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Abstract—1In this paper, we propose a convex optimization
approach to chance-constrained drift counteraction optimal
control (DCOC) problems for linear systems with additive
stochastic disturbances. Chance-constrained DCOC aims to
compute an optimal control law to maximize the time duration
before the probability of violating a prescribed set of constraints
can no longer be maintained to be below a specified risk
level. While conventional approaches to this problem involve
solving a mixed-integer programming problem, we show that
an optimal solution to the problem can also be found by solving
a convex second-order cone programming problem without
integer variables. We illustrate the application of chance-
constrained DCOC to an automotive adaptive cruise control
example.

I. INTRODUCTION

Drift counteraction optimal control (DCOC) addresses a
class of optimal control problems in which the objective
is to maximize a cumulative yield function before system
trajectory exits a prescribed set (called operating region)
[1]. In this paper, we focus on DCOC problems where the
time before occurrence of any constraint violation needs
to be maximized. In continuous time, such problems are
also known as “exit time” problems, and they have been
studied extensively in the literature [2]-[4]. A conventional
approach is to reduce the problem to a non-smooth Hamilton-
Jacobi-Bellman (HJB) partial differential equation (PDE)
[5]. Compared to computing numerical solutions to such
a PDE, the use of a discrete-time setting provides a more
computationally tractable approach [1].

Discrete-time DCOC has been studied in both determin-
istic and stochastic settings. Approaches based on dynamic
programming (DP) were developed in [1], [6], [7]. Although
DP-based algorithms are capable of treating DCOC prob-
lems with general objectives represented by a variety of
yield functions, such approaches are prone to the curse of
dimensionality and become computationally prohibitive for
reasonably high order systems [8]. For exit time problems,
alternative approaches based on mixed-integer programming
(MIP) were proposed in [9], [10]. The resulting MIP prob-
lems are computationally challenging in scenarios where
longer planning horizons are needed due to two reasons: the
number of integer variables grows linearly with the planning
horizon length, and the worst-case complexity of the MIP
problems is combinatorially related to the number of integer
decision variables [11].

In the deterministic setting, approaches based on opti-
mization with purely continuous variables were developed
to reduce computational complexity. For linear systems with
the prescribed operating region described by affine con-
straints, a continuous relaxation of the mixed-integer linear
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programming (MILP) approach has been introduced in [9].
By replacing integer variables with continuous ones, the
relaxed linear programming (LP) problem can be solved
efficiently. However, an optimal solution to the LP problem
is only sub-optimal in terms of time-before-exit. Inspired
by [12], we proposed a continuous nonlinear programming
(NLP)-based approach in our recent work [13]. With an
exponentially decreasing weighting scheme, our NLP-based
approach encourages “late exit” by heavily penalizing early
occurrence of constraint violations. It is shown that an
optimal solution to the NLP problem achieves the maximum
time-before-exit for the original DCOC problem.

For systems with stochastic disturbances, the stochastic
DCOC problem of maximizing the expectation of time (or
of a general cumulative yield function) before constraint
violations has been considered from the perspective of
mixed-integer nonlinear programming (MINLP) in [1], [7].
In particular, for linear systems with additive stochastic dis-
turbances, an MILP-based model predictive control (MPC)
formulation is developed in [10] based on a scenario tree
approach inspired by [14]. In the inner loop of the stochastic
MPC, an LP relaxation to the MILP problem was proposed
as a fall back strategy in case the MILP problem fails to
be solved effectively within allocated time [10]. Although
the relaxed problem can always provide a feasible solution,
the connections between the optimal solution to the MILP
problem and the relaxed LP problem have not been studied.

In this paper, we propose a chance-constrained DCOC
formulation for linear systems with additive stochastic distur-
bances. Instead of maximizing the average time-before-exit,
the objective is to maximize the time duration before the
probability of system trajectory exiting the prescribed set can
no longer be maintained below a specified risk level 1 — f3.
The resulting optimal control problem is essentially a joint
chance-constrained programming (JCCP) problem, which
can be approximated by a deterministically constrained prob-
lem using suitable probability inequalities [15]. In this paper,
Boole’s inequality is first exploited to approximate the joint
chance constraint as a set of individual chance constraints
through risk allocation, and Chebyshev’s inequality is then
used to provide a conservative reformulation of the individ-
ual chance constraints into deterministic second-order cone
constraints. Following the strategy in [13], we further convert
the resulting deterministically constrained MIP problem to a
second-order cone programming (SOCP) problem with only
continuous variables, which can be efficiently solved by an
off-the-shelf SOCP solver.

This paper is organized as follows. In Section II, we in-
troduce the chance-constrained DCOC formulation for linear
systems with additive stochastic disturbances. In Section III,
we derive safe approximations to the chance-constrained
DCOC problem using suitable probability inequalities and



present the resulting deterministically constrained optimiza-
tion problem. In Section IV, we reduce the problem in
Section III to a convex SOCP problem with only continuous
variables. In Section V, we illustrate the practical application
of the proposed DCOC formulation and approach in an
automotive adaptive cruise control example. The paper is
concluded in Section VI.

II. CHANCE-CONSTRAINED STOCHASTIC DRIFT
COUNTERACTION OPTIMAL CONTROL

Consider a linear system subject to additive stochastic
disturbances described by the following discrete-time model:

ey

where x; € R™ is the system state at the discrete time instant
k, uy € R™ is the control input at k, and wy € R™ represents
a stochastic disturbance input at k. We make the following
assumptions on the disturbance wy:

Assumption 1: The disturbance inputs {wy}rez., are in-
dependent random variables. Their distributions do not de-
pend on initial state xo or control inputs {u }rc7.,, and their
expectations [, ; and covariances X, are known and finite.

We consider a prescribed set X C R™ and an admissible

control input set U C R". In this paper, X and U are assumed
to be polytopes defined by the following affine constraints:

(@3]

For system (1) subject to stochastic disturbances, enforc-
ing constraints deterministically is in general challenging,
especially in the presence of disturbances with unbounded
support. The “time-before-exit,” defined as the last time
instant before the state trajectory exits set X in [13] for
a deterministic DCOC problem, now becomes a random
variable whose realization depends on the realizations of
stochastic disturbances {Wk}keZ>0 When formulating the
stochastic DCOC problem, we introduce the concept of “f-
level time-before-exit,” which is defined as the last time
instant kg such that the probability of the time-before-
exit being greater than kj is greater than a pre-specified
confidence level B € (0.5,1). The objective of this paper is
to define a control policy u; = m(wy) that maximizes such
a “B-level time-before-exit.” Formally, the stochastic DCOC
problem treated in this paper is stated as follows:

X1 = AXy + By + Dywy,

X2 {xeR":Glx<g}, U2{ucR"v:sTu<s}.

max Kz, (3a)

{m 30 Ks
subject to u; = m(wy) € U, (3b)
X1 = ApXy + Biug + Dywy, (3¢)
P [R(xo. Y () = k5] 2 B Gd)

where xo € X is a given initial condition, and the random
variable “time-before-exit” K is defined as

& (xo, {1 I ) =

Inspired by results in robust optimal control [16], [17],
under the assumption that the disturbances {wk}k€Z>0 are
measured onboard, we consider the following affine distur-
bance feedback control law:

max{k € Z[O,N] (Wt e Z[Lk]7x, € X} “4)

=Kywi+h, K€ Rn”xn“', hy € R™. (&)

When the above affine feedback law is used, the control
input u;, becomes a random variable, which makes it difficult
to enforce the control input constraints in (3b) deterministi-

cally. We address this by considering the following modified

up = T (wi)

definition of “time-before-exit,” where the control constraints
(3b) are incorporated:

(x07{Kk =0 :{hk k=0 7{Wk} ) max{kEZ[o_’N] :

VIGZ[I’](]MC[ €X7VIEZ[Q,]€_|],M[ EU} (6)

Under the affine disturbance feedback policy (5), we
restate the stochastic DCOC problem as follows:

- (7a)

{K oo {hA}k 0 KB

subject to uy = Kywy + Iy, (7b)
X1 = ApXg + Brug + Dywy, (70)

P[ (x07{Kk}k 0 a{hk}k 0 v{Wk 2’:_01) > KB} >B. (7d)

The following result shows that any feasible solution to the
modified DCOC problem (7) leads to a feasible solution of
the original problem (3) through a projection operation:

Lemma 1: Consider a projection operator p : R™ — U
which maps an arbitrary control input u € R™ to its closest
point in the admissible set U,

p(u) = argmin,y [[v —
Denote a feasible solution to (7) as ({K; }}—

Then the control policy u, = m;(wy)

provides a feasible solution to (3).
Proof: For a given realization of disturbance trajec-

tory {wk}kN;OI, denote the control input trajectory under
the disturbance feedback control law as {uj = K,fwk +
hk}k o, and the resulting state trajectory as {xj}y ;. Us-
ing projection map p, ux = p(K;wy +h;) € U guarantees
that (3b) is sat1sﬁed Denote the state trajectory associ-
ated with {u}} ) as {x} ;. Note that the projection
map is an identity map when u € U. Therefore, suppose
uy € U holds for k € Z[O’Kl?*l]’ then u; = u; holds for
k € Z[O’Ki;_l] and consequently, x, = xi for k € Z“’KE]'
Since ({K; 1, {hi 1=, K) is a feasible solution to (7),

we have P |:K(x07{Kk }i\/ Ola{hk}k 0 7{Wk} ) > K :| > ﬁ
Furthermore, we have:

ﬁSIF’[ (XOv{Kk}k ov{hk}k oa{Wk}k 0)>Kﬁ]

S0 0 K5)-
:p( kwarh ) and Kﬁ

K K
=P|N(GCx;<g 8wz <s5)| <P | (GCTxi <g S wy_y <)
k=1 k=1
5
<P (VG <g)| =P[R, {ue})g (ko) = 3]
k=1

where we have used the fact that any control input sequence
{ug e N 01 satisfying STuf < for all k € Z[Ov,(g,]] leads to
up = uy, and x; = x to derive the inequality in the second
line. Therefore, ({m }? ), k3) where m(wy) = p(Kjwi +h)
is a feasible solution to (3) |

In what follows, we deal with the modified stochastic
DCOC problem (7).

III. DETERMINISTICALLY CONSTRAINED SAFE
APPROXIMATIONS

In this section, we convert the chance-constrained formu-
lation of stochastic DCOC problem, (7), into a deterministi-
cally constrained optimization problem based on risk alloca-
tion using Boole’s inequality. In particular, we show that any



globally optimal solution to the converted deterministically
constrained problem is guaranteed to be a feasible solution
to the original chance-constrained problem (7). In this case,
the deterministically constrained problem is called a safe
approximation to the original problem [15]. We consider two
models for the disturbance inputs wy: Gaussian disturbance
and general (non-Gaussian) disturbance, and derive their
corresponding safe approximations.

A. Gaussian disturbance model for wy

Lemma 2: Denote by ({K;}¥ -, {n 3, E a globally
optimal solution to (7). Then, a globally optimal solution
to the following deterministically constrained optimization

problem (8). ({K'H0 (AN k. (o), (B9,
provides a feasible solution to (7), which satisfies Kég) < Kg.

Imax KB, (8a)
{Kk} {hk}A 0:KB>»
{alk} {ﬁjk}
ot Gl i+ (a) /G 2k Gi — i < 0, (8b)
ke Z[I,Kﬁ]vi € Z[L”g]’
STt + 27" (Bjx) \/STZusS; — s <0, (80)
ke Zjg 1), € Zji n,)»
Kp /s ng
z(zl—%k+zl—mk10s1—m 5
k=1 \i=1

where ®(-) denotes the cumulative distribution function of a
standard normal random Variable, {otir} and {Bji} represent
[1,ng]

[1 n
{aik}keZ[l s {ﬁjk}keZ ;,]

and pyg, xk»”u,ka wk are defined in (12) and (14).
Proof: Given a fixed number kg € Zjq y), the probability
constraint (7d) can be written as

, respectively, for simplicity,

Kp

N <GTxk <g8Tu 4 SS>} > B,

k=1

Kp ng ng
U [(UGiTxk>gi>U<US;ruk1>Sj>]:| Sl*ﬁ. )
k=1 i=1 j=1

Using Boole’s inequality, a sufficient condition for (9)
to hold is that there exists a set of probability values
{ait}, {Bji} such that the following chance constraints and
probability inequality are satisfied,

P

P

P(G xk < 8i) > i € Ly ),k € Ziy i), (102)
P(STu < 57) > Bjksi € Zjy )k € Zig ey 15 (10b)
K s ng 1
Z(Z(lf«xim Z(lfﬁj(kq))) <1-8. (10c)
k=1 \i=1 j=1

Given Xxy, the state transition equation for the closed-loop
system can be derived from (1) and (5),

xk—HAle-i-Z ( kl:ll A'>Bh +Z < kl:ll A') (Bil(i+Di)Wi7

Jj=i+1 Jj=i+1
a1

where x; is affine in the disturbance inputs {w;}*~J. When
{wi}f;Ol follows independent Gaussian distributions, x; also

follows a Gaussian distribution whose expectation (i, ; and
covariance X are computed as follows,

1 k—
uxk(HA)x0+ZE Bh-i-ZE BKi‘f‘Di).uw,i’

i=0
(12a)

ARG () T
L= Y [EV K+ D)| 20 [P (Biki+D)| . (2b)

i=0

<i _

g0 HJ i+14 o Osi<k— (12¢)
! I, (1dent1ty matrix), i=k—1.

For k € Z[O,Kﬁ], The constraint (10a) can be written as

Oy < ]P)(Glrxk <g)=P i Yk i Hxk < 8i i Mk
\/GzTZx.kGi \/GiTZxﬁkGi

= Gl e+ (o) \/G,TTJ(GZ‘—& <0.

Similarly, since u; is an affine function of wy, u; also
follows a Gaussian distribution, ug ~ A" (1 , Ly x), Where

13)

W = Kl +hi,  Zype = KkZW,kKkT- (14)

For k Z[O,Kﬁ,l], the constraint (10b) can be written as

S?“u,k + q)_l (ﬁjk) mi

Therefore, satisfaction of (8b), (8c) and (8d) i 1s a sufﬁ01ent

condition for (7d). Consequently, ({K(g)}k 0> {h(g)}k 0>

ég)) is a feasible solution to (7), and Kﬁ > Kg;). |

5; <0. (15)

B. General disturbance model for wy,

Without assuming wy to be Gaussian, Chebyshev’s in-
equality can be used to provide a distributionally robust but
also more conservative safe approximation to (7).

Assumption 2: ¥xo € X, there exists {Ki}y o, {h}y
such that Vk € Z[l Kp)s GT,Lka < g,,SjT[Juk 1 < Sj.

Lemma 3: Denote ({K; }-)\, {n = K5) as a globally
optimal solution to (7). A globally optimal solutlon to the
following optimization problem, ({K(l6)}k o {h(lé)}k 0

(16) {Oc(m)} {ﬁ(16)}), provides a feasible solution to (7),

Wthh satisfies KI(;G) < KE.

max K3, (16a)
{Kk};(v;()lv{hk}i\,;olv’cﬁv
{au} {Bjx}
T 7Y 4G .
s.t. G; My + [ -8 <0,ke Z[I,Kﬁ]vl € Z[l,ng]v (16b)
Srzu.ksj .
ST bk + il*Bjk — 57 <0,k € Zig e, _1):J € L1 > (16)
Kp g ng
Z(Zl—%k+2 ~Bju-1) )Sl—ﬂ (16d)
k=1 \i=1

Proof: The proof follows a similar procedure as in the
proof of Lemma 2. Using (8d) and Boole’s inequality, it is
shown that (10) is a sufficient condition for (7d). Since a
general disturbance model for wy is considered, it is difficult
to know the distribution of x; and u; a priori. However,
the derivations of expectations and variances of x; and uy
in (12) and (14) still hold, respectively. Therefore, we use
Chebyshev’s inequality to derive deterministic constraints



that safely ap];rommate the chance constraints. Under As-
sumption 2, G; Uy < g;, using Chebyshev’s inequality,
P(Glx < gi) = 1 —P(G] x> g)
Gl Z.4Gi
(8i— Gl uep)?

Therefore, a sufficient condition for (10a) can be written
as the following deterministic constraint,

>1-P [\Gfok*GiTﬂx,H > gi*GiTllx,k] >1-—

GI'%, 4G Gy, 1 Gi
X, 1
a7

Similarly, a sufficient condition for (10b) can be written
as a deterministic constraint:

s <0. (18)

Thus, (16b), (16¢) and (16d) provide a sufﬁcrent condrtron

for (7d) to hold. Consequently, ({K(IG)}k 0> {h(m)}k 0>

Kélﬁ)) is a feasible solution to (7), and K‘B > Kgﬁ). |

IV. A SECOND-ORDER CONE PROGRAMMING APPROACH

We have shown that the deterministically constrained
problems (8) and (16) are safe approximations to the orig-
inal chance-constrained stochastic DCOC problem (7). In
this section, we propose an SOCP-based approach to solv-
ing these problems. To simplify the exposition, we use
Gie(Ue g, e k) < 0 to represent either (8b) or (16b), and
ik (M, Zu k) < 0 to represent either (8c) or (16¢). Further-
more, we remove {{0},{Bjx}} from optimization variables
and treat them as prescribed confidence level values. As-
signing prescribed values to {{ax},{Bjx}} can significantly
simplify the computation. In particular, given prescribed
values of {{o},{Bjc}}, it can be easily seen that (8b),
(16b), (80) and (16c) reduce to second-order cone constraints
on ({K}y-, ,{hk}kN 01) [18]. Indeed, in many applications,
it is also beneficial to be able to assign {{ot},{Bjx}}
values based on priority levels among system constraints.
For example, high confidence values can be assigned to the
i, B ik that are associated with safety-critical constraints to

improve system safety.

Given prescribed individual chance constraint confidence
level parameters {{c},{Bjx}}, (8) and (16) can be ex-
pressed as the following deterministically constrained opti-
mization problem:

s, (192)
{Kk}k 0° {h’\}k LY

st Gi(Mje: Zake) <0,k € Zyy yep)51 € Zyy )5 (19b)
ik (Mo Zue) < 0,k € Z[o Ky 1] JE Ly, (19¢)
(K ks Zek) = Hex({K g AYiog )k € Zpy gy, (19)
(M- Zu i) = Hy (K, hie) k€ Zgg 1511, (19)

where Hyy(-),H,x(-) are the expressions for the expecta-
tions and covariances of xi,u; derived in (12) and (14),
respectively. Note that the above problem (19) has a similar
form as a deterministic DCOC problem [13] and therefore
can be solved using techniques developed previously for

deterministic DCOC problems.
In particular, a deterministic DCOC problem can be solved
using an MIP-based approach. Denote a globally optimal

solution to (19) as ({K; Y=o, {h; }3=y k). It is shown in
[9] that a globally optrmal solution to tﬁe following MIP
problem, ({K’”}k LD 0,{6’”} o) satisfies &" = 0 for
k=0,.. and §;" = 1 for k = K‘ﬁ —|—1 N, and it provides

*) ﬁ9

a globally optimal solution ({K’”}k 0 ,{h’" Pl 0 , *) to (19).
Ek:oakv (20a)

{Kho {hk} RSN
s.t. G (o, Zu ) < M, (20b)
yjk (ﬂu,h u, k) < M6k7 (200)
(“x,k’ Zx, ) X k({K i= () ) {h ) (204d)
(“u,kazu, ) Hu,k(Klmhk)a (206)
6k € {07 1} (ZOD
O < Opt1, (20g)

where M is a sufficiently large positive number.

Moreover, it is shown in [13] that the above MIP for-
mulation of our DCOC problem can be solved using a
continuous optimization approach based on an exponentially
decreasing weighting scheme. This continuous optimization-
based approach has significant computational advantage over
the MIP-based approach. We now present the application of
this continuous optimization-based approach to our determin-
istically constrained formulation (19) of stochastic DCOC
problem in the following theorem:

Theorem 1: Consider the following continuous nonlinear
programming problem,

0N e (21a)

{Kho {hk} e
st G (M k> ) < Mé, (21b)
i (Mg Zug) < Mgy, (2lc)
(e Zek) = Hex (K Y0 {hiYig), 21d)
(M jer Zu k) = Hyy o (K, ), (2le)
0<& < &4, (211)

where 0 > 1 is a weighting parameter.

Given xg € X, there exists a number 6y > 1 such that
if 6 > 60 then any globally optimal solution to (21),
(K= AR k= o e IY,), satisfies € = 0 for all k =
o,.., g, and g >0 for all k= Kngl,...,N, where K} is
the maximum time-before-exit obtarned through a globally
optimal solution to (19), ({K; }Y -, {h; 1y, K;). Further-

more, K'ﬁ is a lower bound for K‘l(;), which corresponds to a

globally optimal solution to (3), i.e., K‘E < KI(33) .

Proof: By Theorem 1 in [13], there exrsts a number
6y > 1 sn)ch that if 6 > 90, ({K: i 0,{/10 Pl O,{E,f o)
satisfies &/ =0, k=0, ..., /3’ and g/ >0 for all k € Z[K LN
For Gaussian (non- Gaussmn) disturbances wy, Lernma 2
(3) shows Kg < Kl(37)’ where (" corresponds to a globally

optimal solution to (7), ({KG{3 i 0, hm}k 0> (7)) Using

Lemma 1, U < K(3) therefore, K'ﬁ < K[(;) |

Based on Theorem 1, we can enlarge the time-before-
exit of our original stochastic DCOC problem (3) by en-
larging its lower bound x} through solving the continuous
optimization problem (21). Note also that the deterministic
constraints (21b) and (21c) are both convex second-order



: N—1 N-1\ N—1
cone constraints of ({Kx o 7.{hk}k:0 ). Since {&},_, en-
ters the problem linearly, (21) is a convex second-order cone
programming problem with pure continuous variables.

V. NUMERICAL EXAMPLE

A case study of chance-constrained DCOC is developed
based on an adaptive cruise control example to demonstrate
the SOCP-based approach in (21). We consider a scenario
where a passenger car is following a lead vehicle, the
velocity of which is modeled as a stochastic disturbance (see
Fig. 1 ). The objective is to compute an optimal disturbance
feedback control law for the time rate of change in the
follower vehicle’s longitudinal acceleration, which maintains
the system states within specified constraints for as long as
possible.

Fig. 1: Diagram for the ACC example.

The dynamics of the system can be represented by the
following discrete-time linear system,

diyy = di+ (v — V]/:)Atv (22a)
v, =vl +alA, (22b)
al,, =a] + jur, (22¢)

where k represents the time instant, Ar [sec] refers to the
sampling period, d [m] is the distance between the lead
vehicle and the follower vehicle at time k, vlk7 v}: [m/s] denote
the longitudinal speeds of the lead and follower vehicle at &,
respectively, a‘,f [m-s~2] is the longitudinal acceleration of
the follower vehicle at k, and ji [m-s 3] is the jerk of the
follower vehicle, i.e. time rate of change of a'}: at k.

In this example, we describe the behavior of the lead
vehicle by modelling its velocity vf{ as a Gaussian random
variable, i.e. vi =wi ~ A (Wi Zwg), and we assume the
values of ,,; and X, ; are known. The state vector of the
system is defined as x; = [dk,\{ 7a£]r’ and the control input
is defined as uy = ji. We consider the following constraints
imposed on state variables and control inputs:

1) The time-headway of the follower vehicle Ty, =

d /v{ needs to satisfy

Tg7min < Tgap,k < Tg‘mam (23)

where T i, = 1.5 reflects minimum distance require-
ment for safety, and Ty ;4 = 2.5 limits the distance to
mitigate impact on traffic flow and avoid other vehicles
cutting-in that can degrade safety and fuel efficiency.

2) The follower vehicle’s longitudinal speed needs to be
maintained within the speed limits,

60-0.44704 < v] <70-0.44704, (24)

where 0.44704 is the converting factor from miles-per-
hour (MPH) to meters-per-second (1m/s).

3) The follower vehicle’s acceleration is constrained due
to fuel economy concerns,

—1<d <1 25)

4) Since ride comfort is affected by the time rate of
change in acceleration [19], u; needs to satisfy

1<y <. (26)

The lead vehicle’s longitudinal speeds {v}}Y~ are mod-
elled as independent and identically distributed Gaussian
variables and represent the disturbances to the system
{w}?-, . The Gaussian distribution of wy is characterized
by its expectation [, ; = 72-0.44704 and covariance X, ; =
(5-0.44704)2, which describes a scenario where the follower
vehicle is following a lead vehicle driving slightly over
speed limit. The initial condition of the system is specified
as dy = 65-0.44704-2.2, v} = 65-0.44704, and a} = 0.
The confidence levels for each chance constraint {ot, B}
are defined as constant values over time according to the
priority of their corresponding requirements. In particular, for
constraints on the time-headway (23), a; = o = 0.85, for
constraints on the follower vehicle’s speed (24), Q3 = Oy =
0.75, for constraints on the follower vehicle’s acceleration
(25), o5 = g = 0.95, and for control constraints (26), B =
Bor = 0.95. The sampling period is chosen as Ar = 0.25.
Then the continuous NLP problem is formulated as (21) with
N=40and 6 =1.2.

Hg Fu, k
Hg + 3<7a‘ p 2 Hy + 30
___--constraints ‘

u, k
--constraints

) 10 20 30 40 0 10 20 30 39

Fig. 2: Tllustration of distributions of a{ and uy.

The SOCP problem (21) is solved using YALMIP toolbox
[20] and Gurobi solver [21] in MATLAB 2019b environment.
The distributions of ai and uy are computed and plotted in
Fig. 2, where the red dashed lines refer to the mean value
trajectories, the blue dashed lines represent mean trajectory
43 standard deviations, the black dashed lines represent the
constraints, and the green solid lines are 1000 simulated
trajectories under the feedback control law with random
realizations of the stochastic disturbances.

In this example, the time gap keeps increasing over time,
and constraint (23) will eventually be violated since the lead
vehicle exceeds the speed limit imposed on the follower
vehicle. It is observed in Fig. 2 that the mean trajectory of
acceleration stays positive for most time instants to increase
the follower vehicle’s longitudinal speed. Furthermore, be-
fore k = 15, the covariance of acceleration stays small such
that accelerations (green trajectories) can take large values
without growing outside the bounds (black dashed lines),
which matches the fact that high confidence level values
Os; = Ogr = 0.95 are assigned to constraints (25). In Fig. 3,
the probabilities of several constraints being satisfied are
presented, where the blue dashed lines are the analytical
predictions of probabilities of constraint satisfactions com-
puted using cumulative distribution function of Gaussian
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Fig. 3: Analytical predictions and empirical estimates of constraint
satisfaction probabilities.

variables, the green dashed lines represent estimates of these
probabilities using empirical data acquired from simulation
trajectories generated by 1000 realizations of the stochastic
disturbances, and the black dashed lines represent the pre-
scribed confidence level values.

The safe approximation to the maximum “f-level time-
before-exit” using the SOCP problem with confidence level
values specified previously is k = 32. As illustrated in Fig. 3,
the first chance constraint violation happens at k = 33 where
P(vy <70) < 0.75. The MIP problem (20) is also solved in
the same software environment for comparison to the SOCP-
based approach. The safe approximation to the “B-level time-
before-exit” given by the solution to the MIP problem is
the same as the one found in the SOCP problem, k = 32.
The computation times to compute one instance of the MIP
problem (20) and the SOCP problem (21) with Ar = 0.25
and N =40 are 11.5959 and 4.9263 seconds, respectively. To
better depict the comparison between these two approaches,
the computation times for one instance of the MIP and
SOCP problems with horizon length N = 30,40,50,60,70
are plotted in Fig. 4. It is observed that the ratio between
the computation times of solving MIP and SOCP problems
grows with the length of the horizon, which demonstrates
benefit in computational efficiency of the proposed SOCP-
based approach.

VI. CONCLUSIONS

A convex optimization-based approach to DCOC for linear
systems with additive stochastic disturbances has been pro-
posed in this paper. A chance-constrained DCOC formulation
is introduced and a safe approximation is defined under a
disturbance-feedback control policy and exploiting risk allo-
cation. Two approaches were then presented to further reduce
the problem to a deterministically-constrained optimization
problem either by modeling disturbances as Gaussian vari-
ables or by using Chebyshev’s inequality. Inspired by recent
results in deterministic DCOC, an SOCP-based approach
without integer variables was developed to solve the resulting
deterministically-constrained optimization problem and com-
pared with a conventional MIP-based approach. Numerical

examples demonstrate the effectiveness of our SOCP-based
approach and its improvement in computational efficiency
over the conventional MIP-based approach.
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Fig. 4: Comparison of computation times.
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