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Chemoselective acylation of N-acylglutarimides with N-acylpyrroles and
aryl esters under transition-metal-free conditions

Jie Li,"3 Jiaqi Yao,"3 Lingfeng Chen," Dong Zou,? Patrick J. Walsh,*? Guang Liang™’

ABSTRACT: The imide moiety is a well-known structural motif in bioactive compounds and a useful building block
in a variety of processes. Using N-acylglutarimides with MN(SiMes)2 and either N-acylpyrroles or aryl esters, an
operationally convenient method to produce a wide array of diaryl- and alkyl arylimides is presented. Symmetric
imides are also accessible when N-acylglutarimides are employed as acylation reagent under similar reaction
conditions. A unique feature of this method stems from the use of two different electrophilic acylating reagents
leading to the formation of the unsymmetrical imides with excellent chemoselectivity.

Imides are key structural motifs found extensively in
natural products' and pharmaceuticals.? They are
also fundamental building blocks in industrial
materials.? Traditionally, imides are prepared by two
routes: (1) acylation of amides with acyl chlorides,
carboxylic esters, and anhydrides (Scheme 1a)* and
(2) Mumm rearrangement of isoimides (Scheme 1b).°
Despite the utility of these methods, both have
shortcomings. The acylation method usually suffers
from limited substrate scope because of the high
reactivity of the activated carboxylic acid derivatives.
The Mumm rearrangement requires
prefunctionalization and often gives moderate yields.
Recently, substantial effort has been dedicated to the
synthesis of imides and several methods were
developed, including: (1) metal catalyzed
carbonylation of amides (Scheme 1c);® (2) oxidation
of amides (Scheme 1d);’ and (3) oxidative
decarboxylation of amino acids (Scheme 1e)?
among others.® It is noteworthy that most of these
methods have drawbacks, such as use of
prefunctionalized substrates, use of sophisticated
reagents, need for excess oxidants, or tedious
procedures. Therefore, the development of greener
and more straightforward methods for the synthesis
of imides from readily available substrates is highly
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desirable, especially those conducted under additive-,
transition metal-, and oxidant-free conditions.

Recently N-acylglutarimides, popularized by
Szostak's group,'® have been successfully employed
as activated amide acyl transfer reagents through N—
C activation. Due to the electronic activation and
twisted geometric nature of the amide bond in these
species,'! these bench-stable amides have proven to
be excellent electrophilic partners in metal-catalyzed
cross-coupling reactions, such as the Suzuki-
Miyaura,’> Heck,"™ Negishi,"* Hiyama,"™ and
Sonogashira reactions.'® Based on the utility of N-
acylglutarimides, we aimed to develop a simple and
highly efficient transition metal-free method for the
synthesis of unsymmetrical imides from N-
acylglutarimides. The unique aspect of our approach
is the simultaneous use of two acyl! electrophiles that
leads to exquisite selectivity for unsymmetrical
imides. As outlined in Scheme 1f, N-acylglutarimides
can be coupled with either N-acylpyrroles and O-aryl
esters in the presence of silylamide bases to provide
high yields of unsymmetrical imides. Interestingly,
symmetric imides can be prepared from N-
acylglutarimides and silyl amide base without
additional external electrophilic reagents.

Scheme 1. Methods for the synthesis of imides.
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We began our investigation by using N-
benzoylpyrrole 1a and N-2-methylbenzoylglutarimide
2a as model substrates to test various reaction
conditions (Table 1). Among the solvents tested
[toluene, 1,4-dioxane, CPME (cyclopentyl methyl
ether) and DME], DME turned out to be the top hit,
providing the product in 80% yield (entries 1-5).
Further screening of different bases, including
MN(SiMes)2 (M = Li, Na, K), MO'Bu (M = Li, Na, K),
LDA and "BuLi indicated that silylamides
[MN(SiMes)2, M = Li, Na, K], are suitable bases for
this transformation (entries 5-7), while other bases
such as LiOBu, NaO'Bu, and KOBu resulted in
recovered starting material (entries 8-10). The
stronger bases LDA and "BuLi resulted in
decomposition of the starting materials (entries 11—
12). The high reaction temperature (120 °C) was also
essential for this transformation; only 55% and 30%
yield were observed when the temperature was
lowered to 100 °C and 80 °C respectively (entries 13—
14).

The observation that only silyl amide bases were
viable in this reaction supports the notion that it is the
nitrogen of the silyl amide base that unites the two
acyl groups together in the product.

Table 1. Reaction Optimization?®
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1a 2a 3a
entry  solvent base Temp Yield®
1 toluene NaN(SiMes), 120 °C 75
2 dioxane NaN(SiMes), 120 °C trace
3 THF NaN(SiMes). 120 °C 35
4 CPME NaN(SiMes), 120 °C trace
5 DME NaN(SiMes). 120 °C 80
6 DME KN(SiMes)2 120 °C 40
7 DME LiN(SiMez). 120 °C 92
8 DME KOBu 120 °C -
9 DME NaOBu 120 °C -
10 DME LiOBu 120 °C -
11 DME LDA 120 °C -
12 DME BulLi 120 °C -
13 DME LiN(SiMez). 100 °C 60
14 DME LiN(SiMe3). 80 °C 30

@Reactions were conducted with 1a (0.1 mmol), 2a (0.1 mmol),
base (0.2 mmol), solvent (1 mL), 12 h. ® Isolated yields.

With the optimized conditions in hand, we
examined the substrate scope of the N-
acylglutarimides components. As presented in Table
2, a wide variety of N-acylglutarimides were well-
tolerated, giving the desired products in good to
excellent yields. Replacing the phenyl moiety with 1-
naphthyl or 2-naphthyl groups did not influence the
reaction, providing the imide 3ab and 3ac in 87% and
89% yield, respectively. Various substituents,
including 4-tert-butyl and 4-Ph groups (3ad and 3ae,
91 and 75%) and electron-withdrawing and
electronegative groups, including 4-OCFs3, 4-F, and 4-
CFs (3af, 3ag, 3ah) were well-tolerated in this
transformation (75-92%).

In addition, this protocol worked well with sterically
hindered N-acylglutarimides substrates bearing 2-Ph
or 2-Cl, affording products 3ai and 3aj in 78-85%
yield . Substrates containing ester and acetyl
moieties, which may be sensitive to silylamide bases,
were also tolerated in this reaction, providing the
corresponding products in 80% (3ak) and 65% (3al)
yields. Notably, this acylation reaction proceeded
smoothly with various N-acylglutarimides bearing
heteroaromatic rings, such as furan (3am), thiophene
(3an), and benzothiophene (3ao).

Table 2. Scope of N-acylglutarimides #?
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@Reaction conditions: N-acylglutarimides (0.1 mmol), 1a (0.1
mmol), LiN(SiMes)2 (1.0 mol/L in THF, 0.2 mL, 0.2 mmol),
DME (0.1 M), 120 °C, 12 h. “Isolated vyield. 2 Equiv of
NaN(SiMeg)z.

The scope of N-acylpyrroles was next explored
with N-2-methylbenzoylglutarimide 2a (Table 3). N-1-
Naphthyl- and N-2-naphthylpyrrole furnished 3ba
and 3ca in 80% and 83% yield, respectively.
Electronically neutral aryl N-acylpyrroles bearing 3-
Me, 4-tert-Bu, or 4-Ph (3da, 3ea, 3fa, 70-92% yield)
or electron withdrawing 4-OCF3 or 4-CN (3ga, 3ha)
provided products in 58 and 93% vyields, respectively.
A sterically hindered N-acylpyrrole derived from
mesitylene furnished product 3ia in 70% yields when
KN(SiMes)2 was used as the base. An aryl N-
acylpyrrole bearing a methyl ester reacted under the
standard conditions to provide the imide product 3ja
in 75% yield. Heteroaryl-containing N-acylpyrroles
were also found to be suitable substrates, giving the
desired products (3ka, 3la, 3ma, 3na) in 55-65%
yields. Furthermore, it is important to note that
aliphatic substrates bearing cyclopropyl (10) and tert-
butyl (1p) groups were both suitable, affording the
desired imides 3na and 3oa in 68 and 61% yield,
respectively. To test the scalability of our method, 4
mmol of N-benzoylpyrrole (1a) was reacted with N-2-
methylbenzoylglutarimide (2a) and the aroylation
product 3aa was isolated in 81% yield.

Table 3. Scope of N-acylpyrroles #°
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@Reaction conditions: N-acylpyrroles (0.1 mmol), 2a (0.1
mmol), LiN(SiMes)2 (1.0 mol/L in THF, 0.2 mL, 0.2 mmol),
DME (0.1 M), 120 °C, 12 h. ’lsolated yield. °Reaction
conducted on 4 mmol scale. 2 Equiv of KN(SiMe3),.

To expand on the acylation method above, we
examined the acylation with aryl benzoates in place
of the aryl N-acyl pyrroles. We were pleased to find
that the acylation could be extended to phenyl
benzoate with very high chemoselectivity (Table 4).
The main change in reaction conditions was
swapping NaN(SiMes)2 for LiN(SiMes)2, which led to
higher yields. Most of the N-acylglutarimides used
with phenyl N-acylpyrrole in Table 2 were also
successful with phenyl benzoate in Table 4 (40-90%
yield, 16 examples). In comparison with the results
using phenyl N-acylpyrrole (Table 2), the yields were
slightly diminished with phenyl benzoate. When
substrates with different substituents on the benzoate
aryl were employed with the parent phenyl N-
acylglutarimide, similar results were obtained (Table
4, 40-88% yield, 14 examples). These yields were
slightly lower than those observed with N-
acylpyrroles in Table 3.

Table 4. Acylation with N-acylglutarimides and
phenyl benzoate derivatives®?
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@Reaction conditions: 2 (0.1 mmol), 4 (0.1 mmol),
NaN(SiMes)2 (2.0 mol/L in THF, 0.15 mL, 0.3 mmol), DME (0.1
M), 120 °C, 12 h. bIsolated yield. °3 Equiv of LIN(SiMe3)s.

Given the utility of the N-acylglutarimides in these
imide syntheses, we were curious if the N-
acylglutarimides could be used as both acyl
components of the coupling process. This would lead
to symmetric diimides. In the event, we were please
to find that symmetric imides could be obtained under
similar reaction conditions. In these reactions,
NaN(SiMes)2 proved to be the better base.
Examination of the scope indicated that a range of N-
acylglutarimides are suitable for this self-coupling
protocol (Table 5). Aryl N-acylglutarimides
possessing extended aryl groups such as 1-naphthyl
and 2- naphthyl were well-accommodated, giving 6a
and 6b in 68% yield. Moreover, aryl N-
acylglutarimides bearing alkyl or Ph substituents on
the aryl provided products 6d, 6e and 6f in 58-75%
yield. When the aryl group contained electron-
withdrawing or electronegative groups at the 4-
position imides 6g—6l could be isolated in 45-85%.
Furthermore, N-acylglutarimides with 2-substituted
aryl groups bearing Ph, Me, Cl or F provided the
expected products in 64-80% yield (6m, 6n, 60, 6p).
Substrates  with  strongly  electron-donating
substituents on the aryl were not viable. For example,
the 4-methoxy derivative did not react, leaving
recovered starting material. A substrate bearing a
hydroxyl group failed to furnish the desired product
and led to decomposition. The incompatibility of
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these substrates may result from the reduced
electrophilicity of the carbonyl group. The
heterocyclic  substrate thienylglutarimide was
tolerated in this transformation, providing the product
6q in 58% vyield.

Table 5. Synthesis of symmetrical imides from
N-acylglutarlmldes"’ b
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@Reaction conditions: 2 (0.1 mmol), NaN(SiMes). (0.3 mmol),
DME (0.1 M), 120 °C, 12 h. “Isolated vyield. °3 Equiv of
LiN(SiMe3)2.

To probe the reaction mechanism and
relative rates of reactions of the different acyl
electrophiles, several control experiments were
performed. We conducted a competitive reaction
between 3-methylbenzoylpyrrole (1d) and 4-tert-
butylphenyl benzoate (4e) with N-2-
methylbenzoylglutarimide (2a) under the optimized
conditions with LiN(SiMes)2. As shown in Scheme 2A,
the N-2-methylbenzoylglutarimide 2-tolyl group was
found in all the products, suggesting that the N-
acylglutarimide reacts first with the base. The
benzoyl group from the phenyl benzoate was found
in 70% of the product (based on the theoretical yield).
The unsymmetrical product derived from the N-
acylpyrrole was found in 17% (based on the
theoretical yield). These observations suggest that
the phenyl benzoate is more reactive than the N-
acylpyrrole in reacting with the intermediate formed
from the N-acylglutarimide. When 2 equiv 4-tert-
butylbenzoylglutarimide was reacted with N-
acylpyrrole 1a, only the unsymmetrical product was
obtained (Scheme 2B). This result suggest that the
intermediate formed from reaction of the base with

4



the N-acylglutarimide reacts faster with the N-
acylpyrrole than with the second equivalent of N-
acylglutarimide. These observations are consistent
with the results presented in Tables 2—4, in which
there is no symmetric imide products observed.
Finally, we found the radical scavenger TEMPO did
not negatively affect the reaction between N-
acylglutarimide and N-acylpyrrole, which gave the
unsymmetrical imide product in 81% vyield (Scheme
2C). This result is consistent with the reaction
proceeding by a 2-electron pathway. We speculate
that the intermediate formed on reaction of the silyl
amide bases with the N-acylglutarimide is the anion
ArC(=0O)NM(SiMes3) (M = Li or Na), derived from
attack of MN(SiMes). on the N-acylglutarimide
carbonyl to expel glutarimide and give
ArC(=0)N(SiMes)2 (Scheme 2D). This is followed by
removal of one of the N-SiMes groups, possibly by
the deprotonated glutarimide.

Scheme 2. Control experiments
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In conclusion, we have advanced a general,
efficient, and highly chemoselective method for
acylation of N-acylglutarimides with amides, esters,
or even N-acylglutarimides themselves. The broad
scope and high functional group compatibility of the
results outlined herein make this method an attractive
alternative to classical acylation chemistry. This work
avoids the use of expensive transition metals and it
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is operationally simple. Mechanistic studies to
understand how the base promotes the reaction are
currently underway. We presently favor a
mechanism wherein the silylamide is the nitrogen
donor that serves to link the two acyl units, with
preliminary attack on the N-acylglutarimide.
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