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Magnetic solitons in an immiscible two-component Bose-Einstein condensate
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We investigate magnetic solitons in an immiscible binary Bose-Einstein condensate (BEC), where the in-
traspecies interactions are slightly weaker than the interspecies interactions. While their density and phase
profiles are analogous to dark-bright solitons, other characteristic properties such as maximum velocities, widths,
total density depletions, and in-trap oscillations are different. In the low-velocity regime, a magnetic soliton
reduces to a traveling pair of magnetic domain walls. Collisional behaviors of the solitons are also briefly
discussed. We further demonstrate that these solitonic states can be realized in a quasi-one-dimensional spin-1
ferromagnetic BEC with a weak spin interaction, e.g., a 87Rb BEC.
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I. INTRODUCTION

Solitons are stable and localized excitations in nonlinear
systems. Their stability comes from the combined actions of
dispersion and nonlinearity. Solitons exist in various phys-
ical systems, such as shallow water [1], optical fibers [2],
gravitational systems [3], solid state materials [4], and ul-
tracold atomic quantum gases [5,6]. Systems of ultracold
quantum gases stand out as they provide controllable plat-
forms for solitons, and the rich internal structures of ultracold
atoms facilitate multicomponent solitons, namely vector soli-
tons. Previous studies of vector solitons in ultracold gases
are mostly confined to the Manakov regime [7], with equal
intra- and interspecies interaction strengths. Numerous soliton
solutions have been obtained, including dark-bright soli-
tons [8,9] in two-component BECs and dark-bright-bright
solitons [10–13] in three-component BECs.

The Manakov limit, however, constitutes an approxima-
tion for ultracold atomic gases, which is valid provided the
spin-dependent or magnetic dynamics are subdominant. In
more realistic two-component Bose systems, the intraspecies
interaction g11, g22 and interspecies interactions g12 are usu-
ally unequal, so that quantum magnetism can play a role. In
the immiscible regime, δg ≡ g− g12 < 0 with g = √

g11g22,
phase separation [14,15] happens spontaneously and magnetic
domain walls [16,17], a type of static vector soliton, emerge
as a result of modulation instability [18,19]. In the miscible
regime where δg > 0, magnetic solitons, a special type of
traveling soliton decoupled from the density dynamics, have
been proposed recently [20]. Magnetic solitons are dispersion-
free spin density excitations propagating on top of a balanced
spin background. Recent experiments indicate that magnetic
solitons can be embedded in spin-1 antiferromagnetic BECs
of sodium atoms [21–23]. Numerical studies [24] further re-
veal the existence of correlations between the nonequilibrium
spinor dynamics and magnetic solitons.

*xchai@gatech.edu

In this paper, we report on the discovery of another type
of traveling soliton in the immiscible regime, which can be
considered as the counterpart of the magnetic solitons in the
miscible regime [20]. Their properties and existence depend
crucially on δg. For consistency with earlier conventions, we
will also refer to the traveling solitons we study here as mag-
netic solitons. Similar to Ref. [20], in this work we restrict
to the limit |δg| � g such that the spin and density dynamics
are decoupled and the total density can be safely assumed
as a constant (see Ref. [25] and Sec. III for more detailed
discussions). In reality, this condition is easily fulfilled in a
87Rb BEC where |δg|/g ≈ 0.0093 [26] for a system composed
of two hyperfine states |F = 1,m = ±1〉. To our knowledge,
solitons in the immiscible regime have only been explored
numerically with less analytical insights provided [8,27–29],
or studied in the static regime [16,17].

This paper is organized as follows. In Sec. II, we follow the
methodology of Ref. [20] and derive the soliton solution in the
immiscible regime based on a variational approach. In Sec. III,
we study the properties of the soliton and compare them with
that of the famous dark-bright soliton. In Sec. IV, we discuss
the oscillation of a magnetic soliton when it is embedded in
a harmonically trapped condensate. In Sec. V, several colli-
sional behaviors of such solitons are numerically observed,
including dimer formation and polarization flip. In Sec. VI, a
method for the experimental generation of magnetic solitons
in a 87Rb BEC is proposed, based on the phase imprinting
approach developed recently [21].

II. FORMALISM AND SOLUTION

For a one-dimensional (1D) binary BEC, its mean-field
equations of motion can be obtained from the Lagrangian
density (see Appendices A–C),

L =
2∑
j=1

ih̄

2

(
ψ∗

j

∂ψ j

∂t
− ψ j

∂ψ∗
j

∂t

)
− E, (1)
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where ψ j (z, t ) is the jth component condensate wave func-
tion with j = 1, 2, and z, t are space and time coordinates,
respectively. E is the energy density given by

E =
2∑
j=1

(
h̄2

2M

∣∣∣∣∂ψ j

∂z

∣∣∣∣
2

+ V|ψ j |2 +
2∑

l=1

g jl

2
|ψ j |2|ψl |2

)
, (2)

with M the same atomic mass of both components, and
V (z) the trapping potential. We will focus on the parame-
ter regime where g11 = g22 = g = g12 + δg = g21 + δg with
δg < 0. The wave functions can be parametrized as(

ψ1

ψ2

)
= √

n

(
cos (θ/2)eiφ1

sin (θ/2)eiφ2

)
, (3)

where θ (z, t ), φ j (z, t ) are real and n(z, t ) > 0. In the follow-
ing discussion we assume the total density n(z, t ) is a constant
n. To search for traveling soliton solutions with a constant ve-
locity V , we write θ (z, t ) = θ (z −Vt ) and φ j (z, t ) = φ j (z −
Vt ). Then in the uniform case with V = 0, the Lagrangian (1)
can be expressed as

L
nMV 2

s

= 1

16
cos 2θ − 1

8
(∂ζ θ )

2 + 1

2
U (1 + cos θ )∂ζφ1

− 1

4
(1 + cos θ )(∂ζφ1)

2 + 1

2
U (1 − cos θ )∂ζφ2

− 1

4
(1 − cos θ )(∂ζφ2)

2, (4)

where ζ = (z −Vt )/ξs and U = V/Vs are the normal-
ized moving coordinate and velocity, respectively. ξs =
h̄/

√
2Mn|δg| is the spin healing length and Vs = √

2n|δg|/M
is in fact the maximum speed of the soliton, as it will become
clear later. Our definition for ξs differs from the choice of
Ref. [30]. We also omit constant terms in L which do not
contribute to the dynamics.

Due to the immiscible nature the background of the soliton
is fully spin polarized, which means only one spin compo-
nent (e.g., the component 1) exists at infinity and the other
spin component is localized. Thus we impose the following
boundary conditions for θ ,

θ = ∂ζ θ = 0, at ζ → ±∞. (5)

When a global flux is absent for the component 1, the bound-
ary condition for ∂ζ φ1 is given by

∂ζ φ1 = 0, at ζ → ±∞. (6)

No restriction for ∂ζ φ2 is supplied at infinity because the
component 2 has no population at infinity.

The variation of the Lagrangian with respect to φ1 gives

∂ζ {−U cos θ + (1 + cos θ )∂ζφ1} = 0. (7)

Applying the boundary conditions (5) and (6) we find

∂ζφ1 = −U
1 − cos θ

1 + cos θ
. (8)

The variation with respect to φ2 gives additionally

∂ζ {U cos θ + (1 − cos θ )∂ζφ2} = 0. (9)

Assuming an integration constant C0 for the above equation
gives

∂ζφ2 = C0 −U cos θ

1 − cos θ
. (10)

Varying L with respect to θ we find

∂2
ζ θ = sin θ{cos θ + 2U∂ζφ1 − (∂ζφ1)

2

− 2U∂ζ φ2 + (∂ζφ2)
2}. (11)

To avoid divergence of ∂2
ζ θ at infinity, ∂ζφ2 must be finite at

infinity, which results in the restrictionC0 = U and leads to

∂ζφ2 = U . (12)

Simplifying Eq. (11) with Eqs. (8) and (12) we obtain

∂2
ζ θ = −U 2 sin θ

cos4(θ/2)
+ sin θ cos θ, (13)

whose integration gives the densities of each component,

n1
n

= 1

2
(1 + cos θ ) = 1 − 1 −U 2

1 + |U | cosh(2√1 −U 2ζ )
,

n2
n

= 1

2
(1 − cos θ ) = 1 −U 2

1 + |U | cosh(2√1 −U 2ζ )
. (14)

Further integrating Eqs. (8) and (12) gives the phases of both
components,

φ1 = −sgn(U ) arctan

(
(1 − |U |) tanh (√1 −U 2ζ )√

1 −U 2

)
+C,

φ2 = Uζ + 	, (15)

where the constant C ensures φ1(ζ = −∞) = 0 to fix the
U(1) gauge. 	 is a constant phase shift of the component 2.
Equations (14) and (15) constitute the principle result of this
work. This result can be mapped to a soliton solution of the
Landau-Lifshitz equation for easy-axis ferromagnets [31].

III. SOLITON PROPERTIES

The soliton solutions (14) and (15) are parametrized by U
and 	. The phase shift 	 is only relevant when there exist
two or more solitons, so it will be left aside for now, while
U = V/Vs can take values in −1 � U � 1. The maximum
speed of the soliton is Vs = √

2n|δg|/M, which differs from
the miscible case by a factor of 2 [20]. Typical density and
phase distributions of a magnetic soliton with immiscible
surrounding condensate are shown in Figs. 1(a) and 1(b), for
U = 0.3 and 	 = 0. The soliton exhibits a density notch for
the component 1, which is filled by a density bump for the
component 2. The component 2 displays a linear phase with
slope U/ξs, while the component 1 is featured for its phase
jump 
φ1 across the soliton, which approaches π/2 when
U → 0 and vanishes whenU → ±1 [see Fig. 1(d)]. The slope
of the phase difference ∂z(φ2 − φ1) at the soliton center is
sgn(U )/ξs, independent of the speed.

Similar to the magnetic soliton we discuss here, the dark-
bright soliton studied by Busch and Anglin [8] comes with a
dark component filled by a bright component, and its phase
profiles are akin to that of magnetic solitons as well. Never-
theless, significant differences exist in several aspects. First
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FIG. 1. (a), (b) Profile of a magnetic soliton with U = 0.3 and
	 = 0. The blue solid and red dashed curves are (a) density or
(b) phase profiles of the two components, respectively. (c) Spin
density of a magnetic soliton with various velocities. The purple
solid line, green dashed line, and orange dotted line represent the
spin densities of a soliton with U = 10−5, 0.3, and 0.8, respectively.
(d) Dependence of the soliton phases on the soliton velocity. The
solid and the dashed lines are slopes of φ1, φ2 at the center of the soli-
ton, respectively. The dotted curve is the phase jump 
φ1 = φ1(ζ =
+∞) − φ1(ζ = −∞). (e) Total population of the component 2 in
a magnetic soliton. (f) Full width half maximum (FWHM) of the
magnetic soliton (dashed line) and the dark-bright soliton (solid line).
(g) Density depletion of the magnetic soliton. The solid lines and
points represent analytical and numerical results, respectively.

and most importantly, the dark-bright soliton is developed
under the Manakov regime where δg = 0, while the immis-
cible magnetic soliton can only exist when δg is negative. As
a consequence, the properties of a magnetic soliton depend
solely on δg instead of g. For example, the speed of a dark-
bright soliton is regulated by the sound velocity cn = √

ng/M,
while the speed of a magnetic soliton is limited by Vs =√
2n|δg|/M, which is smaller by

√
2|δg|/g ≈ 13.6%. Here,

we have used |δg|/g ≈ 0.0093 for the ground-state 87Rb con-
densate in |F = 1,m = ±1〉, and this ratio will be assumed in
the following discussion.

Second, in the low-velocity limit the magnetic soliton ex-
hibits intriguing behaviors unseen in the dark-bright soliton.
As shown in Fig. 1(c), the spin density (defined as Fz ≡
n1 − n2) of a magnetic soliton has a notch. As the velocity
approaches zero, the notch becomes deeper and larger, and
eventually it develops into a pair of magnetic domain walls.

Indeed, in the limitU → 0+ the spin density is given by

Fz
n

≈ 1 + tanh(ζ − ζ0/2) − tanh(ζ + ζ0/2), (16)

where ζ0ξs = ξs ln (2/U ) is the separation between the two
domain walls. As U gets closer to zero, the separation in-
creases significantly beyond ξs, the width of the domain walls,
and eventually the background spin is flipped when U = 0.
We note that the hyperbolic tangent shape of each of these do-
main walls is coincident with a recent domain wall study [17]
as well as the earlier work [29,31,32].

Third, we consider the bright component population and
the soliton size. Unlike the dark-bright soliton, the bright
component atom number of a magnetic soliton is not a free
parameter, but is dependent on its velocity as

N2 = nξs ln[|U |/(1 −
√
1 −U 2)]. (17)

As shown in Fig. 1(e), N2 diverges whenU → 0 and vanishes
whenU = ±1. Assuming the dark-bright soliton and the mag-
netic soliton have the same bright component population, we
compare their full width half maximum (FWHM) in Fig. 1(f).
The FWHM of a magnetic soliton reaches its minimum value
2.37ξs at U ≈ ±0.45 and diverges at U → ±1 or U → 0,
while the FWHM of a dark-bright soliton monotonically de-
creases as its velocity increases.

Finally, we revisit the uniform density approximation.
Consider a parametrization for the condensate wave functions
beyond the uniform density approximation,(

ψ1

ψ2

)
= √

n

(
cos (θ/2)eiφ1

sin (θ/2)eiφ2

)
e−iμt/h̄, (18)

where μ = ng is the chemical potential at equilibrium with
only one component present at density n. n(z, t ) is the total
density as a function of space and time. Using dimensionless
variables Z = z/ξs and T = t/ts, we find the Lagrangian (1)
is reduced to

L
nMV 2

s

= − g

4n2δg
(n2 − 2nn)

− 1

8n2

{
n2 sin2 θ + n(∂Zn)2

n
+ nn(∂Zθ )2

+4nn(1 + cos θ )∂T φ1 + 4nn(1 − cos θ )∂T φ2

+2nn(1 + cos θ )(∂Zφ1)
2

+ 2nn(1 − cos θ )(∂Zφ2)
2

}
, (19)

in the absence of a trapping potential. Variation of the La-
grangian with respect to n gives

n − n

n
= δg

2g

{
n sin2 θ

n
+ (∂Zn)2

2n2
− ∂2

Zn

n
+ 1

2
(∂Zθ )2

+2(1 + cos θ )∂T φ1 + 2(1 − cos θ )∂T φ2

+ (1 + cos θ )(∂Zφ1)
2 + (1 − cos θ )(∂Zφ2)

2

}
.

(20)

The right-hand side (RHS) of the above equation becomes
negligible when |δg|/g � 1 such that n ≈ n at the leading

013313-3



XIAO CHAI, LI YOU, AND CHANDRA RAMAN PHYSICAL REVIEW A 105, 013313 (2022)

order, which validates our uniform density approximation.
Inserting the magnetic soliton solution (14) and (15) into the
RHS of the above equation, we find the asymptotic density
depletion nD as the first-order correction,

nD
n

= n − n

n
≈ 3δg

g

|U |(1 −U 2)[|U | + cosh (2
√
1 −U 2ζ )]

[1 + |U | cosh (2√1 −U 2ζ )]2
,

(21)

where ζ = Z −UT . Then the total population depletion be-
comes

ND =
∫

dζnDξs ≈ 3nδg

g

√
1 −U 2ξs. (22)

We compare Eq. (21) with numerical results obtained from
the moving frame Newton-Raphson method [33–35] (see Ap-
pendixes D and E). The numerical and analytical results match
very well as illustrated in Fig. 1(g). The density depletion
nD/n ∼ 10−3 validates the uniform density approximation. At
low soliton velocity, nD displays a double-dip local core struc-
ture with each dip matching the density depletion of a single
magnetic domain wall as discovered by Yu and Blakie [17]. In
comparison, the total density of a dark-bright soliton always
displays a dark soliton shape [8].

IV. ENERGY AND IN-TRAP OSCILLATION

The energy of a soliton can be evaluated as the differ-
ence of the total energy

∫
Edz in the presence or absence

of the soliton [36]. Direct calculation gives the energy ε =
nh̄Vs

√
1 −U 2 for a magnetic soliton in a uniform system,

whenU �= 0, (whenU = 0, the energy is zero). The effective
mass at small soliton velocity is meff = −nh̄/Vs, which is
negative, implicating the presence of snake instability [37].
However, the relatively large soliton size (>2.37ξs) estab-
lishes a marginal robustness of the solitons against transverse
excitations in a quasi-1D BEC.

The energy of a magnetic soliton in the immiscible regime
exhibits the same form as in the miscible case [20], although
in contrast to the miscible case, the local density approx-
imation (LDA) for the soliton energy [38] fails to predict
the in-trap oscillation of a magnetic soliton in the immisci-
ble regime we study here. Following the same procedure in
Refs. [20,38], we find the LDA gives the oscillation amplitude
L and period T of the magnetic soliton as

L

Rz
=

√
1 − (1 −U 2

0 )
1/3, (23)

T

Tz
= 2

π

√
g

|δg|
∫ L/Rz

0

v(β )dβ√
v3(β ) − 1 +U 2

0

, (24)

where Rz,Tz are the Thomas-Fermi radius and trapping pe-
riod. v(β ) = 1 − β2. U0 is the normalized soliton velocity at
the center of the trap. As shown in Fig. 2, the numerical results
disobey the LDA prediction.

We attribute this discrepancy to the dependence of N2 on
the soliton velocity in the immiscible case. Both ε and N2

are integrals of motion of the original Lagrangian (1) when
V is nonzero, but the LDA cannot simultaneously guarantee
the conservation of these two quantities when the magnetic
soliton oscillates in a trap with varying velocity. In fact, the

FIG. 2. Oscillations of a magnetic soliton and a dark-bright soli-
ton in a harmonic trap are compared. The blue circles and red
squares are numerical results for the magnetic soliton and the dark-
bright soliton, respectively. The black curve is the local density
approximation (LDA) prediction for the magnetic soliton. V0 is the
soliton velocity at the center of the condensate. In (a) we show
the oscillation amplitude L normalized to the Thomas-Fermi radius
Rz = √

2n0g/Mω2
z , where ωz and n0 are the trapping frequency and

density at the center. In (b) we show the oscillation period normalized
to the trap period Tz = 2π/ωz.

shape of the soliton deforms when the soliton approaches the
oscillation turning point, where the assumption of LDA is no
longer valid. For comparison, the oscillation amplitude and
period of a dark-bright soliton are also displayed in Fig. 2, and
the bright component population is assumed to be the same as
that of the magnetic soliton.

V. COLLISION

Collisions between two magnetic solitons in an immiscible
BEC depend on their phase 	. In numerical simulations, we
imprint two magnetic solitons moving towards each other
in a uniform BEC. As shown in Fig. 3(a), if the phase dif-
ference between the two solitons is zero, i.e., 
	 = 0, the
two solitons are found to attract each other during collision.
When 
	 = π the two solitons repel each other, as illus-
trated in Fig. 3(b). Such a behavior is similar to collisions of
dark-bright solitons [8]. A magnetic soliton dimer can form
after collision, if initially the two solitons overlap spatially
and their phase difference is zero, as shown in Fig. 3(c). In
contrast, when there is no overlap the two solitons bounce off
each other as seen in Fig. 3(d). For nonzero phase difference
the overlapped two-soliton initial state cannot be constructed
without perturbing the background condensate.

Next, we engineer collisions between a magnetic soliton
and a tanh-shaped domain wall [17]. Figure 3(e) shows that
after collision the magnetic soliton penetrates the domain wall
and its polarization is flipped. The location of the domain wall
is also shifted after the collision. Collision between a traveling
magnetic soliton and a quasistatic magnetic soliton (domain
wall pair) displays similar dynamics, as shown in Fig. 3(f),
although after collision the traveling soliton retrieves its initial
shape.

VI. EXPERIMENTAL GENERATION

Here, we propose a method to experimentally generate a
magnetic soliton in a ferromagnetic spin-1 BEC, where the
two components are taken as the m = ±1 states. To eliminate
them = 0 component, one may introduce a negative quadratic
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FIG. 3. Soliton collisions in a uniform system. Plots show the
normalized spin density Fz/n = (n1 − n2)/n as a function of space
and time. The timescale is ts = ξs/Vs. In (a) and (b), |U | = 0.3 for
both solitons. The phase differences are (a) 
	 = 0, and (b) 
	 =
π . (c) shows the formation of a magnetic soliton dimer after collision,
where initially |U | = 0.1 for both solitons and the separation is 5ξs.
(d) is in comparison with (c) where |U | = 0.1 but the separation is
10ξs. (e) shows the collision between a magnetic soliton with |U | =
0.3 and a static domain wall. (f) shows the collision between two
magnetic solitons with |U | = 0.3 and |U | = 10−5.

Zeeman shift q, such that the condensate is forced to stay in
the ferromagnetic phase [30]. The length scale of the soliton
is characterized by the spin healing length ξs. Using typical
experimental conditions for a quasi-1D 87Rb BEC [12], we
find the minimum width of a magnetic soliton is 2.37ξs ≈
9.2 μm. To avoid snake instability [37], the transverse size
of the quasi-1D BEC must be made smaller.

Suppose initially the condensate is prepared in a ferromag-
netic state with all the atoms in the m = 1 state and stabilized
by a negative quadratic Zeeman shift. To generate a mag-
netic soliton we first apply a local population transfer from
m = 1 to m = −1, which can be accomplished by a focused
Raman laser pulse [39], as shown in Fig. 4(a). Subsequently
a magnetic shadow [21] [see Fig. 4(b)] is cast to induce a
phase difference, leading to a local relative superfluid velocity
between the two components. The relative superfluid velocity
then helps to assist in the formation of a magnetic soliton.

The above procedure is confirmed in a numerical simula-
tion (see Appendix F) and indeed a single magnetic soliton is
generated which subsequently oscillates in a harmonic trap, as
shown in Fig. 4(c). To be more realistic, we include Gaussian
noise and a negative quadratic Zeeman shift in our simula-
tion. The density depletion of the generated soliton, shown
in Fig. 4(d), displays a double-dip core structure, which is a
characteristic feature of the magnetic soliton. The fringes in
Fig. 4(d) are density waves as by-products of our procedure.

FIG. 4. Proposal to generate a magnetic soliton in a quasi-1D
87Rb BEC. (a) Local population transfer from m = 1 to m = −1.
A Raman laser pulse coupling the 5S1/2, |F = 1,m = ±1〉 states
through the 5P1/2 state illuminates the center of the condensate. The
pulse duration is controlled to transfer a desired fraction of atoms.
(b) Magnetic shadow. An enlarged laser beam is imaged onto half
of the condensate. The laser frequency is tuned to the “magic fre-
quency” so that it only induces a vector ac Stark shift. The laser beam
is pulsed such that a finite phase jump is generated. (c) Oscillation of
the generated magnetic soliton in a harmonic trap. The plot shows the
normalized spin density [n+1(z, t ) − n−1(z, t )]/n(z, t ) as a function
of space and time, where n±1(z, t ) are the densities of the m = ±1
components. (d) Plot of the normalized density depletion defined
as [n(z, t ) − ng(z)]/ng(z), where ng(z) is the ground-state density
distribution.

VII. CONCLUSION AND OUTLOOK

We have derived a closed-form magnetic soliton solution
for the coupled two-component Gross-Pitaevskii equations
with δg < 0. We hope our results will stimulate experimental
studies. Though the solution is obtained in a two-component
system, it can be extended to a broader class of soliton
solutions in a spin-1 system by exploiting the underlying
SO(3) symmetry [17,23]. The correlation between the quench
dynamics of a ferromagnetic spin-1 condensate [40] and mag-
netic solitons is an interesting topic worthy of some immediate
studies. Other unsolved problems, including the dynamical
stability in higher dimensions and the in-trap oscillation of
a magnetic soliton, remain to be explored in the future.
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APPENDIX A: SPIN-1 GROSS-PITAEVSKII
EQUATIONS IN 3D

A spin-1 BEC at zero temperature can be well described by
a spinor wave function �m(r, t ), where m = −1, 0,+1 is the
magnetic quantum number and r, t are space and time coordi-
nates, respectively. The dynamics of �m(r, t ) is governed by
three coupled Gross-Pitaevskii equations (GPEs),

ih̄
∂

∂t
�m =

(
− h̄2

2M
∇2 + V

)
�m + qm2�m + c0n�m

+ c2

1∑
n=−1

F · (F̂ )mn�n, (A1)

where M is the atomic mass. V (r) and q are the spin-
independent potential and the quadratic Zeeman shift,
respectively. n(r, t ) = ∑1

m=−1 |�m(r, t )|2 is the total den-
sity. The wave function is normalized to the total number
of atoms as

∫
drn(r, t ) = N . c0, c2 are spin-independent

and spin-dependent interaction coupling constants defined
as c0 = 4π h̄2(a2 + 2a0)/3M and c2 = 4π h̄2(a2 − a0)/3M,
where a0, a2 are s-wave scattering lengths of collisions in
the total F = 0, 2 channels. We consider ferromagnetic in-
teractions only in this study such that c2 < 0 < c0. F(r, t ) =∑1

m,n=−1 �∗
m(r, t )(F̂ )mn�n(r, t ) is the spin density and F̂ =

(F̂x, F̂y, F̂z )T with F̂x, F̂y, F̂z being the spin-1 matrices,

F̂x = 1√
2

⎛
⎜⎝
0 1 0

1 0 1

0 1 0

⎞
⎟⎠, F̂y = i√

2

⎛
⎜⎝
0 −1 0

1 0 −1

0 1 0

⎞
⎟⎠,

F̂z =

⎛
⎜⎝
1 0 0

0 0 0

0 0 −1

⎞
⎟⎠. (A2)

In experiments, BECs are usually trapped optically and the
trapping potential V (r) can be approximated as a harmonic po-
tential. We use experimental parameters from Ref. [12] where
the cigar-shaped trap has frequencies {ωx, ωy, ωz} = 2π ×
{176, 174, 1.4} Hz (we have changed the labels for consis-
tency with our paper). With N = 0.8 × 106 atoms in the BEC,
the Thomas-Fermi radii are {Rx,Ry,Rz} = {3, 3, 369} μm.

APPENDIX B: SPIN-1 GROSS-PITAEVSKII
EQUATIONS IN 1D

For a cigar-shaped condensate with ωx � ωz and ωy � ωz,
one can assume that the wave function can be written as

�m(r, t ) = � (1D)
m (z, t )G(x, y), (B1)

where G(x, y) is the transverse wave function in the Thomas-
Fermi limit:

G(x, y) =
{√

2
πRxRy

(
1 − x2

R2
x
− y2

R2
y

)
, x2

R2
x
+ y2

R2
y
� 1,

0, otherwise.
(B2)

G(x, y) and � (1D)
m (z, t ) are normalized independently as∫

dxdy|G(x, y)|2 = 1 and
∫
dz

∑1
m=−1 |� (1D)

m (z, t )|2 = N .
The 3D GPEs (A1) can then be reduced to

ih̄
∂

∂t
� (1D)

m =
(

− h̄2

2M

∂2

∂z2
+ V (1D)

)
� (1D)

m + qm2� (1D)
m

+ g0n
(1D)� (1D)

m + g2

1∑
n=−1

F (1D) · (F̂ )mn�
(1D)
n ,

(B3)

where g0, g2 are effective coupling constants in 1D given
by g0 = 4c0/3πRxRy and g2 = 4c2/3πRxRy. The definitions
for total density and spin density in 1D are given accord-
ingly as n(1D)(z, t ) = ∑1

m=−1 |� (1D)
m (z, t )|2 and F (1D)(z, t ) =∑1

m,n=−1 � (1D)∗
m (z, t )(F̂ )mn� (1D)

n (z, t ). V (1D)(z) = Mω2
z z

2/2
is the spin-independent potential in the presence of a harmonic
trap.

APPENDIX C: BINARY GROSS-PITAEVSKII
EQUATIONS IN 1D

Experimentally one can use microwave dressing to ap-
ply a negative quadratic Zeeman shift. Hence the energy of
m = ±1 states is lowered so that the spin exchange collision
|1, 1〉 + |1,−1〉 → 2|1, 0〉 can be suppressed. With m = 0
atoms eliminated, the spin-1 GPEs (B3) reduce to the binary
GPEs,

ih̄
∂

∂t
ψ1 =

(
− h̄2

2M

∂2

∂z2
+ V (1D) + g11|ψ1|2 + g12|ψ2|2

)
ψ1,

ih̄
∂

∂t
ψ2 =

(
− h̄2

2M

∂2

∂z2
+ V (1D) + g22|ψ2|2 + g12|ψ1|2

)
ψ2,

(C1)

where ψ1 ≡ �
(1D)
+1 and ψ2 ≡ �

(1D)
−1 . g11 = g22 = g0 + g2 =

g are the intraspecies interaction strengths. g12 = g0 − g2 =
g− δg is the interspecies interaction strengths. The quadratic
Zeeman shift term has been eliminated because it only in-
troduces a constant energy shift for the two states m = ±1.
Equations (C1) can be derived from the Lagrangian given in
the main text, provided that the label (1D) is removed.

APPENDIX D: DIMENSIONLESS SPIN-1 GPES IN 1D

We choose z0 = √
h̄/ωzM, t0 = 1/ωz, and ε0 = h̄ωz as our

length, time, and energy scales, respectively. Then the dimen-
sionless spin-1 GPEs are written as

i
∂

∂ t̃
�̃m =

(
−1

2

∂2

∂ z̃2
+ Ṽ

)
�̃m + q̃m2�̃m

+ g̃0ñ�̃m + g̃2

1∑
n=−1

F̃ · (F̂ )mn�̃n, (D1)
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where the dimensionless quantities are given in the following,

z̃ = z

z0
, t̃ = t

t0
, Ṽ = V (1D)

ε0
, q̃ = q

ε0
,

g̃0 = g0N

x0ε0
, g̃2 = g2N

x0ε0
,

�̃m =
√
x0
N

� (1D)
m , ñ = x0

N
n(1D), F̃ = x0

N
F (1D). (D2)

The dimensionless wave function is normalized as∫
dz̃

∑1
m=−1 |�̃m(z̃, t̃ )|2 = 1. Using typical experimental

parameters in Ref. [12] and scattering length data in
Ref. [26], we find the nonlinear coefficients are g̃0 = 23 729
and g̃2 = −110. Equation (D1) can then be integrated
numerically using, for example, the time-splitting spectral
method.

APPENDIX E: NEWTON-RAPHSON METHOD

Here, we discuss how we numerically obtain the magnetic
soliton solutions beyond the uniform density approximation.
Consider a stationary soliton solution of the GPEs (D1),

�̃m(z̃, t̃ ) = �̃m(z̃)e
−iμ̃t̃ , (E1)

where μ̃ is the dimensionless chemical potential. Substituting
Eq. (E1) back into Eq. (D1), we have the time-independent
GPEs,

μ̃�̃m =
(

−1

2

∂2

∂ z̃2
+ Ṽ

)
�̃m + q̃m2�̃m

+ g̃0ñtot�̃m + g̃2

1∑
n=−1

F̃ · (F̂ )mn�̃n. (E2)

Since we are interested in traveling solitons in a uniform sys-
tem, we assume Ṽ = q̃ = 0 and switch to the moving frame
with velocity Ṽ , where the moving-frame time-independent
GPEs [34] take the forms

μ̃�̃m =
(

−1

2

∂2

∂ z̃2
+ iṼ

∂

∂ z̃

)
�̃m + g̃0ñtot�̃m

+ g̃2

1∑
n=−1

F̃ · (F̂ )mn�̃n. (E3)

To numerically find stationary magnetic soliton solutions of
Eq. (E3) we use the Newton-Raphson method which has
been used to obtain dipolar solitons or a vortex in a moving
frame [33–35]. The simulation is performed on a 1D line z̃ ∈
[−40, 40] discretized intoN = 4096 girds with spacing
z̃ =
80/(N − 1). The discretized wave function is described by
�̃ j,m where j = 1, 2, . . . ,N denotes the jth grid and m =
0,±1 is the magnetic quantum number. Since the real and
imaginary parts of the wave function are independent degrees
of freedom, we define �̃ j,r,m with r = 0, 1, where �̃ j,0,m =
Re(�̃ j,m) and �̃ j,1,m = Im(�̃ j,m ). Equation (E3) can then be

discretized as f (�̃) = 0 where

f j,r,m = − 1

2

�̃ j−1,r,m − 2�̃ j,r,m + �̃ j+1,r,m

(
z̃)2

+ (2r − 1)Ṽ
�̃ j+1,1−r,m − �̃ j−1,1−r,m

2
z̃

+
(

−μ̃ + g̃0
∑
m′,r′

�̃2
j,r′,m′

)
�̃ j,r,m

+ g̃2
∑
m′

(F̃x, j F̂x,mm′ + F̃z, j F̂z,mm′ )�̃ j,r,m′

− i(2r − 1)g̃2
∑
m′

F̃y, j F̂y,mm′�̃ j,1−r,m′ , (E4)

and where F̃ j is the discretized spin density evaluated at the
jth grid,

F̃ j =
1∑

m′,n′=−1

�̃∗
j,m′ (F̂ )m′n′�̃ j,n′

=
1∑

m′,n′=−1

(�̃ j,0,m′ − i�̃ j,1,m′ )(F̂ )m′n′ (�̃ j,0,n′ + i�̃ j,1,n′ ).

(E5)

We impose the Neumann boundary condition such that at the
factitious grids j = 0 and j = N + 1 the wave functions are
given by

�̃0,r,m = �̃2,r,m, �̃N+1,r,m = �̃N−1,r,m. (E6)

Starting from the analytical wave function of a magnetic
soliton given in the main text, the Newton-Raphson method
solves Jδ�̃ = − f for δ�̃ to update the wave function as
�̃p+1 = �̃p + δ�̃ at each step p, where J is the Jacobian of
f with respect to �̃,

Jj,r,m
k,s,n

= ∂ f j,r,m
∂�̃k,s,n

= − 1

2

δ j+1,k − 2δ j,k + δ j−1,k

(
z̃)2
δr,sδm,n

+ (2r − 1)Ṽ
δ j+1,k − δ j−1,k

2
z̃
δ1−r,sδm,n

+
(

−μ̃ + g̃0
∑
m′,r′

�̃2
j,r′,m′

)
δ j,kδr,sδm,n

+ 2g̃0�̃ j,r,m�̃ j,s,nδ j,k

+ g̃2(F̃x, j F̂x,mn + F̃z, j F̂z,mn)δ j,kδr,s

+ g̃2
∑
m′

(Kx, j,s,nF̂x,mm′

+ Kz, j,s,nF̂z,mm′ )�̃ j,r,m′δ j,k

− i(2r − 1)g̃2F̃y, j F̂y,mnδ j,kδ1−r,s

− i(2r − 1)g̃2
∑
m′

Ky, j,s,nF̂y,mn�̃ j,1−r,m′δ j,k, (E7)
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FIG. 5. Initial state for generating a magnetic soliton.

and where

K j,s,n =
∑
n′

{[(F̂ )n,n′ + (F̂ )∗n,n′ ]�̃ j,s,n′

− i(2s − 1)[(F̂ )n,n′ − (F̂ )∗n,n′ ]�̃ j,1−s,n′ }. (E8)

Since the atom number is fixed in our simulation, at each step
we update the chemical potential μ̃ according to Eq. (E3).
Such an iteration can converge at a final wave function �̃ f

satisfying f (�̃ f ) = 0, which is the true magnetic soliton so-
lution we seek to obtain. The convergence is determined once
the correction |δ�̃| is smaller than an arbitrary tolerance.

APPENDIX F: EXPERIMENTAL GENERATION

As discussed in the main text, we propose to use a Raman
transition followed by a magnetic shadow (phase imprinting)
to generate a magnetic soliton in a quasi-1D 87Rb condensate.
To simulate this method, we prepare the initial condition and
evolve the wave function as follows:

(1) We assume the population transfer is local and has a
Gaussian shape. We also assume that the phase imprinting
results in a tanh-shaped phase step. Then the initial state
without noise is given by

⎛
⎜⎝

ϕ̃+1(z̃)

ϕ̃0(z̃)

ϕ̃−1(z̃)

⎞
⎟⎠ = ψ̃g(z̃)

⎛
⎜⎜⎝

√
1 − Be−z̃2/2C2e−iφA(z̃)

0√
Be−z̃2/2C2eiφA(z̃)

⎞
⎟⎟⎠, (F1)
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FIG. 6. Density and phase profiles at t̃ = 3.77.

where ψ̃g(z̃) is the ground-state wave function obtained from
the imaginary-time propagation method. The phase function
is given as

φA(z̃) = D

2

(
tanh

z̃

E
+ 1

)
. (F2)

In our simulation we use the following dimensionless param-
eters,

B = 0.8, C = 0.463, D = 1.37, E = 0.216. (F3)

For comparison, the dimensionless spin healing length in our
simulation is ξ̃s = 0.316 evaluated at the center of the conden-
sate.

(2) Then we include noise to the initial condition as

ψ̃+1(z̃) = ϕ̃+1(z̃){1 + η1(z̃) + iη2(z̃)}, (F4)

ψ̃0(z̃) = ϕ̃0(z̃) + η3(z̃) + iη4(z̃), (F5)

ψ̃−1(z̃) = ϕ̃−1(z̃){1 + η5(z̃) + iη6(z̃)}
+α(z̃){η7(z̃) + iη8(z̃)}, (F6)

where α(z̃) = 0 for −5 < z̃ < 5 and α(z̃) = 1 otherwise.
η j (z̃) is Gaussian noise sampled with the standard deviation
0.005. The initial density distributions and phase profiles are
shown in Fig. 5.

(3) We then numerically solve Eq. (D1) with time step

t̃ = 1.885 × 10−4. A quadratic shift q̃ = −10 is added to
stabilize the condensate. The resultant magnetic soliton re-
sembles the ideal case of no noise as shown in Fig. 6.
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