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ABSTRACT

The COVID-19 pandemic has infected millions of people around
the world, spreading rapidly and causing a flood of patients that
risk overwhelming clinical facilities. Whether in urban or rural ar-
eas, hospitals have limited resources and personnel to treat critical
infections in intensive care units, which must be allocated effec-
tively. To assist clinical staff in deciding which patients are in the
greatest need of critical care, we develop a predictive model based
on a publicly-available data set that is rich in clinical markers. We
perform statistical analysis to determine which clinical markers
strongly correlate with hospital admission, semi-intensive care, and
intensive care for COVID-19 patients. We create a predictive model
that will assist clinical personnel in determining COVID-19 patient
prognosis. Additionally, we take a step towards a global framework
for COVID-19 prognosis prediction by incorporating statistical data
for geographically and ethnically diverse COVID-19 patient sets
into our own model. To the best of our knowledge, this is the first
model which does not exclusively utilize local data.
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1 INTRODUCTION

The Coronavirus Disease 2019 (COVID-19) pandemic has infected
millions of people and led to hundreds of thousands of fatalities
around the world [2]. Since its January 2020 arrival in the United
States [21], many large American cities have become epicenters
of the disease. Many hospitals, which already have limited critical
care resources, run the risk of being overwhelmed by COVID-19
cases requiring hospitalization whether in major urban centers or
more rural areas [3]. Moreover, widespread, accurate testing for
COVID-19 infection has been slow to scale to an adequate capacity
for a country as large as the United States and there are multiple
documented discrepancies in access to testing [14].

Using data sets from early COVID-19 hospitalizations, ML mod-
els can be constructed to predict hospitalization and progression
to critical illness. Given that hospitals have limited intensive care
capacity, predictive modeling offers clinicians the capability to effi-
ciently route patients, as well as allocate resources and personnel.
To assist clinical personnel with patient routing and resource alloca-
tion during treatment, we develop a ML-based predictive model that
provides an easily explainable, rule-based framework to determine
which level of care a COVID-19 patient requires.

Our main contribution in this work is the development of a
ML-based model for predicting criticality in patients admitted to
a clinical facility after testing positive for COVID-19. While the
majority of existing prognosis prediction models focus on predict-
ing mortality risk, our model determines whether a COVID-19
patient should be (i) sent home to self-quarentine, (ii) admitted to
the hospital for monitoring, (iii) a semi-intensive care unit (SICU),
or (iv) a regular ICU. As our goal is to create a decision support tool
that will be useful in real world clinical settings, we strive to meet
the transperency criteria set forth in the TRIPOD Statement [12]:
our model is built from publicly-available data [4] rich in clinical
biomarkers and the entirety of our code is made publicly available
[11]. This enables us to develop a fully transparent and verifiable
model which demonstrates a high correlation between several clin-
ical laboratory results and a prediction of criticality. While some
of our results match those achieved by other studies, we believe
that this congruence between predictive models builds a consen-
sus around which clinical features are truly predictive of critical
COVID-19 infections. To this end, we aggregate our results with
those of other predictive models to create a robust, consolidated
framework for effective COVID-19 patient routing. As far as we are
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aware, this work is the first to integrate data from geographically
and ethnically diverse COVID-19 patient cohorts.

2 BACKGROUND AND RELATED WORK

COVID-19 is an infection of the Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2), first reported in connection
with bushmeat served at a seafood market in Wuhan, Hubei, China
[32]. Common symptoms [32] include fever (82.2%), cough (61.7%),
fatigue (44.0%), dyspnea (41%), and anorexia (41.0%), though approx-
imately 18% of COVID-19 infections are asymptomatic. The virus
spreads rapidly through close contact and by droplets, and there is
little evidence of airborne transmission. It’s incubation period aver-
ages 3-9 days and carriers are contagious approximately 2.5 days
before symptoms present; there are multiple studies confirming
that asymptomatic carriers are still contagious. Moreover, nearly
half of the known COVID-19 infections were transmitted before
symptom presentation arose [32].

There are currently two primary methods of diagnosing COVID-
19: (i) reverse transcriptase — polymerase chain reaction (RT-PCR)
tests [13] and (ii) computed tomography (CT) scans [40]. RT-PCR
tests, the preferred method for diagnosis, involves collecting sam-
ples from the patient for a lengthy testing process that may not
return timely results [33]. RT-PCR tests have been scarce during the
COVID-19 pandemic. CT scans, a highly precise x-ray procedure,
show potential for more COVID-19 diagnoses. CT chest scans of
COVID-19 patients show bilateral ground-glass opacification or
consolidation, depending on the stage of the infection. However,
the American College of Radiology recommends against the use of
CT scanners for COVID-19 diagnosis [1]. There are several proxy
diagnostic frameworks, as well as multiple treatment protocols (e.g.,
[19, 25]).

Though there have been early experimental reports of pharma-
ceutical therapies (e.g., [5]), there are not currently any approved
vaccines or anti-viral treatments for COVID-19.Moreover, a chal-
lenge to producing an effective vaccine is that many coronavirus
patients do not develop long-term immune responses [26, 29]. Bar-
ring the development of an effective vaccine, current research pre-
dicts at least two years of COVID-19 waves [22, 28]. Therefore, we
believe that patient routing for clinical symptom management will
remain a crucial component for treating COVID-19 infection and
lowering mortality rates.

2.1 Related Work

COVID-19 is an emerging disease and there are many prototyped
tools that will diagnose COVID-19 as well as predicting hospital
admission, severity, mortality risk, and hospital stay. Wynants, et al.
[35], identify 31 prediction models described in 27 studies: 3 models
predicted hospital admission for pneumonia and other events (i.e.,
proxy diagnoses for COVID-19), 18 models detected COVID-19 in-
fection (13 of which are based on CT scans), and 10 prognostication
models to predict mortality or progression of disease severity. They
determined that all of the studies suffered from a high risk of over-
fitting, as well as bias due to non-representative selection of control
patients and exclusion of other patients. Moreover, many models
were built using data sets with missing data due to the fact that
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attending physicians do not order a standardized set of laboratory
tests.

The majority of work that does not rely on CT scans has come
from Chinese researchers [9, 17, 23, 31, 36—38]. Researchers have
also built a handful of diagnostic [7] or prognostic [30] models
using data from elsewhere in the world. Most of these models focus
on predicting which patients are at a high mortality risk, thus
inferring which patients will require more drastic interventions.
Our predictive model is generally different in that we do not focus
on mortality and predict patient prognoses with a finer granularity.

All of the models referenced provide limited descriptive statis-
tics for all features that correlate with prognoses in their models,
specifically sample size, median, and interquartile range. We use
statistical computation methods described in [24, 34] to estimate
mean (y) and standard deviation (o) for each feature. Some models
give a degree of granularity, separating patients into cohorts (e.g.,
patients with a mild infection and patients with a serious infection),
so we pool the derived p’s and ¢’s for each feature using calcu-
lations described in [6]. Table 1 shows the calculated y and o for
selected features in each model.

3 MATERIALS AND METHODS

3.1 Data Resources

The Hospital Israelita Albert Einstein (HIAE), located in Sdo Paulo,
Brazil has released a data set [4] that provides a variety of infor-
mation for 5,644 patients between 28 March-03 April, 2020. This
information includes 108 features ranging from categorical data to
numerical biomedical readings which have been standardized to a
mean of 0 an standard deviation of 1. Of the 5,644 patients in the
dataset, 558 tested positive for COVID-19; patient routing based on
prognosis is given in Table 2.

3.2 Methodologies Employed

While our data set is rich in patient feature information, there are
also extraneous and empty features. As such, we first perform a
series of cleaning and data manipulation steps to prepare for model
construction. Our process for model construction is shown in Figure
1.
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Figure 1: Flowchart of data cleaning processes and approach
to model construction.
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Table 1: Estimated Descriptive Statistics (i, o) for COVID-19 Diagnostic and Prognosis Prediction Models.

Model ‘ n ‘ hs-CRP (mg/L) ‘ LDH (U/L) ‘ ALT (IU/L) ‘ Neutrophil Count (X1, 000/mcL) ‘ Base Excess (mmol/L)
Gong, et al. [17] 189 (15.06, 18.09) (199.39,77.98) | (23.18,14.67) Not Recorded Not Recorded
Petrilli, et al. [30] | 1,582 | (116.16,63.91) | Not Recorded | (36.30,21.98) Not Recorded Not Recorded
Lu, et al. [23] 75 (27.45,20.71) Not Recorded | Not Recorded (3.81,2.34) Not Recorded
Xie, et al. [36] 444 (68.18,66.42) | (387.16,204.38) | (29.80,20.82) Not Recorded Not Recorded
Yan, et al. [37] 375 (42.79,71.52) | (356.92,295.63) | Not Recorded (6.66,6.11) Not Recorded
Batista, et al. [7] 102 (38.30,53.90) Not Recorded | Not Recorded Not Recorded Not Recorded
Table 2: COVID-19 Patient routing based on prognosis. 1.00
criticality -. l
Base_excess_arterial - 0.75
Prognosis/Patient Routing ‘ Count Total_CO2_arterial - L 050
Mild/Not Admitted 506 HCO3 _arterial - | 0,05
Mild/Admitted 36 hs-CRP_mg/dL - .

Severe/Semi-Intensive Care Unit (SICU) 8 Alanine transaminase - 0.0

Critical/Intensive Care Unit (ICU) 8 Lactich_ehy drogenase - .. --0.25

3.2.1 Data Cleaning. To construct a criticality prediction model,
our data set is first filtered to only include patients who tested pos-
itive for SARS-CoV-2 RT-PCR test, reducing the patient sample size
from 5,644 to 558 observations. Amongst the feature observations,
our data set provides patience admittance information to three lev-
els of care: regular, semi-intensive, and intensive-care units. From
these classifications, a criticality measure is developed to represent
non-admittance (0), admittance to a regular ward (1), admittance
to the semi-intensive unit (2), and admittance to the intensive care
unit (3). These 4 classes serve as a proxy for criticality. Through
the data cleaning process, missing data becomes evident. Only 6
features are complete and no patient has a full set of feature data.
Thus, simply discarding incomplete data is not an option, and miss-
ing data must be addressed. One approach involves using means
and modes data to complete each feature. Our decision to use the
means and modes of the data sets is motivated by a desire to ensure
data remains as representative of the sample population as possible.
Simply employing global or even country-level population means
and modes exposes the model to bias from external factors. Using
imputed data in the feature extraction phase, it yields one strongly
correlated feature (criticality itself); this is not useful, so we proceed
with the unimputed data, employing a model that can handle the
missing data issue.

3.2.2  Feature Extraction. Feature extraction is conducted by first
evaluating the correlation between criticality and the patient biomark-
ers. The Pearson correlation coefficient involves obtaining a Least-
Squares fit for the data, and yields a value between -1 and 1, with
1 and -1 representing perfect positive or negative relationships,
respectively, and 0 indicating no relationship. We are interested in
features that are highly correlated with criticality. We construct a
ranked list of absolute correlation values for each feature, allowing
for easy identification of the strongest features. A correlation list is
constructed using unimputed data. This process identifies nine out
of the 108 total features with an absolute correlation over 0.4.
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Figure 2: A heat map correlating the most significant clinical
biomarkers with criticality.

3.2.3 Feature Selection. Selected features are found from the unim-
puted data set’s correlation list; each feature has an absolute corre-
lation over 0.4 and is presented in Figure 2. The figure illustrates not
only the range of correlations between the features and our obser-
vation of interest, criticality, but also, the relationship between each
feature. This further allows us to reduce the number of features
employed, simplifying the model and reducing the risk of overfit-
ting our data set. These features are then plotted against criticality
to ensure correlation is indeed strong and not a result of small
data sets. Features with few data sets are then removed from the
strong selected features list. The remaining strong features and the
criticality measure are then inputted into the XGBoost algorithm.

3.2.4  Applying XGBoost. XGBoost [10] is an optimized distributed
gradient boosting library that is both efficient and flexible, able to
handle large and small data sets alike. This model provides many
benefits to the study, namely intelligent missing data handling and
parallel tree boosting, which allows for easy visualization of the
decision tree employed by the model. These two key features of
the algorithm make it the best suited approach when dealing with
limited and often incomplete patient data while being interpretable
to medical professionals. Additionally, XGBoost has a strong feature
selection mechanism and has proven effective by other similarly-
conducted COVID-19 studies (e.g., [38]).
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Boosting involves training a series of weak models and com-
pensating based on the weaknesses of each preceding series in
order to improve model prediction. Unlike most other modeling
approaches, boosting relies on several models rather than a single
model to create a stronger model ensemble. For this study, a multi-
class classification selected as the weak model. XGBoost optimizes
the standard boosting algorithm approach model by using gradient
boosting. Rather than adjusting weights at each data point in the
model, gradient boosting aims to minimize error, or the difference
between the prediction value and the true value.

To begin our predictive model construction, the cleaned unim-
puted data is randomly split into two sets: training data (70%) and
testing data (30%). Due to data sparsity issues amongst higher criti-
cality classes (SICU and ICU), we need a greater split of data for
testing. XGBoost is then run on the training data using a Multi-Class
Softmax Classifier. This classifier relegates data to classes using a
softmax function, a form of the logistic regression that normalizes
input values such that the probability distribution sums to 1. We
use this probability distribution to reconstruct interval values of
each feature and their corresponding criticality levels.

Feature selection is verified using XGBoost’s feature importance
algorithm, which ranks features based on their importance in the
decision making process. The model is then validated using the
testing data set. In order to cross-validate the results, we employ
K-fold validation with 10 folds. K-fold cross validation is a pro-
cedure that is often used to estimate the skill of a model on new
data.The results from this process are presented and discussed in
the following section.

4 RESULTS AND DISCUSSION

4.1 A Predictive Model Built on Fully
Transparent Data

Our prognosis model assumes that a patient has already tested
positive for COVID-19 by one of the diagnosis methods described
in Section 2. Our model (Table 3) predicts which clinical routing is
most appropriate to the patient based on five features that correlate
strongly with critical infections. Mild COVID-19 infections where
the patient is not admitted to the hospital are characterized by low
levels of hs-CRP and ALT, as well as a relatively normal neutrophil
count. ICU admission is appropriate for the most critical infections,
which are characterized by higher hs-CRP and low base excess
levels.

Predicting which COVID-19 patients should be admitted to the
ICU and which patients should be sent home is straight forward,;
predicting whether patients should be admitted to the hospital’s
general ward or a SICU is more nuanced. Where our model defines
one set each of criteria for ICU admittance and no hospital admit-
tance; admittance to the general ward and SICU each have three
sets of criteria. Mild COVID-19 infections where general hospital
admission is predicted may be characterizes by (i) low hs-CRP lev-
els and a higher neutrophil count, (ii) moderate hs-CRP and ALT
levels, as well as a normal neutrophil count, and (iii) moderate
hs-CRP, lower LDH levels, and a reduced neutrophil count. Severe
infections, for which SICU admittance is appropriate, are charac-
terized by (i) moderate hs-CRP, lower LDH levels, and a reduced
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Figure 3: Confusion matrix based on our testing data set.

neutrophil count, (ii) moderate hs-CRP and LDH levels, and (iii)
higher hs-CRP and base excess levels.

We chose a 70%/30% train-test split to ensure that our model was
trained on all cases. The overwhelming majority of our test set was
given a mild prognosis and, rather than admittance to the hospital,
were instructed to self-quarantine at home. On the other hand,
only 5 patients were admitted to either SICU or ICU. Specifically,
our model classified Mild/Not Admitted for 152 members of the
test set while 11 members received a prognosis of Mild/Admitted.
Our model classified 3 patients as Severe/SICU and 2 patients as
Critical/ICU; the model does not predict mortality. Our model’s
performance is presented in Table 4.

In order to validate the findings, we run a stratified 10-fold cross
validation approach to the model. In the end, we find a mean error of
0.0824, which is lower than the error of a single testing and training
fold. This technique is essential in enforcing class distribution with
multiple rounds of training and testing and can partially resolve
the issue of class imbalance. Overall, the low error also suggests
that the model is not overfitting the data, and thus results should
be replicable using a different data set.

Of the 152 patients in the test set classified as Mild/Not Admitted,
one patient had a ground truth prognosis of Mild/Admitted and
another patient had a ground truth of Severe/SICU. Our model
predicted 11 test set patient prognoses as Mild/Admitted, when
only 5 of those patients were actually admitted to the hospital; 4
patients were not admitted while the SICU and ICU received one
each of these patients. Our model classified 3 test set patients as
Severe/SICU; however, only one of those patients was admitted
to the SICU; 1 patient was admitted to the regular hospital ward
and the other was not admitted. Of the 2 patients classified as
Critical/ICU, 1 patient was actually admitted to the regular hospital
ward. Our confusion matrix is in Figure 3.
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Table 3: COVID-19 Prognosis Classifier and Patient Routing Model.

[ Mild/Not Admitted | Mild/Admitted Severe/SICU | Critical/ICU
hs-CRP < —0.46 hs-CRP < —0.46 —0.46 < hs-CRP < 0.07 hs-CRP > 0.07
& Neutrophil count < 0.95 | & Neutrophil count > 0.95 & LDH > —-0.82 & Base Excess < 0.27
& ALT < —0.37
—0.46 < hs-CRP < 0.07 —0.46 < hs-CRP < 0.07
& Neutrophil count < 0.95 & LDH < —0.82
& ALT > —0.37 & Neutrophil count < —0.11
—0.46 < hs-CRP < 0.07 hs-CRP > 0.07
& LDH < —-0.82 & Base Excess > 0.27

& Neutrophil count > —0.11

Table 4: Model performance on testing data

‘ Precision ‘ Recall ‘ F1-score ‘ Support

Mild/Not Admitted 0.97 0.99 0.98 152
Mild/Admitted 0.62 0.45 0.53 11
Severe/SICU 0.33 0.33 0.33 3

Critical/ICU 0.50 0.50 0.50 2

Accuracy 0.93 168
Macro Average 0.61 0.57 0.58 168
Weighted Average 0.93 0.93 0.93 168

4.2 Discussion

Our analysis shows 9 clinical biomarkers with a significant correla-
tion to COVID-19 patient criticality (Figure 2). Using the XGBoost
Library’s Feature Importance capability, we are able to further pair
this down to 6 features (Figure 4): hs-CRP (mg/dL), Neutrophil count,
ALT (IU/L), LDH (U/L), Base excess (arterial blood gas analysis), and
Total CO2 (arterial blood gas analysis). Of these features, hs-CRP
and LDH have been shown to be heavily correlated with criticality
in other studies [17, 38]. hs-CRP is an inflammatory biomarker [18]
that is important in predicting which cases will be require SICU
or ICU admittance. A normal measurement for hs-CRP is 1 mg/dL
and Petrilli, et. al. [30], found that early elevation of hs-CRP is one
of the strongest predictors for mechanical ventilation or mortality.
The normal range for LDH in adults is 100-190 (U/L) and elevated
LDH is indicative of damaged of diseased tissues [16]. ALT is an
enzyme found mostly in the liver; the normal range for ALT is less
than 40 IU/L and elevated ALT (i.e., >1,000 IU/L) is a sign of liver
damage [20]. The normal level of neutrophils, a type of white blood
cell, is 1,500-8,000 neutrophils/mcL ; a low neutrophil count may
make a person susceptible to an increased risk of infection [15]
while a high neutrophil count is indicative of an ongoing immune
response. Base excess is a measure of the acid-base balance in the
blood with a standard reading of 0 mmol/L and a normal range of
+3; elevated levels may indicate respiratory or metabolic acidosis
[8]. The models that we surveyed do not typically consider base
excess in their set of features, and the reason that our model utilizes
it is likely due to the irregularity of laboratory tests ordered for
patients that contributed to our training data. Nonetheless, there is
literature that records base excess levels in COVID-19 patients [39].

Furthermore, there are published treatment recommendations that
provide guidelines for low base excess levels [27].

hs-CRP_mg/dL :___—____ nz
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Alanine_transaminase jrmmm 29
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Figure 4: Feature importance by F-score.

4.2.1 Limitations. Data unavailability and feature incompleteness
are key limitations, both in this and other related studies. Given
that COVID-19 remains an evolving situation, many countries and
health institutions are slow to release data. Available data sets tend
to be small and limited in scope. Thus these smaller sets lead to
an issue of class under-representation. The low instances of SICU
and ICU cases in the set (both only have 8 observations while the
Not-Admitted has 506 observations) undermines the model’s ability
to sufficiently learn each class. In other words, XGBoost does not
have enough cases of SICU and ICU patients to properly learn and
later predict these cases. A milder case of under-representation is
observed with the Mild/Admitted class, which has a 0.62 precision
rate and only 36 observations. Due to class under-representation,
we witness a lower precision and recall rate for these three classes.
In Figure 3, our model’s confusion matrix is well-trained to diagnose
Non-Admittance cases, but as criticality increases it becomes less
accurate. Due to the overrepresentation of these Non-Admittance
classes, there is a slight bias towards lower criticality levels. This
can be observed in the tendency to diagnose a lower criticality level
as true criticality increases.

Failure to properly classify would prove costly in the case of
severe and critical patients. Patients who present high criticality
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would not be identified, which could affect the level of treatment
they receive. There are several means of addressing imbalanced data
such as adjusting performance metrics. We employ this technique
by using precision and recall as valuable measures over accuracy
when assessing the strength of the model. The confusion matrix
also clearly demonstrates the value of the model and its slight
bias towards lower criticality. We could use a Synthetic Minority
Over-sampling Technique, or SMOTE, to create more synthetic data
on which to run our model. However, SMOTE does not increase
accuracy, rather it increases recall at the cost of precision. SMOTE
is also better suited for classes that are rare. From global data, we
know higher levels of criticality are not rare. COVID-19 has high
mortality rates, thus these severe classes are likely prevalent; if
we can access a larger set, we may account for these cases more
accurately. Overall, we find the best way to address the issue of
imbalanced data is through greater data collection. Pooling patient
clinical information and outcomes across a country or region would
yield a larger and more representative sample to train the model on.
As countries and hospitals begin to release more anonymous patient
clinical data, a more robust predictive model may be developed.

Furthermore, as mentioned earlier in the study, many healthcare
providers order a variety of tests, not always ordering the same test
set for every patient. As such, we see many clinical features are
left incomplete, resulting in fewer complete patient information
sets. While XGBoost is adept in handling missing information, we
believe a more complete data set would yield a stronger predictive
model.

Despite these limitations, we still find hs-CRP and LDH as fea-
tures that are heavily correlated with criticality, an insight that is
validated by other studies. One of the key objectives of this study,
aside from constructing a predictor, is to test the generalizability
and repeatability of other related works. The identification of the
same clinical features across these studies, each constructed from
completely independent data sets, strengthens our findings and
suggests pooling data may improve model accuracy. Overall, we
confirm the results of other studies and remain confident in this
approach to predicting criticality in COVID-19 patients.

5 A CONSOLIDATED FRAMEWORK FOR
COVID-19 PATIENT PROGNOSIS
PREDICTION AND ROUTING

Table 5: Aggregated Global Descriptive Statistics (7, 5) of Fea-
tures for Predicting Criticality in COVID-19 Patients.

Feature ‘ n ‘ (g, 0)

hs-CRP (mg/L) 2,767 | (86.34,62.29)

LDH (U/L) 1,008 | (340.70, 228.20)
ALT (IU/L) 2,215 | (33.88,21.22)
Neutrophil Count (X1,000/mcL) | 450 (6.19,5.66)
Base Excess (mmol/L) 58 (1.30, 1.53)

COVID-19 prognosis models have been proposed based on small
studies from individual hospitals, and many of these from China.
Individual models, built on very localized populations, may not
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be generalizable. Due to privacy regulations, published models do
not provide raw data sets, but may provide descriptive statistics,
(e.g., sample size, median, and interquartile ranges). We were able to
estimate means and standard deviation of highly correlated features
for each model (Table 1). We pool [6] by feature across all models
to create aggregated global descriptive statistics by feature, with
an aggregated global mean estimate (i) and an aggregated global
standard deviation estimate (&) (Table 5).

Our model (Table 3) was trained on a data set that was stan-
dardized to (u = 0,0 = 1) for all features as a measure to protect
patient privacy, but negates its applicability beyond the HIAE. More-
over, hospital administration will not release raw data nor provide
descriptive statistics [4]. As our goal in this work is to create a
predictive model which will provide a useful decision support ca-
pability to clinicians, we feed our aggregated global descriptive
statistics into our model (Table 6). To the best of our knowledge,
this is the first attempt to integrate geographically and demograph-
ically diverse data into a predictive prognosis model for COVID-19.

6 CONCLUSIONS AND FUTURE WORK

We have presented a fully transparent prognosis prediction model
for COVID-19 patients. Unlike many of the other predictive models
that have been produced around the world, we use a publicly avail-
able data set [4] to build our model and have made the entirety of
our code publicly available [11]. After presenting and analyzing
our results and model, we aggregate our model with a number of
predictive models from other researchers to create a consolidated
framework for COVID-19 prognosis and patient routing. There
are no recommended anti-viral therapies or approved vaccines for
COVID-19 at this time, therefore we believe that clinical symptom
management will remain the primary treatment for the disease.
Clinicians have limited available resources, therefore predictive
models which support clinical resource and personnel allocation
provide a critical capability that may lead to improved patient sur-
vival.

The major limitation of our current model is that we trained it on
a single publicly available data set from a single hospital. We would
very much like to retrain our model with a larger data set that
includes clinical biomarkers from geographically and demographi-
cally diverse COVID-19 patients. This can easily be accomplished as
more hospitals release COVID-19 patient data sets that have been
processed to comply with patient privacy regulations. Additionally,
our model independently prioritized the same clinical biomarkers
as other similar studies. This gives us greater confidence in combin-
ing data sets across countries and healthcare institutions to develop
a more robust model. As country or institution-specific factors do
not appear to bias feature selection, there is great opportunity to
expand criticality modelling as more data sets become available.
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