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ABSTRACT

Business rules are an important part of the requirements of soft-
ware systems that are meant to support an organization. These rules
describe the operations, definitions, and constraints that apply to
the organization. Within the software system, business rules are
often translated into constraints on the values that are required or
allowed for data, called data constraints. Business rules are subject
to frequent changes, which in turn require changes to the corre-
sponding data constraints in the software. The ability to efficiently
and precisely identify where data constraints are implemented in
the source code is essential for performing such necessary changes.

In this paper, we introduce Lasso, the first technique that au-
tomatically retrieves the method and line of code where a given
data constraint is enforced. LAsso is based on traceability link re-
covery approaches and leverages results from recent research that
identified line-of-code level implementation patterns for data con-
straints. We implement three versions of Lasso that can retrieve
data constraint implementations when they are implemented with
any one of 13 frequently occurring patterns. We evaluate the three
versions on a set of 299 data constraints from 15 real-world Java
systems, and find that they improve method-level link recovery
by 30%, 70%, and 163%, in terms of true positives within the first
10 results, compared to their text-retrieval-based baseline. More
importantly, the Lasso variants correctly identify the line of code
implementing the constraint inside the methods for 68% of the 299
constraints.
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1 INTRODUCTION

Business rules describe the operations, definitions, and constraints
that apply to an organization [68]. When a software system is de-
veloped to support such an organization, these rules inform the
creation of the software requirements. However, business rules are
known to change unpredictably. For example, the Reserve Require-
ments for Depository Institutions (§204.2(d)(2), Regulation D) of
The Federal Reserve [8] limits withdrawals or outgoing transfers
from a savings or money market account to no more than six such
transactions per statement period. This restriction was temporarily
lifted in 2020 [7], making the number of transfers no longer lim-
ited. Performing this change on a system subject to this regulation
requires knowing the source code elements that are responsible for
implementing this rule.

Many business rules (and other type of requirements) are trans-
lated within the software system into data constraints [27, 67, 68].
Data constraints specify what values are allowed or required for
the given data. In the example above, the relevant data are the num-
ber of monthly withdrawals and the number of monthly transfers
from an account (savings or money market). The constraint states
that the sum of the values of these two data elements should be
less than or equal to six. The two data elements are defined in the
code (we call these data definition statements) and the constraint is
checked in some other part of the code (which we call constraint
enforcing statement). Developers implementing the changes caused
by the new rule will have to find the data constraint enforcing
statements, and they could benefit from tool support, as is the case
in any software change process [12, 13].

Recent research by Yang et al. [69] explored the implementation
of data constraints in database-backed web applications. They dis-
covered that developers struggle with maintaining consistent data
constraints and with checking them across different components
and versions of their web applications. This observation under-
scores the need for tool support when it comes to maintaining the
implementations of data constraints in particular.

In this paper, we propose and evaluate a new approach, LAsso
(Locating dAta conStraints in Source cOde), that can automatically
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identify the enforcing statements for a given data constraint in a
software. Lasso is designed as an extensible framework (Section 3).
The framework is built on top of a standard traceability link recovery
tool (i.e., for a textual input, it returns a list of relevant methods
from the code), which is replaceable and customizable. The main
novelty is that LAsso formalizes and uses structural information
about data constraint implementations originating from previous
work on the subject [27] (Section 2). With this information, Lasso
is able to improve the method-level retrieval performance of the
underlying traceability link recovery tool. More importantly, Lasso
is able to pinpoint the lines of code where a constraint is imple-
mented. The ability to trace data constraints to line-of-code level
implementations sets Lasso apart among traceability link recovery
approaches, which largely operate at coarser granularity levels (i.e.,
file, class, method) [9].

Florez et al. [27] conducted an empirical study and identified
30 data constraint implementation patterns used by developers
in Java code. The implementation patterns describe the structure
of the implementations, and are presented in a pattern catalog.
We convert the pattern descriptions into context-free grammar
production rules. These productions rules are then used by Lasso
to identify lines of code that exhibit the implementation patterns.

We instantiate Lasso with detectors for 13 of the most commonly
occurring patterns from the pattern catalog, and refer to this ver-
sion of LAsso as Lasso-13. With these components, we create three
instances of LAsso, i.e., LAsso-13Luc which uses a Lucene-based
traceability tool [48] (BM25); Lasso-13VSM which uses the Vector
Space Model [32]; and Lasso-13LSI which uses an LSI-based trace-
ability tool [22]. We evaluate these three instances of LAsso-13 and
compare the performance of each with their respective traceability
tool as the baseline. Specifically, we compare their performance on
retrieving methods implementing 299 constraints in 15 real-world
Java systems. 163 of these constraints are from previous research
[27], while 136 are new to this paper. We found that the LAsso-
13Luc, Lasso-13VSM, and Lasso-13LSI outperform their baselines
by 30%, 70%, and 163% (in terms of true positives retrieved in the
first 10 results), respectively. In addition, we evaluate LAssO’s ac-
curacy in pinpointing the lines of code enforcing the constraints
within the relevant methods. We found that LAsso-13 ranks the cor-
rect enforcing statements accurately for 79% of the 299 constraints
(68% at rank 1 and 11% at rank 2-3).

The main contributions of the paper are:

o A novel approach and framework that, for a given data con-
straint, automatically finds the method and lines of code
where it is implemented.

e A new annotated data set of 136 data constraints and their
implementations, from 7 real-world Java systems, which
complements data from existing research.

o The results of the evaluation of two LAsso instances and two
baseline approaches.

The data, code, and results are in our replication package [28].

2 BACKGROUND

In this paper, we use the constraint implementation pattern (CIP) cat-
alog defined by Florez et al. [27]. To make the paper self-contained,
we summarize here the most important information we use.

Juan Manuel Florez, Jonathan Perry, Shiyi Wei, and Andrian Marcus

Table 1: CIP Catalog [27] Excerpt.

CIP name: binary-comparison.
Description: Two values are compared using an operator such as
equals, does not equal, greater than, etc.
Statement type: Expression.
Parts: {variablel, op € {>, >, <, <,=,#}, variable2}
Example: Instance: if (maxFreq > wave.getNyquist())
Parts: {maxFreq, >, wave.getNyquist() }.

CIP name: if-chain.
Description: A chain of ifs is used like a switch on a field, checking
against the possible values of the variable.
Statement type: If statement.
Parts: {variable}
Example: Instance: if(onset == EMERGENT) {...} else if(onset ==
IMPULSIVE) {...} else if ...
Parts: {onset}.

Florez et al. studied the textual formulation and line-of-code
implementation on a set of 187 constraints from 8 Java systems.
The constraints were categorized into four types:

Value comparison has 2 operands. The value of X (variable)
is constrained by the value of Y (variable) with an equality or
relational operator. Example: “SWARM will allow the maximum
frequency to be set to any positive value greater than the minimum
frequency” [64] contains two constraints: max frequency > 0" and
"max frequency > min frequency".

Dual value comparison has 2 operands. X (variable), and Y
(condition) is one of the 2 mutually-exclusive values that implies the
other (e.g., true/false, enabled/disabled). Example: “If configuration
file is not available or readable...” [64] contains two constraints:
“file is available" and “file is readable".

Categorical value has 3+ operands. X (variable) is constrained
to a finite set S (2+ options) of two or more values. Example: “on-
MissingExtensionPoint: What to do if this target tries to extend a
missing extension-point. (fail, warn, ignore)” [4] contains one con-
straint: “onMissingExtensionPoint € {fail, warn, ignore}".

Concrete value has 2 operands. The constraint directly declares
X (variable) to be C (value). Example: “The default [switch] date is
1582-10-15” [39] contains a constraint: “switchDate is 1582-10-15".

The implementation of a constraint consists of two parts: an
enforcing statement and data definition statements. Each enforcing
statement was categorized according to the type of code construct
where it appears (e.g., expression, if statement, return statement,
etc.) and the number of operands it uses. The result was the defini-
tion of 30 CIPs, i.e., code patterns with line-of-code granularity. In
this paper, we only utilize information about 13 CIPs, which were
identified as the most commonly used: boolean property, binary
comparison, constant argument, null check, assign constant, binary
flag check, if chain, equals or chain, switch len char, self comparison,
return constant, null zero check, and null empty check. Table 1 shows
the definition of 2 of the 13 patterns. The complete CIP Catalog can
be found in the original publication [27].

For each CIP, we use the description and the number of required
operands (which we convert into a grammar - Section 3) . In addi-
tion, for each constraint type, Florez et al. identified which CIPs
are most commonly used for implementing constraints of that type.
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Figure 1: Overview of Lasso. Gray boxes are replaceable com-
ponents. There can be any number of CIP detectors.

For example, constraints of dual value comparison type are most
frequently implemented using the boolean property CIP, with the
next most common CIP being null check. Lasso also leverages this
information as part of its ranking model.

3 APPROACH DESCRIPTION

Our approach, Lasso (Locating dAta conStraints in Source cOde),
is designed as an extensible framework that automatically identifies
implementations of given data constraints in the source code. An
overview of the Lasso framework is presented in Figure 1.

The main novelty of Lasso is its ability to identify constraint
implementations at line-of-code granularity. This is enabled by the
AST-based CIP matching component (AST-CIP, see Section 3.2).
AST-CIP is composed of several CIP detectors. Each one can detect
instances of one CIP in the source code by traversing the abstract
syntax trees (ASTs) of the target system. As shown in Table 1, Flo-
rez et al. [27] defined each CIP using natural language description
and an example. Such definition is ambiguous and can not be used
for specifying the pattern for each detector. Based on their defini-
tions, we define a syntactic pattern of each CIP, using a context-free
grammar (CFG). AST-CIP takes the source code as input, and is
composed of a number of detectors, each capable of identifying
instances of one CIP. The user can make a choice of how many CIP
detectors to provide. Adding more can result in more constraints
being correctly traced. AST-CIP produces a set of source code state-
ments, i.e., enforcing statement candidates (ESCs), that match the
syntactic patterns of the CIPs used by the detectors (Section 3.2.2).

In addition, LAsso uses a traceability link recovery tool (TLRT),
that accepts natural language (i.e., the description of a data con-
straint) and source code as inputs. The TLRT retrieves relevant
source code methods for the constraint. LAsso is agnostic to the
internal retrieval model of the TLRT, which means the framework
can use any TLRT, as long as it uses the appropriate input and pro-
duces output at method-level granularity. We implemented three
instances of Lasso, using Lucene-, VSM-, and LSI-based TLRT (Sec-
tion 4).

Finally, Lasso’s ranking component (RANK) uses the ESCs iden-
tified by the AST-CIP component and the method-level results
returned by the TLRT to produce a list of methods, ranked by their
likelihood that they implement a given data constraint, and a list
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‘ While SWARM will allow the = maximum frequency to be set to any positive
‘ value greater than the minimum frequency, this value will adjust automatically

‘ if it is greater than the Nyquist frequency of the wave being manipulated.

Figure 2: Example of constraint input from the Swarm sys-
tem. The entire text is the context. The constraint in bold,
and the operands are highlighted in gray.

public| double spectrogramMaxFreq; operand 2 (yellow)

Qperand 1 (yellow) public |double getNyquist() {

return samplingRate / 2;}
Body (red)

if (settlngs.spectrogramMaxl-req > wave.getNyqu1st()) {

| settings.spectrogramMaxFreq = wave.getNyquist();} I
Block (magenta)

Figure 3: The operands, body, and block elements of the ESC
that implements the constraint in Figure 2.

of code statements inside each method, ranked by their likelihood
to enforce the constraint (Section 3.3).

3.1 Lasso Inputs

For each target system, LAsso takes as input its source code, which
is used by the TLRT and the AST-CIP components.

The Constraint type to CIP mapping (Section 2) contains informa-
tion about the type of data constraints and frequency of existing
CIPs implementing each constraint type. This information is em-
ployed by the user to describe the constraint and also by the ranking
component to estimate the likelihood that a certain CIP implements
a given constraint type. For each constraint, three elements are
specified by the user and used as queries by Lasso.

1. The constraint context is the paragraph where the constraint
is described in the existing documentation (e.g., requirements, use
cases, and manuals). This is used by TLRT.

2. The constraint type is set according to the definitions in the
constraint type catalog. The CIP catalog we use defines four con-
straint types: value comparison, dual value comparison, categorical
value, and concrete value (Section 2). This is used by RANK.

3. The constraint operands are the noun phrases referring to the
data on which the constraint is defined. The number of operands
varies for each type of constraint (Section 2): (1) two operands for
value comparison; (2) two operands for dual value comparison; (3)
three or more operands for categorical value; and (4) two operands
for concrete value. This information is used by RANK.

Figure 2 shows an example of the constraint inputs that Lasso
takes. The constraint context is all the text in the figure. The con-
straint type (derived from the text describing the constraint) is value
comparison, as it matches the definition "a value is constrained by
another value using a relational operator" (greater than in this case).
The operands of this constraint are [maximum frequency, Nyquist
frequency of the wave]. Note that reference resolution is not done
automatically, but left to the user, who in this case should select
the noun phrase “maximum frequency” instead of the pronoun “it”.
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3.2 AST-CIP component

The AST-CIP component uses the source code and the constraint
detectors to identify enforcing statement candidates (ESCs).

3.2.1 ESC definition. Each ESC has the elements:

e A body, e.g., the AST element that matches the CIP, which
can be a field definition, a statement, or an expression.

o A method where it appears.

o A list of operands.

o An optional block of statements.

o A CIP type, corresponding to the CIP that it matches.

The number of operands of an ESC depends on its CIP type, as
described in Section 2. Figure 3 shows the ESC that implements
the constraint in Figure 2. The ESC’s CIP type is binary-comparison;
hence, it has has two operands (based on the CIP catalog we use).
Lasso aggregates the terms of an operand, by collecting both the
identifiers contained inside the ESC body (“wave.getNyquist" for
operand 2, in the example), and the identifiers in the operand’s
definition (“double getNyquist()" for operand 2, in the example).
The definitions are obtained by symbol resolution, and can be done
with any analysis framework that provides the functionality.

The block element applies only to the ESCs whose body appears
in the condition of a if, while, or do-while statement. The block
corresponds to all the text in the body of the statement, including
both then and else blocks in the case of if statements. The ESC
block does not apply to ESCs whose body appears between the
parentheses of a for statement, because these conditions are more
complex than those of the previously mentioned statements.

Note that some ESCs may appear outside of methods, e.g., in field
definitions. In this case, the corresponding definition is considered
to be a pseudo-method.

3.22 CIP matching. As discussed, the ambiguity in the CIP defini-
tions by Florez et al. [27] makes it hard to specify which instances
should be matched by each CIP detector. To address this challenge,
we express the CIPs using a context-free grammar (CFG), shown in
Figure 4. We define garmmars for 13 most common CIPs (Section 2).
The grammar of each CIP covers all instances of the pattern in
Florez’s data. By convention, non-terminals are in uppercase and
terminals are in lowercase. The non-terminals in blue are the start
symbols for matching the 13 CIPs. In this grammar, a terminal or
non-terminal may be associated with an operand specifier, which
is an annotation following a colon, e.g., op in BOOL_VAL:op on
line 1. Operand specifiers are used to identify the symbols that
are operands in each CIP. The same operand specifier defines the
same symbol in different places in a CIP’s grammar. For example,
var:op on lines 23 to 25 requires the same variable to appear in
these conditional expressions.

Lasso can have any number of CIP detectors. To identify ESCs,
Lasso first parses all files in the source code except for the test
files to generate ASTs. Test files are ignored because these do not
contain the implementation of business rules (in this case data
constraints). Investigating the association between data constraint
implementations and their test code is subject of future work. Lasso
then visits every node in each AST. When an AST node is visited,
AST-CIP attempts to match the grammar of each detector on said
node. An individual CIP detector will return an ESC if and only if the
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BOOLEAN_PROPERTY — BOOL_VAL : op
BOOL_VAL — var_bool | method_call_bool | field_access_bool

1
2
3
4| BINARY_COMPARISON — VAL : op1 CMP VAL : op2
5 | VAL : 0p1 RELOP VAL : 0p2
6|CMP — < | > | <= | >=
7| RELOP — == | 1=
8| VAL — var | method_call | field_access
9

10| CONSTANT_ARGUMENT — var .
11| ARGS — expr ARGS | A

m_name : opl ( ARGS literal :op2 ARGS )

13| NULL_CHECK — null RELOP VAL : op
14 | VAL : op RELOP null

16| ASSIGN_CONSTANT — VAR :opl = literal:op2
17| VAR — var | field

19| BINARY_FLAG_CHECK — INT_VAL : op1 BITOP INT_VAL : op2 RELOP
lit_int: op2

20| INT_VAL — var_int | method_call_int | field_access_int

21| BITOP — & | |

23| IF_CHAIN — if ( var:op == literal ) BODY ELSEIF
24| ELSE_IF — elseif ( var:op == literal ) BODY ELSE
25| ELSE — elseif ( var:op == literal ) BODY ELSE | A
27| EQUALS_OR_CHAIN — var : op == literal CHAIN

28| OR_CHAIN — || var :op == literal CHAIN

29| CHAIN — || var :op == literal CHAIN | A

31| SWITCH_LEN_CHAR — switch ( VAL:op . length() ) LEN_CASE
32| LEN_CASE — case literal_int : stmts LEN_CASE | A

34| SELF_COMPARISON — var : op RELOP var : op
36| RETURN_COSTANT — return literal : opl

38| NULL_ZERO_CHECK — NULL_CHECK AND_OR var:op . length ( ) > @
39| AND_OR — && | ||

41| NULL_EMPTY_CHECK — NULL_CHECK AND_OR var:op . equals ( " ")

Figure 4: Grammar for 13 CIPs.

node is a valid production of the detector’s corresponding grammar.
If the node is not a valid production, the detector returns nothing.
Traversing all nodes in all ASTs results in the final list of ESCs.

To produce all elements of the ESC as result, each detector uses
the matching AST node (ESC body), the method where the matching
node appears (ESC method), the specific detector (ESC CIP type), and
the list of operands (ESC operands). The number of operands differs
by CIP, and is extracted by each detector based on the grammar.

In addition to the operand identifiers in the ESC body, Lasso also
includes the text from their definitions (see Figure 3). The definition
of each operand is resolved using symbol resolution, yielding one
of the possible definitions: field definition, method definition, vari-
able/parameter definition. In case the operand definition is a method
definition, only the identifiers corresponding to the method name,
parameter names, and parameter types are added to the operand.
For parameters, only the parameter name and type are added to
the operand. For the remaining types of definitions, all identifiers
in the defining statement are added to the operand.
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Consider the example in Figure 3; when the Lasso reaches the
AST node corresponding to the if statement condition, it attempts
to match the grammar of each detector. All detectors but the one
for binary comparison will return nothing, as this node matches
no other CIPs. The given node matches the CIP, as it is a binary
expression using a relational operator. After finding that the node
matches the grammar, the detector identifies the operands. In this
case there are two operands, as per the CIP definition; they are
settings.spectrogramMaxFreq and wave.getNyquist(). Symbol res-
olution is applied as appropriate for each operand: in the first case,
the field is resolved, and in the second case, the method is resolved.
The identifiers found in the definitions are then added to the terms
of the corresponding operand.

3.3 Ranking component

RANK uses four types of information from the inputs (i.e., user input
and CIP catalog) and from the output of the other two components
(i.e., TLRT and AST-CIP) to rank all ESCs for a given constraint:

o The constraint context, the constraint type, and the list of
constraint operands, from the user input.

e The ESC CIP type, the ESC method, the list of ESC operands,
and the ESC block, from the AST-CIP output, for each ESC
that matches any of the CIPs implemented in the detectors.

e Which CIPs are used most frequently to implement con-
straints of the given constraint type, from the constraint type
to CIP mapping.

o The ranked list of methods produced by the TLRT.

We introduce abbreviated notations for the various informa-
tion used in the ranking. For the constraint elements we use: C,
(constraint context), C; (constraint type), and C, (list of constraint
operands). For the ESC elements we use: E; (ESC CIP type), E, (ESC
method), E, (list of ESC operands), and Ej, (ESC block).

Lasso first applies standard text retrieval preprocessing tech-
niques to all textual fields of both constraint inputs (C¢, C,) and
ESCs (Eo, Ep). Specifically, we apply identifier splitting (based on
camelCaseFormat and underscore_format, stemming using the Porter
algorithm [54], and stop word removal (the list of stop words is
available in our replication package [28]). Lasso then uses C. or
C, (as appropriate) as input to TLRT and obtains a ranked list of
methods, which we denote as Uy,.

Given the input constraint, for each ESC identified by the AST-
CIP, Lasso uses four heuristics for computing a relevance score:

1. The common terms between the constraint operands (C,) and
the ESC operands (E,). The intuition is that if the operands from
the constraint description match the ESC operands, then the ESC
is likely to implement the input constraint, e.g., the term “Nyquist”
appears in one constraint operand and one ESC operand in Fig. 3.

2. The common terms between the constraint operands (C,) and
the ESC block (Ep). In some cases the ESC body uses terms different
from those in the constraint (e.g., i <= j), so the previous heuristic
will not find common terms. However, operations in the ESC block
may indeed use these terms if the logic is related to the constraint.
Matching constraint operand terms with terms in the ESC block
increases the likelihood that the ESC enforces the given constraint.

3. The frequency of the ESC CIP type E;, with respect to the con-
straint type Cy, extracted from the CIP catalog. Previous research
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by Florez et al. [27] (see Section 2) identified which constraint types
are implemented by which CIPs. For example, they found that 59%
of constraints of dual value comparison type are implemented us-
ing the boolean-property CIP, while 17% are implemented with the
null-check CIP. Hence, if the ESC CIP type matches the former, then
it is more likely it implements the given constraint.

4. The TLRT rank of the ESC method, E,. If the ESC method is
ranked high by the TLRT, then it is likely that the ESC implements
the given constraint and less likely if the rank is low.

For these heuristics, we define five measures (two for the first
one, and one each for the others) that take values between 0 and 1.

1. COE (Constraint-ESC operands). LAsso pairs each operand o;
in C, to the operand o; in E, with which it has the largest number
of terms in common. The pairing is strictly one-to-one. Then the
COE measure is calculated according to Equation 1.

Zi,j s(oci, Oej)

COE =
|Col

1
Where s returns the percentage of terms in the constraint operand
o¢; that are also in the ESC operand o ;. Unpaired elements (e.g.,
if the constraint has more operands than the ESC) have a value
of zero for s. For the example in Figure 3, the second constraint
operand o¢z “Nyquist frequency of the wave” gets paired with the
second ESC operand o.2 wave.getNyquist(). The first constraint
operand o.; “max frequency” gets paired with the remaining ESC
operand 0,1, though they have no terms in common. The value of
the measure is then COE = WM = 0+—g'4 =0.2. The
value of s(0¢2, 0¢2) is 0.4 because theosecond constraint operand
has two out of five terms in common with the second ESC operand:
Nyquist and wave.

2. ECO (ESC-constraint operands) performs the same pairing as
COE. This time, the ECO measure captures the percentage of terms
from each ESC operand o; that in common with the constraint

5(0e1,0c1)+5(0¢2,0c2) —
[Eo |

= 0.25. The value of s(0¢2, 0¢2) is 0.5 because 0¢2 has four
terms (wave, get, Nyquist, double), and two of them match the
constraint operand: Nyquist and wave. The reason we perform
the matching both ways (COE and ECO) is that even though an
ESC may contain most or all terms in the constraint operands, also
including a lot of unrelated terms suggests that it might be dealing
with different data.

3. COB (Constraint-operand block) is the percentage of terms in all
elements of C, that appear in E;. We do not perform the matching
in the opposite direction (analogous to COE and ECO) because the
ESC blocks can be long, and hence contain a lot of different terms,
causing the values to be too small to make a difference in the score.
This score is based on the intuition that if the names of operands
are used in the body of the conditional statement, then the ESC
is more likely to be relevant compared to the case in which the
operands only appear in the condition.

4. ECIP (Expected CIP). Based on the information from the CIP
catalog, ECIP is 1.0 if E; is the most frequently used pattern imple-
menting Cy, 0.5 if it is the second most frequent, and 0.0 otherwise.
Specifically, value comparison: [binary comparison]; dual value com-
parison: [boolean property, null check]; concrete value: [constant
argument, assign constant]; categorical value: [if chain]. Notice that

operand o;. For the example in Figure 3, ECO =
0+0.5
2
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in the cases of value comparison and categorical value there is only
one “most common CIP”. In these cases we considered that the
second most common CIP did not appear in enough instances to
make it common enough, so only one CIP gets the full score (1.0)
and all others get zero.

5. CM (Context method). CM is 1/~/r where r is the rank of the
Ep in Uy, or 0 if TLRT did not return that method.

The final relevance score for an ESC is computed according to
Equation 2. Namely, the relevance score (rs) for an ESC (e) is equal
to the sum of the weighted values of the five measures for that ESC
(i.e., COE, ECO, COB, ECIP, and CM).

5
rs(e) = ) mi(e) = w(mi) @
i=1

Where each m;(e) is the value of a measure and each w(m;) is
its corresponding weight.

The ESCs are sorted in descending order of their relevance score;
those with a score of zero are omitted from the result list. Results
that only have a non-zero value for CM are also omitted, as our
tool prioritizes results found via CIP matching. At most one ESC is
returned for each line of code in each file, with only the ESC with
the highest score returned for each line.

The ESC rankings are converted to method level by ranking
each distinct E,, (produced by the TLRT) in the same order as they
appear in the ranked ESC list, without repetition. For example, if
ESCs in ranks 1, 2, and 100 are in method A, and ESCs in ranks 3
and 4 are in method B, method A will be ranked first, and method B
will be ranked second. The list of ESCs is preserved alongside each
method, and they appear in the same order as in the original list of
ESCs. Continuing the above example, method A will have an ESC
result list with 3 ESCs, and method B will have 2 ESCs in its list.

4 LASSO INSTANTIATION

We implemented 13 CIP detectors, one for each of the frequently
occurring CIPs (see Section 2). We used the JavaParser library [38]
to implement these detectors. For this, we employed the parsing ca-
pabilities of the library to parse the source code files, and used AST
visitors to implement each detector as specified by the correspond-
ing grammar. We also relied on the library’s symbol resolution to
resolve operand definitions.
We used these detectors to formulate three Lasso instances:

e Lasso-13Luc, which uses as TLRT Lucene 8.6.3 [48] with
its default similarity metric, implementing the BM25 model
[57].

e LASs0-13VSM, which uses as TLRT Lucene 8.6.3, with its clas-
sic similarity metric, implementing the Vector Space Model
(VSM) [32], more specifically, TF-IDF.

o LAsso-13LSI, which uses as TLRT Latent Semantic Indexing
(LSI) [22].

The three instances also differ in what text is provided as input to
TLRT: in the case of Lasso-13Luc and Lasso-13VSM, the constraint
context is used, while for LAsso-13LSI it is the concatenated terms
of all the constraint operands. These inputs were selected because
they achieved the highest performance for each TLRT according
to a preliminary test. The results of such test can be found in our
replication package [28]. The three TLRT components use the same
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Table 2: Software systems in the validation data set (VDS).

System Domain KLoC MTH ¢
mybatis-3.5.5 Persistence Framework 60 3,639
shardingsphere- DB Sharding middleware 110 9,599
5.0.0-rcl
skywalking- App. Perf. Manager 127 10,825
8.0.1
jabref-5.0 Citation Manager 130 12,796
jpos-2.1.4 Finance library 175 8,291
log4j-2.13.3 Logging Framework 191 15,952
checkstyle-8.35  Source Code Style Checker 276 6,379

4: Number of methods

text processing, as described in Section 3.3 and return results at
the method level. For LSI, we used a dimension parameter of 300.
This parameter yielded the best performance on our data according
to our preliminary tests (results found in our replication package
[28]). These two text retrieval-based traceability link recovery tech-
niques have been commonly used as baselines in prior studies on
traceability link recovery [6, 11, 42] and bug localization [16, 50, 52].
The Lasso instances and the two TLRT work on Java code.

5 EVALUATION

The goal of our evaluation is to assess how effective LAsso is in
locating the data constraint implementations at both method and
line-of-code level, as it works at both granularities.

Our evaluation answers two research questions:

o RQ1: What is the performance of Lasso-13Luc, Lasso-13LSI,
and LAss0-13VSM on method-level data constraint traceabil-
ity link recovery?

e RQ2: How accurately can Lasso-13Luc, Lasso-13LSI, and
LAss0-13VSM retrieve the lines of code that implement a
constraint?

5.1 Experimental Setup

Subjects of the study. We perform an intrinsic evaluation by
comparing Lasso-13Luc and Lasso-13VSM with the Lucene-based
TLRT they are built upon. Likewise, we compare Lasso-13LSI with
the LSI-based TLRT.

Datasets. We need ground-truth datasets where the traces from
the data constraints to their implementations (lines of code) are
known. We use two datasets in the evaluation. The first is the data
published by Florez et al. [27], which we refer to as the Calibration
Data Set (CDS), since we use it for calibrating the weights of the
five measures used by the Lasso instances for ranking (see Sec-
tion 3.3). We describe the calibration below. CDS consists of 163
traced constraints in 8 real-world Java systems [27]. That study had
a dataset of 187 constraints. We selected only the 163 constraints
implemented with one of the 13 CIPs detected by Lasso-13.

We collected an additional dataset, called Validation Data Set
(VDS), consisting of 136 constraints from 7 new systems different
from the ones in CDS (Table 2). The textual artifacts for all systems
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are their corresponding user manuals. We used the following pro-
tocol to construct VDS, which is similar to the one used by Florez
et al. [27]. First, one author examined the textual artifacts of the
7 systems and extracted 30 data constraints from each. Next, we
recruited four tracers to identify the implementations of these con-
straints. All tracers are Computer Science graduate students, each
with at least 3 years of programming experience in Java.

The tracers were instructed to find a single implementation per
constraint, specifically the one described in the textual artifact
where the constraint originated. The reasons for this are aligned
with those argued by Florez et al. [27]. Namely, (1) it is very difficult
to define a stopping criterion that would consistently result in all
implementations of a constraint being reliably found, and (2) term
mismatch and implementation complexities make it necessary to
use the constraint context to have a reasonable certainty that the
trace is correct, which means only the instance of the constraint
defined in the text can be reliably traced.

Each constraint was assigned to two tracers.The tracers produced
identical traces for 116 constraints (55% of 210). The disagreements
were caused either from misunderstandings of the code semantics
(as the code does not always use the same terms as the constraint’s
textual description), or from tracers selecting a statement that does
not refer to the specific implementation of the assigned constraint,
but rather one in related functionality. This relatively low agree-
ment rate is to be expected due to the complex nature of the task,
which requires the tracers be familiar with the target system’s code.
To ensure the quality of VDS, two authors determined the final
trace through discussion based on the tracers’ answers. Finally,
to determine which constraints were suitable for our evaluation,
one author labeled each trace with the CIP that corresponded to
it. Only those constraints implemented with one of the 13 CIPs for
which we implemented detectors were added to the VDS data set,
resulting in 136 constraints in total.

Metrics. Because both CDS and VDS contain traceability links at
line-of-code granularity, the lines of code for each trace correspond
to the ground truth for each constraint. Both LAsso instances and
the baselines produce ranked lists of methods as their outputs. To
measure their effectiveness, if a method in the result list contains
the ground truth lines, we consider the constraint as retrieved at
that rank. We call this the method rank of the constraint. Recall that
the Lasso instances also produce a ranked ESC list for each method.
We define the ESC rank as the position of the ESC containing the
ground truth lines in the ESC corresponding ground truth method.

As we discussed above, each constraint in CDS and VDS has only
one ground truth. This means that commonly used information
retrieval metrics are not very meaningful here. Specifically, MAP
[55] will always have the same value as MRR (1 divided by method
rank, or 0 if the constraint was not retrieved). Precision will always
be either 0 if the ground truth was not retrieved, or 1 divided by
the amount of results if it was. Recall will either be 1 if the ground
truth was retrieved, and 0 if not. In light of this, we report MRR,
average recall, and the average method rank.

These metrics are provided for completeness, as we focus our
analysis on the ZHITS@N metrics, defined as the percentage of
constraints with a method rank between 1 and N, i.e., constraints
where the ground truth was retrieved within the first N methods of
the output ranked list. This metric is easy to interpret, as it means
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that a potential user has to examine N results (in this case methods)
to find the constraint implementation. The importance of this metric
(sometimes under different names) has been argued in the fields of
bug localization [66, 70], query reformulation [15, 16, 26, 55], and
duplicate bug report detection [17, 58].

Input generation. As discussed in Section 3.1, LAsso requires
the type, operands, and context of each constraint as input. To con-
struct the input, one author extracted the required input fields for
each constraint. Specifically, the constraint context is a paragraph
where the constraint is found in the textual artifacts. The constraint
type was assigned as one of the four constraint types in Sec. 2. The
operand list is composed of the noun phrases that describe each
operand, using only terms found in the constraint context, except in
the case of numbers. If numbers were spelled out, they were turned
into digits, e.g., “one” became “1”. Additionally, symbols were also
spelled out, for example “co” becomes “infinity”. Sec. 3.1 shows an
example of specific input for a constraint. The inputs for all 299
constraints can be found in our replication package [28].

Baseline calibration. To find the optimal input (i.e., constraint
context or constraint operands) for the TLRT of each Lasso-13
instance and the best parameters for LSI, we evaluated the baselines
on the combined CDS and VDS data sets using each input with
each technique. The best performing combinations are explained
in Section 4, and the full results are in our replication package [28].

Calibration of Lasso ranking weights. We empirically cali-
brated the weights for the five ranking measures (Sec. 3.3), using
CDS. We designed an algorithm to find the combination of weights
that result in the best results for Lasso-13Luc in CDS. We used
Lasso-13Luc for calibrations, as opposed to Lasso-13LSI or Lasso-
13VSM, because Lucene with its default similarity performed better
than the other two approaches. That is, we optimized the weights
based on the strongest baseline.

The calibration algorithm runs 5 rounds of testing (one for each
weight). Each metric begins as a free metric, and at the end of
each round, one metric will become fixed with a weight. On each
round, for each free metric, the algorithm generates scenarios cor-
responding to all combinations of weights for all free metrics (one
of {0.0,0.1,0.2,...,0.9,1.0}) and the fixed weights. The value of
the free weight that leads to the highest value of ZHITS@20 be-
comes fixed. The optimal configuration for Lasso-13Luc, for CDS,
is COE = 0.7, ECO = 0.2, ECIP = 0.2, COB = 0.2, CM = 1.0. As men-
tioned above, we use the same configuration for Lasso-13LSI and
LAsso-13VSM, as we want to assess how robust these weights are
to changes in the data sets and TLRT.

5.2 RQ1 Results

Table 3a shows the results obtained by Lasso-13Luc, Lasso-13LSI,
LAsso-13VSM, the Lucene-based TLRT, the VSM-based TLRT, and
the LSI-based TLRT, on the calibration data set (CDS), with 163 con-
straints. Table 3b shows the results obtained by the six approaches
on the validation data set (VDS), with 136 constraints, while Table 3¢
shows the results on the combined data sets, with 299 constraints.

5.2.1 Weight calibration validation. To ensure that the configura-
tion was not overfitted to the test data, we evaluated the Lasso
instances on the validation data set with the configuration obtained
from the algorithm in Sec. 5.1. Comparing the results from Table 3a
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and Table 3b, we observe that all three LAsso-13 instances achieve
improvements on both data sets. Lasso-13Luc improves ZHITS@10
from 39.3% to 57.7% (47%) over the Lucene baseline on CDS, and
from 66.2% to 77.9% (18%) on VDS. Similarly, LAsso-13VSM im-
proves ZHITS@10 from 22.7% to 49.7% over the VSM baseline on
CDS, and from 44.1% to 72.8% on VDS. Finally, Lasso-13LSI im-
proves ZHITS@10 over the LSI baseline from 12.9% to 39.9% (209%)
on CDS, and from 27.9% to 66.2% (137%) on VDS. This indicates that
the weight calibration is robust and transfers to other data sets.

From here on, we perform all analyses on the results on the
combined data set (i.e., CDS + VDS).

5.2.2  Lasso-13Luc vs. Lucene-based TLRT. Table 3c shows the re-
sults obtained by Lasso-13Luc and the Lucene-based baseline on
the combined data sets.

As discussed before, ZHITS@N indicates the percentage of con-
straints for which the relevant method is retrieved in top N In
theory, in such cases, the users need to check at most N methods
to find the relevant one. Prior research on traceability link recov-
ery argued that retrieving the ground truth on the top position is
perfect performance, returning it in the top 5 is excellent, and in
top 10 very good [15, 16]. Note that the number of methods in the
target systems is 9.6k on average (Table 2). We focus the analysis of
the results on ZHITS@10 (i.e., indicating very good performance).

We observe that Lasso-13Luc obtains 25.4% %HITS@1, which
means that for one in four constraints, LAsso-13Luc retrieves the
relevant method in the first place. At ZHITS@10, Lasso-13Luc
improves the baseline approach by 30% (66.9% vs 51.5%). In other
words, for two third of the constraints Lasso-13Luc retrieves the
relevant method in top 10, compared to half the constraints for the
baseline. Lasso-13Luc also improves the ZHITS@1 and %HITS@5
results over the baseline by 44% and 42%, respectively.

Note how Lasso-13Luc improves the average method rank from
148.9 to 24.6, a reduction of one order of magnitude.

The lower recall for both LAsso-13 instances vs. their baselines is
to be expected, and also both return the same results despite having
different TLRT (i.e., Avg. Recall column in Table 3 is the same for
both approaches). This is because (as explained in Sec. 3.3), only the
ESCs that have a value for the first 4 metrics are retrieved, meaning
that which ESCs are returned does not depend on the results of
TLRT. Instead, the TLRT results are used as part of the ranking of
these ESCs, and as such, both LAsso-13 instances achieve different
values of ZHITS@N, average method rank, and MRR, as expected.

5.2.3 LAsso-13LSI and LAsso-13VSM vs. baseline TLRT. Table 3¢
shows the results obtained by Lasso-13LSI, the LSI-based baseline,
LAss0-13VSM, and the VSM baseline on the combined data sets.
We observe that Lasso-13VSM improves the ZHITS@10 results
of the VSM baseline by 86% (60.2% vs. 32.4%), while Lasso-13LSI
has an improvement of 163% (51.8% vs. 19.7%) over its baseline.
We note that the VSM baseline performs worse than the Lucene-
based one by 37% in terms of ZHITS@10, while the LSI baseline
performs 62% worse. The improvement in terms of average rank
for LAsso-13VSM over its baseline is similar to that achieved by
Lasso-13Luc over its baseline, namely, one order of magnitude.
With that in mind, the size of the improvement obtained by Lasso-
13LSI (compared to Lasso-13Luc or Lasso-13VSM) indicates that
Lasso is especially well suited to improve a poorly performing
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baseline TLRT. Notably, the reduction in average rank is even more
dramatic for Lasso-13LSI, going from 2,286.2 to 41.4, or two orders
of magnitude.

5.24  Analysis of the results. We perform a deeper analysis of the
Lasso-13Luc results, given it performs better than the other two
LAsso variations. We examined a random sample of 30 constraints:
10 where the ground truth was not retrieved, 10 where it was
retrieved with method rank 11-20, and 10 where the method rank
was 21+.

The most common reason for not retrieving or low-ranking of
the ground truth was a term mismatch between the operands in
the constraint text and the operands of the ESC, which is a known
problem in traceability link recovery. Specifically, we identified the
following causes of term mismatches:

(1) uses of abbreviations (ArgoUML constraint “[Minimise Class
icons in diagrams] is enabled by default”, which appears in
the source code as “mini”);

(2) compound identifiers (Ant constraint “If the value of [clonevm]
is true”, clonevm vs. isCloneVm); and

(3) misspellings (ArgoUML constraint “Use guillemots («») for
stereotypes (clear by default)” guillemots in the text vs the
correct guillemets in the code).

The standard text retrieval techniques that LAsso-13 uses to pro-
cess the text in operands cannot successfully overcome these mis-
matches. There are, however, techniques that have been specifically
designed to tackle these situations (e.g., abbreviation expansion
[36, 41], identifier splitting [25, 30], spell checkers [5, 58]), which
could be easily integrated into our approach.

The next most common cause for low rankings is the TLRT high
scores for unrelated methods. This happens mostly because of terms
in the constraint context that are very common on the system or
that happen in combinations that the BM25 scoring considers to be
very relevant. For example, for the Ant constraint “default for cache
still is false” the ground truth ESC has maximum value for COE and
ECO, but a value of only 0.03 for CM. This happens for two reasons:
(1) the ground truth ESC is in a field definition, which only has two
matching terms with the constraint context (cache and false); (2)
BM25 ranks longer methods with the word combination "resource
collection” (from the context) near the top of its list.

Implementation decisions can also cause this problem: for the
Log4]J constraint “If [locationInfo is] true”, there are 6 classes in the
system with “locationInfo” properties, plus a class actually named
“LocationInfo”. The usages of any of these symbols are ranked highly
not only by the TLRT, but also by Lasso-13 specific scoring, since
they also have operand terms in common. For a MyBatis constraint,
the first 8 ranked methods contain the same error message: “Error:
Cannot rollback. No managed session is started.”, which matches
terms form the context and causes them to be ranked highly. This
appears to be a commonly used pattern in this system that hinders
our approach, but can be addressed by removing error messages
from the ESC block. One way to address these situations is to use
the code around the ESC to better understand of the semantics of
the ESC. Such exploration is subject of future work.

Finally, an expected type of constraint implementation that is dif-
ficult for LAasso-13 to retrieve is the case where the enforcing state-
ment is used to check multiple constraints. These were described by
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Table 3: Retrieval performance of Lasso-13 variations and their corresponding baselines.

Data Set Technique %2H@1 %2H@5 %2H@10 AVghIZ[:lihOd Avg. Recall MRR
Lasso-13Luc 14.1% (23) 45.4% (74) 57.7% (94) 35.4 81.6% 27.5%
Lucene 11.0% (18) 27.6% (45) 39.3% (64) 218.3 98.2% 19.8%
CDS Lasso-13VSM 11.7% (19) 39.9% (65) 49.7% (81) 39.4 81.6% 22.9%
VSM 2.5% (4) 13.5% (22) 22.7% (37) 270.5 98.2% 8.3%
Lasso-13LSI 11.0% (18) 27.6% (45) 39.9% (65) 58.6 81.6% 19.6%
LSI 4.9% (8) 9.2% (15) 12.9% (21) 3309.6 98.8% 7.3%
(a) Results on CDS (163 constraints)
Lasso-13Luc 39.0% (53) 66.9% (91)  77.9% (106) 12.9 89.7% 51.5%
Lucene 25.7% (35) 52.2% (71) 66.2% (90) 66.0 98.5% 37.5%
VDS Lasso-13VSM 39.7% (54) 64.0% (87) 72.8% (99) 13.5 89.7% 50.5%
VSM 18.4% (25) 38.2% (52) 44.1% (60) 90.1 98.5% 27.6%
Lasso-13LSI 29.4% (40)  52.2% (71)  66.2% (90) 22.7 89.7%  40.9%
LSI 12.5% (17) 22.1% (30) 27.9% (38) 1065.7 99.3% 18.0%
(b) Results on VDS (136 constraints)
Lasso-13Luc 25.4% (76)  55.2% (165)  66.9% (200) 24.6 85.3% 38.4%
Lucene 17.7% (53)  38.8% (116)  51.5% (154) 148.9 98.3% 27.8%
CDS + VDS Lasso-13VSM 24.4% (73)  50.8% (152)  60.2% (180) 27.0 85.3% 35.4%
VSM 9.7% (29) 24.7% (74) 32.4% (97) 188.3 98.3% 17.1%
Lasso-13LSI 19.4% (58) 38.8% (116)  51.8% (155) 41.4 85.3% 29.3%
LSI 8.4% (25) 15.1% (45) 19.7% (59) 2286.2 99.0% 12.2%

(c) Results on CDS + VDS (299 constraints)

Florez et al. [27], and serve as justification for the inclusion of “data
definition statements” in the definition of the CIPs. For example,
for the SkyWalking constraint “[instance_name] [m]ax length is
507, its corresponding enforcing statement is if (value != null &&
value.length() > lengthDefine.value()). This statement is used
to check many properties in the system, namely those that use the
“Length” annotation (lengthDefine is of type Length), defined in the
code of the system. Locating this enforcing statement would re-
quire identifying usages of the “Length” annotation (relevant in this
case “@Length(50) public volatile static String INSTANCE_NAME
"".”), and add the concrete value of the annotation to the corre-
sponding operand, in this case lengthDefine.value(). While this
process would most likely improve the performance of Lasso-13, it
is outside of the scope of this paper.

In 9 of the 30 analyzed constraints, a true positive, different from
the ground truth was retrieved within the first 10 results. This
was expected, as Florez et al. [27] documented that in some cases,
one constraint is enforced in several places in the code (e.g., when
it is involved in multiple features). Since the ground truth data
only annotates a single enforcing statement per constraint (even
if there are more), we do not count the extra enforcing statements
as true positives. Expanding the data sets to annotate all enforcing
statements for each constraints is subject of future work.
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Lasso-13Luc outperforms the Lucene-based baseline by
30% (66.9% vs 51.5%); LAsso-13VSM outperforms the VSM-
based baseline by 70% (60.2% vs. 35.4%); Lasso-13LSI out-
performs the LSI-based baseline by 163% (51.8% vs. 19.7%);
all in terms of ZHITS@10.

5.3 ROQ2 Results

To evaluate how accurately LAsso-13 can point to the correct enforc-
ing statement, we further examine the ESC lists for the evaluation
results. We perform all analyses on the combined CDS + VDS data.
The ESC ranks for the three LAsso variations are the same, as
the TLRT does not change which ESCs the AST-CIP component
matches, only the method ranking (this is why we get the same
recall for all variations).

Table 4 shows the distribution of the ESC ranks for all 299 con-
straints. LAsso-13 places the correct enforcing statement in ESC
rank 1 for 202 of 299 constraints (68%) of cases, and in 2-3 for 33
(11%). Lasso-13 does not return the correct enforcing statement
for 13 constraints (4%) ("None" in table), and does not return the
ground truth method for 44 (15%) ("N/A" in table).

We focus on the subset of constraints for which the Lasso-13
instances return method-level results in top 10 (i.e., 200 constraints
for Lasso-13Luc, 180 for LAsso-13VSM, and 155 for Lasso-13LSI),
shown in Table 4.
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Table 4: Distribution of the ESC ranks for constraints with
methods retrieved in top 10 by each baseline and also for all
constraints.

ESC Top 10LSI  Top 10 VSM  Top 10 Luc. All
Rank
1 130 (83.9%)  148(82.2%) 162 (81.0%) 202 (67.6%)
2-3 16 (10.3%) 23 (12.8%) 28 (14.0%) 33 (11.0%)
>4 4(2.6%) 4(2.2%) 5 (2.5%) 7(2.3%)
None 5 (3.2%) 5 (2.8%) 5 (2.5%) 13 (4.3%)
N/A 44 (14.7%)
Total 155 180 200 299

For the 200 constraints, LAsso-13Luc ranks the ground truth
enforcing statement as 1 in 162 cases (81%), as 2-3 in 28 (14%), as
4+ in 5 (2.5%), and it does not point to the ground truth in 5 (2.5%).
For 155 constraints, LAasso-13LSI ranks the ground truth first in
130 cases (84% of 155), 2-3 in 16 (10%), 4+ in 4 (3%), and does not
point to it in 5 (3%). In other words, for the methods returned by
Lasso-13Luc in top-10, the approach pinpoints precisely 95% of
the ESC within the returned method (81% in the top position and
14% on position 2 or 3). For Lasso-13LSI, this figure is 94% (84% in
1, and 10% in 2).

We manually examined the ESC results for the ground truth of
27 constraints: 10 where the ground truth ESC had a rank of 2-3, 7
where the ESC rank was 4+ (all such cases), and 10 where Lasso-13
did not return the ground truth ESC.

Inconsistent identifier naming in the source code was the largest
cause of low-ranked or missed ESCs. For example, the JabRef con-
straint “If a file is imported” has the terms “file” and “imported”
as part of its operands, however, its enforcing statement uses the
term “loaded” instead, and “file” appears inside this ESC’s block,
giving it a score of 0 for COE, though it achieves a maximum score
for COB. However, other ESCs in the method contain these terms
because they are related in functionality, but do not enforce the
same constraint, for example an ESC containing the identifier is
FileExport achieves a higher COE score and is thus ranked higher.
Similarly, the enforcing statement of the JabRef constraint “If there
are [parsing] problems” uses the term “warning”, which causes it to
not be retrieved, while the string passed to the exception reporting
the problem does contain the term, which is returned as an ESC.

In three cases, the ground truth enforcing statement could not be
found because it checks the opposite condition to the one specified
in the constraint, e.g., the JabRef constraint “there are more than two
persons in the author list” is implemented as if (authors.length
< 3). One way to address these cases is to look for the negation of
the constraints as well, but that is subject of future work.

In three cases, the ground truth enforcing statement was returned
in position 2, and the ESC ranked first has the same score as the
ground truth ESC. This happens because both ESCs have the same
number of terms in their body and the same matching terms with
the constraint operands. For example, in the JabRef constraint “an
export option is also specified”, the two ESCs are f (cli .
Export()) and the ground truth is if (cli . isExportMatches()).
Both have the same number of terms and match only “export”.

isFile
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For three constraints (different from those mentioned in the
previous section) we found the top ranked ESC to be a true positive.
The Ant constraint “If the manifest is omitted” is checked in two
places in the ground truth method. This is because the manifest
is loaded on-demand, and so the object can be in a state where
the manifest was provided by the user but has not been loaded.
The method checks once to see if the manifest has been loaded,
and attempts to load it if not, and then again to confirm that the
loading returned anything (because it can return null if the manifest
was omitted). Since our ground truth data only has annotated one
enforcing statement per constraint, LAsso-13 finds additional “true
positives” for the constraints that are enforced in multiple places in
the code. Florez et al. [27] found that 71 (44%) of the constraints in
the CDS are enforced in multiple places. Creating a data set where
all enforcing statements are annotated is subject of future work.

LAsso-13 ranks the correct enforcing statement accurately
for 79% of the 299 constraints (68% at rank 1 and 11% at
rank 2-3). For the methods returned by Lasso-13Luc in
top-10, it accurately pinpoints 95% of the ESC within the
returned method (81% in at rank 1 and 14% at rank 2-3).

6 THREATS TO VALIDITY

Our evaluation is implicit and relies on data sets from previous
research and new data we produced for this paper. These data sets
are built following the same protocol and only contain a single
ground truth enforcing statement per constraint, even if there may
be more in some cases. The results may be different on data with
more complete ground truth annotations.

Our evaluation assumes a "perfect"” user, as LAsso-13 is given the
correct inputs for each constraint, specifically the operand list and
the constraint type, which were derived from each constraint by an
author, who is familiar with both the catalog of data constraint types
and data constraints, in general. In a real-world situation the user
may not be able to provide the correct input in each case. Evaluating
how robust Lasso is with respect to incomplete or incorrect input
is subject to future work. To mitigate this issue, the input for the
LAsso-13 instances and the baselines are the same.

Our evaluation is performed only on constraints that are imple-
mented with the 13 CIPs that Lasso-13 has detectors for. This is by
design, as our goal was to evaluate the performance in detecting
known patterns (i.e., corresponding to the detectors). Tackling the
presence of unknown patterns is part of our future work.

The correctness of the traces in our data sets is also a threat.
Even though the level of agreement between tracers is arguably
low (55%), we argue this is actually high, due to the very unlikely
nature of two tracers agreeing on a line-of-code trace by chance, as
our agreement criterion was strict (i.e., the tracers had to report the
exact same lines). To mitigate this threat, each trace was set only
after a discussion between two authors.

The weight calibration algorithm we used to set the parameters
for Lasso-13 might not have generated the optimal combination of
weights. However, we show that a relatively simple process with a
small data set provides values that are robust against overfitting,
hence we believe they will translate to other data sets.
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As we any such empirical study, external validity depends on the
size of our data. Given the novelty of this work, only two annotated
data sets exists for supporting this work (i.e., the one from [27]
and the one we created). To mitigate this threat, we annotated data
from systems not used in the previous study.

7 RELATED WORK

Lasso is related to automated requirements-to-code traceability
link recovery techniques, albeit it focuses on a specific subset of
the requirements (i.e., data constraints). Research in this field spans
decades and has produced a multitude of techniques that can trace
natural language artifacts to source code artifacts. Our work differs
from the existing approaches in two main ways: (1) the natural
language artifacts are data constraints, a source of information not
yet leveraged by any other approaches, and (2) Lasso retrieves both
method-level and line-of-code-level code artifact, which has only
been achieved with limited success in previous studies.

Improvements in the performance of these techniques have
originated from both the use of different retrieval models (VSM
[1,34, 35, 53], probabilistic [1, 2, 11, 19], topic models [34, 43, 47, 53],
machine/deep learning [31, 51], Al techniques [6, 63]), and the use
of alternate sources of information (code authorship [23, 56], non-
functional keywords [45, 46], dynamic analysis [24, 29, 52]). More
related to the present work, code structure has been exploited
[24, 40, 49, 59, 60], but only in the form of method/class relation-
ships, unlike the line-of-code patterns that enable our approach.

The fine-grained code patterns represent an additional source
of information that is orthogonal to those previously studied (pre-
sented above), and similar performance improvements as the ones
reported here could be expected to be achieved by integrating any
of these approaches with Lasso, as the TLRT component.

The semantic grep tool [10] can be used to define and retrieve
patterns like the CIPs that enable Lasso. While we chose to use a
parsing and analysis library for Java (JavaParser [38]) to implement
the detectors for the AST-CIP component of Lasso-13, any tool
that can return a list of ESCs could be used instead.

The work by Blasco et al. [6] uses LSI and genetic algorithms
to retrieve traces at lower granularity than methods for a natural
language requirement, in a specific commercial video game. This
approach is fundamentally different from Lasso-13, as it is meant
to trace requirements that are larger than data constraints, and that
are assumed to be implemented in multiple code locations, each. In
contrast our technique assumes that each data constraint will be
implemented in a discrete location inside a method, as observed by
previous work [27]. Additionally, their technique randomly selects
seed lines for the genetic algorithm based, and the results are non-
deterministic. Our approach both uses specific line-of-code patterns
to build the ESCs and is deterministic.

A related line of research uses static analysis to reverse engineer
business rules, usually from a legacy system where only the binary
code is available [14, 20, 21, 33, 37, 61, 62, 65]. These approaches dif-
fer from Lasso in that they do not use the text of the business rule as
input, instead rely on the developer selecting relevant input/output
variables. From this set of variables they perform forwards or back-
ward slicing, and find the branches in the slice, since conditional
branches are the locations where business rules are checked.
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Finally, recent research by Yang et al. [69] explored the imple-
mentation of data constraints in database-backed web applications.
They discovered that developers struggle with maintaining con-
sistent data constraints and with checking them across different
components and versions of their web applications. This work is
one of the main motivation behind our research.

8 CONCLUSIONS

Lasso is a novel traceability link recovery technique, designed as
framework, which uses fine-grained code patterns to enable the
retrieval of links with line-of-code granularity. Three concrete ver-
sions of this framework, Lasso-13Luc, LAsso-13VSM, and Lasso-
13LSI were shown to achieve a ZHITS@10 of 66.9%, 60.2%, and
51.8%, respectively, while outperforming their corresponding base-
lines by 30%, 70%, and 163%, respectively. Additionally, all three
Lasso-13 variations can return the correct line of code implemen-
tation within the first 3 ranks in the corresponding method for 79%
of constraints.

These findings show that empirical knowledge of the space of
constraint implementations and common-sense heuristics can en-
able effective retrieval at line-of-code granularity, while improving
the performance of method-level approaches.

Lasso is extensible with new types of constraint implementation
pattern matchers and, with enough such extensions, Lasso could
be used to trace any type of data constraints implemented with any
current or future implementation patterns. Since LAsso operates at
line-of-code level, we envision tools that will automatically identify
and change the enforcing statement when the underlying rules
change.

Researchers identified trace accuracy and trace granularity as
two remaining grand challenges in traceability [3, 18, 44]. Future
requirements-to-code traceability link recovery approaches can
bootstrap on Lasso, which will find the lines of code implementing
the constraints embedded in the requirements, and use these “seeds”
to improve the accuracy of tracing the larger requirements. This
will not only improve the accuracy of coarse-grained traceability,
but will also provide fine-grained links that can be directly used
when they are needed.
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