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Abstract

The controller state and reference governor (CSRG) is an add-on scheme for nominal closed-loop systems with dynamic
controllers which supervises the controller internal state and the reference input to the closed-loop system to enforce pointwise-
in-time constraints. By admitting both controller state and reference modifications, the CSRG can achieve an enlarged
constrained domain of attraction compared to conventional reference governor schemes where only reference modification is
permitted. This paper studies the CSRG for systems subject to stochastic disturbances and chance constraints. We describe the
CSRG algorithm in such a stochastic setting and analyze its theoretical properties, including chance-constraint enforcement,
finite-time reference convergence, and closed-loop stability. We also present examples illustrating the application of CSRG to
constrained aircraft flight control.
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1 Introduction

Reference governors (RGs) are add-on control schemes
used to protect pre-stabilized, closed-loop systems
against violations of pointwise-in-time constraints
(Garone et al., 2017). They do so by monitoring, and
modifying when necessary, the reference input to the
closed-loop system. Instead of (re-)designing a con-
troller that simultaneously achieves stabilization and
constraint enforcement (as well as other performance
requirements) as in the model predictive control frame-
work (Mayne et al., 2000), the RG setting preserves the
existing/legacy architecture of the closed-loop system,
while augmenting the nominal system with the ability
to handle constraints.

An extension of the RG, called the controller state and
reference governor (CSRG), was proposed for closed-
loop systems with dynamic controllers in McDonough
and Kolmanovsky (2015a). The CSRG monitors and
modifies not only the reference input to the closed-loop
system but also the internal state of the dynamic con-
troller (see Fig. 1). By allowing both controller state and
reference modifications, the constrained domain of at-
traction, i.e., the set of initial states which can be recov-
ered without constraint violation, is enlarged. It is worth
noting that the approach of modifying/resetting con-
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troller state has also been exploited in classical nonlinear
control, mainly for improving control performance. For
instance, Bupp et al. (2000) proposed a control strat-
egy called the resetting virtual absorber, where the con-
troller state is periodically reset to dissipate energy from
a vibrating system. In contrast, the CSRG modifies the
controller state for enforcing constraints, which has not
been broadly investigated before.
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Fig. 1. Schematic of the controller state and reference gov-
ernor (CSRG).

We note that the CSRG is also different from the ex-
tended command governor (ECG) (Gilbert and Ong,
2011). The ECG uses an auxiliary linear system to pre-
dict and plan the future evolution of the reference signal.
As it does not restrict the reference signal modification
over the planning horizon to a constant, as in conven-
tional RGs, it can also lead to an enlarged constrained
domain of attraction (Gilbert and Ong, 2011). However,
the ECG still only modifies the reference input to the
closed-loop system. In contrast, the CSRG also modifies
the internal state of the controller, which is as an ex-
isting part of the closed-loop system. On the one hand,
the extra degree of freedom created by controller state
modification can translate into opportunities to further
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improve performance. On the other hand, due to con-
troller state modification, the theoretical and compu-
tational properties of the CSRG are different from the
ECG. Their analyses also require new techniques, which
are addressed in this paper. The extension of ECG to the
stochastic setting and schemes that combine CSRG and
ECG in deterministic and stochastic settings are worth
investigating. These developments are left to future re-
search.

Conventional RG schemes, including the CSRG studied
in McDonough and Kolmanovsky (2015a), are able to
enforce constraints for deterministic systems (Bemporad
et al., 1997; Bemporad, 1998; Borrelli et al., 2009), or ro-
bustly enforce constraints for systems subject to distur-
bance inputs that take values in compact sets (Gilbert
and Kolmanovsky, 1999; Casavola et al., 2000; Gilbert
and Kolmanovsky, 2002; Gilbert and Ong, 2011; Li et al.,
2020). However, in many application scenarios, the sys-
tem is acted on by disturbances which are represented by
stochastic models. For instance, the effect of wind gusts
on an aircraft can be modeled by stochastic von Kármán
and Dryden’s models (Hoblit, 1988). Electrical loads in
power grids, computational loads in data centers, and
product demand in supply chain management are also
frequently modeled stochastically (Zhang and Li, 2011;
Guo et al., 2013; Li et al., 2021). In this setting, a typical
approach is to impose constraints as chance constraints,
i.e., seek probabilistic guarantees on constraint satisfac-
tion (Birge and Louveaux, 2011).

In recent years, there has been a growing interest in
developing control techniques for systems subject to
stochastic disturbances and chance constraints, mainly
within the stochastic model predictive control frame-
work (see Mesbah (2016); Mesbah et al. (2019) and ref-
erences therein). A RG for chance-constrained systems
was developed in Kalabić et al. (2017, 2019), which ex-
hibited theoretical properties that were analogous to the
ones for conventional RGs, including chance-constraint
enforcement and reference convergence guarantees. An-
other stochastic approach to RG design was proposed in
Osorio and Ossareh (2018), which, differently from Kal-
abić et al. (2017, 2019), treated disturbances that had
compact support but exploited their probabilistic infor-
mation to alleviate the conservativeness of conventional
robust RG designs.

In this paper, we study the CSRG in a stochastic setting.
The contributions of this paper are as follows:

(1) We develop a CSRG scheme for discrete-time lin-
ear systems subject to stochastic disturbances and
chance constraints. This CSRG scheme operates
based on a finitely-determined approximation to a
chance-constrained maximal output admissible set
and online optimization. In particular, two online
algorithms with distinct features are presented.

(2) We analyze theoretical properties of the proposed
CSRG scheme, including finite-determinability of
the used output admissible set, closed-loop chance-
constraint satisfaction, almost-sure finite-time
convergence of the modified reference to constant,

steady-state constraint-admissible commands, and
mean-square stability of the commanded state
set-point. These theoretical properties distinguish
our CSRG scheme versus several other control
techniques for systems subject to stochastic dis-
turbances and chance constraints. For instance,
in stochastic model predictive control, guarantees
on closed-loop chance-constraint satisfaction and
closed-loop stability are typically not easy to es-
tablish (Mesbah, 2016), especially in the presence
of disturbances with unbounded supports (such as
the Gaussian disturbance treated in this paper).

(3) We extend the proposed CSRG scheme from its
nominal formulation for the case of individual
chance constraints to the one that can address joint
chance constraints. We describe two approaches
to this extension and compare their relative con-
servativeness, resulting in guidelines for when one
approach is preferable over the other.

(4) We illustrate the proposed chance-constrained
CSRG scheme through examples representing its
application to constrained aircraft flight control.
With these examples, we also verify that applying
the proposed chance-constrained CSRG can lead
to a considerably larger constrained domain of at-
traction than a stochastic RG with only reference
modification.

The paper is organized as follows. In Section 2, we de-
fine the system and the constraints to be treated. In Sec-
tion 3, we present the chance-constrained CSRG scheme,
including offline construction of the maximal output ad-
missible set and two online CSRG algorithms. In Sec-
tion 4, we analyze theoretical properties of the proposed
CSRG scheme. In Section 5, we extend the scheme from
treating individual chance constraints to treating joint
chance constraints. In Section 6, we present examples il-
lustrating application of CSRG to constrained aircraft
flight control. Finally, Section 7 concludes the paper.

2 Problem Statement

In this paper, we consider systems which can be repre-
sented by discrete-time linear models of the form,

xp(t+ 1) = Axp(t) +Buu(t) +Bww(t), (1a)

y(t) = Cxp(t) +Duu(t) +Dww(t), (1b)

where xp(t) ∈ Rnxp represents the plant state at the
discrete-time instant t ∈ Z≥0, u(t) ∈ Rnu denotes the
control input, w(t) ∈ Rnw denotes an unmeasured dis-
turbance input, and y(t) ∈ Rny represents the system
output.We assume that the following dynamic controller
has been designed to stabilize the system (1),

u(t) = Kpxp(t) +Kuxu(t) +Bvv(t), (2a)

xu(t+ 1) = Apxp(t) +Auxu(t) +Dvv(t), (2b)

where xu(t) ∈ Rnxu denotes the controller state, and
v(t) ∈ Rnv is a reference input determining the set-point
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of the system. The closed-loop system combining (1) and
(2) can be written in the following compact form,

x̄(t+ 1) = Āx̄(t) + B̄vv(t) + B̄ww(t), (3a)

y(t) = C̄x̄(t) + D̄vv(t) + D̄ww(t), (3b)

where x̄(t) = [x⊤p (t), x
⊤
u (t)]

⊤, and

Ā =

[
A+BuKp BuKu

Ap Au

]
, B̄v =

[
BuBv

Dv

]
, B̄w =

[
Bw

0

]
,

(4)

C̄ =
[
C +DuKp DuKu

]
, D̄v = DuBv, D̄w = Dw.

We make the following assumptions:

Assumption 1:Thematrix Ā is Schur, i.e., all eigenvalues
of Ā are strictly inside the unit disc.

Since Ā corresponds to the closed-loop system consist-
ing of the plant (1) and the stabilizing controller (2),
Assumption 1 is reasonable. With Assumption 1, under
any constant reference input v(t) ≡ r, the associated
steady-state values of x̄(t) and y(t), denoted as

x̄∗(r) =

[
x∗p(r)

x∗u(r)

]
= (I − Ā)−1B̄vr, (5a)

y∗(r) =
(
C̄(I − Ā)−1B̄v + D̄v

)
r, (5b)

are exponentially stable in the disturbance-free case (i.e.,
with w(t) ≡ 0).

Assumption 2: The disturbance inputs {w(t)}t∈Z≥0
are

independent and identically distributed (i.i.d) Gaussian
random variables with zero mean and covariance matrix
W . They are also independent of x̄(0) and {v(t)}t∈Z≥0

.
We denote such disturbance inputs as

{w(t)}t∈Z≥0
∼ N (0,W ). (6)

The system is assumed to be subject to the following set
of linear inequality constraints for all t ∈ Z≥0,

G⊤
i y(t) ≤ gi, i = 1, ..., ng, (7)

where Gi ∈ Rny and gi ∈ R. Because the Gaussian dis-
turbance inputs {w(t)}t∈Z≥0

∼ N (0,W ) are not com-
pactly supported, it is generally not possible to enforce
constraints (7) deterministically. Instead, we are inter-
ested in enforcing them with high probabilities – we con-
sider the following set of chance constraints,

P
{
G⊤

i y(t) ≤ gi
}
≥ βi, i = 1, ..., ng, (8)

with βi ∈ (0.5, 1) being specified confidence levels of
constraint satisfaction.

In what follows, we introduce a controller state and ref-
erence governor (CSRG) scheme to enforce (8).

3 Controller State and Reference Governor

The CSRG is an add-on scheme for the closed-loop sys-
tem (3) that supervises the controller state xu(t) and
the reference input v(t) to enforce the constraints (8).
As an extension of both the deterministic CSRG in Mc-
Donough and Kolmanovsky (2015a) and the stochastic
RG in Kalabić et al. (2019), our stochastic CSRG uti-
lizes the following maximal output admissible set,

O∞ =

ng⋂
i=1

Oi
∞, (9)

where Oi
∞ is defined as

Oi
∞ =

{
(xp, xu, v) ∈ Rnxp×Rnxu×Rnv : if xp(0) = xp,

xu(0) = xu, v(t) ≡ v, and {w(t)}t∈Z≥0
∼ N (0,W ),

then P
{
G⊤

i y(t) ≤ gi
}
≥ βi for all t ∈ Z≥0

}
. (10)

With O∞, the CSRG determines the values of xu(t) and
v(t) based on the following optimization problem,

min
xu,v

J (xu, v, xp(t), r(t)) , (11a)

subject to (xp(t), xu, v) ∈ O∞, (11b)

with the cost function defined as

J (xu, v, xp(t), r(t))

=

∥∥∥∥∥
[
xp(t)

xu

]
−

[
x∗p(v)

x∗u(v)

]∥∥∥∥∥
2

P

+ ∥v − r(t)∥2R

=

∥∥∥∥∥
[
xp(t)

xu

]
− (I − Ā)−1B̄vv

∥∥∥∥∥
2

P

+ ∥v − r(t)∥2R , (12)

where xp(t) is the current plant state value, r(t) denotes
the commanded/nominal value of the reference input,
typically provided by a human operator or a higher-level
planning algorithm, and ∥ · ∥P =

√
(·)⊤P (·), ∥ · ∥R =√

(·)⊤R(·) with P,R being positive-definite matrices.
In particular, the matrix P is selected as the positive-
definite solution to the Lyapunov equation,

Ā⊤PĀ− P +Q = 0, (13)

with Q being a positive-definite matrix. Such a choice
of P facilitates the establishment of stability guarantee
of the closed-loop system (see Proposition 4). Note that
the cost function (12) is convex quadratic in the decision
variables (xu, v).
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3.1 Maximal output admissible set

The CSRG enforces the chance constraints (8) using the
maximal output admissible set O∞ defined by (9) and
(10). In this section, we address the explicit expression
and algorithmic determination of O∞.

Given x̄(0) = [x⊤p (0), x
⊤
u (0)]

⊤, v(t) ≡ v and {w(t)}t∈Z≥0

∼ N (0,W ), the outputs of (3) are normally distributed
according to

y(t) ∼ N (ȳ(t),Σy(t)) , (14)

where the mean ȳ(t) is determined as

ȳ(t) = C̄Ātx̄(0) +

(
C̄

t−1∑
k=0

ĀkB̄v + D̄v

)
v, (15)

and the covariance Σy(t) satisfies

Σx(t+ 1) = ĀΣx(t)Ā
⊤ + B̄wWB̄⊤

w , (16a)

Σy(t) = C̄Σx(t)C̄
⊤ + D̄wWD̄⊤

w , (16b)

with Σx(0) = 0. From (16) and Σx(0) = 0, one can also
derive the following explicit expression for Σy(t),

Σy(t) = C̄

(
t−1∑
k=0

ĀkB̄wWB̄⊤
w (Ā⊤)k

)
C̄⊤ + D̄wWD̄⊤

w .

(17)
Based on (14), G⊤

i y(t) ∈ R is normally distributed ac-
cording to

G⊤
i y(t) ∼ N

(
G⊤

i ȳ(t), G
⊤
i Σy(t)Gi

)
. (18)

Then, the probability P
{
G⊤

i y(t) ≤ gi
}
is computed as

P
{
G⊤

i y(t) ≤ gi
}
= Φ

 gi −G⊤
i ȳ(t)√

G⊤
i Σy(t)Gi

 (19)

=
1

2

1 + erf

 gi −G⊤
i ȳ(t)√

2G⊤
i Σy(t)Gi

 ,
where Φ(·) denotes the cumulative distribution function
of the standard normal distribution and erf(·) denotes
the error function

erf(z) =
2√
π

∫ z

0

e−t2 dt. (20)

Note that Φ(·) and erf(·) are related according to Φ(z) =
1
2

[
1 + erf

(
z√
2

)]
.

Then, the chance constraint (8) becomes

1

2

1 + erf

 gi −G⊤
i ȳ(t)√

2G⊤
i Σy(t)Gi

 ≥ βi, (21)

which can be equivalently written as

G⊤
i ȳ(t) = G⊤

i C̄Ā
t

[
xp(0)

xu(0)

]
+G⊤

i

(
C̄

t−1∑
k=0

ĀkB̄v + D̄v

)
v

≤ gi −
√
2G⊤

i Σy(t)Gi erf
−1
(
2βi − 1

)
, (22)

where erf−1(·) denotes the inverse of the error func-
tion erf(·). Note that the Σy(t) in (22), computed from
(16), is independent of (xp(0), xu(0), v), and accord-
ingly, (22) is a linear inequality condition on the triple
(xp(0), xu(0), v).

With (22), the set Oi
∞ defined in (10) can be explicitly

expressed as

Oi
∞ =

{
(xp, xu, v) : G

⊤
i C̄Ā

t

[
xp

xu

]
+G⊤

i

(
C̄

t−1∑
k=0

ĀkB̄v+

D̄v

)
v ≤ gi −

√
2G⊤

i Σy(t)Gi erf
−1
(
2βi − 1

)
,∀t ∈ Z≥0

}
.

(23)

The setOi
∞ in (23) is characterized by an infinite number

of linear inequalities (∀t ∈ Z≥0) and cannot be finitely
determined in general, and so isO∞ =

⋂ng

i=1 Oi
∞. Hence,

we consider inner approximations of Oi
∞ and O∞, de-

noted by Õi
∞ and Õ∞ respectively, which are defined as

Õi
∞ = Oi

∞ ∩
(
Rnxp × Rnxu × Ω̃i

)
, (24a)

Õ∞ =

ng⋂
i=1

Õi
∞, (24b)

where Ω̃i is a compact and convex subset of int(Ωi) with
nonempty interior. The set Ωi ⊂ Rnv is defined as

Ωi =

{
v ∈ Rnv : G⊤

i

(
C̄(I − Ā)−1B̄v + D̄v

)
v

≤ gi −
√
2G⊤

i Σ
∞
y Gi erf

−1
(
2βi − 1

)}
, (25)

if G⊤
i

(
C̄(I − Ā)−1B̄v + D̄v

)
̸= 0, and Ωi = Rnv other-

wise. In (25), Σ∞
y denotes the steady-state covariance of

y, computed from

Σ∞
y = C̄Σ∞

x C̄
⊤ + D̄wWD̄⊤

w , (26)
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where Σ∞
x denotes the steady-state covariance of x̄, i.e.,

Σ∞
x = limt→∞ Σx(t), and is obtained as the solution to

the following Lyapunov equation,

Σ∞
x = ĀΣ∞

x Ā
⊤ + B̄wWB̄⊤

w . (27)

Note that limt→∞ Σx(t) exists and is equal to the
solution of (27), which is guaranteed by Ā be-
ing Schur (Assumption 1). For the latter case with
G⊤

i

(
C̄(I − Ā)−1B̄v + D̄v

)
= 0, we assume gi −√

2G⊤
i Σ

∞
y Gi erf

−1
(
2βi − 1

)
> 0.

Algorithmically, the inner approximation Õ∞ of O∞ is
constructed through the following iterative procedure,

Õt+1 = Õt ∩ Ξt+1, (28)

where Õ0 = Ξ0 ∩
(
Rnxp × Rnxu ×

⋂ng

i=1 Ω̃
i
)
, and

Ξt =

(xp, xu, v) : G
⊤C̄Āt

[
xp

xu

]
+G⊤

(
C̄

t−1∑
k=0

ĀkB̄v+

D̄v

)
v ≤ g −


√
2G⊤

1 Σy(t)G1 erf
−1
(
2β1 − 1

)
...√

2G⊤
ng
Σy(t)Gng erf

−1
(
2βng − 1

)

 ,

(29)

where G ∈ Rny×ng is the matrix with Gi, i = 1, ..., ng,
as its ith column, and g ∈ Rng is the vector with gi as
its ith entry.

Firstly, note that Õt generated by the iterative proce-
dure (28) form a nonincreasing sequence of sets, i.e.,

Õt+1 ⊂ Õt for all t ∈ Z≥0. In this case, the set-theoretic

limit limt→∞ Õt exists and satisfies (Folland, 1999)

lim
t→∞

Õt =

∞⋂
t=0

Õt

=

∞⋂
t=0

((
t⋂

k=0

Ξk

)
∩

(
Rnxp × Rnxu ×

ng⋂
i=1

Ω̃i

))

=

( ∞⋂
t=0

Ξt

)
∩

(
Rnxp × Rnxu ×

ng⋂
i=1

Ω̃i

)
, (30)

where we have expanded Õt according to (28) in the
second line. Then, from the expressions of Oi

∞ in (23),

Õi
∞ in (24a), Õ∞ in (24b), and Ξt in (29), it follows that

lim
t→∞

Õt = Õ∞, (31)

i.e., the sets Õt generated by the iterative procedure (28)

converge to Õ∞.

To construct Õ∞, the iterative procedure (28) chooses
to consider all the constraints for i = 1, ..., ng at each
iteration t by defining Ξt according to (29), instead of

obtaining each Õi
∞ first and constructing Õ∞ then as

the intersection of Õi
∞ according to (24b). This strategy

has been chosen due to its computational advantages: It
enables us to deal with the constraints for i = 1, ..., ng

through vector/matrix operations in (29), which typi-
cally leads to higher computational efficiency than using
for-loops (van de Geijn and Goto, 2011).

The set Õ∞ is finitely determined. This is formally pre-
sented as the following proposition:

Proposition 1: Suppose (C̄, Ā) is observable and
the set defined by the constraints in (7), Y ={
y ∈ Rny : G⊤

i y ≤ gi, i = 1, ..., ng

}
, is bounded. Then,

(i) there exists t∗ ∈ Z≥0 such that Õ∞ = Õt∗ , and (ii)

Õ∞ is compact and convex.

Proof: For any v ∈ Ω̃i ⊂ int(Ωi), there exists εi(v) > 0
such that B2εi(v)(v) ⊂ Ωi, where B2εi(v)(v) denotes the
open ball in Rnv centered at v with radius 2εi(v).

Since Ω̃i is compact and
{
Bεi(v)(v) : v ∈ Ω̃i

}
is an open

cover of Ω̃i, there is a finite subcover
{
Bεi(vj)(vj) : j =

1, ..., Ji
}

⊂
{
Bεi(v)(v) : v ∈ Ω̃i

}
. This means for any

v ∈ Ω̃i, we have v ∈ Bεi(vj)(vj) for some j = 1, ..., Ji.

Let εi = min
{
εi(vj) : j = 1, ..., Ji

}
. Then, for any

v ∈ Ω̃i, we have v ⊕ Bεi(0) ⊂ Bεi(vj)(vj) ⊕ Bεi(vj)(0) =

B2εi(vj)(vj) ⊂ Ωi. According to the definition of Ωi in
(25), v satisfies

G⊤
i

(
C̄(I − Ā)−1B̄v + D̄v

)
v + ε̄i

≤ gi −
√
2G⊤

i Σ
∞
y Gi erf

−1
(
2βi − 1

)
, (32)

where

ε̄i = sup
v∈Bεi

(0)

G⊤
i

(
C̄(I − Ā)−1B̄v + D̄v

)
v > 0 (33)

if G⊤
i

(
C̄(I − Ā)−1B̄v + D̄v

)
̸= 0 and ε̄i = gi −√

2G⊤
i Σ

∞
y Gi erf

−1
(
2βi − 1

)
> 0 otherwise.

Because (C̄, Ā) is observable and Y and
⋂ng

i=1 Ω̃
i are

both bounded, there exists t0 ∈ Z≥0 such that Õt0 con-
structed according to (28) is bounded.

Then, because Ā is Schur, there exists t1 ∈ Z≥t0 such
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that for any (xp, xu, v) ∈ Õt0 , we have

G⊤
i C̄Ā

t

[
xp

xu

]
≤ ε̄i

3
, (34a)

G⊤
i

(
C̄

t−1∑
k=0

ĀkB̄v+D̄v

)
v −G⊤

i

(
C̄(I − Ā)−1B̄v+D̄v

)
v

= −G⊤
i C̄Ā

t(I − Ā)−1B̄vv ≤ ε̄i
3
, (34b)(√

2G⊤
i Σy(t)Gi −

√
2G⊤

i Σ
∞
y Gi

)
erf−1

(
2βi−1

)
≤ ε̄i

3
,

(34c)

for i = 1, ..., ng and all t ∈ Z≥t1 .

Combining (32) and (34), we obtain

G⊤
i C̄Ā

t

[
xp

xu

]
+G⊤

i

(
C̄

t−1∑
k=0

ĀkB̄v + D̄v

)
v

≤ G⊤
i

(
C̄(I − Ā)−1B̄v + D̄v

)
v +

2ε̄i
3

≤ gi −
√

2G⊤
i Σ

∞
y Gi erf

−1
(
2βi − 1

)
− ε̄i

3

≤ gi −
√

2G⊤
i Σy(t)Gi erf

−1
(
2βi − 1

)
, (35)

for i = 1, ..., ng and all t ∈ Z≥t1 . This means for any

(xp, xu, v) ∈ Õt0 , we have (xp, xu, v) ∈ Ξt for all t ∈
Z≥t1 , i.e., Õt0 ⊂ Ξt for all t ∈ Z≥t1 . Therefore, we have

Õ∞ = Õt0 ∩
t1−1⋂
t=t0

Ξt ∩
∞⋂

t=t1

Ξt ⊃ Õt0 ∩
t1−1⋂
t=t0

Ξt ∩ Õt0

= Õt0 ∩
t1−1⋂
t=t0

Ξt = Õt1−1. (36)

Meanwhile, we also have Õ∞ = Õt1−1 ∩
⋂∞

t=t1
Ξt ⊂

Õt1−1, which yields Õ∞ = Õt∗ with t∗ = t1 − 1 ∈ Z≥0.
This proves (i).

For (ii), because Õ∞ = Õt0 ∩
⋂∞

t=t0
Ξt and Õt0

is bounded, Õ∞ is also bounded. Because Õ∞ =(⋂∞
t=0 Ξt

)
∩
(
Rnxp ×Rnxu ×

⋂ng

i=1 Ω̃
i
)
where Ξt, t ∈ Z≥0,

and Rnxp × Rnxu ×
⋂ng

i=1 Ω̃
i are closed and convex, Õ∞

is also closed and convex. This proves the compactness
and convexity of Õ∞. ■

3.2 CSRG algorithms

In this section, we present two CSRG algorithms. The
algorithms are based on the constrained optimization
problem (11) and augmented with additional features to
achieve improved performance.

Algorithm 1: At each discrete-time instant t ∈ Z≥0,

(xu(t), v(t)) = (37)
(x̂u(t), v̂(t)) , if (xp(t), x̄u(t), v(t− 1)) ∈ Õ∞

and (38) is feasible,

(x̄u(t), v(t− 1)) , otherwise,

where x̄u(t) = Apxp(t− 1) +Auxu(t− 1) +Dvv(t− 1),
and the pair (x̂u(t), v̂(t)) is determined as

(x̂u(t), v̂(t)) = argmin
xu,v

J (xu, v, xp(t), r(t)) , (38a)

subject to (xp(t), xu, v) ∈ Õ∞, (38b)

∥v − r(t)∥2R ≤ (max {∥v(t− 1)− r(t)∥R − δ, 0})2 ,
(38c)

with δ > 0 being a sufficiently small constant.

We remark that unlike in the deterministic case (Mc-
Donough and Kolmanovsky, 2015a,b), recursive fea-
sibility of the constrained optimization problem (38)
cannot be guaranteed in our considered stochastic set-
ting. Specifically, because the Gaussian disturbance
variables {w(t)}t∈Z≥0

∼ N (0,W ) are not compactly
supported, there is always a non-zero probability for
the plant state xp(t) to get outside of projxp

(Õ∞),
which denotes the projection of the compact set
Õ∞ ∈ Rnxp ×Rnxu ×Rnv onto the xp-space. Therefore,
we introduce an infeasibility-handling mechanism in
(37). In particular, when (xp(t), x̄u(t), v(t− 1)) /∈ Õ∞
or (38) is infeasible, the controller state and reference
pair (xu(t), v(t)) is set to (x̄u(t), v(t− 1)), which was
previously determined to be chance-constraint admis-
sible. Moreover, it has been observed in Kalabić et al.
(2019) that if the direction of reference modification is
not restricted, a chance-constrained RG may move v(t)
away from r(t), even cause sudden large changes in v(t),
to enforce constraints. This can impede the convergence
of v(t) to r(t) and degrade system performance. There-

fore, ∥v− r(t)∥2R ≤ (max {∥v(t− 1)− r(t)∥R − δ, 0})2 is
added to the optimization problem (38) as an extra con-
straint, (38c), to enforce v̂(t) to be closer to r(t) than the
previous reference value v(t− 1). In particular, (38c) is
a convex quadratic constraint on the decision variable v.

In some circumstances, the convergence of the modified
reference v(t) to the commanded value r(t) is prioritized
so that the system can potentially have faster response to
human operator intention or planning algorithm sched-
ule. For this, the following Algorithm 2 can be used.

Algorithm 2: At each discrete-time instant t ∈ Z≥0,

(xu(t), v(t)) = (39){
(x̂′u(t), r(t)) , if v(t− 1) ̸= r(t) and (40) is feasible,

the solution to (37), otherwise,
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where x̂′u(t) is determined as

x̂′u(t) = argmin
xu

J (xu, r(t), xp(t), r(t)) , (40a)

subject to (xp(t), xu, r(t)) ∈ Õ∞. (40b)

In what follows, we characterize theoretical properties
of our CSRG algorithms, and also extend the CSRG
scheme to treat joint chance constraints.

4 Theoretical Properties

In this section, we analyze theoretical properties of our
CSRG algorithms. Three important properties of the
CSRG scheme are: 1) constraint enforcement, 2) conver-
gence of the modified reference v(t) to constant, steady-
state constraint-admissible commanded value r, and 3)
stability of the commanded set-point x̄∗(r). The first
two are also important properties of conventional RGs
(Garone et al., 2017; Kalabić et al., 2019). Unlike the
conventional RG schemewhere stability of x̄∗(r) is inher-
ited from stability of the nominal closed-loop system, for
the CSRG scheme stability needs to be separately veri-
fied, because the CSRG scheme also modifies the control
input signal u(t) through modifying the controller state
xu(t). Due to the presence of stochastic disturbances,
the techniques for establishing the above three proper-
ties of the chance-constrained CSRG scheme are signifi-
cantly different from the techniques used in McDonough
and Kolmanovsky (2015a) for the deterministic case. For
instance, in the deterministic case these properties are
established based on the positive invariance of the max-
imal output admissible set Õ∞. In contrast, in our con-
sidered stochastic setting the set Õ∞ is not positively in-
variant, as has been discussed above, and consequently,
new techniques for establishing these properties need to
be developed.

Firstly, the following proposition establishes the chance-
constraint enforcement property of our CSRG algo-
rithms. The significance is that with the infeasibility-
handling mechanism that we have introduced, the de-
sired probabilistic constraint enforcement guarantee is
maintained in closed-loop operation of the system. Note
that while chance constraints are incorporated in the
definition of the maximal output admissible set Õ∞,
during the closed-loop operation, the state may exit this
set due to a disturbance realization, in which case our
infeasibility-handling mechanism will be applied. There-
fore, it is not a priori clear if chance constraints will be
satisfied during closed-loop operation. We answer this
conundrum affirmatively.

Proposition 2: Suppose (xp(0), xu(0), v(0)) ∈ Õ∞.
Then, the closed-loop response of the overall system
(consisting of the plant (1), the nominal controller (2),
and the CSRG algorithm 1 or 2) satisfies the chance
constraints (8) for all t ∈ Z≥0.

Proof: Let t ∈ Z≥0 be arbitrary and define τ =

max
{
t′ ∈ Z[0,t] : (xp(t

′), xu(t
′), v(t′)) ∈ Õ∞

}
. Since

it is assumed that (xp(0), xu(0), v(0)) ∈ Õ∞, the set{
t′ ∈ Z[0,t] : (xp(t

′), xu(t
′), v(t′)) ∈ Õ∞

}
is necessarily

non-empty and the variable τ is therefore well-defined.
Note that τ is a random variable with the finite support
Z[0,t]. In particular, we have

t∑
k=0

P {τ = k} = P
{
τ ∈ Z[0,t]

}
= 1. (41)

If τ = k, then according to our CSRG algorithms, the
trajectory of controller state and reference pair must sat-
isfy (xu(t

′), v(t′)) = (x̄u(t
′), v(k)) for all t′ ∈ Z[k+1,t].

In this case, the plant and controller states x̄(t′) =
[x⊤p (t

′), x⊤u (t
′)]⊤ evolve according to (3a) with v(t′) ≡

v(k) over t′ ∈ Z[k,t]. Since (xp(k), xu(k), v(k)) ∈ Õ∞ ⊂
Oi

∞ and the dynamics of x̄(t′) = [x⊤p (t
′), x⊤u (t

′)]⊤ follow
(3a) with v(t′) ≡ v(k) for t′ ∈ Z[k,t], using the definition

of Oi
∞ in (10), we have

P
{
G⊤

i y(t) ≤ gi
∣∣τ = k

}
≥ βi. (42)

Note that this holds for all k = 0, ..., t and all i =
1, ..., ng.

Combining (41) and (42), we obtain

P
{
G⊤

i y(t) ≤ gi
}
=

t∑
k=0

P
{
G⊤

i y(t) ≤ gi
∣∣τ = k

}
P {τ = k}

≥ βi

t∑
k=0

P {τ = k} = βi, (43)

for i = 1, ..., ng. As t ∈ Z≥0 is arbitrary, the result fol-
lows. ■

We next discuss the convergence property of the mod-
ified reference v(t) to commanded value r(t). To begin
with, we introduce the following lemma, which will be
used to prove the main convergence result Proposition 3.

Lemma 1: Given Õ∞, there exists ε > 0 such that
Bε (x̄

∗(v)) × {v} ⊂ Õ∞ for any v ∈
⋂ng

i=1 Ω̃
i, where

Bε (x̄
∗(v)) denotes the open ball in Rnxp+nxu centered

at x̄∗(v) with radius ε.

Proof: Firstly, it is easily seen from (17) that for any
t ∈ Z≥0, Σy(t + 1) − Σy(t) = (C̄ĀtB̄w)W (C̄ĀtB̄w)

⊤ is
positive semi-definite, denoted as Σy(t+1) ⪰ Σy(t). As
a result, it holds that Σ∞

y ⪰ Σy(t) for all t ∈ Z≥0, where
Σ∞

y denotes the steady-state covariance of y, computed

from (26). In turn,
√

2G⊤
i Σ

∞
y Gi ≥

√
2G⊤

i Σy(t)Gi for

all t ∈ Z≥0 and i = 1, ..., ng.

Then, referring to (32) in the proof of Proposition 1, for
each i = 1, ..., ng, there exists ε̄i > 0 such that for any
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v ∈ Ω̃i, we have

G⊤
i

(
C̄(I − Ā)−1B̄v + D̄v

)
v + ε̄i

≤ gi −
√
2G⊤

i Σ
∞
y Gi erf

−1
(
2βi − 1

)
≤ gi −

√
2G⊤

i Σy(t)Gi erf
−1
(
2βi − 1

)
, (44)

for all t ∈ Z≥0.

Now let

ε = min

{
ε̄i

supt≥0 ∥G⊤
i C̄Ā

t∥
: i = 1, ..., ng

}
. (45)

Because Ā is Schur (Assumption 1), supt≥0 ∥G⊤
i C̄Ā

t∥ >
0 is finite, and in turn, ε defined above satisfies ε > 0.

Combining (44) and (45), we obtain that for any v ∈⋂ng

i=1 Ω̃
i and x̄ ∈ Bε (x̄

∗(v)),

G⊤
i C̄Ā

tx̄+G⊤
i

(
C̄

t−1∑
k=0

ĀkB̄v + D̄v

)
v

= G⊤
i C̄Ā

tx̄∗(v) +G⊤
i

(
C̄

t−1∑
k=0

ĀkB̄v + D̄v

)
v

+G⊤
i C̄Ā

t (x̄− x̄∗(v))

≤ G⊤
i

(
C̄(I − Ā)−1B̄v + D̄v

)
v + ∥G⊤

i C̄Ā
t∥ ∥x̄− x̄∗(v)∥

≤ G⊤
i

(
C̄(I − Ā)−1B̄v + D̄v

)
v + ε̄i

≤ gi −
√

2G⊤
i Σy(t)Gi erf

−1
(
2βi − 1

)
, (46)

holds for all t ∈ Z≥0 and i = 1, ..., ng. According to

the definition of Õ∞ in (23) and (24), the above (46)

implies Bε (x̄
∗(v))×{v} ⊂ Õ∞ for any v ∈

⋂ng

i=1 Ω̃
i. This

completes the proof. ■

We now show the almost-sure finite-time convergence
property of the modified reference v(t) to constant,
steady-state constraint-admissible commands in the
following proposition. We remark that this almost-sure
finite-time convergence result is a stronger convergence
result than the convergence in probability result es-
tablished in Theorem 7 of Kalabić et al. (2019) for the
stochastic RG. The reason our result here is stronger is
because almost-sure convergence implies convergence in
probability, but not vice versa (Folland, 1999).

Proposition 3: Suppose (i) (xp(0), xu(0), v(0)) ∈ Õ∞,
(ii) Σ∞

x is nonsingular, and (iii) there exists ts ∈ Z≥0

such that r(t) = rs ∈
⋂ng

i=1 Ω̃
i for all t ∈ Z≥ts . Then, the

modified reference v(t) almost surely (a.s.) converges to
rs in finite time, i.e.,

P
{
∃tf ∈ Z≥ts such that v(t) = rs,∀t ∈ Z≥tf

}
= 1.

(47)

Proof: Firstly, the constraint (38c) ensures that any re-
alization of the sequence {∥v(t)− rs∥R}∞t=ts

generated

by the CSRG must be nonincreasing. Since ∥v(t)− rs∥R
is also bounded from below by 0, any realization of
{∥v(t)− rs∥R}∞t=ts

must converge to some η∗ ∈ R≥0.

More specifically, with (38c), whenever v(t) differs from
its previous value v(t − 1), it must hold that either
∥v(t)− rs∥R ≤ ∥v(t− 1)− rs∥R − δ, with δ being a pos-
itive constant, or ∥v(t) − rs∥R = 0. This ensures that
any realization of {∥v(t)− rs∥R}∞t=ts

must converge to

its corresponding η∗ through at most a finite/bounded
number of jumps and the sequence {v(t)}∞t=ts

converges
to some v∗ ∈ Rnv after these jumps. Note that due to
the stochastic nature of the system (3), the η∗ and v∗

are random variables. In what follows we show that with
probability 1, η∗ = 0 and v∗ = rs.

Assume the opposite, i.e., {v(t)}∞t=ts
converges to some

v∗ ̸= rs. In the above we have shown that {v(t)}∞t=ts
must reach v∗ after a finite number of jumps, which also
implies that {v(t)}∞t=ts

reaches v∗ in finite time. Denote

the time instant when {v(t)}∞t=ts
reaches v∗ as t∗ ∈ Z≥ts .

In particular, v(t) = v∗ ̸= rs for all t ∈ Z≥t∗ .

In this case, the constraint (38c) would never be satis-
fied over t ∈ Z≥t∗ , and according to the CSRG algo-
rithm (37), xu(t) = x̄u(t) = Apxp(t − 1) + Auxu(t −
1) + Dvv(t − 1) for all t ∈ Z≥t∗ . This implies that the

sequence {x̄(t)}∞t=t∗ =
{
[x⊤p (t), x

⊤
u (t)]

⊤}∞
t=t∗

would be
a Gaussian Markov process generated by the recursion
(3a) with v(t) ≡ v∗. Then, because Σ∞

x is assumed to
be nonsingular, the Strong Law of Large Numbers for
Markov chains (Meyn and Caines, 1991) says that the
following,

lim
N→∞

1

N

t∗+N−1∑
t=t∗

f
(
x̄(t)

) a.s.
=

∫
Rnxp+nxu

f dµ∗, (48)

would hold for any positive Borel function f onRnxp+nxu

and almost every initial condition x̄(t∗) ∈ Rnxp+nxu ,
where µ∗ is the Gaussian measure with mean x̄∗(v∗) and
covariance Σ∞

x (Bogachev, 1998).

Because v∗ is generated by the CSRG, it must hold
that v∗ ∈ projv(Õ∞) ⊂

⋂ng

i=1 Ω̃
i. Now consider f =

IBε/2(x̄∗(v∗)), i.e., the indicator function of the open ball

Bε/2(x̄
∗(v∗)) ⊂ Rnxp+nxu , where ε > 0 is defined accord-

ing to (45). In this case, (48) yields

lim
N→∞

1

N

t∗+N−1∑
t=t∗

IBε/2(x̄∗(v∗))

(
x̄(t)

)
(49)

a.s.
=

∫
Rnxp+nxu

IBε/2(x̄∗(v∗)) dµ
∗ = µ∗(Bε/2(x̄

∗(v∗))
)
> 0,

which implies the existence of N ′ ∈ Z≥0 such that∑t∗+N ′−1
t=t∗ IBε/2(x̄∗(v∗))

(
x̄(t)

)
> 0. And this in turn im-
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plies the existence of t′ ∈ Z[t∗,t∗+N ′−1] ⊂ Z≥t∗ such

that x̄(t′) = [x⊤p (t
′), x̄⊤u (t

′)]⊤ ∈ Bε/2(x̄
∗(v∗)). Then,

according to Lemma 1, we have (xp(t
′), x̄u(t

′), v∗) ∈
Bε/2(x̄

∗(v∗))× {v∗} ⊂ Õ∞.

Now let ξi = supt≥0 ∥G⊤
i (C̄

∑t−1
k=0 Ā

kB̄v + D̄v)∥, which
is finite because Ā is Schur, and consider ∆v satisfying
∥∆v∥ ≤ min

{
ε̄i/(2ξi) : i = 1, ..., ng

}
, where ε̄i > 0

is defined as in (33). Referring to (46) in the proof of
Lemma 1, we obtain that

G⊤
i C̄Ā

tx̄(t′) +G⊤
i

(
C̄

t−1∑
k=0

ĀkB̄v + D̄v

)
(v∗ +∆v)

= G⊤
i C̄Ā

tx̄∗(v∗) +G⊤
i

(
C̄

t−1∑
k=0

ĀkB̄v + D̄v

)
v∗

+G⊤
i C̄Ā

t (x̄(t′)− x̄∗(v∗)) +G⊤
i

(
C̄

t−1∑
k=0

ĀkB̄v + D̄v

)
∆v

≤ G⊤
i

(
C̄(I − Ā)−1B̄v + D̄v

)
v∗

+ ∥G⊤
i C̄Ā

t∥ ∥x̄(t′)− x̄∗(v)∥+ ξi ∥∆v∥,

≤ G⊤
i

(
C̄(I − Ā)−1B̄v + D̄v

)
v∗ + ε̄i

≤ gi −
√
2G⊤

i Σy(t)Gi erf
−1
(
2βi − 1

)
, (50)

for all t ∈ Z≥0 and i = 1, ..., ng.

Note that since v∗ and rs both belong to the convex
set
⋂ng

i=1 Ω̃
i, any v∗ + ∆v that lies on the line segment

connecting v∗ and rs also belongs to
⋂ng

i=1 Ω̃
i. This can

be expressed as v∗ +∆v ∈
⋂ng

i=1 Ω̃
i for any ∆v that can

be written as ∆v = λ(rs − v∗) for some λ ∈ [0, 1]. Then,
this, together with (50) and according to the definition

of Õ∞ in (23) and (24), leads to the following result: For
any ∆v = λ(rs − v∗) with λ satisfying 0 ≤ λ ≤ λ̄ =
min

{
min

{
ε̄i/(2ξi∥rs − v∗∥) : i = 1, ..., ng

}
, 1
}
, it holds

that (xp(t
′), x̄u(t

′), v∗ +∆v) ∈ Õ∞.

Recall that the δ > 0 in (38c) is a sufficiently small con-
stant. Now consider δ ≤ min

{
ε̄i/(2ξic) : i = 1, ..., ng

}
,

where c > 0 is a constant such that ∥ · ∥ ≤ c ∥ · ∥R (ac-
cording to the equivalence of norms on Rnv ). Then, for
∆v = λ̄(rs − v∗), we have

∥v∗ − rs∥R − ∥v∗ +∆v − rs∥R
= ∥v∗ − rs∥R − ∥v∗ + λ̄(rs − v∗)− rs∥R
= ∥v∗ − rs∥R − (1− λ̄)∥v∗ − rs∥R = λ̄ ∥v∗ − rs∥R

= min

{
min

{
ε̄i∥v∗ − rs∥R
2ξi∥v∗ − rs∥

: i = 1, ..., ng

}
, ∥v∗ − rs∥R

}
≥ min

{
min

{
ε̄i
2ξic

: i = 1, ..., ng

}
, ∥v∗ − rs∥R

}
≥ min {δ, ∥v∗ − rs∥R} , (51)

which can be equivalently written as ∥v∗+∆v− rs∥2R ≤
(max {∥v∗ − rs∥R − δ, 0})2.

Therefore, we have shown that the pair (x̄u(t
′), v∗ +∆v) =(

x̄u(t
′), v∗ + λ̄(rs − v∗)

)
is a feasible solution to the

optimization problem (38). Recall we have also shown

above that (xp(t
′), x̄u(t

′), v∗) ∈ Õ∞. In this case, ac-
cording to the CSRG algorithm (37), at t′ ∈ Z≥t∗

we should have (xu(t
′), v(t′)) = (x̂u(t

′), v̂(t′)), with
(x̂u(t

′), v̂(t′)) being the optimal solution to (38). In par-
ticular, the constraint (38c) ensures v̂(t′) ̸= v∗ (note
that we have assumed v∗ ̸= rs).

This contradicts our assumption that {v(t)}∞t=ts
con-

verges to some v∗ ̸= rs. Since at the beginning of the
proof we have shown that any realization of the sequence
{v(t)}∞t=ts

must converge to some point, such a contra-
diction says that the converged point must be v∗ = rs.

To sum up, we have shown that the sequence {v(t)}∞t=ts
generated by the CSRG almost surely converges to rs
after a finite/bounded number of jumps, which also im-
plies the convergence occurs (i.e., the limit point rs is
reached) within a finite amount of time. Note that the
“almost surely” comes from the almost sure equality in
(48) and (49). This result can also be explicitly expressed
as (47). ■

On the basis of the convergence result of the modi-
fied reference v(t) to constant, steady-state constraint-
admissible commanded reference rs in Proposition 3, we
now discuss the stability property of the commanded
set-point x̄∗(rs). In our considered stochastic setting,
the stability of x̄∗(rs) is characterized by the following
Proposition 4 and Remark 1.

Proposition 4: Let tf ∈ Z≥ts denote the time instant
such that v(t) = rs for all t ∈ Z≥tf . Then, for t ∈ Z≥tf ,
the difference between x̄(t) and x̄∗(rs) is exponentially
bounded in mean square (Tarn and Rasis, 1976). In par-
ticular, we have

E
{
∥x̄(t)− x̄∗(rs)∥2

∣∣x̄(tf )} ≤
µ

α
+ (1− α)t−tf ∥x̄(tf )− x̄∗(rs)∥2, (52)

for some constants µ > 0 and α ∈ (0, 1].

Proof: Let t ∈ Z≥tf be arbitrary. Define ζ(t) = x̄(t) −
x̄∗(rs) and consider the function V (ζ(t)) = ∥ζ(t)∥2P =
J (xu(t), rs, xp(t), rs). If (xp(t + 1), x̄u(t + 1), v(t) =

rs) ∈ Õ∞, then (37) yields that (xu(t+ 1), v(t+ 1)) =
(x̂u(t+ 1), v̂(t+ 1)) with (x̂u(t+ 1), v̂(t+ 1)) deter-
mined by (38). In this case, both (x̄u(t+ 1), rs)
and (x̂u(t+ 1), v̂(t+ 1)) are feasible solutions to
(38), with (x̂u(t+ 1), v̂(t+ 1)) being the optimal
one. Indeed, the constraint (38c) also ensures v̂(t +
1) = rs. As a result, we must have V (ζ(t+ 1)) =
J (x̂u(t+ 1), rs, xp(t+ 1), rs) ≤ J(x̄u(t + 1), rs, xp(t +

1), rs). If (xp(t+ 1), x̄u(t+ 1), v(t) = rs) /∈ Õ∞, then
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(37) yields that (xu(t+ 1), v(t+ 1)) = (x̄u(t+ 1), v(t) = rs),
and in turn, V (ζ(t+ 1)) = J (xu(t+ 1), rs, xp(t+ 1), rs) =
J (x̄u(t+ 1), rs, xp(t+ 1), rs).

For given x̄(t) = [x⊤p (t), x
⊤
u (t)]

⊤, we have

E
{
J (x̄u(t+ 1), rs, xp(t+ 1), rs)

∣∣x̄(t)}
= E

{∥∥Āx̄(t) + B̄vrs + B̄ww(t)− (I − Ā)−1B̄vrs
∥∥2
P

∣∣∣x̄(t)}
= E

{∥∥Āζ(t) + B̄ww(t)
∥∥2
P

∣∣∣ζ(t)}
= E

{
ζ(t)⊤

(
Ā⊤PĀ

)
ζ(t) + 2w(t)⊤

(
B̄⊤

wPĀ
)
ζ(t)

+ w(t)⊤
(
B̄⊤

wPB̄w

)
w(t)

∣∣∣ζ(t)}
= ζ(t)⊤ (P −Q) ζ(t) + E

{
w(t)⊤

(
B̄⊤

wPB̄w

)
w(t)

}
= V (ζ(t))− ∥ζ(t)∥2Q + trace

(
W
(
B̄⊤

wPB̄w

))
. (53)

Then, using the pointwise inequality V (ζ(t+ 1)) ≤
J (x̄u(t+ 1), rs, xp(t+ 1), rs) shown above and the
equivalence of norms on Rnxp+nxu , we obtain

E
{
V (ζ(t+ 1))

∣∣ζ(t)}
≤ E

{
J (x̄u(t+ 1), rs, xp(t+ 1), rs)

∣∣x̄(t)}
≤ µ+ (1− α)V (ζ(t)) , (54)

where µ = trace
(
W
(
B̄⊤

wPB̄w

))
and α ∈ (0, 1] is such

that
√
α ∥ · ∥P ≤ ∥ · ∥Q.

Since the t ∈ Z≥tf is arbitrary, (54) also yields

E
{
V (ζ(t+ 2))

∣∣ζ(t)}
= E

{
E
{
V (ζ(t+ 2))

∣∣ζ(t+ 1)
} ∣∣∣ζ(t)}

≤ E
{
µ+ (1− α)V (ζ(t+ 1))

∣∣ζ(t)}
= µ+ (1− α)E

{
V (ζ(t+ 1))

∣∣ζ(t)}
≤ µ+ (1− α)

(
µ+ (1− α)V (ζ(t))

)
=

(
1∑

i=0

(1− α)i

)
µ+ (1− α)2V (ζ(t)) . (55)

Continuing this way, we obtain

E
{
V (ζ(tf + n))

∣∣ζ(tf )}
=

(
n−1∑
i=0

(1− α)i

)
µ+ (1− α)nV (ζ(tf ))

≤ µ

α
+ (1− α)nV (ζ(tf )) . (56)

Then, (52) follows from (56) and the equivalence of
norms on Rnxp+nxu . ■

Remark 1: Note first that the existence of the finite
time tf ∈ Z≥ts in Proposition 4 is almost surely guar-
anteed (see Proposition 3). The difference between x̄(t)

and the commanded set-point x̄∗(rs) being exponen-
tially bounded in mean square as in (52) also yields that
x̄∗(rs) is asymptotically stable in mean square in the
large (Tarn and Rasis, 1976), since as t→ ∞,

E
{
lim
t→∞

∥x̄(t)− x̄∗(rs)∥2
}
≤ µ

α
. (57)

Note that we have dropped the condition on x̄(tf ) from
the expectation since the right-hand side does not de-
pend on x̄(tf ) (Tarn and Rasis, 1976).

5 Extension to Joint Chance Constraints

The CSRG formulation introduced in Section 3 uses the
maximal output admissible set Õ∞ to treat the set of
individual chance constraints in (8). However, one may
sometimes be interested in treating chance constraints
in the following form,

P
{
G⊤

i y(t) ≤ gi, i = 1, ..., ng

}
≥ β, (58)

with β ∈ (0.5, 1), called a joint chance constraint. In this
section, we extend the CSRG scheme to treat such joint
chance constraints.

In principle, one could define a maximal output admis-
sible set similar to the one defined in (9) and (10) but
corresponding to the joint chance constraint (58) as fol-
lows,

O∞ =
{
(xp, xu, v) ∈ Rnxp×Rnxu×Rnv : if xp(0) = xp,

xu(0) = xu, v(t) ≡ v, and {w(t)}t∈Z≥0
∼ N (0,W ),

then P
{
G⊤

i y(t) ≤ gi, i = 1, ..., ng

}
≥ β for all t ∈ Z≥0

}
.

(59)

Then, with this new O∞ set, one could formulate the
CSRG algorithms similarly as before. However, the ex-
act construction of the aboveO∞ set requires evaluation
of P

{
G⊤

i y(t) ≤ gi, i = 1, ..., ng

}
, which involves integra-

tion of the density function of a multivariate normal dis-
tribution over a polyhedral set and is in general compu-
tationally challenging (Khachiyan, 1989). Furthermore,
this O∞ set cannot be characterized by a collection of
linear inequalities as in (23), which could also cause the
online problems (38) and (40) to be difficult to solve.

Therefore, in what follows we pursue inner approxima-
tions of the aboveO∞ set that are easier to compute and
will use such approximations to formulate our CSRG al-
gorithms instead of directly using O∞. In particular, we
consider the following two approximation approaches:
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5.1 Risk allocation

Note the left-hand side of (58) can be lower bounded as

P
{
G⊤

i y(t) ≤ gi, i = 1, ..., ng

}
= P

{
ng⋂
i=1

(
G⊤

i y(t) ≤ gi
)}

= 1− P

{
ng⋃
i=1

(
G⊤

i y(t) > gi
)}

≥ 1−
ng∑
i=1

P
{
G⊤

i y(t) > gi
}

= 1−
ng∑
i=1

(
1− P

{
G⊤

i y(t) ≤ gi
})

=

ng∑
i=1

P
{
G⊤

i y(t) ≤ gi
}
− (ng − 1), (60)

where we have used Boole’s inequality in the second line.
Then, it can be easily seen that one can enforce the
joint chance constraint (58) through enforcing the set
of individual chance constraints (8) with some βi, i =
1, ..., ng, satisfying

ng∑
i=1

βi ≥ β + (ng − 1). (61)

The parameters βi, i = 1, ..., ng, could be treated as opti-
mization variables to reduce conservativeness in the ap-
proximation (Blackmore and Ono, 2009; Paulson et al.,
2020). This way, the constraint functions in (23) charac-
terizing the Oi

∞ set would be nonlinear functions of the
variables (xp, xu, v, βi). To render linear constraints so
as to simplify both the offline construction of Oi

∞ and
the online problems (38) and (40), an alternative way is
to pre-specify the values of βi, i = 1, ..., ng, such that
the condition (61) is satisfied. A typical choice as in Ne-
mirovski and Shapiro (2007) is given by

βi =
β + (ng − 1)

ng
, i = 1, · · · , ng. (62)

To sum up, to treat the joint chance constraint (58), the
CSRG algorithms are formulated as in Section 3, with
the βi, i = 1, ..., ng, determined according to (62). Fol-
lowing Blackmore and Ono (2009); Paulson et al. (2020),
this approach to treating joint chance constraints is re-
ferred to as the risk allocation approach.

5.2 β-level confidence ellipsoid

Another approach to guaranteeing satisfaction of the
joint chance constraint (58) is to enforce the β-level con-
fidence ellipsoid of y(t) to be entirely contained in the
constraint set. Specifically, the following set of condi-
tions are enforced,

G⊤
i P(t) ≤ gi, i = 1, · · · , ng, (63)

in which P(t) =
{
y ∈ Rny : (y − ȳ(t))

⊤
(Σy(t))

−1

(y − ȳ(t)) ≤ F−1(β, ny)
}
is the β-level confidence ellip-

soid of y(t) ∼ N (ȳ(t),Σy(t)), where F (·, ny) denotes the
cumulative distribution function of the χ2-distribution
with ny degrees of freedom. Note that (63) guarantees

P
{
G⊤

i y(t) ≤ gi, i = 1, ..., ng

}
≥ P

{(
G⊤

i y(t) ≤ gi, i = 1, ..., ng

)
∩
(
y(t) ∈ P(t)

)}
= P

{
y(t) ∈ P(t)

}
= β, (64)

where we have used (63) to derive the equality be-
tween the second and the third lines. Note also that
the support function of the confidence ellipsoid P(t) is

hP(t)(y) = y⊤ȳ(t) +
√
F−1(β, ny) y⊤Σy(t)y (Kurzhan-

ski and Varaiya, 2000). Then, according to Theorem 2.3
of Kolmanovsky and Gilbert (1998), the conditions in
(63) can be equivalently expressed as

G⊤
i ȳ(t) = G⊤

i C̄Ā
t

[
xp(0)

xu(0)

]
+G⊤

i

(
C̄

t−1∑
k=0

ĀkB̄v + D̄v

)
v

≤ gi −
√
F−1

(
β, ny

)
G⊤

i Σy(t)Gi . (65)

Therefore, to treat the joint chance constraint (58), the
CSRG algorithms are formulated similarly as in Sec-
tion 3, but with the linear inequalities characterizing the
Oi

∞ set, (22), replaced with the above (65). This ap-
proach to treating joint chance constraints has been ex-
ploited in Van Hessem and Bosgra (2006); Kalabić et al.
(2019), referred to as the confidence ellipsoid approach.

5.3 Comparison

The risk allocation approach and the confidence ellipsoid
approach both can guarantee the satisfaction of the joint
chance constraint (58), shown in (60) and (64), respec-
tively. However, probability inequalities are exploited in
(60) and (64) to achieve this guarantee, which typically
cause the feasible set to shrink and result in conserva-
tiveness. We now compare the relative conservativeness
of the two approaches.

Recall that in the risk allocation approach, (58) is con-
verted into a set of constraints on the mean ȳ(t) as fol-
lows:

G⊤
i ȳ(t) ≤ (66)

gi −
√
2 erf−1

(
2
β + (ng − 1)

ng
− 1

)√
G⊤

i Σy(t)Gi,

for i = 1, ..., ng; while in the confidence ellipsoid ap-
proach, the following set of constraints on ȳ(t) are en-
forced:

G⊤
i ȳ(t) ≤ gi −

√
F−1

(
β, ny

)√
G⊤

i Σy(t)Gi , (67)
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for i = 1, ..., ng.

It can be seen that (66) and (67) are both linear in-
equalities on ȳ(t), with the same left-hand side G⊤

i ȳ(t)
and constant right-hand sides. Note that the right-hand
sides are constants because the covariance Σy(t), deter-
mined according to (17), is independent of the variables
(xp(0), xu(0), v). Based on such an observation, the rela-
tive conservativeness of the risk allocation approach and
the confidence ellipsoid approach can be determined by
comparing the right-hand sides of (66) and (67). Specifi-
cally, in the case where (66) has a greater right-hand side
than (67), which implies that the feasible set character-
ized by (66) is a superset of that characterized by (67),
the risk allocation approach is less conservative than the
confidence ellipsoid approach; and vice versa. Further-
more, which one between the right-hand sides of (66)
and (67) is greater can be determined by the sign of the
following function,

Γ(ny, ng, β) = (68)
√
2 erf−1

(
2
β + (ng − 1)

ng
− 1

)
−
√
F−1

(
β, ny

)
,

which depends only on the dimension of the output
vector ny, the number of constraints ng and the re-
quired confidence level of constraint satisfaction β, but
not on time t, specific system dynamics (3) or constraints
(Gi, gi). In particular, the relationship between the sign
of (68) and the relative conservativeness of the two ap-
proaches is characterized by the following proposition.

Proposition 5: If in (68), Γ(ny, ng, β) < 0, then the fea-
sible set corresponding to the risk allocation approach is
a strict superset of that corresponding to the confidence
ellipsoid approach, i.e., the risk allocation approach is
less conservative than the confidence ellipsoid approach;
if Γ(ny, ng, β) = 0, then the two approaches are equally
conservative; if Γ(ny, ng, β) > 0, then the risk alloca-
tion approach is more conservative than the confidence
ellipsoid approach.

Proof: It can be easily seen that if Γ(ny, ng, β) < 0,
then for any i = 1, ..., ng and t ∈ Z≥0, (66) has a strictly
greater right-hand side than (67), which implies that the
feasible set characterized by (66) is a strict superset of
that characterized by (67), i.e., the risk allocation ap-
proach is less conservative than the confidence ellipsoid
approach. The other two cases can be shown in a similar
way. ■

Remark 2: Although stated in the context of our
chance-constrained CSRG, Proposition 5 represents a
more general result on the relative conservativeness of
the risk allocation approach with equal risks (62) and
the confidence ellipsoid approach to treating the joint
chance constraint (58). This result can also be used in
other chance-constrained control techniques, such as in
stochastic model predictive control (Mesbah, 2016).

For a specific joint chance constrained problem with
given (ny, ng, β) values, one can refer to Proposition 5

to choose between the risk allocation approach and the
confidence ellipsoid approach to achieve a less conserva-
tive CSRG design. Fig. 2 shows the graph of the function
Γ(ny, ng, β) when β is fixed at 0.98. In Fig. 2, the data
points marked by blue (yellow) correspond to the cases
where the risk allocation approach (the confidence ellip-
soid approach) is less conservative. It can be seen that
for cases with small ny and large ng, the confidence el-
lipsoid approach is less conservative; the risk allocation
approach is less conservative for all other cases.

ng
ny

Γ

Fig. 2. Graph of Γ(ny, ng, β) for β = 0.98.

6 CSRG Application to Aircraft Flight Control

We now use numerical examples to illustrate the CSRG
application to constrained control of aircraft. The air-
craft models used in this section are taken from Mc-
Donough and Kolmanovsky (2015a,b), which are gener-
ated using the NASA generic transport model (GTM)
(Cunningham et al., 2008) at the trim condition of alti-
tude h0 = 800 ft, airspeed U0 = 118.15 ft/s (70 knots),
sideslip angle β0 = 0 rad, flight path angle γ0 = 0 rad,
and yaw rate ψ̇0 = 0 rad/s.

6.1 Constrained longitudinal flight control

The aircraft longitudinal dynamics are represented by
the following continuous-time linear model,
∆U̇

∆α̇

∆q̇

∆θ̇

 =


−0.0665 −11.4608 0.1439 −32.1740

−0.0035 −2.4714 0.9514 0

−0.0090 −43.9070 −3.4738 0

0 0 1 0


︸ ︷︷ ︸

=Alon


∆U

∆α

∆q

∆θ



+


−0.0435 0.1424

−0.0043 −0.0001

−0.7662 0.0192

0 0


︸ ︷︷ ︸

=Blon
u

[
∆δe

∆δT

]
−


−0.0665 −11.4608

−0.0035 −2.4714

−0.0090 −43.9070

0 0


︸ ︷︷ ︸

=Blon
w

[
wx

wz

]
,

(69)
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where the states xlonp = [∆U,∆α,∆q,∆θ]⊤ represent the
deviations in longitudinal airspeed (ft/s), angle of attack
(rad), pitch rate (rad/s) and pitch angle (rad), respec-
tively, the control inputs ulon = [∆δe,∆δT ]

⊤ represent
the deviations in elevator angle (rad) and thrust throttle
percentage, and wlon = [wx, wz]

⊤ represents effects of
model mismatch, atmospheric disturbances/turbulence,
etc. in the longitudinal and vertical directions. The treat-
ment of more general, dynamic models for atmospheric
disturbances is out of scope of this paper but will be ad-
dressed in future work. The continuous-time model (69)
is converted to a discrete-time model using zero-order
hold on the inputs with a sampling period of ∆T = 0.1 s
for the nominal controller and our CSRG design.

We consider a state-feedback controller with integral ac-
tion for tracking commanded flight path angles ∆γ =
−∆α+∆θ. The controller takes the form of (2), where

K lon
p =

[
−0.4735 −37.7045 2.4948 46.3031

−2.4179 38.5827 0.2705 −33.6410

]
,

K lon
u =

[
2.2715

−6.1106

]
, Blon

v =

[
0

0

]
, (70)

with the integrator

xlonu (t+ 1) =
[
0 − 1 0 1

]︸ ︷︷ ︸
=Alon

p

xlonp + xlonu (t)−∆γcom(t).

(71)
We note that this controller design is motivated by
the longitudinal flight controllers proposed in Mc-
Donough and Kolmanovsky (2015a,b). In particular,
the gains K lon = [K lon

p ,K lon
u ] are obtained by solv-

ing a discrete-time Linear-Quadratic-Regulator (LQR)

problem with Ālon
open =

[
Alon 0

Alon
p 1

]
, B̄lon

u =

[
Blon

u

0

]
and

Qlon = diag(10, 10, 10, 10, 100), Rlon = diag(10, 1).

We assume that the aircraft operation is subject to the
following set of constraints on the states and control
inputs,

− 20 ≤ ∆U(t) ≤ 20, − π

32
≤ ∆α(t) ≤ π

24
,

− π

12
≤ ∆q(t) ≤ π

12
, −π

6
≤ ∆θ(t) ≤ π

6
, (72)

− π

6
≤ ∆δe(t) ≤

π

6
, −25 ≤ ∆δT (t) ≤ 25.

The disturbance wlon = [wx, wz]
⊤ is modeled as a

Gaussian noise. In particular, we assume the inputs
{wlon(t)}t∈Z≥0

to satisfy Assumption 2 with

{wlon(t)}t∈Z≥0
∼ N

(
0,diag(10−2, 10−4)

)
. (73)

Firstly, we simulate the response of the nominal closed-
loop system (consisting of the plant (69) and the nomi-

nal controller (70)-(71)) starting from the initial condi-
tion xlonp (0) = [0, 0, 0, 0]⊤ and xlonu (0) = 0 to track the
commanded flight path angle profile ∆γcom(t) shown by
the red dotted curve in Fig. 3(a). The trajectories of the
actual flight path angle ∆γ(t) = −∆α(t) + ∆θ(t) and
the elevator angle ∆δe(t) are plotted in Fig. 3. It can
be observed from Fig. 3(b) that the transient responses
of ∆δe(t) to the step changes in ∆γcom(t) significantly
violate the constraints −π

6 ≤ ∆δe(t) ≤ π
6 .
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(a) (b)

Fig. 3. Longitudinal flight control: Simulated trajectory of
the nominal closed-loop system.

We now apply the proposed CSRG scheme to enforce the
constraints (72). Due to the presence of the stochastic
disturbances (73), we enforce the constraints (72) prob-
abilistically. In this example, we enforce each of them
as an individual chance constraint in the form of (8),
with βi = 0.99 for all i = 1, ..., 12. For the CSRG on-
line optimization problem, we choose P as the positive-
definite solution to (13) with Q = diag(1, 1, 1, 1, 1) and
R = 104 in the cost function (12). We remark that a
large R can increase the convergence speed of the mod-
ified reference v(t) to the commanded value r(t). Also,
we choose δ = 10−6 in the constraint (38c).
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-0.25

0

0.25

0.5

0.75

1
Response
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(a) (b)

Fig. 4. Longitudinal flight control: Simulated trajectory of
the closed-loop system augmented with CSRG Algorithm 1.

We consider both the applications of CSRGAlgorithms 1
and 2 and compare them. The responses of the closed-
loop system starting from the same initial condition to
track the same commanded flight path angle profile as
before when augmented with CSRG Algorithms 1 and
2 are illustrated in Figs. 4 and 5, respectively. Recall
that the CSRG replaces the original command γcom(t)
in (71) with a modified reference v(t) to enforce con-
straints. The trajectory of v(t) is shown by the green
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Fig. 5. Longitudinal flight control: Simulated trajectory of
the closed-loop system augmented with CSRG Algorithm 2.

dashed-dotted curve in panel (a) of Figs. 4 and 5. It
can be observed that, in both cases, v(t) deviates from
the command γcom(t) when γcom(t) has step changes
and converges to γcom(t) after a short-period transient
response. From panel (b) of Figs. 4 and 5 we can ob-
serve that with CSRG, the significant violations of the
constraints −π

6 ≤ ∆δe(t) ≤ π
6 in Fig. 3(b) have been

avoided. Indeed, if we look at panel (b) of Figs. 4 and
5 more closely, we can find a few slight constraint vio-
lations over 40 ∼ 45 s. Such slight violations are due to
our probabilistic enforcement of the constraints. We also
note that the other constraints of (72) are all strictly
satisfied in both cases. Comparing panel (a) of Figs. 4
and 5 we can observe that, unlike the gradual conver-
gence of v(t) to γcom(t) in Fig. 4(a), the modified ref-
erence v(t) converges to the command γcom(t) abruptly
through a jump at about 2 s and through another jump
at about 45 s in Fig. 5(a). This is a result of the fact that
CSRG Algorithm 2 is designed for prioritizing the con-
vergence of v(t). Meanwhile, it can also be observed that
the state responses resulting from the two algorithms,
shown by the blue solid curves, have similar speeds in
this example. Interestingly, in Fig. 4(a) we can observe
a few places where the state response is ahead of the ref-
erence response. This is partly attributed to the integra-
tor state resets by CSRG, and is also related to effects
of the stochastic disturbances (73).

To verify the closed-loop chance-constraint enforcement
property of our CSRG algorithms, we run the simula-
tions Nmax = 1000 times and consider the metric,

ρv (z ∈ Z) = max
t=0,...,tmax

N(z(t) /∈ Z)

Nmax
, (74)

where z denotes an output variable, z ∈ Z denotes a
constraint on the output variable, and N(z(t) /∈ Z) de-
notes the observed times the constraint z ∈ Z is vio-
lated at the time instant t among the Nmax simulation

trials. In this case, N(z(t)/∈Z)
Nmax

represents an estimate of
the frequency of constraint violation at t. According to
Proposition 2, our CSRG algorithms should guarantee
that the probability of constraint satisfaction is higher
than β at every time instant t = 0, ..., tmax. This implies
the value of ρv (z ∈ Z) should be upper bounded by 1−β
as Nmax → ∞.

For the above longitudinal flight control example, we
consider the variable ∆δe and the constraint ∆δe ≤ π

6 .
We choose to consider this pair because it is observed in
Figs. 4(b) and 5(b) that ∆δe rides the constraint bound-
ary at π

6 over 40 ∼ 45 s, which implies higher chances
of constraint violation. The applications of our CSRG
Algorithms 1 and 2 lead to ρv

(
∆δe ≤ π

6

)
= 0.009 and

0.008, respectively, both of which are less than and close
to the theoretical bound 1 − β = 1 − 0.99 = 0.01. This
result verifies the chance-constraint enforcement guar-
antee of our CSRG algorithms.

6.2 Constrained lateral flight control

The aircraft lateral dynamics are represented by the fol-
lowing continuous-time linear model,

∆β̇

∆ṗ

∆ṙ

∆ϕ̇

 =


−0.5229 0.0861 −0.9852 0.2374

−90.5885 −6.2736 2.0861 0

29.1873 −0.4833 −1.4043 0

0 1 0.0857 0


︸ ︷︷ ︸

=Alat


∆β

∆p

∆r

∆ϕ



+


−0.0002 0.0031

−0.9174 0.2321

−0.0523 −0.4436

0 0


︸ ︷︷ ︸

=Blat
u

[
∆δa

∆δr

]
−


−0.5229

−90.5885

29.1873

0


︸ ︷︷ ︸

=Blat
w

wy, (75)

where the states xlatp = [∆β,∆p,∆r,∆ϕ]⊤ represent
the deviations in sideslip angle (rad), roll rate (rad/s),
yaw rate (rad/s) and roll angle (rad), respectively, the
control inputs ulat = [∆δa,∆δr]

⊤ represent the devia-
tions in aileron angle (rad) and rudder angle (rad), and
the disturbance input wlat = wy represents effects of
model mismatch, atmospheric disturbances/turbulence,
etc. in the lateral direction. Firstly, as in the longitudinal
case, the continuous-time model (75) is converted to a
discrete-time model using zero-order hold on the inputs
with a sampling period of ∆T = 0.1 s. Then, a nominal
controller in the form of (2) with

K lat
p =

[
−1.4874 0.3021 0.8549 2.1801

−0.4431 0.2363 1.2214 2.1289

]
,

K lat
u =

[
0.0680

0.0684

]
, Blat

v =

[
0

0

]
, (76)

Alat
p =

[
0 0 0 1

]
, Alat

u = 1, Dlat
v = −1,

is used to track commanded roll angles r(t) = ∆ϕcom(t)
(McDonough and Kolmanovsky, 2015b), where the gains
K lat = [K lat

p ,K lat
u ] are obtained by solving a discrete-

time LQR problem with Ālat
open =

[
Alat 0

Alat
p Alat

u

]
, B̄lat

u =
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[
Blat

u

0

]
and Qlat = diag(100, 100, 100, 100, 1), Rlat =

diag(100, 100). We consider the following set of con-
straints,

− π

12
≤ ∆β ≤ π

12
, − π

12
≤ ∆p ≤ π

12
,

− π

12
≤ ∆r ≤ π

12
, −π

3
≤ ∆ϕ ≤ π

3
, (77)

− π

6
≤ ∆δa ≤ π

6
, −π

6
≤ ∆δr ≤ π

6
,

and we model the disturbance wlat = wy as a Gaussian
noise satisfying Assumption 2 with

{wlat(t)}t∈Z≥0
∼ N

(
0, 10−5

)
. (78)

In this example, we enforce the constraints (77) jointly
as a chance constraint in the form of (58), where the
required confidence level β is chosen as 0.98. It can
be determined from (77) that we have ny = 6 out-
puts and ng = 12 constraints. In this case, referring
to Proposition 5 or Fig. 2, we know that the risk al-
location approach has a lower degree of conservative-
ness than the confidence ellipsoid approach for treating
the formulated joint chance constraint. Therefore, we
choose to use the risk allocation approach to formulate
our CSRG algorithm. In particular, according to (62),

we set βi = 0.98+(12−1)
12 = 0.9983 for all i = 1, ..., 12.

The parameters P , R and δ for the CSRG online opti-
mization problem are chosen to be the same as in the
longitudinal case.

The state response of the nominal closed-loop sys-
tem, i.e., without CSRG, and the reference and state
responses of the closed-loop system augmented with
CSRG Algorithm 1 starting from the initial condition
xlatp (0) = [0, 0, 0, 0]⊤ and xlatu (0) = 0 to track the com-
manded roll angle profile ∆ϕcom(t) shown by the red
dotted curve in Fig. 6(a-1) are illustrated in Fig. 6(a)
and (b), respectively. It can be observed from Fig. 6
that without CSRG, the constraints on ∆p and on ∆δr
are violated; with CSRG, these constraint violations are
avoided. We note that the other constraints of (77) are
also enforced when CSRG is used.

Similarly as in the previous example, we run the sim-
ulation Nmax = 1000 times and count the value of
ρv (z ∈ Z), where we now consider z = (xlatp , ulat) and
Z to be defined by all of the constraints in (77). We
consider this pair because in this example our CSRG
algorithm enforces (77) as a joint chance constraint.
The application of CSRG Algorithm 1 with the risk al-
location approach leads to ρv (z ∈ Z) = 0.006, which is
smaller than the required bound 1−β = 1−0.98 = 0.02.
The difference between the observed ρv (z ∈ Z) = 0.006
and 1−β = 0.02 reflects the conservative approximation
nature of the risk allocation approach.
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Fig. 6. Lateral flight control: Simulated trajectories of (a) the
nominal closed-loop system and (b) the closed-loop system
augmented with CSRG Algorithm 1.

6.3 Comparisons

To compare the constrained domain of attraction with
both controller state and reference modifications and
that with only reference modification (i.e., without con-
troller state modification), we consider the following set,

Õxu(0)=0
∞ = Õ∞ ∩

{
(xp, xu, v) : xu = 0

}
. (79)

This set represents the set of chance-constraint admis-
sible pairs of initial plant state, xp(0), and constant
reference input, v, when the initial controller state,
xu(0), is zero and cannot be adjusted, which serves
as an example of allowing only reference modifica-
tion. Then, we consider the projections of Õ∞ and

Õxu(0)=0
∞ onto the xp-space, denoted as projxp

(Õ∞) and

projxp
(Õxu(0)=0

∞ ), respectively. According to the defi-

nition of Õ∞, projxp
(Õ∞) represents the set of plant

states at which there exist controller state and reference
pairs that guarantee their corresponding future system
trajectories satisfying the chance constraints. Referring
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to Propositions 3 and 4, the reference v(t) and state
x̄(t) responses in closed-loop operation of the system
augmented with CSRG starting from these plant states
are guaranteed to converge to r in finite time almost
surely and to x̄∗(r) in mean square for constant, steady-
state constraint-admissible command r. Therefore,
projxp

(Õ∞) is referred to as the constrained domain

of attraction of CSRG. In contrast, projxp
(Õxu(0)=0

∞ )
represents the set of plant states at which the chance
constraints can be enforced by properly choosing the
reference value if the current controller state is zero and
cannot be adjusted.

The comparison between projxp
(Õ∞) and projxp

(Õxu(0)=0
∞ )

for the longitudinal flight control example is illustrated
in Fig. 7, where the blue and red 3D polygons show,

respectively, the projections of Õ∞ and Õxu(0)=0
∞ onto

the (∆U,∆α,∆θ)-space. Similarly, projxp
(Õ∞) and

projxp
(Õxu(0)=0

∞ ) for the lateral flight control example
are illustrated by the blue solid and red dash-dotted 2D
polygons in Fig. 8. It can be observed from Figs. 7 and 8

that projxp
(Õ∞) is much larger than projxp

(Õxu(0)=0
∞ )

in both cases. This demonstrates the fact that, by admit-
ting both controller state and reference modifications,
our proposed CSRG scheme can have a considerably
larger constrained domain of attraction compared to
admitting only reference modification as in conventional
RG schemes. In Fig. 8, we also show the projection onto
the (∆β,∆ϕ)-plane of the Õ∞ set corresponding to the
confidence ellipsoid approach to treating the formulated
joint chance constraint in the lateral flight control exam-
ple. It can be observed that the green dashed polygon,
which corresponds to the confidence ellipsoid approach,
is strictly contained in the blue solid polygon, which cor-
responds to the risk allocation approach. The conclusion
that the risk allocation approach is less conservative
than the confidence ellipsoid approach in this example
is consistent with Proposition 5 and Fig. 2. Specifically,
in this example we have (ny, ng, β) = (6, 12, 0.98) and
Γ(ny, ng, β) = Γ(6, 12, 0.98) < 0.

7 Concluding Remarks

In this paper, we introduced the chance-constrained
controller state and reference governor (CSRG), as an
add-on scheme for closed-loop systems with dynamic
controllers that are subject to stochastic disturbances
and pointwise-in-time constraints. We showed that
this chance-constrained CSRG guarantees closed-loop
chance-constraint satisfaction, almost-sure finite-time
convergence of the modified reference to constant,
steady-state constraint-admissible command, andmean-
square stability of the commanded state set-point. We
also extended CSRG formulation from treating in-
dividual chance constraints to treating joint chance
constraints, and developed guidelines for when risk al-
location is advantageous over the confidence ellipsoid
approach in treating such joint constraints. Finally, we
illustrated CSRG application using constrained aircraft

∆θ ∆α

∆U

Fig. 7. Longitudinal flight control: Projections of Õ∞ versus

Õxu(0)=0
∞ onto the (∆U,∆α,∆θ)-space.
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Fig. 8. Lateral flight control: Projections of Õ∞, Õxu(0)=0
∞

with the risk allocation (RA) approach, and Õ∞ with the
confidence ellipsoid (CE) approach onto the (∆β,∆ϕ)-plane.

flight control examples. Extensions of the CSRG to
nonlinear systems and non-Gaussian stochastic distur-
bances will be pursued in future work. As mentioned
in the introduction, combining CSRG with the ECG to
further improve performance is also worth investigating
and is left as a topic for future research.
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