2021 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS) | 978-1-6654-1714-3/21/$31.00 ©2021 IEEE | DOI: 10.1109/IROS51168.2021.9636742

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

September 27 - October 1, 2021. Prague, Czech Republic

Identifying Valid Robot Configurations via a Deep Learning Approach

Tuan Tran and Chinwe Ekenna

Abstract— Many state-of-art robotics applications require
fast and efficient motion planning algorithms. Existing motion
planning methods become less effective as the dimensionality
of the robot and its workspace increases, especially the com-
putational cost of collision detection routines. In this work, we
present a framework to address the cost of expensive primitive
operations in sampling-based motion planning. This frame-
work determines the validity of a sample robot configuration
through a novel combination of a Contractive AutoEncoder
(CAE), which captures an occupancy grids representation of
the robot’s workspace, and a Multilayer Perceptron (MLP),
which efficiently predicts the collision state of the robot using
the output from the CAE. We evaluate our framework on
multiple planning problems with a variety of robots in 2D and
3D workspaces. The results show that (1) the framework is
computationally efficient in all investigated problems, and (2)
the framework generalizes well to new workspaces.

I. INTRODUCTION

Recently, machine learning has been infused in many
solutions to notoriously difficult problems in robotics. These
strategies have seen a wide array of success in visual sensing
[1], task learning [2], and human-robot cooperation [3], etc.
In this work, we apply machine learning to predict the valid-
ity of robot configurations, a common procedure in sampling-
based motion planners. Sampling-based approaches have
seen broad applicability to many high-dimensional and com-
plex motion planning problems in robotics [4], computer
graphics [5], and computational biology [6]. Most of these
approaches rely on the classification of robotic configurations
into valid, e.g., collision-free, and invalid samples, while
they work to construct graph approximations of a state
space, called a roadmap. Thus, these approaches avoid full
representation of the topology of the state space. However,
as the dimensionality of the robot and the complexity of the
workspace increase, the primitive operations of sampling-
based methods become computationally obstructive [7].

Prior research has focused on improved geometric analysis
techniques for collision checking [8], approximately model-
ing state space and obstacles to predict the collision status
of robot configurations, and lazily invoking the configuration
validation subroutine [4], among others. While these methods
have shown success in many applications, none have fully
and permanently bounded the computational cost of validat-
ing configurations in sampling-based motion planners.

We propose a novel framework to efficiently and effec-
tively predict the validity of robot configurations in complex
motion planning problems. The overview of our framework

*This work was not supported by any organization.

ITuan Tran and Chinwe Ekenna are with the Department of Computer
Science, University at Albany, SUNY, NY 12206, USA {ttran3 ,
cekenna}@albany.edu.

is shown in figure 1. A CAE embeds a representation of the
workspace, corresponding to an occupancy grid, into a latent
space. Then an MLP predicts the validity of a given input
sample using the CAE encoding of the workspace. Thus,
instead of using the information of the whole workspace to
decide whether a sample’s label is valid or invalid, only
the limited information from the encoded latent space is
used. We examine the potential impact of such an approach
with a variety of robots in complex 2D and 3D workspaces.
We focus on finding valid samples due to their importance
in narrow and cluttered passages. This work presents a
first step towards applying our unique autoencoder variant
to Sampling-based Motion Planning. Our results indicate
that: our framework is computationally efficient in most
investigated problems, and our approach generalizes well to
previously un-encoded workspaces. As such, our framework
can be applied to many existing sampling-based routines to
improve their computational efficiency.

Environment

[MLP |
LI BT e e e N
)= (e [smmpes |

l Occupancy Grid

(cae]| |
w - - * e
o = = “
Latent) :
Space —
Planned Path

Fig. 1: Overview of the proposed framework.

II. RELATED WORK
A. Sampling-based Motion Planning (SBMP)

A common solution to the motion planning problem is the
utilization of sampling-based methods. Most often, sampling-
based motion planners randomly select, progressively ex-
pand, and connect robot configurations to form approximate
graph representations of X f,..., called roadmaps. A roadmap
encodes valid states as its nodes and transitions between them
as its edges. To find a path, a starting state and goal region are
connected to the roadmap, and a feasible path is extracted.
These techniques employ the invocation of a “black box”
collision detection module that classifies any state in either
Xfree or Xops to avoid explicit construction of Xp,. This
is used in the verification of both the nodes and the edges
of any roadmap constructed using these methodologies.

The main paradigms of sampling-based motion planning
are the Probabilistic RoadMap [9] and the Rapidly-exploring

978-1-6654-1714-3/21/$31.00 ©2021 IEEE 8973

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on August 10,2022 at 20:12:02 UTC from IEEE Xplore. Restrictions apply.

Random Tree (RRT) algorithms [10]. Both PRM and RRT
are known to be probabilistically complete, i.e., if a (robust)
solution exists, then a solution will almost surely be found as
the number of samples reaches infinity [7]. This work aims
to improve the performance of sampling-based approaches
specifically through reducing the cost of collision detection
routines and subsequently the overall path planning time.

B. Neural Network in Motion Planning

Representation learning [11] mainly aims to extract fea-
tures from unstructured data to either achieve a lower-
dimensional representation (often referred to as encoding)
or learn features for supervised learning or reinforcement
learning. Recent work has utilized a learned low-dimensional
latent model for motion planning. Ichter et al. [12] and Zhang
et al. [13] used the Conditional Variational Autoencoders to
learn a non-uniform sampling methodology of a sampling-
based motion planning algorithm. Qureshi et al. [14] learned
a low-dimensional representation of the obstacle space by
using a Contractive Autoencoder to encode an occupancy
grid of the obstacles into a latent space and then used a feed-
forward neural network to predict the next step an optimal
planner would take given a start and goal. Similarly, we aim
to use a lower-dimensional representation to reduce the cost
of collision detection for use in motion planning algorithms.

The neural network is becoming prominent in path plan-
ning for its outstanding non-linear mapping ability. Shi et
al. [15] presented a motion planning system based on hybrid
deep learning, which uses a convolutional neural network
to reduce the dimension of the input image, a recurrent
neural network to create a path tracking model, and a fully
connected neural network to construct a control model. In
this work, we take advantage of the multilayer perceptron
to determine the validity of generated samples and improve
path planning for a variety of problems.

III. RESEARCH FRAMEWORK

Our proposed framework uses two neural network models,
a Contractive AutoEncoder and a Multilayer Perceptrons.
The valid samples obtained from them are then used to
generate a path for the robot as shown in Figure 1.

A. Contractive AutoEncoder (CAE)

A CAE is used to embed workspace occupancy grids X
into an invariant and robust latent space Z C R™, where
m € N is the dimensionality of the latent space. The
information of the obstacles in the workspaces is extracted
from the occupancy grid and its size is compressed by the
CAE. The overview of the CAE model is shown in figure 2.

The construction of a CAE consists of training neural
networks for the encoder and the decoder. Let f(x, W*¢) be
an encoding function with weight matrix W¢ that encodes
an input vector z € X into a vector in the latent space
z € Z. A decoding function g(z, W¢), with weight matrix
W4, decodes a vector from the latent space z € Z back into
a vector in the workspace x € X. The objective function
(loss function) for the CAE is:

1
Loar = 1o S lle = (. W) WO F+A 30752
zeD ij
(D

where A is a penalizing coefficient and D C X is the
occupancy grid data for different workspaces. The penalizing
term forces the latent space z = f(xz, W¢) to be contractive
in the neighborhood of the training data which results in an
invariant and robust feature learning [16]. Since we use a
linear encoder, the loss function of CAE is similar to the
loss function of a regularized autoencoder. Moreover, our
training data mainly consists of an unlabeled representation
of the workspace, we apply autoencoders to learn the low-
dimensional representation of the training data instead of
end-to-end architecture. By using the reconstruction error
from the decoder, we are able to analyze a quantifiable
metric used to decide which low-dimensional representation
accurately replicates our workspace the best.

B. Multilayer Perceptrons (MLP)

We use a multilayer perceptron to perform sample validity.
By sample validity, we mean samples that are collision-
free. The overview of the MLP model is shown in figure
3. Given a workspace encoding z = f(z, W¢) € Z obtained
from CAE, the samples’ information s, MLP predicts its
label 6 whether a sample is valid or not. The encoded
workspace information returned from the CAE is integrated
with the sample information in the input layer of the MLP.
Incorporating the information of both the obstacles and the
workspace to the MLP makes it possible to determine the
validity of samples for various workspaces. Without the
information from CAE, the MLP only learns the statistics
of the sample’s validity without accurate information about
the obstacles and the topology information of the workspace.
The training objective for the MLP is to minimize the
classification loss between the predicted sample’s label and
its actual label. Thus, we use the Cross-Entropy loss function
since it’s been shown to perform excellently for classification
problems [17], [18].

[Encoder: f(X,W¢)] :
l [Sample: § H Latent: Z |[Label: 6]

|

1 — :

(3 Lys = CrossEntropy(8,6')
Leas = IX = X2+ 2) (we)? L)

| Latent: Z = f(X,W*?) ‘

—

{ Decoder: X' = g(Z,W%)]

L

Fig. 3: Multilayer Percep-
Fig. 2: Contractive AutoEn- tron
coder

C. Sample Validation and Path Planning

Algorithm 1 presents the overall framework of our ap-
proach. It shows the stages between CAE and MLP and how

8974

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on August 10,2022 at 20:12:02 UTC from IEEE Xplore. Restrictions apply.

we obtain a roadmap for the motion planning problem.

Algorithm 1 SBMP Variant

Input. New workspace W (occupancy grid data), Query
Tinits X goal

1: CAE encodes W into the latent space Z.

2: Randomly sample a set of states, S.

3: Feed S and Z into MLP, which predicts the validity
of each sample in S. After this step S’ a set of most
probably valid samples are retained.

4: Feed S’ into a standard PRM approach to yield a valid
roadmap R. If R is not found, create additional valid
samples using auxiliary samplers.

5: Extract a path 7 from R between x;,;; and Xgoa.

1) Workspace Encoder: Using the trained CAE, the
workspace W is encoded into a latent space Z. Then, the
encoding function f(xz, W*¢) is used to map the workspace
occupancy grid x € X into a latent space Z C R™.

2) Sample Generation: A set of samples S is generated
based on the specification of a robot R and its particular
workspace W. We use the following auxiliary samplers to
generate the initial sample set S from each workspace. Basic
PRM (PRM) [9] creates samples uniformly and randomly.
Obstacle Based PRM (OBPRM) [19] creates samples near
the boundary of obstacles. Gaussian Sampler (Gauss) [20]
also creates samples around obstacles using adaptive prob-
ability and collision data. Bridge Test (Bridge) [21] creates
samples using a short segment with two configurations and
their midpoint.

3) Sample’s Validity: The trained MLP takes the sample
set S and the encoded latent space Z as input to determine a
set of probably valid samples S’ C S. To introduce stochas-
ticity into the MLP and to prevent over-fitting, dropout is
applied layer-wise to a neural network and it drops each
unit in the hidden layer with a probability p : [0,1] € R.

4) Connection and Path Planning: The probably valid
sample set S’ is connected to create a roadmap R by a
proximity search function. If R is not found, additional valid
samples are generated using previously mentioned auxiliary
samplers. Finally, from R, a local planning function would
return a feasible path between a given start and goal. We use
a straight-line local planner. Particularly a PRM approach
is applied to S’ to generate a roadmap R, and the path is
extracted and verified.

IV. EXPERIMENT DETAILS

This section gives the experiment details for our frame-
work. The proposed neural models, CAE and MLP, are im-
plemented in PyTorch [22]. The experiments are conducted
on a PC with a 3.6 GHz CPU, 16 GB memory, and NVIDIA
GeForce RTX 2070 GPU.

A. Workspace Setup

We represent a workspace as an occupancy grid with
values of —1 (free space) and 1 (obstacle). The input to

TABLE I: Workspace parameters.

2D Kuka Cluttered-7 | Cluttered-9
Dimension 31*#31 41*%41%6 TT#11*11
Number of Obstacle 3t05 25 to 30 110 to 125
DoF of Robot 2 8 7 ‘ 9
Size of Robot 0.5*%0.5 1.5%1%*1 0.1#0.1*0.1; 0.4*%0.1*0.1

the encoder is an occupancy grid of size n x m for 2D and
nxmxk for 3D, where n, m, and k are the number of points
along each dimension of the workspace. We perform exper-
iments in the following workspaces and generate different
training and testing representations of these workspaces.

« Simple workspaces (2D): In 2D space shown in Figure
4, a point-mass robot with 2 degrees of freedom (DoF).
The robot has to traverse through these obstacles suc-
cessfully to reach its goal.

o Kuka YouBot workspace (Kuka): An 8 DOF KuKa
robot [23] in a workspace with four different rooms,
in Figure 5. Its base has 5 DOFs that allow it to move
forward, backward, and rotate (horizontally), and its arm
has 3 DOFs. The robot moves through different rooms
within narrow passages and performs an action (grasps
or puts an object down) at its destination.

o Cluttered workspace (Cluttered-7): In 3D space, ob-
stacles are cluttered around the room as shown in
Figure 6. The robot has to traverse through these obsta-
cles successfully to reach its goal. We use rectangular
robots with 7 DoF. The robot consists of 2 types of
links: a small link of (0.1*¥0.1*0.1) and a big link of
(0.4*0.1*0.1). The robot has 1 joint for 1 small link
and 1 big link.

o Cluttered workspace (Cluttered-9): This is the same
workspace as Cluttered-7. However, we increase the
DOF of the robot to 9 with 3 joints consisting of 2
small links and 2 big links.

Obstacles are randomly generated in the workspaces thus
creating a diverse representation of the workspaces. For each
random generation, we create a new workspace. The location,
type (small, big, square, rectangular), and orientation are
randomly generated. Table I gives a schematic for our
workspace training and testing setup.

1) Contractive AutoEncoder: We use multiple workspace
representations to train and test our CAE. The training data
set of the 2D workspaces comprised of 30 workspaces, and
for testing, two types of test data sets were created to evaluate
the proposed method. The first test data set comprised of
the 30 workspaces used in training (seen workspace), and
the second test data set comprised of 10 previously unseen
workspaces, i.e., workspaces not from the training set. The
training data set of the Kuka workspaces comprised of 100
workspaces, and for testing 100 known workspaces and
20 previously unseen workspaces. The training data set of
the Cluttered workspaces comprised of 50 workspaces, and
for testing 30 known workspaces and 10 previously unseen
workspaces.

2) Multi-layer Perceptrons: Utilizing the latent space
information about the workspaces gotten from the CAE,

8975

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on August 10,2022 at 20:12:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Examples of 2D simple

workspace (8 DOF robot)
TABLE II: Statistic of our dataset
CAE (workspaces) | MLP (samples/workspace)
Training | Testing | Training Testing
2D 30 40 100 200
Kuka 100 120 200 2,000
Cluttered 50 40 200 400

TABLE III: Parameters of the CAE.

2D Kuka Cluttered
Input dimension 31%31 | 41*41%6 11#11*11
Output dimension 12 50 50
Number of hidden layer 5 7 6

Parametric Rectified Linear Unit [24]
Loss function Mean square error
Learning rate adjustment Adagrad [25]

Dropout probability 0.5

Penalizing term 0.001

Activation function

we generate 100 samples for each 2D workspace and 200
samples for each Kuka and Cluttered workspace for training
and testing. Additionally, we don’t want our samples to
contain any information about the workspace, we choose
to generate those samples using Basic PRM since it gen-
erates samples uniformly and randomly. Those samples are
approximately distributed 50/50 between valid and invalid
samples. Since our approach mainly focuses on verifying the
sample’s validity, we incorporate it into the standard PRM
approaches using algorithm 1 to test its effectiveness. Table
IT gives information about our training and testing dataset.

B. Model Architecture

1) Contractive AutoEncoder: Since the structure of the
decoders is the inverse of the encoder, we only describe the
structure of the encoder. The parameters of the CAE are
listed in table III.

For the 2D workspaces, the encoding function and de-
coding function consist of five linear layers and one output
layer. Layers 1 to 5 transform the input vector to 512, 256,
128, 64, and 32 hidden units. For the Kuka workspaces, the
encoding function and decoding function are the same as
in a 2D simple workspace but consist of seven linear layers
and one output layer. Layers one to seven transform the input
vectors to 5043, 3125, 1600, 800, 400, 200, 100 hidden units.
For the Cluttered workspaces, layers one to six transform the
input vectors to 1000, 800, 600, 400, 200, 100 hidden units.

2) Multi-layer Perceptrons: The input is given by con-
catenating the encoded workspace’s representation Z, and the
DoF for each robot from a given state. Each of the layers is a

Fig. 5: Examples of Kuka workspace

1

Fig. 6: Example of cluttered
workspace (7 DOF and 9 DOF
robot)

TABLE IV: Parameters of the MLP.

2D | Kuka | Cluttered-7 | Cluttered-9
Input dimension 14 58 57 59
Output dimension 2

Parametric Rectified Linear Unit
Loss function Cross-Entropy
Learning rate adjustment Adagrad

Dropout probability 0.5

Penalizing term 0.001

Activation function

combination of a linear layer, a Parametric Rectified Linear
Unit (PReLU), and Dropout (p). For the 2D workspaces,
MLP is a 4-layer neural network, in which the hidden layers
have 6, 4 units. For both Kuka and Cluttered workspaces,
MLP is a 7-layer neural network, in which the hidden layers
have 50, 40, 30, 20, 10, 5 units. The parameters of the MLP
is listed in Table IV.

V. RESULTS
A. Performance of CAE and MLP

Table V shows the performance for the CAE for seen
workspaces and unseen workspaces. For all the workspaces,
the percentage accuracy for the seen workspace using our
CAE was above 95% and the unseen workspace was above
93%. Thus we record excellent results.

An example of the 3D

Kuka workspace and its oc- TABLE V: Performance of

cupancy grid reconstructed CAE
using CAE is shown in figure
7 Th It f th Seen Unseen
- The results of the recon- 35S 99T 199 %
struction demonstrate that the Kuka 9% % | 93 %
Cluttered | 97 % 94 %

CAE acquired the ability to
extract workspace features. Overall, the accuracy of our
CAE is excellent. Thus, we are able to learn the underlying
structure of the workspaces quite well.

Fig. 7: Example of the workspace and its occupancy grid
reconstructed using CAE.

Table VI shows the accuracy, true positive rate, and true
negative rate for the MLP. The average accuracy of our MLP
is from 87% to 90% for 2D workspaces, 73% to 76% for

8976

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on August 10,2022 at 20:12:02 UTC from IEEE Xplore. Restrictions apply.

Kuka workspace, and 70% to 76% for Cluttered workspace.
Additionally, the true positive rates and true negative rates
are very good for our MLP, thus an acceptable number of
valid samples and invalid samples are successfully validated
by MLP. Overall, the accuracy of our MLP affects the
performance of our approach unnoticeably, shown in the
next section. We believe that there are enough valid samples
gotten from the MLP for the planner to find a feasible path.
Even if there is a need for extra valid samples, those valid
samples are generated using provided auxiliary samplers.

TABLE VI: Accuracy (Acc), True Positive Rate (TPR), and
True Negative Rate (TNR) of MLP

Seen (%) Unseen (%)
Acc [TPR | TNR | Acc | TPR | TNR
2DS 90 95 88 87 90 64
Kuka 76 87 65 73 85 60

Cluttered-7 76 88 65 70 84 62
Cluttered-9 73 83 65 71 80 63

B. Roadmap generation using OBPRM, PRM, Gaussian and
Bridge Planning Method:

We report our improvements in generating a roadmap
when the valid samples obtained from the MLP are used.

a) Results using OBPRM: The performance with and
without applying our framework using OBPRM are shown
in figure 8. OBPRM generates samples near the boundary
of obstacles, the workspaces we studied have a large num-
ber of obstacles, and our CAE provides the representation
of workspace accurately, therefore our MLP classified the
sample’s validity quite precisely. We see a reduction in the
sampling time by approximately 50%, 10% reduction in
the number of collision calls, and 13% reduction for the
total time which includes sampling node connection and
path generation. The standard deviations of total time when
applying our framework decreased significantly. Thus, our
framework augments the algorithms perfectly and makes
them more stable in solving queries reliably.

b) Results using PRM, Gauss, and Bridge Test Plan-
ners: Table VII-IX show the results for all the planners in
terms of the sampling time, the total time needed to build the
roadmap, and the average number of collision calls returned.

In the 2D workspace, the PRM method with the inclusion
of our framework shows a substantial improvement and out-
performs other planners. By applying our framework, there is
a good amount of reduction in the number of collision calls
(13% to 22%). This is to be expected considering the uniform
sampling approach of PRM and the 2D representation of
the workspace with limited obstacle clutter. The variance
for sampling time and total time for all of the experiments
were between 0.002 and 0.03, and between 0.01 and 0.05
respectively. Other planners i.e., Gauss and Bridge Test also
see an improvement when our framework was added to it.

The Gauss planner has a similar performance to OBPRM,
it outperforms OBPRM only in the 2D workspace but with
comparable performance in the other workspaces. Gauss
planner generates samples based on a Gaussian distribution
around the obstacles hence the similar performance, however,

00l |
! 2
80 B :
! : 1.5 :
60 : T
1 :
40 B N ;
200 1 i 0.5 =
Without With Without ~ With

(a) Average total time in
Kuka workspace

(b) Average total time in
Cluttered-7 workspace

100
20 80°
60
40!
20

¢ PO

Without With
(d) The improvement of
average number of colli-

sion call

(c) Average total time in
Cluttered-9 workspace

Fig. 8: The performance with and without applying our
method using OBPRM

it produces slightly more collision calls for the cluttered-7
workspace but OBPRM produces less in all cases. Bridge test
planner makes substantial improvement with our method but
records more collision calls and average total time in the
Kuka workspace which is to be expected considering the
amount of non-symmetry representation of the obstacles.

Overall, there is a notable improvement in performance in
all cases. Although we only test our approach using fixed-
size workspaces, it is expected to be robust to varying sizes.
By splitting the workspace into smaller parts with a pre-
defined size, the proposed approach would still be able to
validate samples because the CAE would be able to encode
that smaller workspace and the MLP would be able to use
that information for validating the samples. Moreover, the
result in [26] shows that adding samples can only improve
the solution. Thus, by adjusting the number of samples in
the sampling validation phase and the number of samples
generated by the auxiliary sampler, our method guarantees
probabilistic completeness for any motion planning prob-
lem. Therefore, our approach should be applicable to other
sampling-based planners.

VI. CONCLUSION

In this paper, we present a fast and efficient neural network
framework for sampling-based motion planners. The frame-
work consists of a Contractive AutoEncoder that encodes
an occupancy grid representation of a robot’s workspace
into a latent feature space and a Multilayer Perceptrons
that takes that encoded workspace and robot configuration
details to predict the validity of that configuration. Since our
method considers the workspace and robot information when
performing collision checks, for future work, we plan to
train them on sub-regions of the workspace. Thus, an SBMP

8977

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on August 10,2022 at 20:12:02 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: Average sampling time (second) with and without applying our proposed framework.

PRM | PRM-Our | OBPRM | OBPRM-Our | Gauss | Gauss-Our | Bridge | Bridge-Our
2D 0.004 0.002 0.05 0.03 0.04 0.02 0.26 0.11
Kuka 0.12 0.07 1.14 0.58 0.22 0.13 0.78 0.34
Cluttered-7 | 0.007 0.004 0.21 0.10 0.09 0.04 0.40 0.19
Cluttered-9 | 0.016 0.011 0.08 0.04 0.04 0.02 0.11 0.05

TABLE VIII: Average total time (second) with and without applying our proposed framework.
PRM | PRM-Our | OBPRM | OBPRM-Our | Gauss | Gauss-Our | Bridge | Bridge-Our
2D 0.12 0.10 0.38 0.32 0.09 0.08 0.13 0.11
Kuka 41.28 41.47 43.84 39.65 42.02 39.35 39.35 44.85
Cluttered-7 0.53 0.55 0.64 0.56 0.61 0.49 0.97 0.61
Cluttered-9 0.74 0.61 3.30 2.58 3.86 3.23 6.38 4.62

TABLE IX: Average number of collision calls with and without applying our proposed framework.

PRM PRM-Our | OBPRM | OBPRM-Our Gauss Gauss-Our | Bridge | Bridge-Our
2D 31,783 25,819 156,566 122,512 8,503 7,388 42,384 36,225
Kuka 436,965 | 441,334 689,146 668,361 474,658 460,441 404,023 420,680
Cluttered-7 | 11,164 11,203 14,855 13,404 12,764 14,096 18,058 14,450
Cluttered-9 | 24,059 21,895 166,155 149,182 150,224 141,017 195,632 160,144

algorithm could use our method when it reaches certain
portions of that workspace. Additionally, this approach can
be applied to other aspects of SBMP, e.g., edge prediction,
and path validation.

[1]

[2]

[3]

[4]

[5]

[6]

[9]

[10]

(11]

(12]

[13]

REFERENCES

B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” ieee Transactions on Robotics and Automation,
vol. 8, no. 3, pp. 313-326, 1992.

C. L. Nehaniv and K. E. Dautenhahn, Imitation and social learning in
robots, humans and animals: behavioural, social and communicative
dimensions. Cambridge University Press, 2007.

P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation
in dense human crowds: Statistical models and experimental studies
of human-robot cooperation,” The International Journal of Robotics
Research, vol. 34, no. 3, pp. 335-356, 2015.

J. Denny, K. Shi, and N. M. Amato, “Lazy toggle prm: A single-query
approach to motion planning,” in 2013 IEEE International Conference
on Robotics and Automation. 1EEE, 2013, pp. 2407-2414.

L. Kobbelt and M. Botsch, “A survey of point-based techniques in
computer graphics,” Computers & Graphics, vol. 28, no. 6, pp. 801—
814, 2004.

C. Ekenna, S. Thomas, and N. M. Amato, “Adaptive local learning
in sampling based motion planning for protein folding,” BMC systems
biology, vol. 10, no. 2, p. 49, 2016.

J. Bialkowski, S. Karaman, M. Otte, and E. Frazzoli, “Efficient
collision checking in sampling-based motion planning,” in Algorithmic
Foundations of Robotics X. Springer, 2013, pp. 365-380.

M. Lin and S. Gottschalk, “Collision detection between geometric
models: A survey,” in Proc. of IMA conference on mathematics of
surfaces, vol. 1, 1998, pp. 602-608.

L. Kavraki, P. Svestka, and M. H. Overmars, Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. Un-
known Publisher, 1994, vol. 1994.

S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798-1828, 2013.

B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2018, pp. 7087-7094.
C. Zhang, J. Huh, and D. D. Lee, “Learning implicit sampling
distributions for motion planning,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 3654-3661.

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

8978

A. H. Qureshi, M. J. Bency, and M. C. Yip, “Motion planning
networks,” arXiv preprint arXiv:1806.05767, 2018.

C. Shi, X. Lan, and Y. Wang, “Motion planning for unmanned vehicle
based on hybrid deep learning,” in 2017 International Conference on
Security, Pattern Analysis, and Cybernetics (SPAC). 1EEE, 2017, pp.
473-478.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contrac-
tive auto-encoders: Explicit invariance during feature extraction,” in
Proceedings of the 28th International Conference on International
Conference on Machine Learning. Omnipress, 2011, pp. 833-840.
P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in Proceedings of the 10th ACM confer-
ence on recommender systems. ACM, 2016, pp. 191-198.

T. N. Sainath, B. Kingsbury, and B. Ramabhadran, “Auto-encoder
bottleneck features using deep belief networks,” in 2012 IEEE in-
ternational conference on acoustics, speech and signal processing
(ICASSP). IEEE, 2012, pp. 4153—4156.

N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
“Obprm: An obstacle-based prm for 3d workspaces,” 1998.

V. Boor, M. H. Overmars, and A. F. Van Der Stappen, “The gaussian
sampling strategy for probabilistic roadmap planners,” in /CRA, 1999,
pp. 1018-1023.

D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sam-
pling narrow passages with probabilistic roadmap planners,” in 2003
IEEE international conference on robotics and automation (cat. no.
03CH37422), vol. 3. 1EEE, 2003, pp. 4420-4426.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” 2017.

K. R. Corporation, “Kuka youbot,” www.youbot-store.com, accessed:
June 1, 2013.

L. Trottier, P. Gigu, B. Chaib-draa et al., “Parametric exponential
linear unit for deep convolutional neural networks,” in 2017 16th
IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE, 2017, pp. 207-214.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121-2159, 2011.

L. Janson, B. Ichter, and M. Pavone, “Deterministic sampling-based
motion planning: Optimality, complexity, and performance,” The In-
ternational Journal of Robotics Research, vol. 37, no. 1, pp. 4661,
2018.

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on August 10,2022 at 20:12:02 UTC from IEEE Xplore. Restrictions apply.

