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ABSTRACT

Business rules are an important part of the requirements of soft-

ware systems that are meant to support an organization. These rules

describe the operations, definitions, and constraints that apply to

the organization. Within the software system, business rules are

often translated into constraints on the values that are required or

allowed for data, called data constraints. Business rules are subject

to frequent changes, which in turn require changes to the corre-

sponding data constraints in the software. The ability to efficiently

and precisely identify where data constraints are implemented in

the source code is essential for performing such necessary changes.

In this paper, we introduce Lasso, the first technique that au-

tomatically retrieves the method and line of code where a given

data constraint is enforced. Lasso is based on traceability link re-

covery approaches and leverages results from recent research that

identified line-of-code level implementation patterns for data con-

straints. We implement three versions of Lasso that can retrieve

data constraint implementations when they are implemented with

any one of 13 frequently occurring patterns. We evaluate the three

versions on a set of 299 data constraints from 15 real-world Java

systems, and find that they improve method-level link recovery

by 30%, 70%, and 163%, in terms of true positives within the first

10 results, compared to their text-retrieval-based baseline. More

importantly, the Lasso variants correctly identify the line of code

implementing the constraint inside the methods for 68% of the 299

constraints.
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1 INTRODUCTION

Business rules describe the operations, definitions, and constraints

that apply to an organization [68]. When a software system is de-

veloped to support such an organization, these rules inform the

creation of the software requirements. However, business rules are

known to change unpredictably. For example, the Reserve Require-

ments for Depository Institutions (§204.2(d)(2), Regulation D) of

The Federal Reserve [8] limits withdrawals or outgoing transfers

from a savings or money market account to no more than six such

transactions per statement period. This restriction was temporarily

lifted in 2020 [7], making the number of transfers no longer lim-

ited. Performing this change on a system subject to this regulation

requires knowing the source code elements that are responsible for

implementing this rule.

Many business rules (and other type of requirements) are trans-

lated within the software system into data constraints [27, 67, 68].

Data constraints specify what values are allowed or required for

the given data. In the example above, the relevant data are the num-

ber of monthly withdrawals and the number of monthly transfers

from an account (savings or money market). The constraint states

that the sum of the values of these two data elements should be

less than or equal to six. The two data elements are defined in the

code (we call these data definition statements) and the constraint is

checked in some other part of the code (which we call constraint

enforcing statement). Developers implementing the changes caused

by the new rule will have to find the data constraint enforcing

statements, and they could benefit from tool support, as is the case

in any software change process [12, 13].

Recent research by Yang et al. [69] explored the implementation

of data constraints in database-backed web applications. They dis-

covered that developers struggle with maintaining consistent data

constraints and with checking them across different components

and versions of their web applications. This observation under-

scores the need for tool support when it comes to maintaining the

implementations of data constraints in particular.

In this paper, we propose and evaluate a new approach, Lasso

(Locating dAta conStraints in Source cOde), that can automatically
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identify the enforcing statements for a given data constraint in a

software. Lasso is designed as an extensible framework (Section 3).

The framework is built on top of a standard traceability link recovery

tool (i.e., for a textual input, it returns a list of relevant methods

from the code), which is replaceable and customizable. The main

novelty is that Lasso formalizes and uses structural information

about data constraint implementations originating from previous

work on the subject [27] (Section 2). With this information, Lasso

is able to improve the method-level retrieval performance of the

underlying traceability link recovery tool. More importantly, Lasso

is able to pinpoint the lines of code where a constraint is imple-

mented. The ability to trace data constraints to line-of-code level

implementations sets Lasso apart among traceability link recovery

approaches, which largely operate at coarser granularity levels (i.e.,

file, class, method) [9].

Florez et al. [27] conducted an empirical study and identified

30 data constraint implementation patterns used by developers

in Java code. The implementation patterns describe the structure

of the implementations, and are presented in a pattern catalog.

We convert the pattern descriptions into context-free grammar

production rules. These productions rules are then used by Lasso

to identify lines of code that exhibit the implementation patterns.

We instantiate Lasso with detectors for 13 of the most commonly

occurring patterns from the pattern catalog, and refer to this ver-

sion of Lasso as Lasso-13. With these components, we create three

instances of Lasso, i.e., Lasso-13Luc which uses a Lucene-based

traceability tool [48] (BM25); Lasso-13VSM which uses the Vector

Space Model [32]; and Lasso-13LSI which uses an LSI-based trace-

ability tool [22]. We evaluate these three instances of Lasso-13 and

compare the performance of each with their respective traceability

tool as the baseline. Specifically, we compare their performance on

retrieving methods implementing 299 constraints in 15 real-world

Java systems. 163 of these constraints are from previous research

[27], while 136 are new to this paper. We found that the Lasso-

13Luc, Lasso-13VSM, and Lasso-13LSI outperform their baselines

by 30%, 70%, and 163% (in terms of true positives retrieved in the

first 10 results), respectively. In addition, we evaluate Lasso’s ac-

curacy in pinpointing the lines of code enforcing the constraints

within the relevant methods. We found that Lasso-13 ranks the cor-

rect enforcing statements accurately for 79% of the 299 constraints

(68% at rank 1 and 11% at rank 2-3).

The main contributions of the paper are:

• A novel approach and framework that, for a given data con-

straint, automatically finds the method and lines of code

where it is implemented.

• A new annotated data set of 136 data constraints and their

implementations, from 7 real-world Java systems, which

complements data from existing research.

• The results of the evaluation of two Lasso instances and two

baseline approaches.

The data, code, and results are in our replication package [28].

2 BACKGROUND

In this paper, we use the constraint implementation pattern (CIP) cat-

alog defined by Florez et al. [27]. To make the paper self-contained,

we summarize here the most important information we use.

Table 1: CIP Catalog [27] Excerpt.

CIP name: binary-comparison.

Description: Two values are compared using an operator such as

equals, does not equal, greater than, etc.

Statement type: Expression.

Parts: {variable1, op ∈ {>, ≥,<, ≤,=,≠}, variable2 }
Example: Instance: if(maxFreq > wave.getNyquist())

Parts: {maxFreq, >, wave.getNyquist()}.
CIP name: if-chain.

Description: A chain of ifs is used like a switch on a field, checking

against the possible values of the variable.

Statement type: If statement.

Parts: {variable}
Example: Instance: if(onset == EMERGENT) {. . .} else if(onset ==

IMPULSIVE) {. . .} else if . . .

Parts: {onset}.

Florez et al. studied the textual formulation and line-of-code

implementation on a set of 187 constraints from 8 Java systems.

The constraints were categorized into four types:

Value comparison has 2 operands. The value of 𝑋 (variable)

is constrained by the value of 𝑌 (variable) with an equality or

relational operator. Example: “SWARM will allow the maximum

frequency to be set to any positive value greater than the minimum

frequency” [64] contains two constraints: max frequency > 0" and

"max frequency > min frequency".

Dual value comparison has 2 operands. 𝑋 (variable), and 𝑌
(condition) is one of the 2 mutually-exclusive values that implies the

other (e.g., true/false, enabled/disabled). Example: “If configuration

file is not available or readable. . . ” [64] contains two constraints:

“file is available" and “file is readable".

Categorical value has 3+ operands. 𝑋 (variable) is constrained

to a finite set 𝑆 (2+ options) of two or more values. Example: “on-

MissingExtensionPoint: What to do if this target tries to extend a

missing extension-point. (fail, warn, ignore)” [4] contains one con-

straint: “onMissingExtensionPoint ∈ {fail,warn, ignore}".
Concrete value has 2 operands. The constraint directly declares

𝑋 (variable) to be 𝐶 (value). Example: “The default [switch] date is

1582-10-15.” [39] contains a constraint: “switchDate is 1582-10-15".

The implementation of a constraint consists of two parts: an

enforcing statement and data definition statements. Each enforcing

statement was categorized according to the type of code construct

where it appears (e.g., expression, if statement, return statement,

etc.) and the number of operands it uses. The result was the defini-

tion of 30 CIPs, i.e., code patterns with line-of-code granularity. In

this paper, we only utilize information about 13 CIPs, which were

identified as the most commonly used: boolean property, binary

comparison, constant argument, null check, assign constant, binary

flag check, if chain, equals or chain, switch len char, self comparison,

return constant, null zero check, and null empty check. Table 1 shows

the definition of 2 of the 13 patterns. The complete CIP Catalog can

be found in the original publication [27].

For each CIP, we use the description and the number of required

operands (which we convert into a grammar - Section 3) . In addi-

tion, for each constraint type, Florez et al. identified which CIPs

are most commonly used for implementing constraints of that type.
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Figure 1: Overview of Lasso. Gray boxes are replaceable com-

ponents. There can be any number of CIP detectors.

For example, constraints of dual value comparison type are most

frequently implemented using the boolean property CIP, with the

next most common CIP being null check. Lasso also leverages this

information as part of its ranking model.

3 APPROACH DESCRIPTION

Our approach, Lasso (Locating dAta conStraints in Source cOde),

is designed as an extensible framework that automatically identifies

implementations of given data constraints in the source code. An

overview of the Lasso framework is presented in Figure 1.

The main novelty of Lasso is its ability to identify constraint

implementations at line-of-code granularity. This is enabled by the

AST-based CIP matching component (AST-CIP, see Section 3.2).

AST-CIP is composed of several CIP detectors. Each one can detect

instances of one CIP in the source code by traversing the abstract

syntax trees (ASTs) of the target system. As shown in Table 1, Flo-

rez et al. [27] defined each CIP using natural language description

and an example. Such definition is ambiguous and can not be used

for specifying the pattern for each detector. Based on their defini-

tions, we define a syntactic pattern of each CIP, using a context-free

grammar (CFG). AST-CIP takes the source code as input, and is

composed of a number of detectors, each capable of identifying

instances of one CIP. The user can make a choice of how many CIP

detectors to provide. Adding more can result in more constraints

being correctly traced. AST-CIP produces a set of source code state-

ments, i.e., enforcing statement candidates (ESCs), that match the

syntactic patterns of the CIPs used by the detectors (Section 3.2.2).

In addition, Lasso uses a traceability link recovery tool (TLRT),

that accepts natural language (i.e., the description of a data con-

straint) and source code as inputs. The TLRT retrieves relevant

source code methods for the constraint. Lasso is agnostic to the

internal retrieval model of the TLRT, which means the framework

can use any TLRT, as long as it uses the appropriate input and pro-

duces output at method-level granularity. We implemented three

instances of Lasso, using Lucene-, VSM-, and LSI-based TLRT (Sec-

tion 4).

Finally, Lasso’s ranking component (RANK) uses the ESCs iden-

tified by the AST-CIP component and the method-level results

returned by the TLRT to produce a list of methods, ranked by their

likelihood that they implement a given data constraint, and a list

While SWARM will allow the maximum frequency to be set to any positive

value greater than the minimum frequency, this value will adjust automatically

if it is greater than the Nyquist frequency of the wave being manipulated.

Figure 2: Example of constraint input from the Swarm sys-

tem. The entire text is the context. The constraint in bold,

and the operands are highlighted in gray.

Figure 3: The operands, body, and block elements of the ESC

that implements the constraint in Figure 2.

of code statements inside each method, ranked by their likelihood

to enforce the constraint (Section 3.3).

3.1 Lasso Inputs

For each target system, Lasso takes as input its source code, which

is used by the TLRT and the AST-CIP components.

The Constraint type to CIP mapping (Section 2) contains informa-

tion about the type of data constraints and frequency of existing

CIPs implementing each constraint type. This information is em-

ployed by the user to describe the constraint and also by the ranking

component to estimate the likelihood that a certain CIP implements

a given constraint type. For each constraint, three elements are

specified by the user and used as queries by Lasso.

1. The constraint context is the paragraph where the constraint

is described in the existing documentation (e.g., requirements, use

cases, and manuals). This is used by TLRT.

2. The constraint type is set according to the definitions in the

constraint type catalog. The CIP catalog we use defines four con-

straint types: value comparison, dual value comparison, categorical

value, and concrete value (Section 2). This is used by RANK.

3. The constraint operands are the noun phrases referring to the

data on which the constraint is defined. The number of operands

varies for each type of constraint (Section 2): (1) two operands for

value comparison; (2) two operands for dual value comparison; (3)

three or more operands for categorical value; and (4) two operands

for concrete value. This information is used by RANK.

Figure 2 shows an example of the constraint inputs that Lasso

takes. The constraint context is all the text in the figure. The con-

straint type (derived from the text describing the constraint) is value

comparison, as it matches the definition "a value is constrained by

another value using a relational operator" (greater than in this case).

The operands of this constraint are [maximum frequency, Nyquist

frequency of the wave]. Note that reference resolution is not done

automatically, but left to the user, who in this case should select

the noun phrase “maximum frequency” instead of the pronoun “it”.
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3.2 AST-CIP component

The AST-CIP component uses the source code and the constraint

detectors to identify enforcing statement candidates (ESCs).

3.2.1 ESC definition. Each ESC has the elements:

• A body, e.g., the AST element that matches the CIP, which

can be a field definition, a statement, or an expression.

• A method where it appears.

• A list of operands.

• An optional block of statements.

• A CIP type, corresponding to the CIP that it matches.

The number of operands of an ESC depends on its CIP type, as

described in Section 2. Figure 3 shows the ESC that implements

the constraint in Figure 2. The ESC’s CIP type is binary-comparison;

hence, it has has two operands (based on the CIP catalog we use).

Lasso aggregates the terms of an operand, by collecting both the

identifiers contained inside the ESC body (“wave.getNyquist" for

operand 2, in the example), and the identifiers in the operand’s

definition (“double getNyquist()" for operand 2, in the example).

The definitions are obtained by symbol resolution, and can be done

with any analysis framework that provides the functionality.

The block element applies only to the ESCs whose body appears

in the condition of a if, while, or do-while statement. The block

corresponds to all the text in the body of the statement, including

both then and else blocks in the case of if statements. The ESC

block does not apply to ESCs whose body appears between the

parentheses of a for statement, because these conditions are more

complex than those of the previously mentioned statements.

Note that some ESCs may appear outside of methods, e.g., in field

definitions. In this case, the corresponding definition is considered

to be a pseudo-method.

3.2.2 CIP matching. As discussed, the ambiguity in the CIP defini-

tions by Florez et al. [27] makes it hard to specify which instances

should be matched by each CIP detector. To address this challenge,

we express the CIPs using a context-free grammar (CFG), shown in

Figure 4. We define garmmars for 13 most common CIPs (Section 2).

The grammar of each CIP covers all instances of the pattern in

Florez’s data. By convention, non-terminals are in uppercase and

terminals are in lowercase. The non-terminals in blue are the start

symbols for matching the 13 CIPs. In this grammar, a terminal or

non-terminal may be associated with an operand specifier, which

is an annotation following a colon, e.g., op in BOOL_VAL:op on

line 1. Operand specifiers are used to identify the symbols that

are operands in each CIP. The same operand specifier defines the

same symbol in different places in a CIP’s grammar. For example,

var:op on lines 23 to 25 requires the same variable to appear in

these conditional expressions.

Lasso can have any number of CIP detectors. To identify ESCs,

Lasso first parses all files in the source code except for the test

files to generate ASTs. Test files are ignored because these do not

contain the implementation of business rules (in this case data

constraints). Investigating the association between data constraint

implementations and their test code is subject of future work. Lasso

then visits every node in each AST. When an AST node is visited,

AST-CIP attempts to match the grammar of each detector on said

node. An individual CIP detector will return an ESC if and only if the

1 BOOLEAN_PROPERTY → BOOL_VAL : 𝑜𝑝
2 BOOL_VAL → var_bool | method_call_bool | field_access_bool
3

4 BINARY_COMPARISON → VAL : 𝑜𝑝1 CMP VAL : 𝑜𝑝2
5 | VAL : 𝑜𝑝1 RELOP VAL : 𝑜𝑝2
6 CMP → < | > | <= | >=
7 RELOP → == | !=
8 VAL → var | method_call | field_access
9

10 CONSTANT_ARGUMENT → var . m_name : 𝑜𝑝1 ( ARGS literal : 𝑜𝑝2 ARGS )
11 ARGS → expr ARGS | 𝜆
12

13 NULL_CHECK → null RELOP VAL : 𝑜𝑝
14 | VAL : 𝑜𝑝 RELOP null
15

16 ASSIGN_CONSTANT → VAR : 𝑜𝑝1 = literal : 𝑜𝑝2
17 VAR → var | field
18

19 BINARY_FLAG_CHECK → INT_VAL : 𝑜𝑝1 BITOP INT_VAL : 𝑜𝑝2 RELOP

lit_int : 𝑜𝑝2
20 INT_VAL → var_int | method_call_int | field_access_int
21 BITOP → & | |
22

23 IF_CHAIN → if ( var : 𝑜𝑝 == literal ) BODY ELSEIF

24 ELSE_IF → elseif ( var : 𝑜𝑝 == literal ) BODY ELSE

25 ELSE → elseif ( var : 𝑜𝑝 == literal ) BODY ELSE | 𝜆
26

27 EQUALS_OR_CHAIN → var : 𝑜𝑝 == literal CHAIN

28 OR_CHAIN → || var : 𝑜𝑝 == literal CHAIN

29 CHAIN → || var : 𝑜𝑝 == literal CHAIN | 𝜆
30

31 SWITCH_LEN_CHAR → switch ( VAL : 𝑜𝑝 . length() ) LEN_CASE

32 LEN_CASE → case literal_int : stmts LEN_CASE | 𝜆
33

34 SELF_COMPARISON → var : 𝑜𝑝 RELOP var : 𝑜𝑝
35

36 RETURN_COSTANT → return literal : 𝑜𝑝1
37

38 NULL_ZERO_CHECK → NULL_CHECK AND_OR var : 𝑜𝑝 . length ( ) > 0
39 AND_OR → && | ||
40

41 NULL_EMPTY_CHECK → NULL_CHECK AND_OR var : 𝑜𝑝 . equals ( " " )

Figure 4: Grammar for 13 CIPs.

node is a valid production of the detector’s corresponding grammar.

If the node is not a valid production, the detector returns nothing.

Traversing all nodes in all ASTs results in the final list of ESCs.

To produce all elements of the ESC as result, each detector uses

thematching AST node (ESC body), the methodwhere thematching

node appears (ESCmethod), the specific detector (ESCCIP type), and

the list of operands (ESC operands). The number of operands differs

by CIP, and is extracted by each detector based on the grammar.

In addition to the operand identifiers in the ESC body, Lasso also

includes the text from their definitions (see Figure 3). The definition

of each operand is resolved using symbol resolution, yielding one

of the possible definitions: field definition, method definition, vari-

able/parameter definition. In case the operand definition is amethod

definition, only the identifiers corresponding to the method name,

parameter names, and parameter types are added to the operand.

For parameters, only the parameter name and type are added to

the operand. For the remaining types of definitions, all identifiers

in the defining statement are added to the operand.
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Consider the example in Figure 3; when the Lasso reaches the

AST node corresponding to the if statement condition, it attempts

to match the grammar of each detector. All detectors but the one

for binary comparison will return nothing, as this node matches

no other CIPs. The given node matches the CIP, as it is a binary

expression using a relational operator. After finding that the node

matches the grammar, the detector identifies the operands. In this

case there are two operands, as per the CIP definition; they are

settings.spectrogramMaxFreq and wave.getNyquist(). Symbol res-

olution is applied as appropriate for each operand: in the first case,

the field is resolved, and in the second case, the method is resolved.

The identifiers found in the definitions are then added to the terms

of the corresponding operand.

3.3 Ranking component

RANK uses four types of information from the inputs (i.e., user input

and CIP catalog) and from the output of the other two components

(i.e., TLRT and AST-CIP) to rank all ESCs for a given constraint:

• The constraint context, the constraint type, and the list of

constraint operands, from the user input.

• The ESC CIP type, the ESC method, the list of ESC operands,

and the ESC block, from the AST-CIP output, for each ESC

that matches any of the CIPs implemented in the detectors.

• Which CIPs are used most frequently to implement con-

straints of the given constraint type, from the constraint type

to CIP mapping.

• The ranked list of methods produced by the TLRT.

We introduce abbreviated notations for the various informa-

tion used in the ranking. For the constraint elements we use: 𝐶𝑐
(constraint context), 𝐶𝑡 (constraint type), and 𝐶𝑜 (list of constraint

operands). For the ESC elements we use: 𝐸𝑡 (ESC CIP type), 𝐸𝑚 (ESC

method), 𝐸𝑜 (list of ESC operands), and 𝐸𝑏 (ESC block).

Lasso first applies standard text retrieval preprocessing tech-

niques to all textual fields of both constraint inputs (𝐶𝑐 , 𝐶𝑜 ) and
ESCs (𝐸𝑜 , 𝐸𝑏 ). Specifically, we apply identifier splitting (based on

camelCaseFormat and underscore_format, stemming using the Porter

algorithm [54], and stop word removal (the list of stop words is

available in our replication package [28]). Lasso then uses 𝐶𝑐 or
𝐶𝑜 (as appropriate) as input to TLRT and obtains a ranked list of

methods, which we denote as 𝑈𝑚 .

Given the input constraint, for each ESC identified by the AST-

CIP, Lasso uses four heuristics for computing a relevance score:

1. The common terms between the constraint operands (𝐶𝑜 ) and
the ESC operands (𝐸𝑜 ). The intuition is that if the operands from

the constraint description match the ESC operands, then the ESC

is likely to implement the input constraint, e.g., the term “Nyquist”

appears in one constraint operand and one ESC operand in Fig. 3.

2. The common terms between the constraint operands (𝐶𝑜 ) and
the ESC block (𝐸𝑏 ). In some cases the ESC body uses terms different

from those in the constraint (e.g., i <= j), so the previous heuristic

will not find common terms. However, operations in the ESC block

may indeed use these terms if the logic is related to the constraint.

Matching constraint operand terms with terms in the ESC block

increases the likelihood that the ESC enforces the given constraint.

3. The frequency of the ESC CIP type 𝐸𝑡 , with respect to the con-

straint type 𝐶𝑡 , extracted from the CIP catalog. Previous research

by Florez et al. [27] (see Section 2) identified which constraint types

are implemented by which CIPs. For example, they found that 59%

of constraints of dual value comparison type are implemented us-

ing the boolean-property CIP, while 17% are implemented with the

null-check CIP. Hence, if the ESC CIP type matches the former, then

it is more likely it implements the given constraint.

4. The TLRT rank of the ESC method, 𝐸𝑚 . If the ESC method is

ranked high by the TLRT, then it is likely that the ESC implements

the given constraint and less likely if the rank is low.

For these heuristics, we define five measures (two for the first

one, and one each for the others) that take values between 0 and 1.

1. COE (Constraint-ESC operands). Lasso pairs each operand 𝑜𝑖
in 𝐶𝑜 to the operand 𝑜 𝑗 in 𝐸𝑜 with which it has the largest number

of terms in common. The pairing is strictly one-to-one. Then the

COE measure is calculated according to Equation 1.

𝐶𝑂𝐸 =

∑
𝑖, 𝑗 𝑠 (𝑜𝑐𝑖 , 𝑜𝑒 𝑗 )

|𝐶𝑜 |
(1)

Where 𝑠 returns the percentage of terms in the constraint operand

𝑜𝑐𝑖 that are also in the ESC operand 𝑜𝑒 𝑗 . Unpaired elements (e.g.,

if the constraint has more operands than the ESC) have a value

of zero for 𝑠 . For the example in Figure 3, the second constraint

operand 𝑜𝑐2 “Nyquist frequency of the wave” gets paired with the

second ESC operand 𝑜𝑒2 wave.getNyquist(). The first constraint

operand 𝑜𝑐1 “max frequency” gets paired with the remaining ESC

operand 𝑜𝑒1, though they have no terms in common. The value of

the measure is then 𝐶𝑂𝐸 = 𝑠 (𝑜𝑐1,𝑜𝑒1)+𝑠 (𝑜𝑐2,𝑜𝑒2)
|𝐶𝑜 | = 0+0.4

2 = 0.2. The

value of 𝑠 (𝑜𝑐2, 𝑜𝑒2) is 0.4 because the second constraint operand

has two out of five terms in common with the second ESC operand:

Nyquist and wave.

2. ECO (ESC-constraint operands) performs the same pairing as

COE. This time, the ECO measure captures the percentage of terms

from each ESC operand 𝑜 𝑗 that in common with the constraint

operand𝑜𝑖 . For the example in Figure 3,𝐸𝐶𝑂 = 𝑠 (𝑜𝑒1,𝑜𝑐1)+𝑠 (𝑜𝑒2,𝑜𝑐2)
|𝐸𝑜 | =

0+0.5
2 = 0.25. The value of 𝑠 (𝑜𝑒2, 𝑜𝑐2) is 0.5 because 𝑜𝑒2 has four

terms (wave, get, Nyquist, double), and two of them match the

constraint operand: Nyquist and wave. The reason we perform

the matching both ways (COE and ECO) is that even though an

ESC may contain most or all terms in the constraint operands, also

including a lot of unrelated terms suggests that it might be dealing

with different data.

3.COB (Constraint-operand block) is the percentage of terms in all

elements of 𝐶𝑜 that appear in 𝐸𝑏 . We do not perform the matching

in the opposite direction (analogous to COE and ECO) because the

ESC blocks can be long, and hence contain a lot of different terms,

causing the values to be too small to make a difference in the score.

This score is based on the intuition that if the names of operands

are used in the body of the conditional statement, then the ESC

is more likely to be relevant compared to the case in which the

operands only appear in the condition.

4. ECIP (Expected CIP). Based on the information from the CIP

catalog, ECIP is 1.0 if 𝐸𝑡 is the most frequently used pattern imple-

menting 𝐶𝑡 , 0.5 if it is the second most frequent, and 0.0 otherwise.
Specifically, value comparison: [binary comparison]; dual value com-

parison: [boolean property, null check]; concrete value: [constant

argument, assign constant]; categorical value: [if chain]. Notice that
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in the cases of value comparison and categorical value there is only

one “most common CIP”. In these cases we considered that the

second most common CIP did not appear in enough instances to

make it common enough, so only one CIP gets the full score (1.0)
and all others get zero.

5. CM (Context method). CM is 1/√𝑟 where 𝑟 is the rank of the

𝐸𝑚 in𝑈𝑚 , or 0 if TLRT did not return that method.

The final relevance score for an ESC is computed according to

Equation 2. Namely, the relevance score (𝑟𝑠) for an ESC (𝑒) is equal
to the sum of the weighted values of the five measures for that ESC

(i.e., COE, ECO, COB, ECIP , and CM).

𝑟𝑠 (𝑒) =
5∑

𝑖=1

𝑚𝑖 (𝑒) ∗𝑤 (𝑚𝑖 ) (2)

Where each𝑚𝑖 (𝑒) is the value of a measure and each𝑤 (𝑚𝑖 ) is
its corresponding weight.

The ESCs are sorted in descending order of their relevance score;

those with a score of zero are omitted from the result list. Results

that only have a non-zero value for CM are also omitted, as our

tool prioritizes results found via CIP matching. At most one ESC is

returned for each line of code in each file, with only the ESC with

the highest score returned for each line.

The ESC rankings are converted to method level by ranking

each distinct 𝐸𝑚 (produced by the TLRT) in the same order as they

appear in the ranked ESC list, without repetition. For example, if

ESCs in ranks 1, 2, and 100 are in method A, and ESCs in ranks 3

and 4 are in method B, method A will be ranked first, and method B

will be ranked second. The list of ESCs is preserved alongside each

method, and they appear in the same order as in the original list of

ESCs. Continuing the above example, method A will have an ESC

result list with 3 ESCs, and method B will have 2 ESCs in its list.

4 LASSO INSTANTIATION

We implemented 13 CIP detectors, one for each of the frequently

occurring CIPs (see Section 2). We used the JavaParser library [38]

to implement these detectors. For this, we employed the parsing ca-

pabilities of the library to parse the source code files, and used AST

visitors to implement each detector as specified by the correspond-

ing grammar. We also relied on the library’s symbol resolution to

resolve operand definitions.

We used these detectors to formulate three Lasso instances:

• Lasso-13Luc, which uses as TLRT Lucene 8.6.3 [48] with

its default similarity metric, implementing the BM25 model

[57].

• Lasso-13VSM, which uses as TLRT Lucene 8.6.3, with its clas-

sic similarity metric, implementing the Vector Space Model

(VSM) [32], more specifically, TF-IDF.

• Lasso-13LSI, which uses as TLRT Latent Semantic Indexing

(LSI) [22].

The three instances also differ in what text is provided as input to

TLRT: in the case of Lasso-13Luc and Lasso-13VSM, the constraint

context is used, while for Lasso-13LSI it is the concatenated terms

of all the constraint operands. These inputs were selected because

they achieved the highest performance for each TLRT according

to a preliminary test. The results of such test can be found in our

replication package [28]. The three TLRT components use the same

Table 2: Software systems in the validation data set (VDS).

System Domain KLoC MTH 𝑎

mybatis-3.5.5 Persistence Framework 60 3,639

shardingsphere-

5.0.0-rc1

DB Sharding middleware 110 9,599

skywalking-

8.0.1

App. Perf. Manager 127 10,825

jabref-5.0 Citation Manager 130 12,796

jpos-2.1.4 Finance library 175 8,291

log4j-2.13.3 Logging Framework 191 15,952

checkstyle-8.35 Source Code Style Checker 276 6,379

𝑎 : Number of methods

text processing, as described in Section 3.3 and return results at

the method level. For LSI, we used a dimension parameter of 300.

This parameter yielded the best performance on our data according

to our preliminary tests (results found in our replication package

[28]). These two text retrieval-based traceability link recovery tech-

niques have been commonly used as baselines in prior studies on

traceability link recovery [6, 11, 42] and bug localization [16, 50, 52].

The Lasso instances and the two TLRT work on Java code.

5 EVALUATION

The goal of our evaluation is to assess how effective Lasso is in

locating the data constraint implementations at both method and

line-of-code level, as it works at both granularities.

Our evaluation answers two research questions:

• RQ1:What is the performance of Lasso-13Luc, Lasso-13LSI,

and Lasso-13VSM on method-level data constraint traceabil-

ity link recovery?

• RQ2: How accurately can Lasso-13Luc, Lasso-13LSI, and

Lasso-13VSM retrieve the lines of code that implement a

constraint?

5.1 Experimental Setup

Subjects of the study. We perform an intrinsic evaluation by

comparing Lasso-13Luc and Lasso-13VSM with the Lucene-based

TLRT they are built upon. Likewise, we compare Lasso-13LSI with

the LSI-based TLRT.

Datasets.We need ground-truth datasets where the traces from

the data constraints to their implementations (lines of code) are

known. We use two datasets in the evaluation. The first is the data

published by Florez et al. [27], which we refer to as the Calibration

Data Set (CDS), since we use it for calibrating the weights of the

five measures used by the Lasso instances for ranking (see Sec-

tion 3.3). We describe the calibration below. CDS consists of 163

traced constraints in 8 real-world Java systems [27]. That study had

a dataset of 187 constraints. We selected only the 163 constraints

implemented with one of the 13 CIPs detected by Lasso-13.

We collected an additional dataset, called Validation Data Set

(VDS), consisting of 136 constraints from 7 new systems different

from the ones in CDS (Table 2). The textual artifacts for all systems
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are their corresponding user manuals. We used the following pro-

tocol to construct VDS, which is similar to the one used by Florez

et al. [27]. First, one author examined the textual artifacts of the

7 systems and extracted 30 data constraints from each. Next, we

recruited four tracers to identify the implementations of these con-

straints. All tracers are Computer Science graduate students, each

with at least 3 years of programming experience in Java.

The tracers were instructed to find a single implementation per

constraint, specifically the one described in the textual artifact

where the constraint originated. The reasons for this are aligned

with those argued by Florez et al. [27]. Namely, (1) it is very difficult

to define a stopping criterion that would consistently result in all

implementations of a constraint being reliably found, and (2) term

mismatch and implementation complexities make it necessary to

use the constraint context to have a reasonable certainty that the

trace is correct, which means only the instance of the constraint

defined in the text can be reliably traced.

Each constraint was assigned to two tracers.The tracers produced

identical traces for 116 constraints (55% of 210). The disagreements

were caused either from misunderstandings of the code semantics

(as the code does not always use the same terms as the constraint’s

textual description), or from tracers selecting a statement that does

not refer to the specific implementation of the assigned constraint,

but rather one in related functionality. This relatively low agree-

ment rate is to be expected due to the complex nature of the task,

which requires the tracers be familiar with the target system’s code.

To ensure the quality of VDS, two authors determined the final

trace through discussion based on the tracers’ answers. Finally,

to determine which constraints were suitable for our evaluation,

one author labeled each trace with the CIP that corresponded to

it. Only those constraints implemented with one of the 13 CIPs for

which we implemented detectors were added to the VDS data set,

resulting in 136 constraints in total.

Metrics. Because both CDS and VDS contain traceability links at

line-of-code granularity, the lines of code for each trace correspond

to the ground truth for each constraint. Both Lasso instances and

the baselines produce ranked lists of methods as their outputs. To

measure their effectiveness, if a method in the result list contains

the ground truth lines, we consider the constraint as retrieved at

that rank. We call this themethod rank of the constraint. Recall that

the Lasso instances also produce a ranked ESC list for each method.

We define the ESC rank as the position of the ESC containing the

ground truth lines in the ESC corresponding ground truth method.

As we discussed above, each constraint in CDS and VDS has only

one ground truth. This means that commonly used information

retrieval metrics are not very meaningful here. Specifically, MAP

[55] will always have the same value as MRR (1 divided by method

rank, or 0 if the constraint was not retrieved). Precision will always

be either 0 if the ground truth was not retrieved, or 1 divided by

the amount of results if it was. Recall will either be 1 if the ground

truth was retrieved, and 0 if not. In light of this, we report MRR,

average recall, and the average method rank.

These metrics are provided for completeness, as we focus our

analysis on the %HITS@N metrics, defined as the percentage of

constraints with a method rank between 1 and N, i.e., constraints

where the ground truth was retrieved within the first N methods of

the output ranked list. This metric is easy to interpret, as it means

that a potential user has to examine N results (in this case methods)

to find the constraint implementation. The importance of this metric

(sometimes under different names) has been argued in the fields of

bug localization [66, 70], query reformulation [15, 16, 26, 55], and

duplicate bug report detection [17, 58].

Input generation. As discussed in Section 3.1, Lasso requires

the type, operands, and context of each constraint as input. To con-

struct the input, one author extracted the required input fields for

each constraint. Specifically, the constraint context is a paragraph

where the constraint is found in the textual artifacts. The constraint

type was assigned as one of the four constraint types in Sec. 2. The

operand list is composed of the noun phrases that describe each

operand, using only terms found in the constraint context, except in

the case of numbers. If numbers were spelled out, they were turned

into digits, e.g., “one” became “1”. Additionally, symbols were also

spelled out, for example “∞” becomes “infinity”. Sec. 3.1 shows an

example of specific input for a constraint. The inputs for all 299

constraints can be found in our replication package [28].

Baseline calibration. To find the optimal input (i.e., constraint

context or constraint operands) for the TLRT of each Lasso-13

instance and the best parameters for LSI, we evaluated the baselines

on the combined CDS and VDS data sets using each input with

each technique. The best performing combinations are explained

in Section 4, and the full results are in our replication package [28].

Calibration of Lasso ranking weights. We empirically cali-

brated the weights for the five ranking measures (Sec. 3.3), using

CDS. We designed an algorithm to find the combination of weights

that result in the best results for Lasso-13Luc in CDS. We used

Lasso-13Luc for calibrations, as opposed to Lasso-13LSI or Lasso-

13VSM, because Lucene with its default similarity performed better

than the other two approaches. That is, we optimized the weights

based on the strongest baseline.

The calibration algorithm runs 5 rounds of testing (one for each

weight). Each metric begins as a free metric, and at the end of

each round, one metric will become fixed with a weight. On each

round, for each free metric, the algorithm generates scenarios cor-

responding to all combinations of weights for all free metrics (one

of {0.0, 0.1, 0.2, . . . , 0.9, 1.0}) and the fixed weights. The value of

the free weight that leads to the highest value of %HITS@20 be-

comes fixed. The optimal configuration for Lasso-13Luc, for CDS,

is COE = 0.7, ECO = 0.2, ECIP = 0.2, COB = 0.2, CM = 1.0. As men-

tioned above, we use the same configuration for Lasso-13LSI and

Lasso-13VSM, as we want to assess how robust these weights are

to changes in the data sets and TLRT.

5.2 RQ1 Results

Table 3a shows the results obtained by Lasso-13Luc, Lasso-13LSI,

Lasso-13VSM, the Lucene-based TLRT, the VSM-based TLRT, and

the LSI-based TLRT, on the calibration data set (CDS), with 163 con-

straints. Table 3b shows the results obtained by the six approaches

on the validation data set (VDS), with 136 constraints, while Table 3c

shows the results on the combined data sets, with 299 constraints.

5.2.1 Weight calibration validation. To ensure that the configura-

tion was not overfitted to the test data, we evaluated the Lasso

instances on the validation data set with the configuration obtained

from the algorithm in Sec. 5.1. Comparing the results from Table 3a
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and Table 3b, we observe that all three Lasso-13 instances achieve

improvements on both data sets. Lasso-13Luc improves %HITS@10

from 39.3% to 57.7% (47%) over the Lucene baseline on CDS, and

from 66.2% to 77.9% (18%) on VDS. Similarly, Lasso-13VSM im-

proves %HITS@10 from 22.7% to 49.7% over the VSM baseline on

CDS, and from 44.1% to 72.8% on VDS. Finally, Lasso-13LSI im-

proves %HITS@10 over the LSI baseline from 12.9% to 39.9% (209%)

on CDS, and from 27.9% to 66.2% (137%) on VDS. This indicates that

the weight calibration is robust and transfers to other data sets.

From here on, we perform all analyses on the results on the

combined data set (i.e., CDS + VDS).

5.2.2 Lasso-13Luc vs. Lucene-based TLRT. Table 3c shows the re-

sults obtained by Lasso-13Luc and the Lucene-based baseline on

the combined data sets.

As discussed before, %HITS@N indicates the percentage of con-

straints for which the relevant method is retrieved in top N In

theory, in such cases, the users need to check at most N methods

to find the relevant one. Prior research on traceability link recov-

ery argued that retrieving the ground truth on the top position is

perfect performance, returning it in the top 5 is excellent, and in

top 10 very good [15, 16]. Note that the number of methods in the

target systems is 9.6k on average (Table 2). We focus the analysis of

the results on %HITS@10 (i.e., indicating very good performance).

We observe that Lasso-13Luc obtains 25.4% %HITS@1, which

means that for one in four constraints, Lasso-13Luc retrieves the

relevant method in the first place. At %HITS@10, Lasso-13Luc

improves the baseline approach by 30% (66.9% vs 51.5%). In other

words, for two third of the constraints Lasso-13Luc retrieves the

relevant method in top 10, compared to half the constraints for the

baseline. Lasso-13Luc also improves the %HITS@1 and %HITS@5

results over the baseline by 44% and 42%, respectively.

Note how Lasso-13Luc improves the average method rank from

148.9 to 24.6, a reduction of one order of magnitude.

The lower recall for both Lasso-13 instances vs. their baselines is

to be expected, and also both return the same results despite having

different TLRT (i.e., Avg. Recall column in Table 3 is the same for

both approaches). This is because (as explained in Sec. 3.3), only the

ESCs that have a value for the first 4 metrics are retrieved, meaning

that which ESCs are returned does not depend on the results of

TLRT. Instead, the TLRT results are used as part of the ranking of

these ESCs, and as such, both Lasso-13 instances achieve different

values of %HITS@N, average method rank, and MRR, as expected.

5.2.3 Lasso-13LSI and Lasso-13VSM vs. baseline TLRT. Table 3c

shows the results obtained by Lasso-13LSI, the LSI-based baseline,

Lasso-13VSM, and the VSM baseline on the combined data sets.

We observe that Lasso-13VSM improves the %HITS@10 results

of the VSM baseline by 86% (60.2% vs. 32.4%), while Lasso-13LSI

has an improvement of 163% (51.8% vs. 19.7%) over its baseline.

We note that the VSM baseline performs worse than the Lucene-

based one by 37% in terms of %HITS@10, while the LSI baseline

performs 62% worse. The improvement in terms of average rank

for Lasso-13VSM over its baseline is similar to that achieved by

Lasso-13Luc over its baseline, namely, one order of magnitude.

With that in mind, the size of the improvement obtained by Lasso-

13LSI (compared to Lasso-13Luc or Lasso-13VSM) indicates that

Lasso is especially well suited to improve a poorly performing

baseline TLRT. Notably, the reduction in average rank is even more

dramatic for Lasso-13LSI, going from 2,286.2 to 41.4, or two orders

of magnitude.

5.2.4 Analysis of the results. We perform a deeper analysis of the

Lasso-13Luc results, given it performs better than the other two

Lasso variations. We examined a random sample of 30 constraints:

10 where the ground truth was not retrieved, 10 where it was

retrieved with method rank 11-20, and 10 where the method rank

was 21+.

The most common reason for not retrieving or low-ranking of

the ground truth was a term mismatch between the operands in

the constraint text and the operands of the ESC, which is a known

problem in traceability link recovery. Specifically, we identified the

following causes of term mismatches:

(1) uses of abbreviations (ArgoUML constraint “[Minimise Class

icons in diagrams] is enabled by default”, which appears in

the source code as “mini”);

(2) compound identifiers (Ant constraint “If the value of [clonevm]

is true”, clonevm vs. isCloneVm); and

(3) misspellings (ArgoUML constraint “Use guillemots («») for

stereotypes (clear by default)” guillemots in the text vs the

correct guillemets in the code).

The standard text retrieval techniques that Lasso-13 uses to pro-

cess the text in operands cannot successfully overcome these mis-

matches. There are, however, techniques that have been specifically

designed to tackle these situations (e.g., abbreviation expansion

[36, 41], identifier splitting [25, 30], spell checkers [5, 58]), which

could be easily integrated into our approach.

The next most common cause for low rankings is the TLRT high

scores for unrelated methods. This happens mostly because of terms

in the constraint context that are very common on the system or

that happen in combinations that the BM25 scoring considers to be

very relevant. For example, for the Ant constraint “default for cache

still is false” the ground truth ESC has maximum value for COE and

ECO, but a value of only 0.03 for CM . This happens for two reasons:

(1) the ground truth ESC is in a field definition, which only has two

matching terms with the constraint context (cache and false); (2)

BM25 ranks longer methods with the word combination "resource

collection" (from the context) near the top of its list.

Implementation decisions can also cause this problem: for the

Log4J constraint “If [locationInfo is] true”, there are 6 classes in the

system with “locationInfo” properties, plus a class actually named

“LocationInfo”. The usages of any of these symbols are ranked highly

not only by the TLRT, but also by Lasso-13 specific scoring, since

they also have operand terms in common. For a MyBatis constraint,

the first 8 ranked methods contain the same error message: “Error:

Cannot rollback. No managed session is started.”, which matches

terms form the context and causes them to be ranked highly. This

appears to be a commonly used pattern in this system that hinders

our approach, but can be addressed by removing error messages

from the ESC block. One way to address these situations is to use

the code around the ESC to better understand of the semantics of

the ESC. Such exploration is subject of future work.

Finally, an expected type of constraint implementation that is dif-

ficult for Lasso-13 to retrieve is the case where the enforcing state-

ment is used to check multiple constraints. These were described by
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Table 3: Retrieval performance of Lasso-13 variations and their corresponding baselines.

Data Set Technique %H@1 %H@5 %H@10
Avg. Method

Rank
Avg. Recall MRR

CDS

Lasso-13Luc 14.1% (23) 45.4% (74) 57.7% (94) 35.4 81.6% 27.5%

Lucene 11.0% (18) 27.6% (45) 39.3% (64) 218.3 98.2% 19.8%

Lasso-13VSM 11.7% (19) 39.9% (65) 49.7% (81) 39.4 81.6% 22.9%

VSM 2.5% (4) 13.5% (22) 22.7% (37) 270.5 98.2% 8.3%

Lasso-13LSI 11.0% (18) 27.6% (45) 39.9% (65) 58.6 81.6% 19.6%

LSI 4.9% (8) 9.2% (15) 12.9% (21) 3309.6 98.8% 7.3%

(a) Results on CDS (163 constraints)

VDS

Lasso-13Luc 39.0% (53) 66.9% (91) 77.9% (106) 12.9 89.7% 51.5%

Lucene 25.7% (35) 52.2% (71) 66.2% (90) 66.0 98.5% 37.5%

Lasso-13VSM 39.7% (54) 64.0% (87) 72.8% (99) 13.5 89.7% 50.5%

VSM 18.4% (25) 38.2% (52) 44.1% (60) 90.1 98.5% 27.6%

Lasso-13LSI 29.4% (40) 52.2% (71) 66.2% (90) 22.7 89.7% 40.9%

LSI 12.5% (17) 22.1% (30) 27.9% (38) 1065.7 99.3% 18.0%

(b) Results on VDS (136 constraints)

CDS + VDS

Lasso-13Luc 25.4% (76) 55.2% (165) 66.9% (200) 24.6 85.3% 38.4%

Lucene 17.7% (53) 38.8% (116) 51.5% (154) 148.9 98.3% 27.8%

Lasso-13VSM 24.4% (73) 50.8% (152) 60.2% (180) 27.0 85.3% 35.4%

VSM 9.7% (29) 24.7% (74) 32.4% (97) 188.3 98.3% 17.1%

Lasso-13LSI 19.4% (58) 38.8% (116) 51.8% (155) 41.4 85.3% 29.3%

LSI 8.4% (25) 15.1% (45) 19.7% (59) 2286.2 99.0% 12.2%

(c) Results on CDS + VDS (299 constraints)

Florez et al. [27], and serve as justification for the inclusion of “data

definition statements” in the definition of the CIPs. For example,

for the SkyWalking constraint “[instance_name] [m]ax length is

50”, its corresponding enforcing statement is if (value != null &&

value.length() > lengthDefine.value()). This statement is used

to check many properties in the system, namely those that use the

“Length” annotation (lengthDefine is of type Length), defined in the

code of the system. Locating this enforcing statement would re-

quire identifying usages of the “Length” annotation (relevant in this

case “@Length(50) public volatile static String INSTANCE_NAME

= "";”), and add the concrete value of the annotation to the corre-

sponding operand, in this case lengthDefine.value(). While this

process would most likely improve the performance of Lasso-13, it

is outside of the scope of this paper.

In 9 of the 30 analyzed constraints, a true positive, different from

the ground truth was retrieved within the first 10 results. This

was expected, as Florez et al. [27] documented that in some cases,

one constraint is enforced in several places in the code (e.g., when

it is involved in multiple features). Since the ground truth data

only annotates a single enforcing statement per constraint (even

if there are more), we do not count the extra enforcing statements

as true positives. Expanding the data sets to annotate all enforcing

statements for each constraints is subject of future work.

Lasso-13Luc outperforms the Lucene-based baseline by

30% (66.9% vs 51.5%); Lasso-13VSM outperforms the VSM-

based baseline by 70% (60.2% vs. 35.4%); Lasso-13LSI out-

performs the LSI-based baseline by 163% (51.8% vs. 19.7%);

all in terms of %HITS@10.

5.3 RQ2 Results

To evaluate how accurately Lasso-13 can point to the correct enforc-

ing statement, we further examine the ESC lists for the evaluation

results. We perform all analyses on the combined CDS + VDS data.

The ESC ranks for the three Lasso variations are the same, as

the TLRT does not change which ESCs the AST-CIP component

matches, only the method ranking (this is why we get the same

recall for all variations).

Table 4 shows the distribution of the ESC ranks for all 299 con-

straints. Lasso-13 places the correct enforcing statement in ESC

rank 1 for 202 of 299 constraints (68%) of cases, and in 2-3 for 33

(11%). Lasso-13 does not return the correct enforcing statement

for 13 constraints (4%) ("None" in table), and does not return the

ground truth method for 44 (15%) ("N/A" in table).

We focus on the subset of constraints for which the Lasso-13

instances return method-level results in top 10 (i.e., 200 constraints

for Lasso-13Luc, 180 for Lasso-13VSM, and 155 for Lasso-13LSI),

shown in Table 4.
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Table 4: Distribution of the ESC ranks for constraints with

methods retrieved in top 10 by each baseline and also for all

constraints.

ESC
Rank

Top 10 LSI Top 10 VSM Top 10 Luc. All

1 130 (83.9%) 148 (82.2%) 162 (81.0%) 202 (67.6%)

2 – 3 16 (10.3%) 23 (12.8%) 28 (14.0%) 33 (11.0%)

≥ 4 4 (2.6%) 4 (2.2%) 5 (2.5%) 7 (2.3%)

None 5 (3.2%) 5 (2.8%) 5 (2.5%) 13 (4.3%)

N/A · · · 44 (14.7%)

Total 155 180 200 299

For the 200 constraints, Lasso-13Luc ranks the ground truth

enforcing statement as 1 in 162 cases (81%), as 2-3 in 28 (14%), as

4+ in 5 (2.5%), and it does not point to the ground truth in 5 (2.5%).

For 155 constraints, Lasso-13LSI ranks the ground truth first in

130 cases (84% of 155), 2-3 in 16 (10%), 4+ in 4 (3%), and does not

point to it in 5 (3%). In other words, for the methods returned by

Lasso-13Luc in top-10, the approach pinpoints precisely 95% of

the ESC within the returned method (81% in the top position and

14% on position 2 or 3). For Lasso-13LSI, this figure is 94% (84% in

1, and 10% in 2).

We manually examined the ESC results for the ground truth of

27 constraints: 10 where the ground truth ESC had a rank of 2-3, 7

where the ESC rank was 4+ (all such cases), and 10 where Lasso-13

did not return the ground truth ESC.

Inconsistent identifier naming in the source code was the largest

cause of low-ranked or missed ESCs. For example, the JabRef con-

straint “If a file is imported” has the terms “file” and “imported”

as part of its operands, however, its enforcing statement uses the

term “loaded” instead, and “file” appears inside this ESC’s block,

giving it a score of 0 for COE, though it achieves a maximum score

for COB. However, other ESCs in the method contain these terms

because they are related in functionality, but do not enforce the

same constraint, for example an ESC containing the identifier is

FileExport achieves a higher COE score and is thus ranked higher.

Similarly, the enforcing statement of the JabRef constraint “If there

are [parsing] problems” uses the term “warning”, which causes it to

not be retrieved, while the string passed to the exception reporting

the problem does contain the term, which is returned as an ESC.

In three cases, the ground truth enforcing statement could not be

found because it checks the opposite condition to the one specified

in the constraint, e.g., the JabRef constraint “there are more than two

persons in the author list” is implemented as if (authors.length

< 3). One way to address these cases is to look for the negation of

the constraints as well, but that is subject of future work.

In three cases, the ground truth enforcing statementwas returned

in position 2, and the ESC ranked first has the same score as the

ground truth ESC. This happens because both ESCs have the same

number of terms in their body and the same matching terms with

the constraint operands. For example, in the JabRef constraint “an

export option is also specified”, the two ESCs are f (cli . isFile

Export()) and the ground truth is if (cli . isExportMatches()).

Both have the same number of terms and match only “export”.

For three constraints (different from those mentioned in the

previous section) we found the top ranked ESC to be a true positive.

The Ant constraint “If the manifest is omitted” is checked in two

places in the ground truth method. This is because the manifest

is loaded on-demand, and so the object can be in a state where

the manifest was provided by the user but has not been loaded.

The method checks once to see if the manifest has been loaded,

and attempts to load it if not, and then again to confirm that the

loading returned anything (because it can return null if the manifest

was omitted). Since our ground truth data only has annotated one

enforcing statement per constraint, Lasso-13 finds additional “true

positives” for the constraints that are enforced in multiple places in

the code. Florez et al. [27] found that 71 (44%) of the constraints in

the CDS are enforced in multiple places. Creating a data set where

all enforcing statements are annotated is subject of future work.

Lasso-13 ranks the correct enforcing statement accurately

for 79% of the 299 constraints (68% at rank 1 and 11% at

rank 2-3). For the methods returned by Lasso-13Luc in

top-10, it accurately pinpoints 95% of the ESC within the

returned method (81% in at rank 1 and 14% at rank 2-3).

6 THREATS TO VALIDITY

Our evaluation is implicit and relies on data sets from previous

research and new data we produced for this paper. These data sets

are built following the same protocol and only contain a single

ground truth enforcing statement per constraint, even if there may

be more in some cases. The results may be different on data with

more complete ground truth annotations.

Our evaluation assumes a "perfect" user, as Lasso-13 is given the

correct inputs for each constraint, specifically the operand list and

the constraint type, which were derived from each constraint by an

author, who is familiar with both the catalog of data constraint types

and data constraints, in general. In a real-world situation the user

may not be able to provide the correct input in each case. Evaluating

how robust Lasso is with respect to incomplete or incorrect input

is subject to future work. To mitigate this issue, the input for the

Lasso-13 instances and the baselines are the same.

Our evaluation is performed only on constraints that are imple-

mented with the 13 CIPs that Lasso-13 has detectors for. This is by

design, as our goal was to evaluate the performance in detecting

known patterns (i.e., corresponding to the detectors). Tackling the

presence of unknown patterns is part of our future work.

The correctness of the traces in our data sets is also a threat.

Even though the level of agreement between tracers is arguably

low (55%), we argue this is actually high, due to the very unlikely

nature of two tracers agreeing on a line-of-code trace by chance, as

our agreement criterion was strict (i.e., the tracers had to report the

exact same lines). To mitigate this threat, each trace was set only

after a discussion between two authors.

The weight calibration algorithm we used to set the parameters

for Lasso-13 might not have generated the optimal combination of

weights. However, we show that a relatively simple process with a

small data set provides values that are robust against overfitting,

hence we believe they will translate to other data sets.
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As we any such empirical study, external validity depends on the

size of our data. Given the novelty of this work, only two annotated

data sets exists for supporting this work (i.e., the one from [27]

and the one we created). To mitigate this threat, we annotated data

from systems not used in the previous study.

7 RELATEDWORK

Lasso is related to automated requirements-to-code traceability

link recovery techniques, albeit it focuses on a specific subset of

the requirements (i.e., data constraints). Research in this field spans

decades and has produced a multitude of techniques that can trace

natural language artifacts to source code artifacts. Our work differs

from the existing approaches in two main ways: (1) the natural

language artifacts are data constraints, a source of information not

yet leveraged by any other approaches, and (2) Lasso retrieves both

method-level and line-of-code-level code artifact, which has only

been achieved with limited success in previous studies.

Improvements in the performance of these techniques have

originated from both the use of different retrieval models (VSM

[1, 34, 35, 53], probabilistic [1, 2, 11, 19], topic models [34, 43, 47, 53],

machine/deep learning [31, 51], AI techniques [6, 63]), and the use

of alternate sources of information (code authorship [23, 56], non-

functional keywords [45, 46], dynamic analysis [24, 29, 52]). More

related to the present work, code structure has been exploited

[24, 40, 49, 59, 60], but only in the form of method/class relation-

ships, unlike the line-of-code patterns that enable our approach.

The fine-grained code patterns represent an additional source

of information that is orthogonal to those previously studied (pre-

sented above), and similar performance improvements as the ones

reported here could be expected to be achieved by integrating any

of these approaches with Lasso, as the TLRT component.

The semantic grep tool [10] can be used to define and retrieve

patterns like the CIPs that enable Lasso. While we chose to use a

parsing and analysis library for Java (JavaParser [38]) to implement

the detectors for the AST-CIP component of Lasso-13, any tool

that can return a list of ESCs could be used instead.

The work by Blasco et al. [6] uses LSI and genetic algorithms

to retrieve traces at lower granularity than methods for a natural

language requirement, in a specific commercial video game. This

approach is fundamentally different from Lasso-13, as it is meant

to trace requirements that are larger than data constraints, and that

are assumed to be implemented in multiple code locations, each. In

contrast our technique assumes that each data constraint will be

implemented in a discrete location inside a method, as observed by

previous work [27]. Additionally, their technique randomly selects

seed lines for the genetic algorithm based, and the results are non-

deterministic. Our approach both uses specific line-of-code patterns

to build the ESCs and is deterministic.

A related line of research uses static analysis to reverse engineer

business rules, usually from a legacy system where only the binary

code is available [14, 20, 21, 33, 37, 61, 62, 65]. These approaches dif-

fer from Lasso in that they do not use the text of the business rule as

input, instead rely on the developer selecting relevant input/output

variables. From this set of variables they perform forwards or back-

ward slicing, and find the branches in the slice, since conditional

branches are the locations where business rules are checked.

Finally, recent research by Yang et al. [69] explored the imple-

mentation of data constraints in database-backed web applications.

They discovered that developers struggle with maintaining con-

sistent data constraints and with checking them across different

components and versions of their web applications. This work is

one of the main motivation behind our research.

8 CONCLUSIONS

Lasso is a novel traceability link recovery technique, designed as

framework, which uses fine-grained code patterns to enable the

retrieval of links with line-of-code granularity. Three concrete ver-

sions of this framework, Lasso-13Luc, Lasso-13VSM, and Lasso-

13LSI were shown to achieve a %HITS@10 of 66.9%, 60.2%, and

51.8%, respectively, while outperforming their corresponding base-

lines by 30%, 70%, and 163%, respectively. Additionally, all three

Lasso-13 variations can return the correct line of code implemen-

tation within the first 3 ranks in the corresponding method for 79%

of constraints.

These findings show that empirical knowledge of the space of

constraint implementations and common-sense heuristics can en-

able effective retrieval at line-of-code granularity, while improving

the performance of method-level approaches.

Lasso is extensible with new types of constraint implementation

pattern matchers and, with enough such extensions, Lasso could

be used to trace any type of data constraints implemented with any

current or future implementation patterns. Since Lasso operates at

line-of-code level, we envision tools that will automatically identify

and change the enforcing statement when the underlying rules

change.

Researchers identified trace accuracy and trace granularity as

two remaining grand challenges in traceability [3, 18, 44]. Future

requirements-to-code traceability link recovery approaches can

bootstrap on Lasso, which will find the lines of code implementing

the constraints embedded in the requirements, and use these “seeds”

to improve the accuracy of tracing the larger requirements. This

will not only improve the accuracy of coarse-grained traceability,

but will also provide fine-grained links that can be directly used

when they are needed.
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