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Abstract—Open Radio Access Network (RAN) architectures
will enable interoperability, openness and programmable data-
driven control in next generation cellular networks. However,
developing and testing efficient solutions that generalize across
heterogeneous cellular deployments and scales, and that opti-
mize network performance in such diverse environments is a
complex task that is still largely unexplored. In this paper we
present OpenRAN Gym, a unified, open, and O-RAN-compliant
experimental toolbox for data collection, design, prototyping
and testing of end-to-end data-driven control solutions for next
generation Open RAN systems. OpenRAN Gym extends and
combines into a unique solution several software frameworks
for data collection of RAN statistics and RAN control, and a
lightweight O-RAN near-real-time RAN Intelligent Controller
(RIC) tailored to run on experimental wireless platforms. We
first provide an overview of the various architectural components
of OpenRAN Gym and describe how it is used to collect data
and design, train and test artificial intelligence and machine
learning O-RAN-compliant applications (xApps) at scale. We then
describe in detail how to test the developed xApps on softwarized
RANs and provide an example of two xApps developed with
OpenRAN Gym that are used to control a network with 7
base stations and 42 users deployed on the Colosseum testbed.
Finally, we show how solutions developed with OpenRAN Gym on
Colosseum can be exported to real-world, heterogeneous wireless
platforms, such as the Arena testbed and the POWDER and
COSMOS platforms of the PAWR program. OpenRAN Gym and
its software components are open-source and publicly-available
to the research community.

This work has been submitted to Elsevier for possible publication.
Copyright may be transferred without notice, after which this version may no longer be accessible.

I. INTRODUCTION

Once seen as monolithic and mostly immutable “black-
box” systems, cellular networks are converging toward the
more flexible, software-based open architectures based on
the Open Radio Access Network (RAN) paradigm. This new
approach to cellular communications promotes openness, vir-
tualization, and programmability of RAN functionalities and
components, and enables data-driven intelligent control loops
for cellular systems [2]. As such, the Open RAN enables
network operators to support new bespoke services on shared
physical infrastructures, and to dynamically reconfigure them
based on network conditions and user demand. The resulting

This is a revised and substantially extended version of [1], which appeared
in the Proceedings of the IEEE Wireless Communications and Networking
Conference (WCNC) 2022 Workshops.

This work was partially supported by the U.S. National Science Foundation
under Grants CNS-1925601, CNS-2120447, and CNS-2112471.

increased efficiency will also decrease the operational costs of
the network.

In this context, standardization bodies and other organiza-
tions are releasing a number of specifications to regulate the
operations of the Open RAN, and to define its capabilities,
constraints, and use cases. The most notable is the O-RAN
Alliance, which is developing specifications—collected under
the O-RAN umbrella—to apply Open RAN principles to
prevailing radio access technologies, including 3GPP LTE and
NR networks [3].

O-RAN introduces two network RAN Intelligent Controllers
(RICs), operating at different timescales, enabling program-
matic closed-loop control of the RAN elements. It also defines
a set of open interfaces to connect the controllers to key
elements of the RAN, such as the NR Central Units (CUs),
Distributed Units (DUs), Radio Units (RUs), and the LTE O-
RAN-compliant evolved Node Bases (eNBs) [4]. In details, the
near-real-time (or near-RT) RIC connects to the RAN elements
(i.e., the CUs and DUs) through the E2 interface, and enables
control loops operating at timescales ranging between 10 ms
and 1 s [5]. Instead, the non-real-time (or non-RT) RIC is
included as part of Service Management and Orchestration
(SMO) frameworks, and operates at timescales larger than
1 s [6]. This component also interacts with one or multiple
the near-RT RICs via the A1 interface, which is used to
disseminate policies and information external to the network.
The non-RT RIC also manages the Artificial Intelligence (AI)
and Machine Learning (ML) models which are instantiated on
the RICs in the form of standalone applications, namely xApps
(on the near-RT RIC) and rApps (on the non-RT RIC). Finally,
the SMO connects to the RAN through the O1 interface, used
for management and orchestration routines, and to the O-RAN
virtualization platform (the O-Cloud) via the O2 interface.

Thanks to its RICs, open interfaces and disaggregated ar-
chitecture, O-RAN ultimately enables the practical deployment
and execution of AI/ML solutions at scale, which can be used
to infer and forecast network traffic, or to reconfigure the nodes
of the RAN at run time based on real-time conditions and
user demand. Typical workflows for the design and testing
of such AI/ML algorithms encompass a number of different
steps such as [7, 8]): (i) data collection, to create practical
datasets representative of the different environments (e.g., the
wireless channel) where the AI/ML models will be deployed,
as well as of various performance indicators of the network;
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Figure 1: OpenRAN Gym architecture.

(ii) AI/ML model design, selecting the inputs and outputs
of the models, and training and testing, to evaluate the
effectiveness and limits of such models; (iii) model deployment
as applications deployed on the RICs, i.e., xApps/rApps or—as
recently proposed in [9]—directly on the CUs/DUs via dApps;
(iv) model fine-tuning with run-time data from the RAN, to
adapt the models to different production environments, and
(v) the actual control, inference and/or forecasting or the RAN.

In this paper we present OpenRAN Gym, an open-source
toolbox to develop AI/ML O-RAN-compliant inference and
control algorithms, to deploy them as xApps on the near-
RT RIC, and to test them on a large-scale softwarized RAN
controlled by the RIC. First, we give a high-level overview of
the various components of OpenRAN Gym, and discuss how
they enable development and testing workflows of data-driven
xApps. We showcase an example of two xApps designed
with OpenRAN Gym and used to control a large-scale RAN
instantiated on the Colosseum wireless network emulator [10]
through the SCOPE framework [11], and controlled by the
ColO-RAN near-RT RIC [8]. We also show how OpenRAN
Gym can be seamlessly ported from an emulator such as
Colosseum to over-the-air real-world platforms, such as the
Arena testbed [12], and the platforms of the U.S. National
Science Foundation-sponsored Platforms for Advanced Wire-
less Research (PAWR) program [13] including the Platform
for Open Wireless Data-driven Experimental Research (POW-
DER) [14] and the Cloud Enhanced Open Software De-
fined Mobile Wireless Testbed for City-Scale Deployment
(COSMOS) [15] platforms. To the best of our knowledge,
OpenRAN Gym is the first open, portable toolset for end-
to-end design, prototyping, testing, and experimentation of
AI/ML O-RAN xApps on heterogeneous wireless experimen-
tal platforms.

Previous experimental work has focused on the develop-
ment of data-driven solutions and xApps for specific use
cases [16, 17], on the description of the AI/ML capabilities
of O-RAN [18, 19], on interoperability testing [20], and on
orchestration [21]. Compared to the state of the art, OpenRAN
Gym enables an end-to-end workflow for the design and test-
ing of AI/ML solutions as xApps in the O-RAN ecosystem. By
doing so, it empowers users with a first-of-its-kind open and
publicly-available O-RAN-compliant toolbox that will unleash
the potential of data-driven applications for next generation
cellular networks. Being open-source, OpenRAN Gym aims at

creating a thriving community of researchers and developers
contributing to it with open-source software components for
experimental O-RAN-enabled data-driven research.1

The remainder of this paper is organized as follows. We
give an overview of the various components of OpenRAN
Gym in Section II. Practical descriptions of OpenRAN Gym
data collection and control framework, and O-RAN control
architecture, are given in Sections III and IV, respectively.
The xApp design and testing workflow is presented in Sec-
tion V, along with an example of large-scale RAN control
using xApps developed with OpenRAN Gym on Colosseum.
Section VI discusses how OpenRAN Gym components and
experiments can be ported from Colosseum to heterogeneous
real-world testbeds. Section VII showcases exemplary results
obtained on the different platforms considered in this work.
Finally, conclusions are drawn in Section VIII.

II. OPENRAN GYM

The OpenRAN Gym architecture is shown in Figure 1. Its
main components are: (i) publicly- and remotely-accessible
experimental wireless platforms for collecting data, proto-
typing, and testing solutions in heterogeneous environments.
Example of these are the Colosseum wireless network emu-
lator [10], the Arena testbed [12], and the platforms of the
PAWR program [13]; (ii) a softwarized RAN implemented
through open protocol stacks for cellular networks, such as
srsRAN [22] and OpenAirInterface [23]; (iii) a data collection
and control framework, such as SCOPE [11], that exposes
Application Programming Interfaces (APIs) to extract relevant
Key Performance Measurements (KPMs) from the RAN, and
dynamically control it at run-time, and (iv) an O-RAN control
architecture, such as ColO-RAN [8], able to connect to the
RAN through open and standardized interfaces (e.g., the O-
RAN E2 interface), receive the run-time KPMs from the RAN,
and control it through AI/ML solutions running, for instance,
as xApps/rApps. As we will show in Sections VI and VII,
OpenRAN Gym is platform-independent, and it allows users
to perform data collection campaigns, prototype, and evaluate
solutions in a set of heterogeneous wireless environments and
deployments before transitioning them to production networks.
As such, OpenRAN Gym can be used to first prototype and

1The software components of OpenRAN Gym are publicly-available and
accessible at https://openrangym.com.
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validate solutions on the Colosseum wireless network emula-
tor, and then seamlessly transfer such solutions to heteroge-
neous platforms, such as the Arena testbed, and the POWDER
and COSMOS platforms from the PAWR program [13]. The
procedures to port the various components of OpenRAN Gym
on these platforms will be described in Section VI.

Arena is an indoor wireless testbed equipped with a grid of
64 antennas and 24 Software-defined Radios (SDRs) (among
USRPs X310 and N210) controlled by high-performance com-
pute servers [12]. Its deployment is representative of a live
office environment.

Colosseum is the world’s largest wireless network emula-
tor [10]. It allows researchers and practitioners to experiment
at scale, and in different channel conditions and virtual envi-
ronments through a set of 128 SDRs (USRPs X310) controlled
through dedicated servers—namely, Standard Radio Nodes
(SRNs)—interconnected through a Massive Channel Emulator
(MCHEM). The latter, is capable of reproducing conditions
of the wireless channel (e.g., path loss, fading, user mobility,
signal interference and superimposition) by means of Finite
Impulse Response (FIR) filters implemented through Field
Programmable Gate Arrays (FPGAs). The channel emulation
is performed by the FIR filters, which apply the channel
impulse response of the desired wireless channel to the signals
transmitted by the SRNs. Sets of channel impulse responses
for different environments (e.g., urban, rural, etc.)—referred
to as Radio Frequency (RF) scenarios in Colosseum—are
modeled a priori through mathematical equations, or captured
through ray-tracing software.

The POWDER is a city-scale wireless testbed deployed
in Salt Lake City, UT [14]. The testbed includes a number
of SDRs deployed across an outdoor area, an over-the-air
indoor laboratory setup, and a wired attenuator matrix. The
objective of this testbed is to foster experimental research in
heterogeneous technology, such as 5G cellular technologies
and network orchestration.

The COSMOS is a city-scale testbed deployed in New York
City, NY, which mainly focuses on mmWave communications
with edge-computing capabilities [15]. This testbed absorbed
the Open-Access Research Testbed for Next-Generation Wire-
less Networks (ORBIT) [24], an indoor over-the-air wireless
platform with remotely-accessible SDR devices and compute
servers.

At the time of this writing, OpenRAN Gym softwarized
RAN leverages the cellular implementation provided by
srsRAN [22], which allows users to instantiate protocol stacks
of 3GPP base stations and User Equipments (UEs) using
SDRs as front-end interfaces. This cellular protocol stack is
augmented by the SCOPE framework, which adds a number
of networking and control functionalities to srsRAN including
network slicing capabilities, support for additional scheduling
algorithms, data collection pipelines, and open APIs to con-
trol such functionalities at run time. As we will discuss in
Section III, SCOPE can facilitate data collection campaigns
by automating the collection of relevant RAN KPM in the
heterogeneous testbed where it is instantiated [8, 21, 25].

Finally, ColO-RAN implements the O-RAN control archi-
tecture of OpenRAN Gym. This framework adapts the near-RT

RIC provided by the O-RAN Software Community (OSC) to
run in a lightweight containerized environment, and extends
it to swiftly interface with, and control, the SCOPE base
stations through the E2 interface standardized by O-RAN. As
we will discuss in Section IV, ColO-RAN allows users to
prototype AI/ML-based O-RAN applications through an xApp
Software Development Kit (SDK), to instantiate them on an
OSC-compliant near-RT RIC, and to leverage them to perform
control of a softwarized RAN (Figure 1).

III. DATA COLLECTION AND CONTROL FRAMEWORK

The data collection and control framework of OpenRAN
Gym is based on SCOPE [11]. This framework provides a
programmable environment for prototyping and testing solu-
tions for softwarized RANs, and data collection capabilities
of relevant KPMs (e.g., throughput, Transport Blocks (TBs),
buffer occupancy). Concerning the cellular protocol stack
for base stations and UEs, SCOPE leverages srsRAN [22],
which it extends with novel network slicing and a set of
additional scheduling algorithms. Open APIs to fine-tune the
configuration of the RAN at run time, and to perform data
collection campaigns are also provided by SCOPE. Coupled
with different testbeds—such as Colosseum and the platform
of the PAWR program—SCOPE can facilitate the collection
of RAN KPMs in a set of heterogeneous scenarios and
environments by automatically collect such statistics from the
running experiments [8, 11, 25]. Finally, SCOPE connects to
the O-RAN near-RT RIC through a RAN-side O-RAN E2
termination, which is based on the OSC DU [26]. This allows
user-defined xApps running on the near-RT RIC to swiftly
interface with the RAN base stations, and to dynamically
control their functionalities at run time (e.g., modify the
scheduling policy and set the amount of resources allocated to
each network slice). In the remainder of this section, we will
give a high-level overview of the main configuration options
and parameters of the SCOPE-enabled base stations, and show
how to instantiate a cellular network with it. SCOPE has been
open-sourced to the research community,2 and also provided to
the Colosseum users in the form of a ready-to-use Linux Con-
tainer (LXC) (namely scope/scope-with-e2). In Section VI,
we will show how the publicly-available SCOPE container
can be ported to different testbeds (e.g., the Arena testbed,
and the POWDER and COSMOS testbeds of the PAWR
program) with minor modifications. In this way, SCOPE truly
enables the process of cellular-network-as-a-service, in which
the solutions are first prototyped in a controlled environment
(e.g., Colosseum), and then ported in the wild on real-world
testbeds.

A. Starting SCOPE

SCOPE provides Command-line Interface (CLI) tools to
start the cellular base stations and configure them through
parameters passed via configuration files. The main parameters
of interest to OpenRAN Gym are described as follows.3

2The SCOPE source code is available at https://github.com/wineslab/
colosseum-scope and https://github.com/wineslab/colosseum-scope-e2.

3A comprehensive description of the SCOPE APIs and configuration
parameters can be found at https://github.com/wineslab/colosseum-scope.
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• network-slicing: enables/disables the network slicing
functionalities of the base station.

• slice-allocation: if network slicing has been enabled,
this parameter can be used to set the Resource Block
Groups (RBGs) allocated by the base station to each
slice. The input of this configuration option is passed as
{slice:[first rbg, last rbg],...}. As an exam-
ple, {0:[0,5],1:[6,10]} allocates RBGs 0-5 to slice 0
and 6-10 to slice 1.

• slice-scheduling-policy: sets the scheduling policy
used for each network slice of the base station. As an
example, [1,2] assigns slicing policy 1 to slice 0 and
policy 2 to slice 1. The possible numerical values for this
field match the scheduling policies supported by SCOPE
(i.e., 0: round-robin, 1: waterfilling, 2: proportionally
fair).

• slice-users: associates UEs to a specific network
slice. The input of this configuration option is
passed as {slice:[ue1,ue2],...}. As an example,
{0:[4,5],1:[2,3]} assigns UEs 4, 5 to slice 0, and
UEs 2, 3 to slice 1.

• generic-testbed: specifies whether SCOPE is running
on a testbed other than Colosseum. In this case, the
parameters node-is-bs and ue-id can also be passed
to specify whether the node should act as a base station
or a UE, and the identifier of the UE in the latter case.4

After the SCOPE configuration has been written in a JSON-
formatted file,5 (named radio.conf in the code snippet be-
low), the cellular base station, core network, and UE applica-
tions can be started through the commands of Listing 1.

1 #!/bin/bash
2 cd radio_api/
3 python3 scope_start.py --config -file radio.conf

Listing 1: Commands to start the SCOPE applications.

At run-time, the SCOPE APIs can be leveraged to fine-
tune the configuration of the base station, e.g., to modify the
scheduling policy of each slice, or to set the amount of RBGs
of each slice (see [11, Section 3.3]). Relevant KPMs from the
RAN are automatically logged by the SCOPE base stations
while traffic is exchanged among base stations and UEs. These
KPMs are saved in CSV-formatted files that can be either used
on-the-fly (e.g., for online AI/ML model training or inference),
or retrieved for offline processing after the experiment ends
(e.g., to perform offline AI/ML model training).

IV. O-RAN CONTROL ARCHITECTURE

The O-RAN control architecture leveraged by OpenRAN
Gym is based on ColO-RAN, an open-source framework to
develop, design, prototype, and test O-RAN-ready solutions
at scale [8]. This framework provides a lightweight imple-
mentation of the OSC near-RT RIC—which has been adapted

4When running on Colosseum, SCOPE automatically derives the role of
the node, and the UE identifier based on the allocated SRNs.

5An example of configuration file can be found at https://tinyurl.com/
2s3pvw83 (for Colosseum), and at https://tinyurl.com/35t7s97a (for testbeds
other than Colosseum).

to run on the Colosseum system as a set of standalone Docker
containers—as well as automated pipelines for the deployment
of the various services of the RIC. The main components
implemented by ColO-RAN are shown in Figure 1, left. They
are services in charge of overseeing the interactions with
the RAN (e.g., the E2 termination, E2 manager, and E2
routing manager), a Redis database that keeps records of the
connected RAN nodes (e.g., the base stations), and an xApp
SDK with tools to prototype and test AI/ML-based xApp for
run-time RAN inference and/or control.
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Figure 2: ColO-RAN xApp, adapted from [8].

A high-level diagram of a ColO-RAN xApp is shown in
Figure 2. This is formed of two main parts: (i) the Service
Model (SM) connector, in charge of handling the messages
between the xApp and the near-RT RIC (e.g., the control
messages for the RAN), and (ii) the data-driven logic unit,
which processes KPMs received from the RAN base stations,
and performs tasks based on AI/ML models (e.g., traffic
prediction and/or control of the functionalities of the base sta-
tions). The data-driven logic unit hosts two sub-components,
namely the AI/ML model and the data processing module. The
former consists of the specific data-driven model (e.g., Deep
Reinforcement Learning (DRL) agent, Deep Neural Network
(DNN), Long Short Term Memory (LSTM), to name a few)
used to perform inference and/or control tasks. The latter,
instead, executes data processing functionalities to convert the
input KPMs into data that can be fed to the AI/ML model.
For instance, the majority of AI/ML models are designed
to receive inputs with a fixed size and format (e.g., a two-
dimensional array of a specific length, an image, or a time-
series). However, the KPMs received over the E2 termination
might have a different format, or might contain more data
than what is required by the AI/ML model. In this case, the
data processing module performs the necessary operations to
convert the input data in the correct format. In some cases, the
data processing module can also host some AI/ML models
that execute advanced data processing operations. Examples
of these are autoencoders to extract latent data representation
and to perform dimensionality reduction [8, 25].

In the remainder of this section, we detail how to in-
stantiate the ColO-RAN near-RT RIC (Section IV-A), how
to interface it with the SCOPE base station through the O-
RAN E2 termination (Section IV-B), and how to start a
sample xApp that controls the base station (Section IV-C).
ColO-RAN has been open-sourced and made available to the

4
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research community,6 and also provided to the Colosseum
users in the form of a ready-to-use LXC container (namely
coloran-near-rt-ric). In Section VI, we will show how
ColO-RAN can be seamlessly ported to different testbeds (e.g.,
the Arena testbed, and the POWDER and COSMOS platforms
of the PAWR program).

A. Starting the ColO-RAN Near-RT RIC

The ColO-RAN near-RT RIC can be built and instantiated
as a set of Docker containers by running the setup-ric.sh
script and the commands of Listing 2.7 This script, adapted
from [27], takes as input the network interface the RIC uses
to receive and exchange messages with the RAN (e.g., the
col0 interface in Colosseum). As a first step, the base Docker

1 #!/bin/bash
2 cd setup -scripts/
3 ./setup -ric.sh col0

Listing 2: Commands to set up the ColO-RAN near-RT RIC.

images that will be used to build the RIC are imported. Then,
the actual Docker images of the ColO-RAN near-RT RIC are
build. These images include: (i) the e2term, which is the
endpoint of the RIC E2 messages; (ii) the e2mgr, which is
in charge of managing the messages to/from the E2 interface;
(iii) the e2rtmansim, which uses the RIC Message Router
(RMR) protocol to route the E2 messages within the RIC; and
(iv) the db, which implements a Redis database with records of
the RAN nodes connected to the RIC (e.g., the base stations).
During this step, the IP addresses and ports that will be used
by the Docker containers are also configured as set up in the
setup-lib.sh file. After the Docker images have been built,
the RIC containers, listening for incoming connections from
the RAN through the E2 termination endpoint, are spawned.
The logs of the various containers can be accessed through the
docker logs command, e.g., docker logs -f e2term shows
the run-time logs of the E2 termination (e2term) container.

B. Connecting the SCOPE Base Station to ColO-RAN

After setting up and starting ColO-RAN through the steps
described in Section IV-A, the cellular base station—provided
by SCOPE and set up in Section III-A—can be connected
to it through the O-RAN E2 termination, which has been
adapted from the OSC DU implementation [26]. To this aim,
the RAN-side E2 termination can be used to: (i) receive RIC
Subscription messages from the xApps; (ii) transmit periodic
KPM reports to the xApps through RIC Indication messages,
and receive control actions from them through RIC Control
messages, and (iii) interact with the APIs provided by SCOPE
to modify the configuration of the base station at run time
(e.g., the scheduling and slicing policies) based on the control
messages received from the xApps. The steps to initialize

6The ColO-RAN source code is available at https://github.com/wineslab/
colosseum-near-rt-ric.

7A pre-built version of ColO-RAN, named
coloran-near-rt-ric-prebuilt, is also provided to the Colosseum
users. The pre-built Docker images are also hosted on Docker Hub at
https://hub.docker.com/u/wineslab.

the E2 termination at the SCOPE base station are shown
in Listing 3. First, the E2 termination is build through the

1 #!/bin/bash
2 cd colosseum -scope -e2/
3 ./ build_odu.sh clean
4 ./ run_odu.sh

Listing 3: Commands initialize the SCOPE E2 termination process.

build odu.sh script (line 3). This script also specifies the
IP address and port of the near-RT RIC to connect to, as well
as the local network interface used for the connection. Then,
the E2 termination process is started through the run odu.sh
script (line 4), which establishes the initial connection between
the base station and the near-RT RIC. The successful outcome
of this connection can be verified in the logs of the e2term
container (via the docker logs -f e2term command, see
Section IV-A), which reports the identifier of the connected
base station (e.g., gnb:311-048-01000501).

C. Initializing a Sample xApp

After the SCOPE base station has been connected to the
near-RT RIC, the xApps can be started. To facilitate the
design of novel xApps, we provide a ready-to-use sample
xApp template in which researchers and practitioners can
plug-in their custom AI/ML models. This sample xApp can
be started through the setup-sample-xapp.sh script and the
commands shown in Listing 4. This script takes as input the

1 #!/bin/bash
2 cd setup -scripts/
3 ./setup -sample -xapp.sh gnb :311 -048 -01000501

Listing 4: Commands to build the ColO-RAN sample xApp Docker image,
and to start and configure the xApp container.

identifier of the base station the xApp should subscribe to (see
Section IV-B), and builds the Docker image of the sample
xApp. Then, the script starts the xApp Docker container—
dubbed sample-xapp—on the near-RT RIC.

After the container has started, the xApp processes can be
run through the commands of Listing 5. These commands

1 #!/bin/bash
2 docker exec -it sample -xapp

/home/sample -xapp/run_xapp.sh

Listing 5: Commands to run the ColO-RAN sample xApp process.

trigger the xApp subscription to the targeted RAN nodes
(e.g., one or multiple base stations connected to the RIC)
through RIC Subscription messages, and the periodic reports
of RAN KPMs from such nodes. Starting from the provided
template, OpenRAN Gym users can build xApps running
custom solutions (e.g., with custom AI/ML agents).

V. XAPP DEVELOPMENT WORKFLOW ON COLOSSEUM

The main steps to develop a data-driven xApp using Open-
RAN Gym on Colosseum are shown in Figure 3.

1) Data collection. This step involves collecting the data
that will be used to train and test the AI/ML model to embed
in the xApp. In Colosseum, this can be done by combining
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Figure 3: OpenRAN Gym xApp design and testing workflow on Colosseum.

the data-collection capabilities of SCOPE with the automated
experiments of Colosseum. This allows to automatically run
experiments with several base stations and users in a set of het-
erogeneous scenarios, and to collect the RAN KPMs—saved
in CSV-formatted files—from Colosseum Network Attached
Storage (NAS) once the experiment ends [11].

2) Model design, training and testing. After data col-
lection campaigns have been performed in heterogeneous
wireless environments and scenarios, the AI/ML model can
be designed. This step includes the selection of the AI/ML
algorithm that the model will use, along with the data used as
input, the reward function, and the set of output actions (e.g.,
to perform inference or control of the RAN). After this design
phase, the model is first trained offline using the data collected
in step 1, and then tested at scale.8 Being computationally-
intensive, this step may benefit from Graphics Processing Unit
(GPU)-enabled environments. As such, they can be carried out
either locally (i.e., on the user’s own GPU-enabled machines),
or on Colosseum’s GPU-enabled SRNs or NVIDIA A100
DGXs.

3) Deploy the model as an xApp. After the model has
been tested (step 2), it can be deployed as an xApp on
the ColO-RAN near-RT RIC by following the procedures of
Section IV-C. Specifically, the AI/ML model is included in the
data-driven logic unit of ColO-RAN xApp (see Figure 2) by
modifying the provided xApp template. Finally, the modified
xApp is build and instantiated on the near-RT RIC through
the commands of Listings 4 and 5.

4) Online model fine-tuning. At run-time, the xApp com-
municates with the SCOPE base station through the near-
RT RIC and the E2 termination. To this aim, the xApp first
subscribes to the base station by sending it a RIC Subscription
message. Then, it triggers periodic KPMs reports—with peri-
odicity tunable based on the needs of the users [8]—from the
base station. These reports are sent through RIC Indication
messages, and they may be used by the xApp to fine-tune
the model online, allowing it to adapt to varying wireless
conditions and traffic demand. Once the model has been fine-
tuned online, the Docker image of the xApp can be updated
with the trained weights.

5) Perform RAN control/inference. At this stage, the xApp
can be used in the a live infrastructure to perform inference

8It is worth mentioning that the O-RAN specifications forbid the deploy-
ment of models that have not been trained offline beforehand. This is to shield
the RAN from poor performance or outages [7].

and/or control of the RAN. This entails the xApp transmitting
the actions computed by the model to the SCOPE base station
through RIC Control messages. Example of these are actions
to modify the parameters and configuration of the base station,
e.g., to modify the resources allocated to the slices of the
network, or their scheduling policies. At the base station,
these RIC Control messages—received through the O-RAN
E2 interface—trigger the SCOPE control APIs of Figure 3,
which apply the new policies to the configuration of the base
station at run time. At this point, the xApps can be tested
and validated on Colosseum. In Sections VI and VII, we will
show how these newly developed xApps can be ported and
instantiated on external wireless testbeds.

A. Example of xApps

For the sake of completeness, we now provide an example of
two xApps designed, trained and tested with OpenRAN Gym
on Colosseum. These xApps are used to control a cellular
network with 7 base stations and 42 UEs instantiated on
the Colosseum network emulator. Each base station is imple-
mented through SCOPE and serves 6 UEs with different traffic
requirements. The UEs are divided into two classes of traffic,
allocated to different slices of the network: time-sensitive (e.g,
Ultra Reliable and Low Latency Communications (URLLC))
and broadband (e.g., Enhanced Mobile Broadband (eMBB)
and Machine-type Communications (MTC)).

The xApps implement DRL agents—trained on a dataset
with 3.4 GB of RAN traces (and more than 73 hours of
experiments) collected on Colosseum—that make control de-
cisions on the configuration of the base station based on the
received RAN KPMs (see [8]). The DRL agents considered in
this paper implement a Proximal Policy Optimization (PPO)
architecture that leverages an actor-critic structure. The actor
network is trained to take actions according to the current state
of the system, while the critic network is used during the
training phase to evaluate the reward obtained by selecting
a specific action in a certain state. Then, the critic network
instructs the actor network on how valuable the action was, in
this way steering the actor network toward actions that bring
the highest reward for each state.

To showcase the impact of different design choices on
the overall performance of the network, we trained two
xApps with different action spaces. One xApp (named sched)
controls the scheduling policies that a base station uses for
specific classes of traffic. Another xApp (sched-slicing) is
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instead operating over a larger action space as it controls both
scheduling policies, and the resource allocated to each slice
(i.e., the number of RBGs assigned to each class of traffic). In
this example, both xApps aim at maximizing the amount of
transmitted data belonging to the broadband traffic class (in
this case measured by the number of downlink TBs transmitted
successfully by the base station to the UEs), and to minimize
the time packets belonging to the time-sensitive traffic class
spend in the downlink buffer queues of the base station. As
the protocol stack of the base station does not have a direct
measurement of the end-to-end system latency, we use this
buffer occupancy metric as our proxy for latency.

Figure 4 shows the Cumulative Distribution Function (CDF)
of some RAN metrics measured at the base stations when the
two xApps are instantiated on the ColO-RAN near-RT RIC
and used to control the RAN. Specifically, Figure 4a shows
the transmitted TBs for the broadband slice, while Figure 4b
displays the downlink buffer occupancy of the time-sensitive
slice. By acting on a large action set (i.e., the slice resource
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Figure 4: Comparison of xApps developed with OpenRAN Gym.

allocation), the sched-slicing xApp achieves superior per-
formance by delivering a higher number of transmitted packets
and reducing the occupancy of the downlink buffer.9

VI. TRAVELING CONTAINERS

In this section, we illustrate how the OpenRAN Gym
containerized applications including the xApps developed and
pre-trained on Colosseum can be transferred to other testbeds,
and describe the necessary adjustments (if any) to run these
applications on each experimental platform. Although the
above procedure may seem trivial in the case of self-contained
applications, in our case this is challenging due to the fact
that our traveling OpenRAN Gym containers need to interact
with the underlying network resources and be able to properly
control the potentially diverse set of SDRs available in the
different testbeds. Furthermore, in some cases, the firmware
of the SDRs requires specific tools only available on certain
operating systems versions or distributions. In such cases, the
containers may need to be updated or rebuilt.

To facilitate these tasks, we developed some tools to au-
tomatically start the OpenRAN Gym LXC containers on the
different platforms considered in this work, and to properly
interface them with the available radio resources. After the

9A detailed evaluation of OpenRAN Gym xApps, including their orchestra-
tion, and control of large-scale experimental networks can be found in [8, 21].

LXC images have been transferred (e.g., through the scp or
rsync utilities) in a running instance of the testbed of interest,
the image can be imported with the commands shown in
Listing 6. This command imports the scope-with-e2.tar.gz

1 #!/bin/bash
2 lxc image import scope -with -e2.tar.gz --alias

scope -e2

Listing 6: Commands to import the SCOPE LXC image with the E2
termination module.

LXC image transferred from Colosseum (i.e., the SCOPE
image with the module for the E2 termination) to the compute
machine of the remote testbed. After the above operation
completes successfully, the new image, named scope, is
visible by running the following command: lxc image list.

The LXC container can be, then, created from the imported
image by running the commands shown in Listing 7.

1 #!/bin/bash
2 lxc init local:scope -e2 scope

Listing 7: Commands to create the SCOPE LXC container with the E2
termination module from the image imported in Listing 6.

After creating the container, additional operations may
be required based on the specific OpenRAN Gym image,
and SDR available in the remote testbed (e.g., USRP B210
or X310). As an example, if running the SCOPE container
with an USRP B210, it is necessary to perform an USB
passthrough operation to allow the container to use the USB
interfaces and devices connected to the physical host (e.g., the
USB interface to control the USRP). If using an USRP X310,
instead, the container needs access to the network interface the
host machine uses to communicate with the SDR, to set the
right Maximum Transmission Unit (MTU) for it, and possibly
to flash the FPGA of the USRP with the appropriate image.
In both these cases, the container may require some additional
permissions to be able to use the passed devices and interfaces
(e.g., read/write permissions on the USB devices).

In the case of ColO-RAN—which can be imported and
started with commands analogous to those shown in Listings 6
and 7—it is necessary to configure the Network Address
Translation (NAT) rules of the host machine for it to forward of
the messages directed to the RIC to the ColO-RAN container
(e.g., the E2 Setup Request message used by the base station to
subscribe to the RIC, and the RIC Indication messages used to
send the KPMs to the xApps). Similarly to the previous case,
the LXC container may require some additional permissions
(e.g., to run the Docker containers of the ColO-RAN near-RT
RIC in a nested manner inside the ColO-RAN LXC container).

After these operations have been executed, the LXC con-
tainer (e.g., the SCOPE LXC container created in Listing 7)
can be started with the commands of Listing 8. Now, the

1 #!/bin/bash
2 lxc start scope

Listing 8: Commands to start the SCOPE LXC container created in Listing 8.

OpenRAN Gym applications can be executed by following the
procedures detailed in Sections III-A, IV-A, IV-B, and IV-C.
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TABLE I: Compute node and radio setups used across the different testbeds.

Testbed Compute Node Processor CPU Cores RAM [GB] Software-defined Radio

Base Station (BS) / UE

Arena Dell EMC PowerEdge R340 Intel Xeon E-2146G 6 32 NI USRP X310
Colosseum Dell EMC PowerEdge R730 Intel Xeon E5-2650 48 128 NI USRP X310
COSMOS Asus server (model undisclosed) Intel i7-4790 4 16 NI USRP B210
POWDER (BS) Dell EMC PowerEdge R740 Intel Xeon Gold 6126 24 98 NI USRP X310
POWDER (UE) Intel NUC 8559 Intel 7-8559U 4 32 NI USRP B210

Near-RT RIC

Arena Dell EMC PowerEdge R340 Intel Xeon E-2146G 6 32 N/A
Colosseum Dell EMC PowerEdge R730 Intel Xeon E5-2650 48 128 N/A
COSMOS Supermicro 1028U-TRT+ Intel Xeon E5-2698 16 251 N/A
POWDER Dell EMC PowerEdge R740 Intel Xeon Gold 6126 24 98 N/A

To simplify and automate the above setup operations, and to
allow OpenRAN Gym users to swiftly configure and run the
transferred containers, we developed and open-sourced a set
of scripts that take care of (i) passing the right radio interface
to the containers; (ii) giving them the required permissions;
(iii) setting up the NAT rules of the host machine, and, finally,
(iv) starting the OpenRAN Gym LXC containers from the
imported images 10. These scripts, which are supposed to be
run after the commands of Listing 6, i.e., after the LXC image
has been imported, are described in Listings 9 and 10.

Specifically, Listing 9 creates, sets up, and starts the SCOPE
LXC container starting from the image imported in Listing 6.
After creating the container on the testbed of interest (i.e.,

1 #!/bin/bash
2 ./start -lxc -scope.sh testbed usrp_type [flash]

Listing 9: Commands to start the SCOPE LXC container.

arena, powder, or cosmos), the script configures the USRP
specified through the usrp type parameter (i.e., b210 or
x310) following the procedures described above (i.e., passing
to the container the devices to interface with the USRP, and
assigning the appropriate permissions to the container). The
optional flash parameter also allows to flash the FPGA of
the USRP X310 with the UHD image used by the container.11

The script of Listing 10 can be used to create, setup, and
start the ColO-RAN near-RT RIC container starting from the
image imported in Listing 6. This script creates the ColO-RAN

1 #!/bin/bash
2 ./start -lxc -ric.sh

Listing 10: Commands to start the ColO-RAN LXC container.

near-RT RIC container, assigns it the required permissions
(e.g., to run the nested Docker containers), and starts it. Then,
it sets the NAT rules of the host machine (where the container
is running) for it to forward the messages intended for the
RIC. Finally, it builds and starts the Docker containers of the
ColO-RAN near-RT RIC (see Section IV) inside the created
LXC container.

10https://github.com/wineslab/openrangym-pawr
11Please note that after the FPGA has been flashed with a new image, the

USRP may need to be rebooted. We refer to the documentation of the various
testbeds for the instructions on how to achieve this.

VII. EXPERIMENTAL RESULTS

In this section, we showcase some experimental results
obtained from running OpenRAN Gym and its components
across a set of heterogeneous testbeds. We ported the SCOPE
and ColO-RAN near-RT RIC containers from Colosseum to
the Arena, POWDER, and COSMOS testbeds (see Sections II
and VI). A description of the compute node and radio setups
used in these testbeds (also summarized in Table I) follows.
Since the capabilities offered by the different testbeds can be
substantially different (e.g., number of available over-the-air
nodes), for the sake of consistency, and to fairly compare
results, we run experiments with one cellular base station
and up to three UEs, and one near-RT RIC node. We divide
the spectrum of the base stations into up to three network
slices, and statically assign the UEs to them (e.g., based
on the Service Level Agreement (SLA) between users and
their network operator). Downlink User Datagram Protocol
(UDP) traffic generated through the iPerf3 tool is leveraged to
evaluate the network performance. Finally, the base stations—
implemented through SCOPE—connect to ColO-RAN near-
RT RIC through the E2 interface standardized by O-RAN.

POWDER. We instantiated both the ColO-RAN near-RT
RIC and the SCOPE base station on Dell EMC PowerEdge
R740 compute nodes with Intel Xeon Gold 6126 processor,
24 CPU cores and 98 GB memory. The UEs were instantiated
on Intel NUC 8559 nodes with Intel i7-8559U processor,
4 CPU cores, and 32 GB RAM. The radio front-end of the base
station was implemented through a USRP X310, while USRP
B210 were used for the UEs. As this testbed does not natively
support the LXC virtualization technology, the OpenRAN
Gym container images were transferred from Colosseum to the
compute nodes through the scp utility, instantiated on Ubuntu
Linux images loaded on the bare-metal servers of the testbed.

COSMOS. In this case, the near-RT RIC was instantiated on
a Supermicro 1028U-TRT+ server with an Intel Xeon E5-2698
processor, 16 CPU cores and 251 GB memory. Base station
and UE, instead, were virtualized on Asus servers with Intel
i7-4790 processor, 4 CPU cores, and 16 GB memory driving
USRP B210 SDRs. Similarly to what done for POWDER, as
the LXC virtualization technology is not directly supported
by this testbed, the container images were transferred from
Colosseum through the scp utility, and instantiated on Ubuntu
Linux images loaded on the bare-metal nodes available on the
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Figure 5: Overall slice throughput varying the percentage of RBGs allocated
to each slice over time according to the configuration reported in Table II.
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Figure 6: Overall slice throughput varying the percentage of RBGs allocated
to each slice over time according to the configuration reported in Table II.

testbed.
Arena. All applications were run on Dell EMC PowerEdge

R340 servers with Intel Xeon E-2146G processor, 6 CPU
cores, and 32 GB memory. In this case, the OpenRAN Gym
LXC containers are instantiated directly on the bare-metal
nodes of the testbed, which leverage USRP X310 SDRs as
radio front-ends. On this testbed, the UEs are implemented
through commercial smartphones.

Colosseum. To mimic the same deployment scenario used
in the other testbeds, in Colosseum we considered cellular
nodes deployed in a static RF scenario without user mobility.
In this case the LXC containers of RIC, base station, and UEs
directly run on Colosseum bare-metal nodes, i.e., Dell EMC
PowerEdge R730 servers with Intel Xeon E5-2650 processor,
48 CPU cores, and 128 GB memory. All the cellular nodes
leverage USRP X310 SDRs as radio-front ends.

A. Results

To showcase the flexibilty of OpenRAN Gym in dynam-
ically reconfiguring the spectrum allocated to the network
slices across different testbeds, Figures 5 and 6 show the
overall throughput of each network slice varying the resources
allocated to them, in terms of RBGs. 95% confidence intervals
are also represented by the shaded areas in the figures. For
both figures, the percentage of RBGs allocated to each slice
of the base station—which uses a 10 MHz configuration—is
dynamically changed through the SCOPE APIs according to
the following configuration (also summarized in Table II). In
Figure 5, the two network slices, i.e., slice A and B in the
figure, are allocated the following RBGs percentage: (i) 75%
to slice A and 25% to slice B in the first minute; (ii) 50% to
each slice in the second minute, and (iii) 25% to slice A and
75% to slice B in the third minute. In Figure 6, instead they are
allocated the following RBGs percentage: (i) 75% to slice A

TABLE II: Slicing configuration, expressed as percentage of RBGs, used in
Figures 5 and 6.

Figure Slice First Minute Second Minute Third Minute

Figure 5 Slice A 75% RBGs 50% RBGs 25% RBGs
Slice B 25% RBGs 50% RBGs 75% RBGs

Figure 6 Slice A 75% RBGs 25% RBGs 75% RBGs
Slice B 25& RBGs 75% RBGs 25% RBGs

and 25% to slice B in the first minute; (ii) 25% to slice A and
75% to slice B in the second minute, and (iii) 75% to slice A
and 25% to slice B in the third minute. In both these figures,
the throughput varies proportionally to the specific allocation
of slice resources, in which slices with more RBGs achieve
higher throughput values. These values then change during the
experiment as RBGs are dynamically reallocated to the slices.
We notice that even if the throughput differs across the various
testbeds because of the different capabilities and environments
they offer—with Arena achieving the highest performance due
to the use of commercial smartphones as the UEs—the overall
trends are consistent across the different setups.

We now showcase an instance in which the ColO-RAN
near-RT RIC is leveraged to control a softwarized RAN
implemented through SCOPE. LXC containers for both appli-
cations are deployed on the testbeds mentioned above, whose
specifications are summarized in Table I. Figure 7 shows the
evolution in time of the throughput of the three network slices
(namely, slice A, B, and C) implemented by the SCOPE
base station. Initially, the slices are allocated a fixed RBG
configuration, and no control is performed by the RIC. Then,
at around second 150, an xApp that prioritizes one of the
network slices (slice A in the figure) is instantiated on the
near-RT RIC. As a result, the xApp dynamically reallocates
the amount of RBGs of each slice, which reflects on the
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Figure 7: Slice throughput when the SCOPE RAN is controlled by ColO-
RAN near-RT RIC. At around second 150, xApp to prioritize the amount of
resources (i.e., RBGs) allocated to slice A is instantiated on the near-RT RIC.

performance of the slices of the RAN. Similar to the previous
case, slices with a larger amount of RBGs allocated to them
achieve higher throughput values. Overall, even in this case
results are consistent across the different testbeds.

Now we show some timing statistics on the average amount
of time taken to transfer the SCOPE and ColO-RAN LXC im-
ages from Colosseum to the Arena, COSMOS, and POWDER
platforms. All the image transfers were performed through the
scp utility, while the LXC containers were created following
the procedures detailed in Section VI. In both cases, these tim-
ing statistics were derived using the hardware of Table I. We
used the compute nodes listed in the “base station (BS)/UE”
section of the table for the SCOPE LXC image/container (in
the case of the POWDER platform, in which different compute
nodes were are listed for base station and UE, the base station
node was used), and the compute nodes in “near-RT RIC”
section of the table for ColO-RAN. In the tables that will be
described next, we consider the following LXC images:

• SCOPE w/ E2: this is the SCOPE LXC image with the
O-RAN E2 termination to interface with the near-RT RIC.

• ColO-RAN near-RT RIC, prebuilt: this is the ColO-RAN
LXC image in which the Docker containers of the RIC,
and sample xApp (described in Section IV) have been
built a priori.

• ColO-RAN near-RT RIC, to build: this is the ColO-
RAN LXC image with the scripts to build the Docker
containers of the RIC and sample xApp from scratch.

Table III shows the average time required to transfer the LXC
images from Colosseum to the other platforms. Times span
from as low as ∼ 1.5 minutes to as high as almost 6 minutes,
depending on the size of each image—also listed in the table—
and capabilities of the testbeds. However, transfer times are
consistent across the different testbeds.

TABLE III: Average time to transfer the LXC images from Colosseum to
specific testbeds. The size of each image is listed in brackets.

Testbed SCOPE w/ E2
(1.7 GB)

ColO-RAN near-RT
RIC, prebuilt (6.5 GB)

ColO-RAN near-RT
RIC, to build (1.6 GB)

Arena 1 m 27.413 s 5 m 41.487 s 1 m 25.002 s
COSMOS 1 m 28.631 s 5 m 39.704 s 1 m 27.352 s
POWDER 1 m 30.787 s 5 m 43.704 s 1 m 28.546 s

Finally, Table IV shows the times taken to instantiate LXC
containers from the images transferred from Colosseum. In

TABLE IV: Average time to start as a container the LXC image exported from
Colosseum on specific testbeds. The size of each image is listed in brackets.

Testbed SCOPE w/ E2
(1.7 GB)

ColO-RAN near-RT
RIC, prebuilt (6.5 GB)

ColO-RAN near-RT
RIC, to build (1.6 GB)

Arena 0.887 s 1 m 11.483 s 46 m 18.110 s
COSMOS 25.463 s 2 m 34.905 s 26 m 4.410 s
POWDER 30.139 s 2 m 55.654 s 21 m 11.220 s

this case, we notice some difference among the times achieved
on the different testbeds. For instance, Arena is significantly
faster than COSMOS and POWDER in instantiating the
SCOPE container—completing the instantiation in less than
1 s—and the prebuilt ColO-RAN container (instantiation in
approximately 1 minute). This is mainly due to the fact that
Arena allows users to instantiate applications on the bare-
metal nodes directly. This removes the latency of the extra
virtualization layer of the other two testbeds, in which the
LXC containers are nested inside the virtualized architecture
the users are given access to. When it comes to building
the Docker containers of the ColO-RAN near-RT RIC (see
Section IV) from scratch, instead, POWDER and COSMOS
are significantly faster than Arena, taking approximately half
the time to complete the same operations. This is mainly due
to the superior compute capabilities of the nodes of these two
testbeds (24 core CPU server on POWDER, and 16 core server
on COSMOS vs. 6 core CPU server on Arena). Nonetheless,
this building operation needs to be completed only once, as
the compiled ColO-RAN LXC image can be saved to be used
in subsequent experiments, with instantiation times sensibly
lower (slightly above 1 minute for Arena, and below 3 minutes
for POWDER and COSMOS).

VIII. CONCLUSIONS

We presented OpenRAN Gym, the first publicly-available
research platform for data-driven O-RAN experimentation at
scale on heterogeneous wireless testbeds. Building on, and
extending, frameworks for data collection and RAN control,
OpenRAN Gym enables the end-to-end design and testing of
data-driven xApps instantiated on the O-RAN infrastructure.
We described the core components of OpenRAN Gym—
including frameworks and experimental platforms—and de-
tailed procedures and configuration options for experimenting
at scale on a softwarized RAN instantiated on Colosseum.
Then, we gave an overview of the xApp design and testing
workflow enabled by OpenRAN Gym, also showcasing an ex-
ample of two xApps used to control a large-scale O-RAN man-
aged softwarized RAN deployed on Colosseum. Finally, we
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demonstrated how OpenRAN Gym solutions and experiments
can be transitioned from Colosseum to heterogeneous real-
world platforms, such as the Arena testbed, and the POWDER
and COSMOS platforms of the PAWR program. OpenRAN
Gym is publicly-available to the research community, and
opened up for community contributions and additions.
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