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Abstract

A Command Governor (CG) is an optimization-based add-on scheme to a nominal closed-loop system. It is used to enforce state and
control constraints by modifying reference commands. This paper considers the implementation of a CG on embedded processors
that have limited computing resources and must execute multiple control and diagnostics functions; consequently, the time available
for CG computations is limited and may vary over time. To address this issue, a robust to early termination command governor is
developed which embeds the solution of a CG problem into the internal states of a virtual continuous-time dynamical system which
runs in parallel to the process. This virtual system is built so that its trajectory converges to the optimal solution (with a tunable
convergence rate), and provides a sub-optimal but feasible solution whenever its evolution is terminated. This allows the designer to
implement a CG strategy with a small sampling period (and consequently with a minimum degradation in its performance), while
maintaining its constraint-handling capabilities. Simulations are carried out to assess the effectiveness of the developed scheme in
satisfying performance requirements and real-time schedulability conditions for a practical vehicle rollover example.

Key words: Cyber–physical systems, Safety-critical control schemes, Command governor, Real-time schedulability, Vehicle
rollover prevention

1. Introduction

A common aspect of today’s Cyber–Physical Systems
(CPSs) is that multiple safety-critical controllers/control sys-
tems responsible for different system functions may execute in
a shared processing unit—see Figure 1. Examples of such sys-
tems can be found in safety-critical applications like aircraft,
autonomous vehicles, medical devices, and autonomous robots.

Three related issues that should be addressed carefully when
designing such CPSs with multiple control systems are: 1) sys-
tem performance; 2) system safety; and 3) real-time schedu-
lability. System performance refers to the degree to which
the control objectives of the individual control systems are
achieved, which can be indicated by various measures of cost,
efficiency, accuracy, etc. System safety refers to the satisfac-
tion of the operational constraints and requirements. Real-time
schedulability assures that timing requirements of different con-
trol systems informing the CPS are satisfied.

1.1. Prior Work on Real-Time Scheduling
The implementation of N controllers can be seen as the prob-

lem of executing N recurrent (periodic) tasks [1] on a resource-
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constrained processor. The real-time scheduling literature (e.g.,
[2]) provides a wide range of schedulability analysis techniques
based upon the Earliest Deadline First (EDF) policy [1, 3] to
address this problem. These techniques primarily emphasize
the scheduling aspects and stabilization of control systems un-
der cyber constraints (e.g., limited computational time and end-
to-end delay); to the best of our knowledge, prior real-time
scheduling techniques do not explicitly address/ensure physi-
cal constraints1 satisfaction (e.g., hard limits on system input,
state, and output variables).

Existing real-time schedulability analysis techniques may be
roughly classified into two groups. The first group (e.g., [4, 5,
6]) determines the worst-case execution time of each task, and
then determines the sampling periods for each task such that the
real-time schedulability conditions are satisfied.

A main shortcoming of this approach arises from the vari-
ability and unpredictability of task execution times, particularly
on modern processors [7]. As a result, the worst-case execu-
tion times of the tasks are computed conservatively. This tends
to severely under-utilize the computational resources, and re-
quires assignment of large sampling periods to the tasks, which
can lead to control performance degradation. See [8] for more
details about the trade-off between resources and control per-
formance in embedded control systems. Though methods to
determine sampling periods which ensure stability and reduce

1Throughout this paper, by “constraints” we mean constraints on system
input and/or state variables.
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Figure 1: Figure (a): A CPS that comprises four safety-critical control sys-
tems implemented on a single processor. Task τi implements the controller for
System#i, i ∈ {1, · · · ,4}. Figure (b): An execution schedule based on the EDF
policy for the considered CPS, where `i and ∆Ti are the worst-case execution
time and sampling period of task τi, respectively. The upward arrows indicate
when the measurements are received at the processor and tasks are invoked.

the impact on system performance have been proposed in the
prior literature (e.g., [9, 10, 11, 12, 13]), this paper addresses
the impact of limited computing capacity on the ability to sat-
isfy physical constraints (i.e., constraints on input and/or state
variables) with the Command Governor scheme; this problem
is different and has not been addressed in the prior literature.

The second group of more recent schedulability analysis
techniques involves task scheduling based upon a relaxed upper
bound on their execution times. In this case, first, an optimistic
upper bound on the execution time of each task is estimated,
within which most invocations of the task are deemed likely
to complete. Sampling periods for each task are then computed
based upon these optimistic upper bounds so to satisfy real-time
schedulability conditions. At run-time, if the execution time of
a task exceeds the determined upper-bound at any sampling in-
stant, the processor allows the task to complete, which delays
the execution of other tasks. This can be seen as an unwanted
increase in the sampling periods of all tasks. To compensate
for the impact of this increase, the control parameters for all
control systems are modified at the next sampling instant. This
approach has been investigated in [14, 15], and shown to lead
to better performance and reduce under-utilization of compu-

tational resources. To avoid adding extra computational bur-
den, the modifications can be computed offline for the set of
all possible cases and stored for online use. A method for re-
ducing the number of controllers to be designed offline, while
still guaranteeing specified control performance, is presented in
[16]. However, in general, there are no systematic methods to
compute the modifications, and even no guarantees for the ex-
istence of such modifications. Furthermore, proposed strategies
do not enforce physical constraints.

The problem of control-scheduling co-design under differ-
ent types of cyber constraints is addressed in [17, 18, 19]. In
particular, stabilization of a control system in presence of lim-
ited execution time has been studied in [17], where the authors
present an event-triggered scheduler that decides which task
should be executed at any given instant. The authors of [18]
present a heuristic optimization method to optimize the end-to-
end timing constraint (i.e., loop processing time and input-to-
output latency) for a given control performance specification.
A server-based resource reservation mechanism is proposed in
[19] to ensure stability in the presence of server bandwidth
constraints. However, physical constraints (i.e., constraints on
input and/or state variables) have not been considered in the
above-mentioned references.

Another policy used to address the real-time schedulability in
CPSs is the Fixed Priority Preemptive Scheduling (FPPS) pol-
icy [20, 21]. In this policy, the processor executes the highest
priority task of all those tasks that are currently ready to exe-
cute. Though different methods have been proposed to assign
priorities to ensure that all tasks will execute (e.g., [22, 23]),
if a critical task is the one with lower priority and other tasks
are always schedulable without that task, the lower-priority task
could wait for an unpredictable amount of time. This obviously
degrades the control performance, and may even lead to con-
straints violation.

1.2. Prior Work on Optimization-Based Constrained Control of
Systems With Limited Computing Capacity

As mentioned above, safety in this paper is related to the
constraint enforcement. The literature on constrained con-
trol has been dominated by optimization-based techniques,
such as Model Predictive Control (MPC) [24, 25], Refer-
ence/Command Governors (RG/CG) [26], and Control Barrier
Functions [27]. However, the use of online optimization is com-
putationally intensive and creates practical challenges when
they are employed in a CPS with limited computational power.

Another approach to implement optimization-based control
laws for system with constraints is to pre-compute them offline
and store them in memory for future use. This idea is adopted
in explicit MPC [28]. However, even in the case of linear
quadratic MPC, explicit MPC can be more memory and com-
putation time consuming for larger state dimensional problems
or problems with a large number of constraints as compared to
the onboard optimization based methods. Furthermore, it is not
robust with respect to early/premature termination of the search
for the polyhedral region containing the current state.

Another possible way to address limited computing power
is to resort to triggering, as in self-triggered [29] and event-
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triggered [30, 31] optimization-based constrained control.
However, there is no guarantee that sufficient computational
power will be available when the triggering mechanism invokes
simultaneously multiple controllers.

Another way to address limited computational power in
optimization-based constrained control schemes is to perform
a fixed number of iterations to approximately track the solu-
tion of the associated optimization problem. This approach has
been extensively investigated for MPC [32, 33]. For instance,
[34] pursues the analysis of the active-set methods to determine
a bound on the number of iterations. However, there is no guar-
antee that required iterations can be carried out in the available
time in a shared processing unit. The dynamically embedded
MPC is introduced in [35], where the processor, instead of solv-
ing the MPC iteration, runs a virtual dynamical system whose
trajectory converges to the optimal solution of the MPC prob-
lem. Although employing warm-starting [36] can improve con-
vergence of the virtual dynamical system in dynamically em-
bedded MPC, guaranteeing recursive feasibility (i.e., remaining
feasible indefinitely) with this scheme is challenging, as a sud-
den change in the reference signal can drastically change the
problem specifics, e.g., the terminal set may not be reachable
anymore within the given prediction horizon. To address this
issue, in [37], the dynamically embedded MPC is augmented
with an Explicit Reference Governor (ERG) [38, 39, 40]; how-
ever, this may lead to conservative (slow) response due to con-
servatism of ERG.

A CG supervisory scheme is presented in [41], where differ-
ent CG problems are designed for different operating points of
the system, and a switching mechanism is proposed to switch
between CG schemes. However, the effects of early termina-
tion of the computations on the CG schemes has not been con-
sidered in [41]. In [42], a one-layer recurrent neural network
is proposed to solve a CG problem in finite time. However,
[42] does not address the variability and unpredictability of the
available computing time for CG schemes when implemented
in a shared processing unit and, in particular, situations when
the available time is less that the required time for convergence.

1.3. Proposed Solution
A CG is an optimization-based add-on scheme to a nomi-

nal closed-loop system used to modify the reference command
in order to satisfy state and input constraints. In this paper,
we develop ROTEC (RObust to early TErmination Command
governor), which is based on the use of primal-dual flow al-
gorithm to define a virtual continuous-time dynamical system
whose trajectory tracks the optimal solution of the CG. ROTEC
runs until available time for execution runs out (that may not be
known in advance) and the solution is guaranteed to enforce the
constraints despite any early termination. ROTEC can guaran-
tee safety while addressing system performance. Also, it guar-
antees recursive feasibility. This feature allows to satisfy the
real-time schedulability condition, even when numerous safety-
critical control systems are implemented on a processor with
very limited computational power.

In this paper, ROTEC is introduced as a continuous-time
scheme. This facilitates the analysis and the derivation of its

theoretical properties. Our numerical experiments show that
these properties are maintained when ROTEC is implemented
in discrete time with a sufficiently small sampling period. This
is not dissimilar to how control schemes are derived and an-
alyzed. We leave the study of theoretical guarantees for the
discrete-time implementation to future work.

1.4. Contribution
To the best of our knowledge, this paper is the first that en-

sures robustness to early termination for CG schemes. This fea-
ture allows us to address real-time schedulability in CPSs, while
ensuring constraints satisfaction at all times. In particular, it is
shown analytically that ROTEC ensures the safe and efficient
operation of a CPS. The main contributions are: 1) development
of ROTEC; 2) demonstration that it enforces the constraints ro-
bustly with respect to the time available for computations; and
3) evaluation of its effectiveness for vehicle rollover prevention.

Our approach to CG implementation is inspired by [43, 44]
in exploiting barrier functions and the primal-dual continuous-
time flow algorithm, but addresses a different problem. Our
proofs of convergence are inspired by Lyapunov-based ap-
proaches in [35, 37, 45], but once again explored for a different
problem.

1.5. Organization
The rest of the paper is organized as follows. Section 2 for-

mulates the problem, and discusses the control requirements
and real-time schedulability conditions. Section 3 describes the
conventional CG scheme. Section 4 develops ROTEC, proves
its properties, and discusses its initialization. In Section 5,
a simulation study of vehicle rollover is reported to validate
ROTEC. Finally, Section 6 concludes the paper.

1.6. Notation
We use t to denote continuous time, k to denote sampling

instants, s to denote predictions made at each sampling instant,
and η to denote the auxiliary time scale that ROTEC spends
on solving the CG problem. I and 0 indicate, respectively, the
identity and zero matrices with appropriate dimensions. In this
paper, ∇x1x2X(x1,x2), ∂

∂x2
( ∂

∂x1
X(x1,x2)).

2. Problem Formulation

This section gives details about the considered CPS setting,
highlights the practical challenges, and explains how we ad-
dress the challenges.

2.1. Setting
We consider a CPS comprising N controllers implemented

on a single processing unit. From a real-time computing per-
spective, this can be seen as a set of N tasks running on a single
processor. We denote the tasks by τi, i= 1, · · · ,N, where task τi
performs a specific action for the i-th control system. The task
τi is represented by the 2-tuple {`i,∆Ti}, where `i is the worst-
case execution time and ∆Ti is the sampling period. Suppose
that tasks τ1, · · · ,τN−1 correspond to pivotal actions with fixed
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and pre-determined sampling periods, and task τN implements
a CG strategy. This setting is considered without loss of gen-
erality; the case in which more than one task implements a CG
strategy can be addressed by applying the method to each one.

2.2. Details of Task τN

Suppose that task τN controls the following system:

ẋ(t) = Aox(t)+Bou(t), (1)

where x(t) = [x1(t) · · · xn(t)]> ∈ Rn is the state of the system
at time t, u(t) = [u1(t) · · · up(t)]> ∈ Rp is the control input at
time t, and Ao ∈ Rn×n and Bo ∈ Rn×p are system matrices.

Although the control u(t) is usually designed in the
continuous-time domain, its computer implementation is de-
scribed in the discrete-time domain. That is task τN is invoked
at discrete sampling instants. Under the Logical Execution
Time (LET) paradigm [46, 47, 48], which is widely adopted
in CPS, the control signal that is computed based on the mea-
surements at sampling instant k is applied to the plant at sam-
pling instant k+ 1. This means that there is a fixed sampling-
to-actuation delay which is equal to ∆TN . Thus, for a zero-order
hold implementation, the sampled-data model of the plant for
one-sample delay can be expressed as

x(k+1) = Adx(k)+Bdu(k−1), (2)

where Ad = eAo∆TN and Bd =
∫ ∆TN

0 eAotBodt [49].
Given the augmented state vector z(k) := [x(k)> u(k −

1)>]> ∈ Rn+p [6], system (2) can be rewritten as:

z(k+1) = Az(k)+Bu(k), (3)

where

A :=

[
Ad Bd

0 0

]
, B :=

[
0
Ip

]
, (4)

with Ip as the p× p identity matrix.
We assume that the following nominal control law is avail-

able that stabilizes the system:

u(k) = Kz(k)+Gv(k), (5)

where K ∈ Rp×(n+p) is the feedback gain matrix, G ∈ Rp×m is
the feedforward gain matrix, and v(k) ∈ Rm is the command
signal (a.k.a. reference commands). The feedback gain matrix
K should be determined such that Ac := A+BK is Schur.

Remark 1. Since rank

([
0 Bd · · · An−1

d Bd

Ip 0 · · · 0

])
= p +

rank
([

Bd · · · An−1
d Bd

])
, it is concluded that there exists a

stabilizing feedback gain matrix K as in (5) if and only if the
pair (Ad ,Bd) is controllable. If the pair (Ao,Bo) is control-
lable, the sampling period can be chosen [50, 51] such that the
controllability is preserved, and consequently the existence of a
stabilizing feedback gain matrix K is guaranteed.

2.3. Control Requirements And Structure For Task τN

Let r(k) ∈ Rm be the desired reference at sampling instant k.
Also, let the output of System #N be defined as

y(k) =Cz(k)+Dv(k), (6)

where y(k) = [y1(k) · · · ym(k)]> ∈Rm is the output at sampling
instant k, and C ∈Rm×(n+p) and D ∈Rm×p are output matrices.
Let Y ⊂ Rm be a pre-defined compact and convex set.

Suppose that task τN implements the CG scheme to deter-
mine v(k) in (5) to meet the following control requirements:

• For any desired reference r(k), y(k) ∈ Y , ∀k; and

• For any constant desired reference r which is inside the in-
terior of Y , the command signal v(k) asymptotically con-
verges to r, i.e., v(k)→ r as k→ ∞.

2.4. Real-Time Schedulability Condition
We consider the processor running the tasks based on EDF

scheduling policy, and we assume that the deadline of each task
is equal to its sampling period. Thus, the tasks τ1, · · · ,τN are
schedulable if the following condition is satisfied [2]:

U =
N

∑
i=1

Ui ≤ 1, (7)

where Ui := `i/∆Ti (Ui > 0) is called the utilization of task τi,
and U > 0 is called the utilization of the processor.

Suppose that ∑
N−1
i=1 Ui < 1. Thus, to satisfy the real-time

schedulability condition (7), the execution time and sampling
period of task τN should satisfy `N

∆TN
≤ 1−∑

N−1
i=1 Ui. This im-

plies that for a large `N , the sampling period ∆TN should be
large as well. The CG problem makes use of online optimiza-
tion and has a large execution time, i.e., `N for CG is large.
Thus, ∆TN should be set to a large value; this can degrade the
performance.

2.5. An Illustrative Example
Suppose that task τN controls the double integrator system

ẋ1(t) = x2(t), ẋ2(t) = u(t), discretized as x1(k+ 1) = x1(k)+
∆TNx2(k), x2(k+1) = x2(k)+∆TNu(k−1), controlled through
u(k) = K1x1(k)+K2x2(k)+K3u(k− 1)+Gv(k), with the ref-
erence signal r = 0.5, and subject to constraints |u(k)| ≤ 0.1
and |x2(k)| ≤ 0.1. We compute K1, K2, K3, and G such that the
closed-loop poles are placed at 0.6, and for any constant com-
mand signal v the equilibrium point of the system is [v 0 0]>.

Suppose that the worst-case execution time is 2 seconds, i.e.,
`N = 2. Assuming that ∑

N−1
i=1 Ui = 0.2, inequality (7) implies

that ∆TN ≥ 2.5 [s]. Fig. 2 demonstrates that the tracking perfor-
mance is degraded with larger ∆TN .

2.6. Goal of This Paper
The main goal of this paper to develop a method, called

ROTEC, to implement the CG scheme without requiring the
exact optimization. The core idea is to use the primal-dual gra-
dient flow to track the optimal solution of the CG problem, and
provide a feasible solution if terminated at any moment.
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Figure 2: The tracking performance of CG for different sampling period ∆TN .

3. Conventional Command Governor

The core idea behind the CG scheme is to augment a presta-
bilized system with an add-on control unit that, whenever nec-
essary, manipulates the command signal to ensure constraint
satisfaction. In the following, we briefly describe the basics of
CG under the following assumptions.

Assumption 1. A + BK is Schur and (A,C) is observable,
where A,B are as in (3), K is as in (5), and C is as in (6).

Assumption 2. The set Y is defined as Y := {y|yi ≤ ȳi, ∀i},
where ȳi ≥ 0. This assumption is not restrictive, as any convex
domain with nonempty interior can be inner-approximated with
a polyhedron [52].

Suppose that task τN implements CG to control system (3)
through the control law (5). At any sampling instant k, CG
computes the optimal command signal v∗(k) by solving the fol-
lowing optimization problem [26]:

v∗(k) =

{
argmin

v
1
2 ‖v− r(k)‖2

Q

s.t. (z(k),v) ∈ Õ∞

, (8)

where Q = Q> > 0, ‖v− r(k)‖2
Q = (v− r(k))>Q(v− r(k)), and

Õ∞ is a subset of the maximal output admissible set:

O∞ = {(z,v)|ŷi(s|z,v)≤ ȳi, i = 1, · · · ,m, s = 0,1, · · ·}, (9)

where ŷ(s|z,v) = [ŷ1(s|z,v) · · · ŷm(s|z,v)]> is the predicted out-
put at the prediction instant s, which according to (3) and (5)-(6)
can be computed as

ŷi(s|z,v) =CiAs
cz+Hisv, (10)

where His :=Ci(I−Ac)
−1(I−As

c)BG+Di is a constant nonzero
vector, with Ci and Di as the i-th row of output matrices C and
D, respectively. Note that CG computes the optimal command
signal such that the predicted response from the initial condi-
tion z(k) with the command signal kept constant satisfies the
constraints. As a result, the predictions (10) are computed by
fixing the command signal throughout all s steps.

Since Ac is Schur, Assumption 1 and 2 imply that [53] the
set Õ∞ = O∞

⋂
Γ, where Γ = {(z,v)|ŷi(∞|z,v) ≤ (1− ε)ȳi, i =

1, · · · ,m} for some ε > 0, is finitely determined and positively
invariant. That is there exists a finite index s∗ such that

Õ∞ = {(z,v)|ŷi(s|z,v)≤ ȳi, i = 1, · · · ,m, s = 0,1, · · · ,s∗}
⋂

Γ.

(11)

The value of index s∗ can be obtained by solving a sequence
of mathematical programming problems which is detailed in
[53, Algorithm 3.2]. The computations are often straightfor-
ward, even when p, m and n are quite large. In particular, when
Y is polyhedral (as in our case; see Assumption 2), the pro-
gramming problems are linear. Note that these computations
can be performed once and are offline.

Therefore, the CG problem given in (8) can be rewritten as

v∗(k) =


argmin

v
1
2 ‖v− r(k)‖2

Q

s.t. ŷi(s|z(k),v)≤ ȳi, i = 1, · · · ,m,s = 0,1, · · · ,s∗

ŷi(∞|z(k),v)≤ (1− ε)ȳi, i = 1, · · · ,m
(12)

which is a Quadratic Programming (QP) problem with m · (s∗+
2) linear inequality constraints.

Remark 2. Since Õ∞ is positively invariant, if (z(0),v(0)) ∈
Õ∞, at any sampling instant k, there exists v∗(k) such that
ŷi(s|z(k),v∗(k)) ≤ ȳi, i ∈ {1, · · · ,m}, s ∈ {1, · · · ,s∗} and
ŷi(∞|z(k),v∗(k))≤ (1− ε)ȳi, i ∈ {1, · · · ,m}.

Remark 3. The Karush–Kuhn–Tucker (KKT) condition [54]
implies that, at any sampling instant k, ŷi†(s

†|z(k),v∗(k)) = ȳi†

if the constraint is active, and ŷi†(s
†|z(k),v∗(k)) < ȳi† oth-

erwise, where i† ∈ {1, · · · ,m} and s† ∈ {0, · · · ,s∗}. Also,
ŷi†(∞|z(k),v∗(k)) = (1− ε)ȳi† if the constraint is active, and
ŷi†(∞|z(k),v∗(k))< (1− ε)ȳi† otherwise.

4. Proposed Solution: ROTEC

A common approach to solve the optimization problem (12)
is to use the primal-dual interior-point methods. Though these
methods are fast and efficient, in general, the iterates in these
methods are not necessarily feasible [54, pp. 609]. Thus, in
the presence of early termination, to ensure constraint satisfac-
tion one could resort to keeping the command signal unchanged
(note that v∗(k) is feasible at sampling instant k + 1; see Re-
mark 2), but this could degrade system performance. Another
approach to solve (12) is to use the primal barrier interior-point
methods. The main weakness of these methods is that they re-
quire a high number of Newton steps when high accuracy is
required [54, pp. 569]. Also, in general, there is no guarantee
that early termination yields a feasible point [36].

In this section, we develop ROTEC to address the practical
challenges discussed above. We begin by tightening the con-
straints of the conventional CG given in (12). Then, we build a
continuous-time dynamical system that tracks the optimal solu-
tion of the CG problem, characterize its convergence properties,
and define the ROTEC algorithm.

4.1. Constraint Tightening
Consider the following optimization problem:

v†(k) =

{
argmin

v
1
2 ‖v− r(k)‖2

Q

s.t. fis(z(k),v)≤ 0, i = 1, · · · ,m, s = 0, · · · ,s∗,∞
(13)
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Figure 3: A geometric illustration of the tightened constraints and the optimal
solution v†(k), where i1, i2 ∈ {1, · · · ,m} and s1,s2 ∈ {0, · · · ,s∗}.

where{
fis(z(k),v) := ŷi(s|z(k),v)− ȳi +1/β , s ∈ {0, · · · ,s∗}
fi∞(z(k),v) := ŷi(∞|z(k),v)− (1− ε)ȳi +1/β

,

(14)

with sufficiently large β > 0 to make sure that the feasible set
of (13) is nonempty. See Figure 3 for a geometric illustration
of v∗(k) and v†(k). Note that the larger the β , the closer the
optimization problem (13) to (12), that is limβ→∞ v†(k) = v∗(k).

The main advantage of the constraint tightening in (14) is that
it allows us define a continuous-time dynamical system whose
trajectory remains feasible at all times and tracks the optimal
solution (as will be proven in Theorems 1 and 2).

4.2. Continuous-Time Dynamical System
The modified barrier function [55] associated with the opti-

mization problem (13) is2

B(z(k),v,λ ) =
1
2
‖v− r(k)‖2

Q−
m

∑
i=1

λi∞ log(−β fi∞(z(k),v)+1)

−
m

∑
i=1

s∗

∑
s=0

λis log(−β fis(z(k),v)+1), (15)

which can be seen as the Lagrangian for the following problem3

v†(k) =

{
argmin

v
1
2 ‖v− r(k)‖2

Q

s.t. log
(
−β fis(z(k),v)+1

)
≥ 0, ∀i,s

, (16)

with λ = [λ10 · · · λm∞]
> ∈ Rm(s∗+2) (λis ≥ 0, ∀i,s) as the La-

grange multiplier. At any sampling instant k, we denote the
optimal dual parameter by λ †(k).

Remark 4. According to the KKT condition, for active con-
straints we have log(−β fis(z(k),v†(k))+1) = 0 and λ

†
is(k)≥ 0,

and for inactive constraints we have log(−β fis(z(k),v†(k))+

2Note that despite [55], we do not consider the multiplier 1
β

in the penalty
terms.

3In the rest of the paper, ∀i means given any element of the set {1, · · · ,m}
and ∀s means given any element of the set {0, · · · ,s∗,∞}.

1) > 0 and λ
†
is(k) = 0. We have log(−β fis(z(k),v†(k)) +

1) = 0⇔ fis(z(k),v†(k)) = 0 and log(−β fis(z(k),v†(k))+1)>
0⇔ fis(z(k),v†(k))< 0, which means that active/inactive con-
straints of problems (13) and (16) are the same.

Remark 5. Since log(−β fis(z(k),v) + 1) ≥ 0 if and only if
fis(z(k),v) ≤ 0, it implies [54, pp. 131] that the optimal so-
lutions of problems (13) and (16) are identical.

Remark 6. Let Õ∞,1/β be as in (11), where constraints are
tightened by 1/β . Note that Õ∞,1/β is positively invariant.
Thus, if (z(0),v(0)) ∈ Õ∞,1/β , at any sampling instant k, there
exists v†(k) such that log(−β fis(z(k),v†(k))+1)≥ 0, ∀i,s.

At this stage, we propose the primal-dual gradient flow as
shown in (17)-(18) which should be implemented at any sam-
pling instant k, where σ > 0 is a design parameter and η is the
auxiliary time variable4. The function Ψis(k,η) given in (19) is
the projection operator onto the normal cone of λ [56]. The dif-
ferential equations (17) and (18) build a virtual continuous-time
system whose properties will be discussed next.

Remark 7. Given θ = [v̂ λ̂ ], it can be shown that the Hes-
sian matrix ∇θθ B(k,η) is not full rank. Thus, we cannot use
methods requiring the inverse of ∇θθ B(k,η), e.g., [57]. Other
methods that use an approximation of (∇θθ B(k,η))−1, like
quasi-Newton method, have a slower convergence [58].

4.3. Properties
In this subsection, we prove convergence (Theorem 1) and

constraint-handling (Theorem 2) properties of system (17)-

(18). First, we show that
[(

∇v̂B(k,η)
)> − (∇

λ̂
B(k,η)

)>]>
is strongly monotone, which will be used in the proof of Theo-
rem 1.

Lemma 1. The operator
[(

∇v̂B(k,η)
)> − (∇

λ̂
B(k,η)

)>]>
is strongly monotone w.r.t. (v̂, λ̂ ). That is ∃µ > 0 such that[

∇v̂B(k,η)

−∇
λ̂
B(k,η)

]>[
v̂(η)− v†(k)

λ̂ (η)−λ †(k)

]
≥ µ

∥∥∥∥∥
[

v̂(η)− v†(k)

λ̂ (η)−λ †(k)

]∥∥∥∥∥
2

.

(20)

Proof. The Jacobian of the operator is

J =

[
∇v̂v̂B(k,η) ∇v̂λ̂

B(k,η)

−∇
λ̂ v̂B(k,η) −∇

λ̂ λ̂
B(k,η)

]
, (21)

where ∇
λ̂ λ̂

B(k,η) = 0, ∇v̂λ̂
B(k,η) = ∇

λ̂ v̂B(k,η), and
∇v̂v̂B(k,η) is

∇v̂v̂B(k,η) =Q+β
2

m

∑
i=1

s∗

∑
s=0

λ̂is(η)
(His)

>His

(−β fis(k,η)+1)2

+β
2

m

∑
i=1

λ̂i∞(η)
(His)

>His

(−β fi∞(k,η)+1)2 , (22)

4For the sake of brevity, we will denote B(z(k), v̂(η), λ̂ (η)) and
fis(z(k), v̂(η)) by B(k,η) and fis(k,η), respectively, when the main focus is
the time stamps k and η .
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d
dη

v̂(η) =−σ∇v̂B(k,η) =−σ

(
Q(v̂(η)− r(k))+β

m

∑
i=1

s∗

∑
s=0

λ̂is(η)
(His)

>

−β fis(k,η)+1
+β

m

∑
i=1

λ̂i∞(η)
(His)

>

−β fi∞(k,η)+1

)
, (17)

d
dη

λ̂is(η) =σ
(
∇

λ̂is
B(k,η)+Ψis(k,η)

)
= σ

(
− log

(
−β fis(k,η)+1

)
+Ψis(k,η)

)
; (18)

Ψis(k,η) =

{
0, if (λ̂is(η)> 0) OR (λ̂is(η) = 0 and log

(
−β fis(k,η)+1

)
< 0)

log
(
−β fis(k,η)+1

)
, if λ̂is(η) = 0 and log

(
−β fis(k,η)+1

)
> 0

. (19)

which is positive definite as λ̂is(η) ≥ 0, ∀i,s,η and Q > 0.
Thus, J + J> > 0, which implies [56] that the operator is
strongly monotone. This completes the proof.

The following theorem shows that the trajectory of system
(17)-(18) converges to the optimal solution (v†(k),λ †(k)).

Theorem 1. Let v†(k) be as in (16) and (v̂(0), λ̂ (0)) be the fea-
sible initial condition for system (17)-(18). Then, (v̂(η), λ̂ (η))
exponentially converges to (v†(k),λ †(k)) as η → ∞.

Proof. Consider the following Lyapunov function:

V (v̂(η), λ̂ (η)) =
1

2σ

∥∥v̂(η)− v†(k)
∥∥2

+
1

2σ

∥∥∥λ̂ (η)−λ
†(k)

∥∥∥2
,

(23)

whose time derivative w.r.t. the auxiliary time variable η is

d
dη

V (v̂(η), λ̂ (η)) =
1
σ

(
v̂(η)− v†(k)

)> d
dη

v̂(η)

+
1
σ

(
λ̂ (η)−λ

†(k)
)> d

dη
λ̂ (η), (24)

where λ̂ (η) = [λ̂10(η) · · · λ̂m∞(η)]> ∈Rm(s∗+2). According to
(17) and (18), it follows from (24) that

d
dη

V (·) =−
(
v̂(η)− v†(k)

)>
∇v̂B(·)

+
(
λ̂ (η)−λ

†(k)
)>(

∇
λ̂
B(·)+Ψ(·)

)
, (25)

where Ψ(k,η) = [Ψ10(k,η) · · · Ψm∞(k,η)]> ∈ Rm(s∗+2).
According to (19), Ψis(·) is −∇

λ̂is
B(k,η) when

λ̂is(η) = 0 and ∇
λ̂is

B(k,η) < 0, and is zero other-

wise. Thus, since λ
†
is(k) ≥ 0 for any k, it implies

that (λ̂is(η) − λ
†
is(k)) · (∇

λ̂is
B(k,η) + Ψis(k,η)) ≤

(λ̂is(η)−λ
†
is(k))∇λ̂is

B(k,η). Thus, it follows from (25):

d
dη

V (v̂(η), λ̂ (η))≤−
(
v̂(η)− v†(k)

)>
∇v̂B(k,η)

+(λ̂ (η)−λ
†(k))>∇

λ̂
B(k,η), (26)

which together with Lemma 1 implies that

d
dη

V (·)≤−µ

∥∥∥∥∥
[

v̂(η)− v†(k)

λ̂ (η)−λ †(k)

]∥∥∥∥∥
2

=−2σ µV (·). (27)

Therefore,

V
(
v̂(η), λ̂ (η)

)
≤V

(
v̂(0), λ̂ (0)

)
· e−2σ µη , (28)

and consequently,∥∥∥∥∥
[

v̂(η)− v†(k)

λ̂ (η)−λ †(k)

]∥∥∥∥∥
2

≤

∥∥∥∥∥
[

v̂(0)− v†(k)

λ̂ (0)−λ †(k)

]∥∥∥∥∥
2

e−2σ µη , (29)

which completes the proof.

Theorem 1 showed that the trajectory of system (17)-(18)
converges to the optimal solution (v†(k),λ †(k)). However,
the evolution of system (17)-(18) might be terminated be-
fore convergence due to limited computation power. Thus,
the trajectory of system (17)-(18) must remain feasible at all
times. Theorem 2 formally ensures this property for the virtual
continuous-time system (17)-(18). Before that, first, we pose
Remark 8 which will be used in the proof of Theorem 2.

Remark 8. According to (18)-(19), d
dη

λ̂is(η) > 0 if 0 <

fis(k,η) < 1/β . Thus, when fis(k,η) is in close proximity
of 1/β : i) there exists λ > 0 such that λ̂is(η) ≥ λ ; and ii)
Ψis(k,η) = 0.

Theorem 2. Let (v̂(η), λ̂ (η)) be the solution of (17)-(18).
Given a feasible (v̂(0), λ̂ (0)), v̂(η) satisfies the constraints of
the conventional CG problem at all η .

Proof. Let φis(k,η) :=−β fis(k,η)+1. According to (14), the
constraints of the conventional CG problem (12) are satisfied if
φis(k,η)> 0, ∀i,s. Note that B(k,η)→∞ only if φi js j(k,η)→
0+, j ∈ {1, · · · ,ξ}, where ξ ≤ m, and i j ∈ {1, · · · ,m} and s j ∈
{0, · · · ,s∗,∞}. Thus, the boundedness of B(k,η) from above
is equivalent to the constraint satisfaction at all η .

We prove the boundedness of B(k,η) by showing that

lim
φi j s j (k,η)→0+, ∀ j

(
d

dη
B(k,η)

)
< 0, (30)

which asserts that B(k,η) must decrease along the system tra-
jectories when these trajectories are near the boundary.

According to (15) and (17)-(18), the time derivative of the
barrier function B(k,η) w.r.t. the auxiliary time variable η is

d
dη

B(k,η) =−σ ‖∇v̂B(k,η)‖2 +σ
∥∥∇

λ̂
B(k,η)

∥∥2

+σ
(
∇

λ̂
B(k,η)

)>
Ψ(k,η). (31)
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The limiting behavior of
(
∇

λ̂
B(k,η)

)>
Ψ(k,η),∥∥∇

λ̂
B(k,η)

∥∥2, and ‖∇v̂B(k,η)‖2 as φi js j(k,η)→ 0+, ∀ j is
characterized as in (32), (33), and (34), respectively5:(

∇
λ̂
B(k,η)

)>
Ψ(k,η) =O(1), (32)∥∥∇

λ̂
B(k,η)

∥∥2
=

ξ

∑
j=1

(
log(φi js j(k,η))

)2
+O(1)

≤ξ

(
log(φ(k,η))

)2
+O(1), (33)

where φ(k,η) := min j∈{1,··· ,ξ}{φi js j(k,η)}. It is clear that
φ(k,η)→ 0+ as φi js j(k,η)→ 0+, ∀ j. Note that (32) is de-
duced according to Remark 8.

Note that (Condition z) needed for the Lemma presented in
Appendix is guaranteed by the Alexandrov’s theorem [59, pp.
333]. Indeed, since the feasible set of the optimization problem
(13) is a convex polyhedron, if (Condition z) does not hold,
then the outward vectors normal to the faces associated with
the active constraints at a boundary point are linearly dependent
with positive coefficients; this is only possible if the polyhedron
has empty interior, while we assume the interior to be nonempty
(see Subsection 4.1).

Now, consider (34). Since λ̂i js j(η) ≥ λ as φi js j(k,η) →
0+, ∀ j (see Remark 8) and φ(k,η)/φi js j(k,η) = 1 for at least
some j ∈ {1, · · · ,ξ}, by applying the Lemma presented in Ap-
pendix we obtain that there exists ζ > 0 such that the limiting
behavior of ‖∇v̂B(k,η)‖2 as φi js j(k,η)→ 0+, ∀ j satisfies

‖∇v̂B(k,η)‖2 ≥ ζ β 2λ
2(

φ(k,η)
)2 +O(1). (35)

Therefore, by taking the limit from both sides of (31) as
φi js j(k,η) → 0+, j ∈ {1, · · · ,ξ}, we obtain6 equation (36),
which affirms (30). This completes the proof.

Remark 9. For discrete-time implementation of system (17)-
(18), one can use the difference quotient with a sufficiently

5Given f : Rm→ R, f (x) = O(1) means that ∃M > 0 such that | f (x)|< M.
6Since limx→0+ b(log(x))2 /

(
a/x2) = 0 for any a,b > 0 (one can use the

L’Hôpital’s rule to show that), the function a
x2 grows faster than b(log(x))2 as

x→ 0+. Thus, limx→0+ a/x2−b(log(x))2 > 0 for any a,b > 0.

small sampling period ∆η . In this case, a practical approach
to prevent constraint violation due to discretization is to further
tighten the constraints of (16) as log

(
− β fis(z(k),v) + 1

)
≥

ϑ , ∀i,s, where ϑ > 0 is small. Our numerical experiments sug-
gest that such a discrete-time implementation maintains the de-
sired properties of our algorithm.

4.4. Acceptance/Rejection Mechanism

Theorem 1 showed that at any sampling instant k,
(v̂(η), λ̂ (η)) → (v†(k),λ †(k)) exponentially fast as η → ∞.
However, due to limited availability of the computational power
(17)-(18) may not have sufficient time to converge to the opti-
mal solution (v†(k),λ †(k)) at every sampling instant. Indeed,
it is more likely that the evolution of system (17)-(18) termi-
nates before convergence. Since, in general, the behavior of
v̂(η)− v†(k) is not monotonic, there is a need for a logic-based
method to accept or reject v̂(η) once (17)-(18) is terminated.

In this paper, we adopt the acceptance/rejection mechanism
presented in [60]. This mechanism relies on the fact that v(k−
1) is a feasible and a sub-optimal solution7 for (16) at sampling
instant k (see Remark 2). Given the termination time ηt , the
acceptance/rejection mechanism accepts v̂(ηt) (i.e., sets v(k) =
v̂(ηt)) if v̂(ηt) satisfies the following condition

‖v̂(ηt)− r(k)‖2
Q ≤‖v(k−1)− r(k)‖2

Q−‖v̂(ηt)− v(k−1)‖2
Q ,

(37)

and rejects (i.e., sets v(k) = v(k− 1)) otherwise. Note that, as
shown in [60], the condition (37) holds for v†(k) and any feasi-
ble v(k−1), meaning that the mechanism does not discard the
optimal solution if system (17)-(18) converges.

4.5. Warm-starting

Theorem 1 showed that dynamics evolving according to (17)-
(18) converge exponentially fast. The inequality given in (29)
indicates that faster convergence occurs for larger σ and/or µ .
If σ is made large, high update rate will be necessary when im-
plementing (17)-(18) in discrete-time. Also, µ is determined by

7Due to limited computational power, the applied command signal at sam-
pling instant k is not necessarily the optimum. For this reason, we drop the †
when referring to the applied command signal at sampling instant k. We do the
same when referring to dual parameter.

‖∇v̂B(·)‖2 =

(
ξ

∑
j=1

βλ̂i js j(·)
φi js j(·)

(
Hi js j

)>)>( ξ

∑
j=1

βλ̂i js j(·)
φi js j(·)

(
Hi js j

)>)
+O(1) =

β 2(
φ(·)

)2

∥∥∥∥∥ ξ

∑
j=1

φ(·)
φi js j(·)

λ̂i js j(·)
(
Hi js j

)>∥∥∥∥∥
2

+O(1).

(34)

lim
φi j s j (k,η)→0+, ∀ j

(
d

dη
B(k,η)

)
≤ lim

φ(k,η)→0+
−σ

 ζ β 2λ
2(

φ(k,η)
)2 −ξ

(
log(φ(k,η))

)2

< 0. (36)
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problem characteristics and is not directly tunable. This under-
lines the importance of warm-starting to improve convergence.

Regarding v̂(0), note that the set Õ∞,1/β is positively invari-
ant (see Remark 6). Thus, it is desirable to set v̂(0) to the previ-
ously applied command signal (i.e., v̂(0) = v(k−1) at sampling
instant k). This selection is reasonable, as in most applications,
from one sampling instant to the next the state of the system
z(k) and the reference signal r(k) do not change substantially.

Regarding λ̂ (0), any non-negative value, including λ (k−1),
is feasible. Though λ (k−1) is often a good approximation for
the optimum dual variables at sampling instant k, there is an
opportunity for improving the initial guess, as shown below.

As mentioned in Remark 4, λis(k− 1) , 0 means that the
constraint on the i-th output at prediction time s was active at
sampling instant k− 1. This condition moves one step back-
ward at sampling instant k; that is the constraint on the i-th
output at prediction time s− 1 will be active. The same con-
dition holds for inactive constraints, i.e., those associated with
λis(k− 1) = 0. This implies that there is a one-step time shift
in the active and inactive constraints. Based upon this in-
sight, we propose the following initial condition for λ̂i(0) =
[λ̂i0(0) · · · λ̂is∗(0) λ̂i∞(0)]>, i ∈ {1, · · · ,m}:

λ̂i(0) = [λ̂i1(k−1) · · · λ̂is∗(k−1) λ̂is∗(k−1) λ̂i∞(k−1)]>,
(38)

where λ̂is∗(k−1)≥ 0 is used as an initial guess for the value of
dual parameter at the new prediction time. We have found that
in our experiments such a warm-starting worked well.

4.6. ROTEC
The ROTEC algorithm is presented in Algorithm 1. This al-

gorithm should be run at every sampling instant. This algo-
rithm computes the control input u(k) at every sampling time
and provides the initial condition (v̂(0), λ̂ (0)) for the next sam-
pling time. Algorithm 1 addresses system safety by ensuring
constraint satisfaction at all times (see Theorem 2), assuming
that the discrete-time implementation accurately approximates
the continuous-time updates. It also addresses system perfor-
mance by optimizing the applied command signal (see Theo-
rem 1). Finally, Algorithm 1 addresses real-time schedulability,
as it is robust to early termination; this allows us to choose the
sampling period of tasks to satisfy the schedulability condition
(7) with no concern about its performance.

Note that once task τN is terminated, there will be no time
to implement the mechanism (37) and compute corresponding
control input. To address this issue, during the run-time of the
virtual system (step 3), we continuously implement the mecha-
nism (step 4) and update and store in memory the control input
(step 5) without applying it to the system. This will guaran-
tee that once task τN is terminated, a suitable control input is
available without requiring any further computations.

5. Simulation Study—Vehicle Rollover Prevention

Rollover is a safety issue for a vehicle [61, 62], in which it
tips over onto its side or roof. In this section, we use a simplified

Algorithm 1 ROTEC
Require: State of system (3) at sampling instant k (i.e., z(k)),

and the applied command signal and the obtained dual pa-
rameter at the previous sampling instant (i.e., v(k−1) and
λ (k−1))

Ensure: The control input at sampling instant k (i.e., u(k))
1: procedure ROTEC(z(k),v(k−1),λ (k−1))
2: while Task τN is not terminated do
3: Update system (17)-(18) with a given ∆η , and ini-

tial condition v̂(0) = v(k−1) and λ̂ (0) as in (38).
4: Implement the acceptance/rejection mechanism

given in (37) at every virtual time step (i.e.,
α∆η , α = 0,1, · · · ).

5: Compute and store control input u(k) via (5) at ev-
ery virtual time step if the condition (37) is satisfied.

6: end while
7: return command signal v(k) and control input u(k)

model to represent the vehicle dynamics, and apply Algorithm 1
to guard the vehicle against rollover. Note that vehicles are pro-
totypical examples of systems with limited computing power
processors where execute multiple parallel functions [63, 64].

5.1. Setting
We consider a scenario where the longitudinal speed is con-

stant and two safety-critical control systems are implemented
on a single processor. The sampling period of the first task is
100 [ms], and its execution time (expressed in ms) follows a
Weibull distribution8 with shape parameter 2, location param-
eter 20, and scale parameter 4. Thus, the worst-case execution
time of the first task is 30 ms. The second task tracks a desired
Steering Wheel Angle (SWA) which is generated by either a hu-
man driver or a higher-level controller. We employ ROTEC to
manipulate the applied SWA (i.e., the command signal) to pre-
vent rollover, while ensuring convergence to the desired SWA.

As shown in [67], the vehicle dynamics can be modelled as
ẋ = Aox+Bo · SWA(t), where x(t) = [x1(t) x2(t) x3(t) x4(t)]>

with x1(t) as the roll angle, x2(t) as the roll rate, x3(t) as the
lateral velocity, and x4(t) as the yaw rate. We consider the one-
sample delay described in Subsection 2.2. Given that the vehi-
cle has a constant speed of 50 [m/h]9, Ao and Bo are [68]:

Ao =


0.00499 0.997 0.0154 −6.81×10−5

−78.3 −12.2 −65.3 −3.89
−0.932 −0.799 −6.20 −1.57

1.52 3.32 8.27 −1.49

 ,
Bo =

[
−5.76×10−5 2.80 0.278 0.655

]>
.

The rollover constraints are defined through the Load
Transfer Ratio (LTR), and are imposed as |LT R(t)| ≤ 1,

8Using the Weibull distribution to characterize the execution time of a task
is well-accepted in real-time scheduling literature (e.g., [65, 66]).

9This assumption is reasonable, as we can assume that the vehicle tracks a
constant longitudinal speed through a separate control law.
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(a)

(b)

(c)

Figure 4: Figure (a): Results for Case I, in which the conventional CG is imple-
mented every 100 ms. Figure (b): Results for Case II, in which the conventional
CG is implemented every 300 ms. Figure (c): Results for Case III (2000 runs),
in which ROTEC is implemented every 100 ms.

where LT R(t) for the given longitudinal speed is LT R(t) =
0.12x1(t)+0.0124x2(t)−0.0108x3(t)+0.0109x4(t).

We use YALMIP toolbox [69] to implement the computations
of the conventional CG scheme. The worst-case execution time
for the conventional CG from 2000 runs is ∼200 ms. Thus, the
sampling period of the conventional CG should be > 285 ms.

5.2. System Performance—Comparison Study

We consider the following three cases: Case I) There is no
computational limitation (for instance, we implement the tasks
on a more powerful processor), and we implement the con-
ventional CG every 100 milliseconds; Case II) We implement
the conventional CG, and to satisfy the real-time schedulability
condition (7), we let the sampling period of the second task to
be 300 [ms]; and Case III) We set the sampling period of the
second task to 100 [ms], and implement ROTEC with σ = 100,
β = 105, and ∆η = 0.001. For comparison purposes, we define
the performance index as PI ,

∫
‖v(t)− r(t)‖2 dt, where the in-

tegration is performed over the duration of the simulations.
Simulation results are shown in Figure 4, where 2000 runs

are presented for Case III. The normalized achieved PIs for all
cases are reported in TABLE 1, where the achieved PI for Case
I is used as the basis for normalization. As seen in this table,
using a large sampling period (Case II) can degrade the per-
formance. ROTEC (Case III) yields a better performance by
computing a sub-optimal solution every 100 ms.

Table 1: System Performance Analysis for Case I, II, and III
Case I Case II Case III

Normalized PI 1 1.82 1.34 (Mean)

Figure 5: The considered fishhook test for investigating rollover prevention.

5.3. Rollover Prevention—Fishhook Test

To investigate the constraint-handling property of ROTEC,
we conduct the fishhook test [70, 71]. This test is a
steer/countersteer maneuver, in which to achieve the maximum
severity, the desired SWA switches when the maximum roll an-
gle is reached. This test is described in Figure 5.

Simulation results are shown in Figure 6. As seen in this
figure, ROTEC ensures that the vehicle will not roll over when
subject to a severe obstacle avoidance maneuver.

5.4. Impact of A High Number of Early Terminations

In this subsection, we study the impact of a high number
of early terminations on the performance of ROTEC. To con-
duct this study, we discretize the vehicle dynamics with a sam-
pling period of 100 msec, but we limit the execution time of
ROTEC to 10 µsec. Such a limitation ensures that the CG task
faces early termination at most of the sampling instants. A high
number of early terminations prevents ROTEC from converg-
ing to the optimal solution at most of the sampling instants.
As seen from Figure 7, this degrades the tracking performance
and slows down the convergence of the CG output to the ref-
erence command. Nevertheless, the constraints are not violated
and convergence of CG output to the reference command is still
achieved.

5.5. Sensitivity Analysis—Impact of σ

We conducted sensitivity analysis of the performance of
ROTEC with respect to the design parameter σ . Figure 8 shows
how σ impacts the performance. From Figure 8 we see that as
σ decreases, the performance of ROTEC degrades. This is con-
sistent with expectations from (29). Note that a large σ also
reduces the number of discarded v̂(η) as a result of violation of
(37), such that the mean number of rejected command signals
is 4 and 0 for σ = 50 and σ = 150, respectively.

5.6. Sensitivity Analysis—Impact of Sampling Period

In this subsection, we study the sensitivity of ROTEC to the
sampling period. For this study, we assume that the vehicle
dynamics are discretized with different sampling periods, and
ROTEC is the only control system running on the processor.
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Figure 6: Simulation results for the fishhook test (2000 runs). The desired SWA
switches when the roll angle reaches its maximum (i.e., x2(t) = 0).

Figure 7: The impact of a high number of early terminations on the tracking
performance obtained by ROTEC.

Figure 8: The impact of σ on the obtained PI from 2000 runs. The green line
shows the mean values.

Figure 9: The impact of sampling period (expressed in ms) on the obtained PI
from 2000 runs. The green line shows the mean values.

Figure 9 shows how sampling period impacts the performance
of closed-loop system. As discussed in Section 2, the larger the
sampling period is, the poorer performance of the CG scheme
could become. This is illustrated in Figure 9.

6. Conclusion

This paper proposed ROTEC (RObust to early TErmination
Command governor), an algorithm capable of maintaining fea-
sibility of command governor by adapting to available compu-
tation times. Variability in time available to perform computa-
tions is a common occurrence in modern Cyber-Physical Sys-
tems, where several tasks can run on the same processor. The
core idea of ROTEC is to use a continuous-time primal-dual
gradient flow algorithm that is run for as long as the proces-
sor is available for computation, and to augment such an algo-
rithm with an acceptance/rejection logic. ROTEC guarantees
constraint satisfaction at all times, and provides a sub-optimal
but feasible and effective solution if early terminated due to
limited computation time. The effectiveness of ROTEC is vali-
dated through simulation studies of vehicle rollover prevention.
The paper shows that ROTEC addresses the availability of lim-
ited computating power, yields an acceptable performance, and
guarantees rollover prevention under severe steer/countersteer
maneuvers.

Future research will consider how other optimization-based
controllers can be implemented in a way that is robust to early
termination and variability in available processor power.
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Appendix

Lemma. Let Mi ∈Rp, and mi ≥ 0, i = 1, · · · ,q be given vectors
and real numbers, respectively. Suppose that it is known that
mi∗ ≥ m > 0 for some i∗ ∈ {1, · · · ,q}. Let

Ωi =

W ∈ Rp

∣∣∣∣∣W =
q

∑
j=1
j,i

m jM j for some m j ≥ 0

 ,

and assume that

−Mi <Ωi, i ∈ {1, · · · ,q}, (Condition z)

Let

J =

(
q

∑
i=1

miMi

)>( q

∑
i=1

miMi

)
.

Then, there exists ε > 0 such that for all mi satisfying the
above assumptions the value of J admits the following bound:

J ≥ εm2 > 0.

Proof. Since mi∗ ≥ m > 0, one can rewrite J as

J =m2
i∗

Mi∗ +
q

∑
i=1
i,i∗

mi

mi∗
Mi


>Mi∗ +

q

∑
i=1
i,i∗

mi

mi∗
Mi



≥m2

∥∥∥∥∥∥∥−Mi∗ −
q

∑
i=1
i,i∗

mi

mi∗
Mi

∥∥∥∥∥∥∥
2

.

Since −Mi∗ <Ωi∗ and Ωi∗ is a closed set, there is a minimum
distance di∗ > 0 between −Mi∗ and the set Ωi∗ . Thus, letting
ε = d2

i∗ completes the proof.
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