scale and complexity in modern technologies and scientific areas make high-

performance computing (HPC) increasingly important. Performance variability, however, is

an important challenge in the research of HPC systems that has been observed for a long time

(e.g., Giampapa et al. 2010, Akkan, Lang, and Liebrock 2012, Cameron et al. 2019). High

variability in HPC systems can lead to unstable system performance and potentially high en-

ergy costs. Therefore, variability management is crucial for system performance optimization.

The performance variability is affected by many complicated interactions of factors in the sys-

tem. In this study, we focus on input/output (I/O) performance variability. The relationship

between system configurations (e.g., CPU frequency, file size, record size, the number of I/O

threads, and I/O operation modes) and the I/O performance variability is of interest.

One framework that has been used for HPC variability management involves three steps

Cameron et al. (2019), which are data collection on performance variability for a set of system

configurations, building an approximation model to make predictions for new configurations,

and using the prediction to do optimization for future designs. Statistical research is usually

involved in the data collection and prediction steps. Although there is vast research on designs

for data collections and approximation models for predictions, the applicability of those sta-

tistical methods in the setting of HPC performance management needs investigation, which

motivates us to do a case study based on the HPC performance data.

In the data collection stage, researchers identify HPC system settings for which I/O

throughput data should be collected. Computer scientists often use grid-based designs (GBDs)

to collect data under numerous possible system configurations, when the number of factors is

relatively small (Cameron et al. 2019, Xu et al. 2020). Note that the GBDs are equivalent

to full factorial designs. In statistics literature, space-filling designs (SFDs) are often used,

which assign design points far apart to fill the whole experiment region. In the prediction

stage, an approximation model is built based on collected data for various system configura-

tions. Mathematical approximation methods such as the linear Shepard’s method (Shepard
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1968) and Delaunay triangulation (Delaunay 1934) have been used. In statistics literature,

Gaussian process (GP) models are popular for building approximation models.

From HPC application point of view, there are several questions that need to be addressed.

First, due to HPC system constraints, the design region could be irregularly spaced. For

example, in our experiments, the file size needs to be larger than or equal to the record

size, causing complexity in the experimental design. Therefore, existing SFDs need to be

tailored so that they are suitable for the HPC setting. Second, it is desirable to demonstrate

SFDs can collect data more efficiently than the grid-based design (GBD) in a way that is

accessible to computer scientists. Third, there is little research on the interaction between

design strategies and approximation methods, especially in the setting of HPC variability

management. However, it is possible that the prediction accuracy of a design may depend on

the chosen approximation method.

Motivated by the needs in HPC performance variability management, we perform thor-

ough comparisons between the prediction abilities of different approximation methods under

different design strategies. We aim to recommend some efficient and scalable ways for com-

puter scientists to collect performance data and provide a few practical guidelines in the HPC

setting.

In literature, SFDs are widely used for experimental design when little information is

known about the phenomenon to be studied. The uniform design proposed by Fang et al.

(2000) has the natural idea of placing design points uniformly in the experimental region.

Latin hypercube designs (McKay, Beckman, and Conover 1979) ensure good one dimensional

projection properties. Some design strategies are based on the distance measure, such as the

maximin and minimax designs (Johnson, Moore, and Ylvisaker 1990). There are also several

designs constructed based on the variants or combinations of the aforementioned designs,

such as the maximin Latin hypercube design (Morris and Mitchell 1995) and the maximum

projection design (Joseph, Gul, and Ba 2015).

Non-regular and constrained design regions are quite common in industrial experiments

and physical sciences. Some efforts have been made to allocate design points within such

regions. Lekivetz and Jones (2015) proposed the fast flexible space filling algorithm which

constructs designs based on hierarchical clustering. Pratola et al. (2017) map the original

dimension to a higher dimensional space to convert the geodesic distance to Euclidean distance.

Golchi and Loeppky (2015) adopt the idea of sampling from constrained distributions and

propose a sequential constrained Monte Carlo algorithm to sample design points uniformly

from the constrained input region.

When the physical experiment or the corresponding computer simulation model is complex

and time-consuming, a surrogate model is needed to describe the underlying process. Many

smooth techniques, such as response surface models, Kriging methods, kernel estimation, and
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neural networks, can be used to approximate the true surface. Response surface methodology,

originally introduced by Box and Wilson (1951), is a traditional technique for modeling the

response variables given input variables. Another commonly-used statistical approximation

model is Gaussian process regression (GP) (e.g., Sacks et al. 1989, Currin et al. 1991), which

can generate a smooth surface and be capable to deal with the heteroscedasticity (Goldberg,

Williams, and Bishop 1998) in the response variable. In the HPC community, mixture models

have been used to study the multimodal behavior of the throughput distribution (Xu et al.

2020). Some novel numerical techniques including max box mesh, iterative box mesh, and

Voronoi mesh methods for interpolation are investigated by Lux et al. (2018).

In previous work, the SFDs and approximation models have been compared, separately,

in terms of prediction performance. The prediction accuracy of SFDs is studied by Johnson,

Montgomery, and Bradley (2011) with Gaussian process surrogates. Multiple approximation

methods are compared under GBDs by Lux et al. (2018) and Cameron et al. (2019). Those

compared methods include regression methods, such as multivariate adaptive regression spline

model, support vector regression, multilayered perceptron regression, and some numerical

methods, such as linear Shepard’s method and Delaunay triangulation. However, little study

has been done regarding the interaction between design strategies and approximation methods

in the HPC performance setting. This paper aims to investigate the prediction ability of

different kinds of design strategies and approximation methods as a case study. So, when a

particular design strategy is given, HPC engineers can choose the best approximation method

to achieve a higher prediction accuracy, or vice versa.

The rest of the paper is presented as follows. Section 2 provides a detailed background

of the motivating example and introduces the underlying problem that we are interested in.

Sections 3.1 and 3.2 briefly summarize the SFDs and approximation methods that are under

investigation in this paper. Section 3.3 conducts synthetic data analyses where the perfor-

mance of all combinations of the five designs and five approximation methods are compared

under three test functions. In Section 3.4, an HPC variability experiment is introduced and

real-world comparison results are presented. Section 4 provides conclusions of the compar-

isons, practical guidelines, and areas for future work.

2 Data Collection and Preparation

We first introduce some notation for the HPC data. To define a generic experiment process,

let X be a d-dimensional space of input factors with a set of constraints CX(x), where

x = (x1, . . . , xd) ∈X. Let Y be the random vector of the experiment outputs. The first step

to start exploring the relationship between the input factors and the output is to efficiently
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allocate design points within X, which will be evaluated to obtain the corresponding output

vectors. Suppose D = {x1, . . . ,xn} is the set of selected design points, where xi ∈ X is the

ith design point. Let yi be the corresponding observed output at the ith design point. Then

y = (y1, . . . , yn) is the collected output vector containing the observed outputs at all xi ∈D.

In the HPC data, there are four numeric factors, including one hardware factor: CPU

frequency (GHz); and three application factors: the number of I/O threads, the file size

(KB), and the record size (KB). For our experiments, we consider CPU frequencies in the

range [2.0, 3.5] GHz, numbers of I/O threads in the range [1, 64], and file sizes and record

sizes in the range [4, 16384] KB. Additionally, we have the constraint that for each system

configuration, the file size must be greater than or equal to the record size, and the file size

and record size must be of the form of
∑

l 2l for some positive integer l. To make the design

region uniform, we apply a log transformation to the file size and record size: log file size =

log2(file size), log record size = log2(record size). Then the experiment region becomes X =

[2.0, 3.5]× [1, 64]× [2, 14]× [2, 14] with the constraint that log file size ≥ log record size. In this

application, we define the response of interest Y as the performance variability measurement

(PVM). The PVM is given by the standard deviation of I/O throughputs (in the units of

KB/s) at each input configuration (Cameron et al. 2019).

To collect data for this application, the I/O throughput of hard disk is collected in a grid-

based pattern, using the IOzone benchmark (IOzone projects contributors 2016) to produce

the workload with each system setting. Each factor is divided into ki levels, i = 1, . . . , 4

and a configuration is obtain by taking a possible combination of levels in each factor. Fig-

ures 1(a) and (b) show the two-dimensional projections of the real 4-dimension grid space

where data are collected. At each configuration, the IOzone benchmark is run multiple times

and the throughputs are gathered as an HPC performance measurement. The configurations

are collected under 6 IO operation mode: initial writers, rewriters, readers, re readers, ran-

dom readers, random writers. In total, we have 2658 configurations and each configuration

has 300 replications to capture the performance variability. Since the data collection proce-

dure is time-consuming, we are interested in whether SFDs can select points more efficiently

than the GBDs.

After obtaining the data, another problem that we are interested in is the problem of

accurately predicting HPC performance variability at a new configuration. With the col-

lected dataset {D,y}, we want to build models that describe the relationship between system

factors and performance variability. Based on the previous literature and studies, we adopt

both statistical models and numerical models in computer science to explore the underlying

relationship.

An example of the data structure is presented in Table 1. The 2D surface plots of the

PVM under two pairs of factors are shown in Figure 2. From the surface plot, we gain a rough
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Table 1: Example of data structure.

Frequency Threads File Size Record Size PVM
2.0 1 2 2 17411.29
2.0 1 4 2 58014.19
2.0 1 4 3 46393.96
2.0 1 4 4 43238.60
2.0 1 6 2 49839.42
2.0 1 6 3 109721.24

idea of the relationship between response and input factors. In Figure 2(a), we can see that

the number of I/O threads and frequency have a positive relationship with the throughput

variability; the larger the number of threads and frequency, the larger the PVM. Figure 2(b)

shows that when the file size and record size are closer to each other, (i.e., near the boundary

of the constraint in the plot), the variability is relatively small. When the file size is much

larger than the record size, the performance varies a lot. These relationships are consistent

with our intuitions.

3 Analysis and Interpretation

In this section, we conduct analysis on the effectiveness of designs and approximation methods

in HPC setting. We first give brief descriptions on the design strategies and approximations

in Sections 3.1 and 3.2, respectively. We then examine the the effectiveness of designs and

approximation methods using synthetic data simulated from three different test functions.

Finally, we study the designs and approximation methods using the real data from the HPC

study.

3.1 Design Strategies

Space-filling designs (SFDs), as the name suggests, spread out design points evenly in the

experiment region in order to gather information from the whole experiment region. SFDs

can assign points based on distance measures or sampling strategies. One reason to propose

SFDs as an alternative to GBDs is that spreading points evenly across the entire design region

is ideal when prediction accuracy is our primary goal. This is because the prediction error at

a particular point depends on its location relative to the design points. If a design allocates

points only near the center of the experiment region, a large error may result in prediction

for inputs on the boundary of the experiment region. For convenience, we first assume that

the experiment region is a unit hypercube X = [0, 1]d. This assumption can easily be relaxed
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Figure 1: Two dimensional projection grids of design points where real data are collected.
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Figure 2: 3D surface plots of performance variability measure (PVM) under two pairs of

factors.
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with linear transformations. This section introduces several common criteria for constructing

SFDs, as well as a list of designs we will study in this paper.

SFDs Constructed by Sampling Strategies

Several sampling strategies to construct SFDs are discussed in this section. An intuitive idea

for a spread out design is to scatter points uniformly in the design region. Designs built in this

way are referred to as uniform designs (UDs) (Fang et al. 2000). UDs can gather a sufficient

amount of information to explore the relationship between the response variable and the input

factors with relatively small runs (Li, Lin, and Chen 2004). UDs consider the whole design

region equally important. However, when some portions of the domain are of more interest

than others, stratified random sampling (SRS) can be used to enhance the design performance.

Suppose n design points are desired. The SRS partitions the design region X into s strata and

in stratum j, nj points are selected based on a certain input distribution, where j = 1, . . . , s

and
∑s

j=1 nj = n. The size and position of each stratum depends on different experiment

scenarios. When we know that some input factors are important to the response, we also

want the design points’ projections on to those factors to be spread out. This can be achieved

by Latin hypercube design (LHD) (McKay, Beckman, and Conover 1979), which is a popular

SFD and has been combined with various other designs. To construct an LHD of size n, the

range of each input factor is equally divided into n intervals [0, 1/n) , . . . , [(n− 1)/n, 1]. For

each of the d coordinates, exactly one design point projection is sampled from each interval.

In this way, it can be guaranteed that the design points are spread out across the range of

each input factor. One favorable property of LHD is that any lower dimension projection

of an LHD is also an LHD. Although LHDs have good properties for projection, it is not

guaranteed that the design points will be spread out evenly in the entire experiment region.

For example, it is possible that all design points could be located along the diagonal of the

d-dimensional unit hypercube. To avoid this drawback, Latin hypercube sampling is often

used together with other designs such as maximin design (Johnson, Moore, and Ylvisaker

1990) or maximum projection design (Joseph, Gul, and Ba 2015). These SFDs are based on

a distance metric, which will be discussed in the next section.

SFDs Based on Distance Measures

In this section, design strategies based on distance measures and metrics are briefly introduced.

One idea for SFDs is that no point in the experiment region X should be too far from its

nearest neighbor in D. Let

d(xi,xj) =

(
d∑

k=1

|xik − xjk|s
)1/s
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be the distance metric. Usually, the Euclidean distance, (i.e., s = 2) is used. For an arbitrary

point x inX, we determine its closest design point xi and the minimum distance mini d(x,xi).

To guarantee that no point is too far from the design points, we choose the point x ∈X with

the maximum distance to its closest design point, which is maxx∈X mini d(x,xi). Then we

find the design to minimize this distance,

min
D

max
x∈X

min
i
d(x,xi),

which is called the minimax distance design (Johnson, Moore, and Ylvisaker 1990). The

second way to spread out points in D is to allocate the design points as far apart as possible.

This can be realized by finding the design that maximizes the minimum distance between two

design points, which is the criterion of the maximin distance design,

max
D

min
i,j

d(xi,xj).

The maximin distance design ensures that the design points are spread as far apart from each

other as possible in the full dimension but does not guarantee that the design is space filling

for each projection on to a subspace. Morris and Mitchell (1995) propose the maximin Latin

hypercube (MmLh) design, which incorporates the structure of an LHD with the maximin

design. The criterion is

min
D

[
n−1∑
i=1

n∑
j=i+1

1

dm(xi,xj)

]1/m
. (1)

The MmLh design ensures good projection properties when projecting into one dimension,

but fails to consider the projection onto other subdimensions. Joseph, Gul, and Ba (2015)

propose maximum projection design (MaxPro) that ensures good space filling on all subspaces.

It considers a weighted Euclidean distance

d(xi,xj,θ) =

[
d∑

k=1

θk(xik − xjk)2

]1/2
, (2)

where θ = (θ1, . . . , θd) is a vector of weight factors. Let θk = 1 for those factors that construct

the subspace and θk = 0 for other factors, then (2) calculates the distance between xi and xj

after projection into subspaces. The criterion of maximum projection design can be modified

based on (1) as

min
D

n−1∑
i=1

n∑
j=i+1

1

dm(xi,xj,θ)
.

Here, the weight factors satisfy
∑d

k=1 θk = 1. To properly choose the weight factor θ, authors

adopt the Bayesian framework. A prior distribution is assigned to θ and the expected value
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of the objective function is minimized. The criterion can be further simplified with uniform

prior and m = 2d:

min
D

n−1∑
i=1

n∑
j=i+1

1∏d
k=1 (xik − xjk)2

. (3)

It is clear from (3) that any two design points in D can not have the same value in any

dimension. Otherwise, xik − xjk = 0, which will cause the objective function to be infinite.

The criterion automatically guarantees that the design also has the LHD property.

Another design strategy, the maximum entropy design is also included in this section,

although generally it is considered to be a model-based design. The maximum entropy

design (Shewry and Wynn 1987) maximizes the negative entropy function, which captures

the amount of information gained from an experiment. The entropy is defined as H(X) =

−
∫
X
f(x) log[f(x)]dx, where f(x) is a density function. The information gained is I(X) =

−H(X). We want the experimental design that causes the largest change in the information,

which is equivalent to maximizing the entropy:

max
D

H(X).

This can be simplified as maxD log |Σn| if we assume that the underlying surface is a Gaussian

process, where Σn is the variance-covariance matrix of D. Then the construction of the

maximum entropy design depends on the choice of the correlation function. In this study, we

adopt the format that is implemented in the DiceDesign, where the correlation matrix is C

with elements r(xi,xj) = 1 − 1.5d/a − 0.5(d/a)3 if d > a and 0 otherwise. Here, d is the

Euclidean distance between two points.

Customizing SFDs for HPC Setting

Four of the above designs are considered in this paper. They are uniform sampling, maximum

Latin hypercube design (MnLh), maximum entropy design (MaxEnt), and maximum projec-

tion LHD (MaxPro). In the HPC performance variability modeling application, the additional

constraint is that the file size needs to be larger than or equal to the record size. To deal with

the constraint in the real application, we want to use an approach that can tailor all different

designs. So above designs must be adjusted in order to accommodate the constrained region.

In this study, a rejection sampling strategy, as a simple way that can be easily applied across

different design strategies, is used. Suppose we would like to generate a design with size n. If

points in the initial size n design fail to meet the constraint, then we generate designs with

size 2n, 3n, . . . until there are at least n points in the design that satisfy the constraint. Then

we randomly select n points from the large design, which satisfy our constraint.

Note that this idea is different from rejection sampling, because we reject points that are

obtained from a specific optimization problem. After discard the points that does not meet
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the constraint, the remaining design points may not hold all the original properties of that

type of design. However, this is a uniform, simple approach that can be applied to any type

of design. We do not need to solve extra optimization problems or alter the existing sampling

algorithm. Approaches that can propose discretized designs that maintain the space filling

prosperities and also meet the constraint are desirable in the future work.

Besides tailoring SFDs for the constraint in the HPC problem, we also need to adjust

designs to include boundary points so that we will not have bad extrapolation problems when

we using the data to build numerical prediction models. The details are explained in 3.2.

In this study, we use central composite designs to augment origin SFDs. A CCD consists

of a factorial (fractional factorial) design with factors of two levels, i.e., the vertices of the

experiment region, a set of center points, and a set of axial points. We add the vertex points,

the center point of the axis, and the center point of the hypercube to the SFDs. If the

experiment region is irregular, then the augmented points that do not meet the constraint are

excluded.

3.2 Approximation Methods

To conduct the prediction accuracy comparison, we need to select several representative sur-

rogates to approximate the underlying function. The approximation methods often used in

both computer science and statistics are briefly introduced here.

Response Surface Methodology

Response surface methodology (RSM) is a field of statistics that investigates the relationship

between a response variable and input factors through design experiments. It is a traditional

method for studying computer experiments (?, ?). Low-order polynomial models such as first-

or second-degree polynomial models are commonly used in applications. In this study, we use

a second-order model to approximate the true response surface.

In applied mathematics, numerical methods are often used to approximate the true surface.

In this section, two numerical methods are used; they are Delaunay triangulation and Linear

Shepard’s method.

Delaunay Triangulation Interpolation

Delaunay triangulation interpolation is a numerical method that approximates the underlying

function f : Rd → R based on the values f(p) for a given vertex set P and the corresponding

Delaunay triangulation. A Delaunay triangulation (Delaunay 1934) is given by any triangu-

lation that satisfies the Delaunay properties. Suppose P = {p1, . . . ,pn} is a set of n points
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in Rd. Then a d-dimensional triangulation of P , denoted T(P ), is a set of d-simplices that

satisfies the following criteria: 1) The vertex set of T(P ) is P ; 2) the union of all simplices in

T(P ) is the convex hull of P , denoted as CH(P ); and 3) the d-simplices are disjoint besides

their common boundaries (vertices, edges and facets). A Delaunay triangulation, denoted as

DT(P ), is the geometric dual of the Voronoi diagram. A Voronoi diagram divides Rd into n

regions with each containing one Delaunay vertex in P , such that all points within each region

are closer to the vertex in their region than to any other vertex. The Delaunay triangulation

is given by connecting all vertices whose Voronoi cells share a boundary with an edge.

Let x ∈ CH(P ) be an interpolation point and S ∈ DT(P ) be the simplex with vertices

s1, . . . , sd+1 that contains x. Find the weights w1, . . . , wd+1 that satisfy
∑d+1

i=1 wi = 1, wi ≥ 0,

for i = 1, . . . , d + 1 and x =
∑d+1

i=1 wisi. Then the estimated function value f̂DT (x) based on

DT(P ) is

f̂DT (x) = w1f(s1) + w2f(s2) + · · ·+ wd+1f(sd+1).

In this paper, the Fortran 2003 package DELAUNAYSPARSE is used to perform the inter-

polations. In order to achieve computational efficiency, the algorithm in DELAUNAYSPARSE

only computes a necessary, sparse subset of the Delaunay triangulation given pre-specified in-

terpolation points (Chang et al. 2018).

In the HPC variability management application, in order to compute the predictions, we

need to approximate the response values for a test set based on the Delaunay triangulation

DT(D) of the proposed design D. However, the points in the test set might not always fall

inside CH(D), which results in an extrapolation problem instead of an interpolation problem.

DELAUNAYSPARSE can handle extrapolation problems by projecting each test point onto

CH(D) when the test point is close to CH(D), but this solution can perform badly if the test

point is far outside of CH(D). Since we do not know whether a test point is inside CH(D)

beforehand, necessary adjustments of the design strategies need to be made to avoid bad

extrapolation problems.

In order to avoid bad extrapolation problems when using the Delaunay method to approx-

imate the true surface, we need to augment the proposed SFDs so that the convex hull of

each augmented SFD covers the entire experimental region. In this way, wherever a test point

falls in the experimental region, it always results in an interpolation problem for the Delaunay

method. To realize this idea, intuitively one can augment each SFD with those boundary

points. In this study, we choose to use CCD to augment the proposed SFDs.

Linear Shepard Method

Shepard’s method is a form of inverse distance weighting, originally proposed by Shepard

(1968). It is an interpolation method based on the weighted average of basis functions, each
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centered on a point in the data set P = (p1, . . . ,pn), where the weight is calculated in

terms of inverse distance from the interpolation point to points in P . Several variations of

Shepard’s method are available such as, quadratic and cubic Shepard’s method. However, in

our application, linear Shepard’s method is used for the sake of efficiency. Given the same

setting as in Section 3.2, the original Shepard approximation of f(x) at point x is:

f̂(x) =

∑n
i=1Wi(x)f(pi)∑n

i=1Wi(x)
,

where Wi(x) = 1/‖x− pi‖22. This weight is nonzero for all the data points even those that are

far away from the interpolation point x. In order to achieve better approximation performance,

a modified linear Shepard’s method considers only the local points within an R-sphere of x

and replaces the original f(pi) with a linear approximation function B(pi). The modified

linear Shepard’s method has the form

f̂(x) =

∑n
i=1Wi(x)B(pi)∑n

i=1Wi(x)
,

where the modified version weights are given by

Wi(x) =

[
max

(
0, Ri − d(x,pi)

)
Rid(x,pi)

]2
.

Here, Ri is the radius of a sphere centered at xi that reflects influence scope of xi. The Fortran

package SHEPPACK (Thacker et al. 2010) is used in our study to perform the linear Shepard

interpolation.

Besides the numerical methods, two semi-/non-parametric statistical models are considered

in this study: multivariate adaptive regression splines (MARS) and Gaussian processes (GPs).

Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) were introduced by Friedman (1991). They

are nonparametric regression models formed by spline basis product expansion. MARS can

automatically capture nonlinearity and interaction effects. The MARS model is given by:

f̂(x) =
M∑

m=1

cmBm(x),

where Bm(x) are the basis functions. These basis functions can be constants, hinge functions,

or products of hinge functions, where each hinge function is of the form max(0, x − c) or

max(0, c−x), where c is a constant. As a flexible nonparametric model, MARS tends to overfit

without pruning. The algorithm for constructing MARS model is based on a modification of
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recursive partition trees that requires a forward and backward pass. In the forward pass,

the MARS model is initialized as a constant valued function (whose value is the intercept),

then basis functions are gradually added to the model until the maximum number of terms is

reached or the loss in sum of squares residual error is small. Next, a backward pass is used to

prune the model based on the generalized cross validation (GCV) criterion, which is a trade

off between goodness-of-fit and model complexity. In this study, we use the earth (Milborrow

2019) package in R to build the MARS model. A grid of hyper-parameter: the number of

maximum terms in model and the maximum degree of interactions, is used to train the model

in order to the select model with the highest Rsquare value.

Gaussian Process

Gaussian process (GP) interpolation is a commonly used approximation method in computer

experiments. GP is often defined as a stochastic process where every finite collection of

n observations follows a multivariate normal (MVN) distribution. A GP is determined by

its mean function µ(x) and its covariance function C(x,x′). When a zero-mean GP is as-

sumed, it can be completely determined by the covariance function, which is also referred

to as the kernel function. There are several common kernel functions, including Gaussian

C(x,x′) = exp(−(x− x′)2/θ) and Matérn kernels. Let Yn = {y1, . . . , yn} be the n observa-

tions at the proposed design points Xn = {x1, . . . ,xn} and Y ∼ Nn(0,Σn), where Σn is the

covariance matrix with correlation elements C(x,x′). Then for an arbitrary point x, the value

of Y (x) given the design and corresponding observations can be obtained by the conditional

distribution Y (x)| {Yn,Xn}. This can be calculated based on the conditional distribution of

MVN:

Y (x)| {Yn,Xn} ∼ N[µ(x), σ2(x)],

where µ(x) = Σ(x,Xn)Σ−1n Yn and σ2(x) = Σ(x,x) − Σ(x,Xn)Σ−1n Σ(Xn,x). It is obvious

that the mean function is a linear combination of Yn while the covariance function does

not involve information of observations. A maximum likelihood estimator can be used for

parameter estimation. We use the R package laGP (Gramacy 2016) to implement the local

Gaussian process approximation. In the local GP model, if one wants to predict at x, instead

of using the whole design D, a subset of D close to x is selected sequentially to increase the

computing speed.

3.3 Synthetic Data Analyses

In order to investigate the performance of each design strategy and approximation method

combination, we conduct synthetic data analyses using three test functions. Specifically, we
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compare the root mean square error (RMSE) and the mean absolute percentage error (MAPE)

of the predictions for each combination with each test function.

We have two goals when conducting the synthetic data analyses. First, we want to perform

simulations with test functions that are representative of the HPC performance. Since this

application has four input factors, we choose two test functions that have four input variables

each, and for each of these test functions, we apply the same linear constraint function as

in the HPC performance variance problem. Second, we would like to explore the prediction

behavior and computing time of GBD and SFD with a high-dimension test function. So the

8-dimensional Borehole function is adopted to illustrate the design performance when the

experiment region is of high-dimension.

Test Functions

The Friedman function was proposed by Friedman, Grosse, and Stuetzle (1983). It is a 5-

dimensional function, and in our study, we map the first four variables to our experiment

region and fix the last variable x5. The function is:

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5.

This function’s domain is the unit hypercube: xi ∈ [0, 1], i = 1, . . . , 4 with x5 = 0.5. We

apply the constraint x3 ≥ x4 to the input domain to emulate the HPC performance variance

problem.

The Colville function is a four-dimensional function with the formula:

f(x) = 100(x21 − x2)2 + (x1 − 1)2 + (x3 − 1)2 + 90(x23 − x4)2+

10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1).

The Colville function’s input domain is xi ∈ [−10, 10], i = 1, . . . , 4. The same constraint as

with Friedman function was applied here.

The Borehole function is an eight-dimensional function that models water flow rate through

a borehole. Let x = {rw, r, Tu, Hu, Tl, Hl, L,Kw} be the input variables, then the water flow

rate is:

f(x) =
2πTu(Hu −Hl)

log(r/rw)(1 + Tu

Tl
+ 2LTu

log(r/rw)Kwr2w
)
.

The input ranges are listed in Table 2. For this test function, no constraint is applied because

the goal of this test function is to investigate the high-dimensional performance of the design

strategy and the approximation method combinations.
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Table 2: Ranges of parameters for the Borehole function.

Variable minimum maximum
rw 0.05 0.15
r 100 50000
Tu 63070 115600
Hu 990 1110
Tl 63.1 116
Hl 700 820
L 1120 1680
Kw 9855 12045

Comparison Procedures

Using the above test functions, we want to compare the prediction accuracy of GBDs with

that of proposed SFDs for each test function using various design sizes and approximation

methods. Since the GBD is built by selecting n levels on each factor and then enumerate all

possible combinations of four factors, the design size needs to be n4. In a real application,

it is possible that the number of levels at each factor are different. However since our test

functions are continuous function, we assume that if we can take n levels on one factor, we

can also take the same number of levels on all other factors, which means we only consider

the fine “regular grid” in the synthetic data analyses. After deciding the size of GBD, we can

generate SFDs correspondingly. The simulation procedure is as follow:

1. Choose a test function. Uniformly select ng random points within the input region as

the test set g.

2. For n = 3, . . . , 7

(a) Create a GBD Dg by choosing n points in each dimension and expanding into a

grid via cartesian product.

(b) To generate the SFDs, create designs Dmaximin, Dmaxpro, Dmaxent, and Duniform

each of size N = n4 − na, where na is the size of the augmented design.

(c) For each test function, find the corresponding values of points in the above designs.

(d) Use five approximation methods to generate five predictive surfaces for each design:

i. Linear regression: use backward selection to determine the second order linear

regression model with minimum Bayesian information criterion (BIC).

ii. Delaunay triangulation: use the DELAUNAYSPARSE package to build the

model.
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iii. Linear Shepard: use the SHEPPACK package to build the model.

iv. MARS: use cross validation to tune the MARS model on a hyper-parameter

grid, and select the model with the highest Rsquare value.

v. Gaussian Process: use the separable Gaussian kernel with a nugget effect in-

cluded in the model.

(e) Repeat Steps 2c - 2d B times.

(f) Compute average root mean squared error (RMSE) and mean absolute percentage

error (MAPE) over repetitions for each SFD and approximation method.

Although in Section 3.1 we introduced that the SFDs are obtained by solving different

optimization problems, those optimization problems often don’t have analytic solutions if large

number of points are desired in a high-dimensional experiment region. Numerical algorithms

are usually used to obtain SFDs, which lead to non-unique solutions for a certain type of SFD.

In order to understand the overall prediction performance for a certain type of SFD, we repeat

the step of generating design and making prediction for B times. In the above procedures,

the test set size ng and the repetition number B is changed according to the dimension of the

test function and the approximation method. For relatively smooth test functions or stable

approximation methods, (e.g., Delaunay and MARS), we do not require a large number of

replications or a large test set to obtain a stable and representative result. However for other

models, such as using the linear Shepard’s method under a non-smooth test function, we need

to increase the replication number in order to get a reliable result. The summary of the test

sizes ng and replication numbers B are listed in Table 3.

For the Borehole function, since the dimension is relatively high, it is difficult to compute

the prediction performance for a series of GBDs within a reasonable time and with reasonable

computer resources. Therefore, we skip the step of generating multiple GBDs of the same

size as each SFD. Instead, we consider one GBD of size 38 = 6561 GBD and compare its

performance with other SFDs varying sizes. For each test function, we plot the average RMSE

and MAPE versus design size for each combination of approximation methods and design

strategies. The results are shown in Figures 3, 4, and 5. The results show that the overall

error decreases as the design size increases, but at different rates for different methods and

problems. For the two 4-dimensional test functions, we can see an interaction effect between

the approximation method and design strategy. Under numerical approximation methods,

GBD has a smaller prediction error as size increasing compared to the SFDs. However, under

statistical models, the trend is the opposite. One possible explanation for this behavior is that

GBDs have good geometric properties and both numerical approximation methods, Delaunay

and linear Shepard, rely on geometric properties to make predictions. For the 8-dimensional
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Table 3: Test set size ng and replication time B in the synthetic data analyses.

Surrogate Model
Fried Colville Borehole
ng B ng B ng B

RSM 10000 30 10000 30 5000 60
Delaunay 10000 30 10000 30 5000 60

LSP 10000 30 10000 30 5000 180
MARS 10000 30 10000 30 5000 60

GP 10000 30 10000 30 5000 60

Borehole function, the 38 GBD is shown as a horizontal line in Figure 5. In general for the

Borehole function, the GBD does not perform as well as the SFDs, despite the fact that each

SFD has a smaller design size.

3.4 HPC Data Analysis

In this section, we conduct a data analysis using the real data as described in Section 2.

Model Fittings

In HPC application, the data were collected using a full factorial design. Each of the four input

factors has several unique levels and the throughput data was gathered at each combination

of levels. In total there are 2658 possible configurations. Since the real data itself is a GBD,

we construct SFDs with size increasing from 100 to 2700 with 200 interval and compare them

to the real data. In this way, we investigate whether SFDs can achieve the same prediction

accuracy as the GBD with a smaller design size.

A similar procedure as in Section 3.3 is used except for a few modifications. Since the

experiment region in the HPC performance variance problem is a numerical discrete space,

the SFD points are binned to the nearest feasible value after generation. Also because we do

not know the underlying true surface in the real application as in the synthetic data analysis,

we need to decide a underlying surface that can describe the real data well and also suitable

for conducting comparisons. We choose to use a fitted model with methods in Section 3.2

using the real data as the truth. In order to choose the most appropriate model, we first use

a 10-folds cross validation (CV) to see the average CV prediction errors for different models.

The result is summarized in Table 4. Choosing the model that has the smallest CV prediction

error is a natural idea. In this case, it’s either Delaunay which has the smallest MAPE or GP

with the smallest RMSE. However, one property of Delaunay method is that the fitted model

traverse every training data point. This means if we use the fitted Delaunay trained from the

real data as the underlying truth, the response value we take from the fitted surface for the
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Figure 3: Colville test function RMSE and MAPE. RMSE is on the magnitude of 104.
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Figure 4: Friedman test function RMSE and MAPE.
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Figure 5: Borehole test function RMSE and MAPE. Here, the GBD has a fixed size of

38 = 6561 due to the computational limit.

GBD, is exactly the real collected PVM. This benefits the GBD since the GBD has the exactly

same data we used to build the true surface. When building approximation models to make

predictions, the GBD has advantages compare to SFDs. Especially if we use the Delaunay

approximation method, we would get 0 prediction error for the GBD. In this way, we can

not make a fair comparison for the performance of the GBD and the SFD. If we considering

the GP model, although in our analysis, we include nugget effect so the GP model won’t go

through every training point. The variance-covariance matrix of the fitted GP model trained

with the real data is featured by the evenly spaced design points. Potentially, using fitted

GP model as the truth also benefit the GBD which has good geometric property. Similarly,

LSP model also has the same problem as the Delaunay. Therefore, in order to have a fair

comparison, we decided to use the MARS fitted model. It will not return the exactly same

PVM for the GBD, also is not affected by the geometric property. So although it’s ability to

describe the real data is not as good as the above three methods, we still would like to choose

it as the truth in the real data analysis.

Comparisons

The results are presented in Figure 6.
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Table 4: Average 10-folds CV error.

Model RSM MARS Delaunay LSP GP
MAPE 0.47 0.39 0.20 0.26 0.22
RMSE 89476.99 80468.44 63394.17 76488.13 54854.81
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Figure 6: Error trends versus design size in the HPC application. The GBD is given by the

locations where true data were collected. Underlying truth surface is fitted by MARS.
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Figure 6 describes the MAPE and RMSE of different methods and design combinations

when using MARS fitted model as the underlying truth. The error trends of all SFDs are

similar to each other under every approximation method. GP with SFDs can achieve the

smallest prediction error under both criteria. Like most cases in synthetic analysis, the GBD

outperforms SFDs with Delaunay method. While with GP, MARS and RSM models, SFDs

can achieve the same prediction error as the GBD with smaller budget. For the LSP method,

the SFDs beat the GBD under MAPE criterion and quite close with the GBD under the

RMSE criterion.

4 Conclusions and Recommendations

In this paper, comparisons are conducted for synthetic data analysis and HPC variability

management application to explore the prediction accuracy of GBDs and SFDs under differ-

ent approximation method. Overall the prediction error decreases as the design size increases.

We find that no design outperforms all others uniformly. GP with SFD generates best results

under most scenarios. The GBD outperforms the SFD under the two numerical approximation

methods Delaunay and linear Shepard’s method for most cases. One possible reason is that

GBDs have better geometric properties and these two methods depend on those properties.

For the two statistical method, MARS and RSM methods, SFDs have higher prediction ac-

curacy compare to the GBD. One thing interesting with these two statistical method is that,

for SFDs, the increasing of design size brings quite small improvement in prediction accuracy

after the design size exceed a certain number. I.e., with MARS and RSM method, the predic-

tion accuracy does benefit from the increasing of design size in early stage but after the design

size achieve a relatively small budget, increasing design size can not guarantee decreasing in

prediction error. While in contrast, under the GP surrogate, increasing the design size of

SFDs always results in an obvious decrease in prediction errors.

In previous work, the Delaunay method with GBD tends to have the smallest relative

error (Lux et al. 2018). In our analysis , with the maximum design budget, the best ap-

proximation method and design combination under each test function and real application is

summarized in Table 5. From this table we can see that, GP outperforms other models under

both error criteria. This is consistent with the CV prediction ability analysis with the real

HPC data in Table 4. Therefore, GP model is recommended when choosing the approxima-

tion method. If the data are collected in a grid-based manner, Delaunay method can also be

considered.

With the best approximation for each scenario, the design budget of SFDs and GBDs to

have the same or higher prediction accuracy are summarized in Table 6. We allow the design
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Table 5: Best design and approximation method combination with different test functions

under two criteria.

Test Function
RMSE MAPE

Best Method Best Design Best Method Best Design
Colville GP SFDs GP SFDs
Fried GP GBD GP GBD

Borehole GP SFDs GP SFDs
HPC application GP SFDs GP SFDs

type that have weaker performance to take the maximum design budget in our analysis, and

see how many runs the other type need to have the same or higher precision. From Table 6

we can see that by choosing the right design type, we can save a large amount of time and

cost. For the cases where SFDs are better, we can use around 50% or less of the design budget

for the GBD to achieve the same prediction accuracy. Although we observed that the GBD

can also beat SFDs in one case, GBD is not scalable to high-dimensional experiment regions.

When the experiment region is of high dimension, building prediction models based on GBD

will be time consuming even if we only consider a few unique points in each dimension. So

SFDs are recommended when large numbers of input factors need to be considered in the

model.

In the future, it will be interesting to investigate designs that can maximize the prediction

accuracy based on a good choice of surrogates in the HPC setting. For example, G-optimal

designs aim to minimize the maximum element on the diagonal of the hat matrix, which has

the effect of minimizing the maximum variance among the predicted values. V-optimal designs

minimize the average prediction variance among a set of points. G-/V-optimal designs could

be considered because they minimize variance predictions. Another direction is that in our

study, we used SFDs for continuous inputs and using a heuristic way to exclude points that do

not satisfy the application constraint. A more refined approach that can propose discretized

designs that maintain the space filling prosperities and also meet the constraint are desirable

to better solve the real application. One further step after obtaining desirable designs can be

determining the system configuration that optimize the HPC variabilities. For example, in ?)

work, the optimal system configuration is determined as configuration that can minimize the

HPC variability while maintaining the HPC performance, i.e., the computing speed. This can

provide insights in choosing system configurations in real HPC applications.

Supplementary Materials

The following supplementary materials are available online.
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Table 6: Design budget of the GBD and SFDs to have the same or higher precision under

both criterion.

Test Function and Model
RMSE MAPE

SFDs GBD SFDs GBD
Colville with GP 81 2401 256 2401
Fried with GP 2401 625 2401 625

Borehole with GP 500 6561 500 6561
HPC application with GP 1500 2658 1300 2658

Code and data: Computing codes for the synthetic and real data analyses. The HPC data

are also included (zip file).
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l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na, 793–800.

Fang, K.-T., D. K. Lin, P. Winker, and Y. Zhang (2000). Uniform design: theory and

application. Technometrics 42 (3), 237–248.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statis-

tics 19 (1), 1–67.

Friedman, J. H., E. Grosse, and W. Stuetzle (1983). Multidimensional additive spline ap-

proximation. SIAM Journal on Scientific and Statistical Computing 4 (2), 291–301.

Giampapa, M., T. Gooding, T. Inglett, and R. W. Wisniewski (2010). Experiences with

a lightweight supercomputer kernel: Lessons learned from blue gene’s cnk. In SC’10:

Proceedings of the 2010 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE.

25



Golchi, S. and J. L. Loeppky (2015). Monte Carlo based designs for constrained domains.

arXiv preprint arXiv:1512.07328 .

Goldberg, P. W., C. K. Williams, and C. M. Bishop (1998). Regression with input-dependent

noise: A gaussian process treatment. pp. 493–499.

Gramacy, R. B. (2016). laGP: Large-scale spatial modeling via local approximate Gaussian

processes in R. Journal of Statistical Software 72 (1), 1–46. doi: 10.18637/jss.v072.i01.

IOzone projects contributors (2016). IOzone filesystem benchmark.

http://www.iozone.org/.

Johnson, M. E., L. M. Moore, and D. Ylvisaker (1990). Minimax and maximin distance

designs. Journal of Statistical Planning and Inference 26 (2), 131–148.

Johnson, R. T., D. C. Montgomery, and J. Bradley (2011). An empirical study of the

prediction performance of space-filling designs. International Journal of Experimental

Design and Process Optimisation 2 (1), 1–18.

Joseph, V. R., E. Gul, and S. Ba (2015). Maximum projection designs for computer exper-

iments. Biometrika 102 (2), 371–380.

Lekivetz, R. and B. Jones (2015). Fast flexible space-filling designs for nonrectangular re-

gions. Quality and Reliability Engineering International 31 (5), 829–837.

Li, R., D. K. Lin, and Y. Chen (2004). Uniform design: design, analysis and applications.

International Journal of Materials and Product Technology 20 (1-3), 101–114.

Lux, T. C., L. T. Watson, T. H. Chang, J. Bernard, B. Li, L. Xu, G. Back, A. R. Butt,

K. W. Cameron, and Y. Hong (2018). Predictive modeling of I/O characteristics in high

performance computing systems. In Proceedings of the High Performance Computing

Symposium, Number 8. Society for Computer Simulation International.

Lux, T. C., L. T. Watson, T. H. Chang, J. Bernard, B. Li, X. Yu, L. Xu, G. Back, A. R.

Butt, and K. W. Cameron (2018). Novel meshes for multivariate interpolation and

approximation. In Proceedings of the ACMSE 2018 Conference, Number 13. ACM.

McKay, M. D., R. J. Beckman, and W. J. Conover (1979). Comparison of three methods

for selecting values of input variables in the analysis of output from a computer code.

Technometrics 21 (2), 239–245.

Milborrow, S. (2019). earth: Multivariate adaptive regression splines. R package version

5.1.2.

Morris, M. D. and T. J. Mitchell (1995). Exploratory designs for computational experiments.

Journal of Statistical Planning and Inference 43 (3), 381–402.

26



Pratola, M. T., O. Harari, D. Bingham, and G. E. Flowers (2017). Design and analysis of

experiments on nonconvex regions. Technometrics 59 (1), 36–47.

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989). Design and analysis of

computer experiments. Statistical Science 4 (4), 409–423.

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data.

In Proceedings of the 1968 23rd ACM national conference, pp. 517–524. ACM.

Shewry, M. C. and H. P. Wynn (1987). Maximum entropy sampling. Journal of Applied

Statistics 14 (2), 165–170.

Thacker, W. I., J. Zhang, L. T. Watson, J. B. Birch, M. A. Iyer, and M. W. Berry (2010).

Algorithm 905: Sheppack: Modified shepard algorithm for interpolation of scattered

multivariate data. ACM Transactions on Mathematical Software (TOMS) 37 (3), 1–20.

Xu, L., Y. Wang, T. C. Lux, T. Chang, J. Bernard, B. Li, Y. Hong, L. T. Watson, and K. W.

Cameron (2020). Modeling I/O performance variability in high-performance computing

systems using mixture distributions. Journal of Parallel and Distributed Computing .

doi: 10.1016/j.jpdc.2020.01.005.

27


