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A B S T R A C T   

Non-contact optical measurements are commonly used in industrial and research domains to 
obtain displacement measurements. This can be attributed to their noninvasive advantages over 
traditional instrumentation approaches. Phase-based motion estimation (PME) and magnification 
(PMM) are targetless methods that have been utilized recently to extract qualitative data from 
structures via experimental modal analysis (EMA) and operational modal analysis (OMA). 
Transforming the motion-magnified sequence of images into quantified operating deflection 
shape (ODS) vectors is currently being conducted via edge detection. Although effective, these 
methods require human supervision and interference; such that, accurate characteristics of the 
structure are guaranteed. Within this study, a new hybrid computer vision approach is introduced 
to extract the quantified ODS vectors from motion-magnified images with minimal human su
pervision. The particle filter (PF) point tracking method is utilized to track the desired feature 
points in the motion-magnified sequence of images. Moreover, the k-means clustering method is 
employed as an unsupervised learning approach to perform the segmentation of the particles and 
assign them to specific feature points in the motion-magnified sequence of images. Total variation 
denoising is used to smooth the motion-magnified artifacts, which improves ODS vector extrac
tion and provides a robust outlier removal. The results show that the cluster centers can be 
applied to estimate the ODS vectors, and the performance of the proposed methodology is 
evaluated experimentally on a lab-scale cantilever beam.   

1. Introduction 

Parameter extraction in structural dynamics applications are essential in identifying dynamic behavior induced by external 
excitation [1]. The applications of structural dynamics identification encompass a variety of interconnected topics such as: modal 
analysis, structural model validation, structural health monitoring (SHM), and production certification procedures [2,3]. Within a 
variety of fields such as aerospace [4,5], mechanical engineering [6-9], and civil engineering [10-15], structural dynamics identifi
cation procedure is used to better understand dynamic behavior under an external excitation. Two fundamental techniques, namely 
EMA and OMA have been developed and well established in the research community throughout past decades [16]. Commercial 
software and hardware packages are available to perform high fidelity EMA or OMA for a variety of applications. EMA utilizes both the 
input and output data to characterize the dynamics of the structure, while in OMA, the excitation forces are unknown and the 
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identification is conducted based on only the output response of the structure [1]. Traditional EMA and OMA approaches require many 
sensors attached to the structure for larger test subjects. With this in mind, low sensing resolution due to a lack of sensors may lead to 
visual misrepresentation of true motion or even spatial aliasing [17]. Conversely, installing more sensors is not always feasible due to a 
limited number of available channels in the data acquisition system, data transmission bandwidth, and wiring accessibility to the 
structures [18]. In addition to this, mounted sensors may impose a mass loading effect to the testing structures [19], which distorts the 
extracted dynamics and may lead to false engineering decision-making. Alternative measures are currently being investigated to limit 
the disadvantages of typical contact sensors such as accelerometers [20]. 

Non-contact vibration measurements have attracted substantial attention over the past few years. Most non-contact measurement 
techniques typically rely on either electromagnetic radiation or more recently infrared imaging [21]. Camera-based measurements are 
becoming increasingly popular in the field of modal analysis and damage detection due to the accesability of computer vision algo
rithms and hardware technology [22-27]. Camera-based measurements are relatively low-cost, easy to implement, and provide 
measurements with very high spatial resolution [28,29]. Moreover, among all the image/video processing techniques, 3D digital 
image correlation (3D DIC) and 3D point tracking (3DPT) are widely accepted in both industrial and research applications [30-35]. 

The idea of phase-based motion estimation led to a new technique in computer vision and computational photogrammetry known 
as phase-based motion magnification. This approach was developed by Wadhwa et al. to amplify subtle movements in videos [36-39]. 
This ultimately results in the human vision system perceiving amplified or exaggerated motions. The first applications of PMM for 
structural dynamics identification was presented by Chen et al. [21,40]. Yang et al. combined both PME, PMM and the blind source 
separation algorithm to extract modal parameters from a vibrating structure [28]. More recently, Valente et al. determined how much 
motion is associated with magnification factor; such that, the use of PMM can be extended to a quantitative measurement tool [41]. 

The state-of-the-art method in transforming motion magnified videos into quantified ODS vectors is the Canny edge detector 
[21,28,42,43]. However, using Canny edge detection to extract the quantified ODS vectors requires a relatively high level of human 
supervision and intervention based on the reports by Chen’s, Yang’s, and other research papers [21,28,44]. The human supervision 
required by this method may be time-consuming and unreliable in some cases. Most recently, Bhowmick et al. have adopted advanced 
forms of optical flow and compressed sensing techniques to simplify subtle motion extraction from edge features [45,46]. Therefore, an 
accurate and more automated identification process needs to be investigated. 

This work proposes a new hybrid computer vision algorithm to process motion-magnified videos in a semi-automatic fashion. The 
proposed methodology dives deeper into the concept of transforming motion-magnified videos into ODS vectors by utilizing a variety 
of several tools including particle filters, point tracking, and clustering. A lab-scale cantilever beam is used as a test structure for 
evaluating the performance of the proposed method. The motion-magnified videos are obtained by applying the PMM algorithm in 
several frequency bands corresponding to the resonant frequencies of the cantilever beam following. The significant contribution of the 
paper is in the transformation of motion-magnified videos from visual perceptions of the ODSs into quantified and well-defined ODS 
vectors in a semi-automatic manner. The particle filter point tracking method is used to track the feature points in the motion- 
magnified videos. In addition, the k-means clustering algorithm (an autonomous unsupervised statistical learning method), is 
applied to perform the segmentation of the particles that are tracking the feature points. 

The paper starts with a brief sketch of the theoretical background on the topics that are critical to the unified computer vision 
approach: namely, phase-based motion estimation, phase-based motion magnification, particle filters, and k-means clustering. In 

Nomenclature 

Symbol 
ϕ Complex phase map 
ϕ̃ Band-pass filtered complex phase map 
α Magnification factor 
X Particle state matrix 
W Zero-mean Gaussian white noise matrix 
A State transition matrix 
ζ Distance vector relating the actual and target Red Green Blue (RGB) vector 
Π Set of dynamic states 
Π Predicted set of a dynamic states 
σ2 Variance associated with the RGB vector 
Y Measurement of predicted particle states 
ξ Likelihood function between the predicted and current particle state matrices 
P̂ Location of all particles at a particular instance in time 
μ Center of point cloud cluster 
K Phase-based magnified images 
K̃ Smoothed phase-based magnified images 
β Regularization parameter 
J Processed images  
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section 3, all the pieces of the methodology are put together to describe the overall workflow. The evaluation of the methodology is 
performed on a lab-scale cantilever beam, and the details of the experimental test setup are presented in Section 4. The results and 
comprehensive discussion on the outcome of the proposed approach can be found in Section 5. In the last section of the article, the 
conclusions are presented, which contain practical considerations of the technique as well as suggestions for future work. 

2. Theoretical background 

The proposed unified computer vision framework is a combination of several computer vision methodologies including: PME, 
PMM, particle filters, and k-means clustering. In this section of the paper, an overview of the theoretical background for each of the 
methods is presented, and the role of each technique is described in the final approach. 

2.1. Phase-Based motion estimation 

Phase-based motion estimation decomposes images into a complex valued map using a Gabor wavelet. The change of phase be
tween two consecutive frames in video has been shown to be proportional to the motion observed between the two images. Moreover, 
Fleet and Jepson reported that the phase-based motion estimation often provides higher a signal-to-noise ratio (SNR) compared to 
other gradient-based optical flow methods. Therefore, phase-based motion estimation is more robust to contamination and variations 
of lighting conditions [47]. The subtle motion that is seen in video can be difficult to extract; therefore, current state-of-the art 
methodologies rely heavily on changes in pixel intestines. Rather than relying on pixel based approaches, this paper will aim to es
timate the subtle motion between images by utilizing the change in image phase over a given period of time. I(x, y, tn) is considered the 
intensity of the pixel at a specific location (x, y) at time, tn. In the sequential frame, a motion vector (Δx, Δy) is applied on the previous 
image I(x, y, tn), which is represented as I(x +Δx, y +Δy, tn+1). The brightness consistency assumption states that illumination of the 
object is consistent at times tn and tn+1. Therefore, it can be shown that intensities are independent of time or 

I(x + Δx, y + Δy, tn+1) = I(x + Δx, y + Δy, tn). (1) 

A Gabor wavelet will be used to decompose images into a complex valued map [48], which is defined as [49]: 

g(x, y, λ, θ, ψ , σ, γ) = e

(

−
x’2+γ2 y’2

2σ2

)

e
i

(
2π x’

λ +ψ
)

. (2) 

The orientation of the Gabor wavelet and its respective coordinates, (x’, y’), are described by the parameter θ below: 

x′

= −xcosθ + ysinθ,

y′

= xsinθ + ycosθ.
(3) 

The orientation of the Gabor wavelet in Equation (3) indicates its sensitivity to the motion in that specific direction. For example, 
for θ = 0o, motion in x-direction will be captured. Likewise, for θ = 90o, motion in y-direction will be captured. The other parameters 
in the Gabor wavelet definition (λ, ψ , σ, γ) are not relevant to the motion estimation process, and details of those parameters are 
presented in [44,48]. The complex Gabor wavelet can be represented as the summation of its real and imaginary parts as below: 

g(x, y, λ, θ, ψ , σ, γ) = Gθ + iHθ. (4) 

The first stage of PME is to decompose each of the frames captured in video into the complex domain using the following 
transformation: 

C(u, v, tn) =

∫ +∞

−∞

∫ +∞

−∞
I(x, y, tn)g(x − u, y − v; λ, θ, ψ, σ, γ)dxdy. (5) 

Considering that C(u, v, tn) is a complex number, C(u, v, tn) can be expressed more concisely in polar form: 

C(u, v, tn) = A(u, v, tn)eiϕ(u,v,tn) (6) 

Moreover, it can be shown that the difference between the phase values in two consecutive frames is proportional to true motion 
[44]: 

Δx∝ϕ(u, v, tn+1) − ϕ(u, v, tn) if θ = 0

Δy∝ϕ(u, v, tn+1) − ϕ(u, v, tn) if θ =
π
2

(7) 

The detailed derivation of the algorithm can be found in [44]. Equation (7) indicates that the motion is proportional to the change 
in phase. However, phase is bounded on the interval length of 2π, due to phase being a cyclic variable. Therefore, the relative motion 
between the two frames cannot exceed 2π because the large phase variations will introduce motion estimation errors or spatial ali
asing, which can affect accurate quantification. In vibration applications the relative motion between two consecutive frames is 
typically small; therefore, the extraction of phase from sequential frames would not typically exceed 2π unless a large amount of 
motion amplification takes place. For this application, the extraction of phase values from successive images permits the estimation of 
a motion time series. 
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PME is used as the first step of structural dynamics identification and the sequence of images are then processed. As previously 
discussed, phase variation is proportional to the motion to be estimated. As a result, the frequency content of the extracted phase 
variation should be nearly identical to the real motion. Therefore, resonant frequencies of the structure will be extracted in the fre
quency domain. This is achieved by analyzing the frequency content of the extracted phase variation time-series. 

2.2. Phase-based motion magnification 

PME can estimate the motion associated with the pixels corresponding to the dynamics of the test structure. PMM is an extension to 
PME that can reconstruct a new video with amplified motions within preselected specific frequency bands. It has been shown that 
magnifying the motions in a narrow frequency band for a video captured from a vibrating structure is able to generate a video that 
represents the ODS of the structure associated with that specific frequency [36,50]. 

Within this section, the PMM approach will be described, and the detailed derivations and discussions are available in [36,38,41]. 
As discussed in the theoretical background of PME, the phase variation in Equation (6) is proportional to true motion. Temporal- 
filtering and amplifying phase variations in Equation (6), allows the modified phase-variations to produce magnified motions in 
the selected frequency band. If the series of complex-valued phase maps and its respective coordinates (u, v) from the original video 
ranging from frame (0 : n) are represented as ϕ = (u, v, t0:n) and A(u, v, t0:n), the phase series ϕ = (u, v, t0:n) can be filtered by a band- 
pass filter. Applying the filter, F, along the time dimension leads to a new series of phase maps,ϕ̃ = (u, v, t0:n). Equation (8) represents 
the band-passed sequence of phase maps. 

ϕ̃ = (u, v, t0:n) = F[ϕ(u, v, t0:n) ] (8) 

In Equation (8), F is a linear band-pass filter in the time domain. After applying the band-pass filter on the phase variations, a new 
set of magnified images can be mathematically obtained as: 

I(x, y, t0:n) = A(u, v, t0:n)ei(̃ϕ(u, v, t0) + (1 + α)ϕ̃(u, v, t0:n)
)

(9) 

Equation (9) expresses the motion magnified images, which contain the same amplitudes A(u, v, t0:n) with a magnified phase 
sequence ϕ̃(u, v, t0) + (1 +α)ϕ̃(u, v, t0:n). The subtle motion in the phase series is being magnified by a magnification factor α with 
respect to the reference phase ̃ϕ(u, v, t0). A selection of the band-pass filter’s center frequency, fc and tuning the width of the passband, b 
will result in a magnified video that reflects the ODS of the structure. As demonstrated by Valente et al., α should be determined 
selectively rather than arbitrarily to limit the presence of spatial aliasing and ensure accurate quantification [41]. 

2.3. Particle filter 

The particle filter is considered one of the most powerful and widely used tools in the context of state estimation techniques [51], 
due to its significant flexibility compared to the Kalman filter. The Kalman filter is the optimal solution when both process and 
measurement noise are Gaussian distributed and system dynamics are linear [52]. However, a particle filter can better handle noise 
containing an arbitrary distribution and non-linear system dynamics [53,54]. It should be noted that, for non-linear systems, exten
sions of the Kalman filter such as the Extended Kalman Filter (EKF) or the Unscented Kalman Filter (UKF) have been designed. In 
addition, the Kalman filter is classified as a unimodal estimator where typically only one feature or object can be tracked over a series 
of time. In contrast, a particle filter can provide multimodal estimations, where multiple objects in a scene can be tracked which permit 
further analysis of complex dynamics [55,56]. For tracking multiple targets in the sequence of images, particle filters are more feasible 
and promising. The particle filter algorithm is suitable for high dimensional state-spaces, such as tracking problems in videos. Its 
performance can outplay the other category of multimodal estimation methods such as the histogram filter, which is computationally 
intensive in high-dimensional state spaces [57]. 

In this section, a sketch of the particle filter algorithm for state estimation is provided, and the practical considerations for solving 
the tracking problem using particle filters are discussed. The states of the system in the tracking problem are going to be assumed as the 
location and velocity of the desired target on the x-y plane as: 

Xi = [xi, yi, ci, di]
T
. (10) 

In Equation (10), (ci, di) = (ẋ, ẏ) or the velocities of the target in the x-y plane. The dynamics of the system are going to be assumed 
as a constant velocity model for all particles. The constant velocity linear model can be expressed as follows: 

Xi = AXi−1 + Wi (11)  

where A is the state transition matrix and Wi is a zero-mean Gaussian white noise matrix. The state transition matrix for the constant 
velocity model is: 

A =

⎡

⎢
⎢
⎣

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ (12) 
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The time-step integration size for this application is set to Δt = 1 (s). The robustness nature of the particle filter is able to correct 
and adjust the state transition model to what is being overserved throughout the video. This adjustability will prove to be important 
when estimating the motion of higher order vibrations. Yi are considered the Red Green Blue (RBG) intensities of the pixels. At this 
point, the system model, the states of the state-space matrix, and the observable states are defined for the particle filter-tracking 
problem. The missing piece relating these components is the likelihood function associated with a specific particle. In this work, 
the measurement likelihood function is evaluated based on the Euclidian distance between the observed RGB value of a pixel, denoted 
as RGBp

̅̅̅ →, and a target RGB vector denoted as RGBt
̅̅̅→. As a result, the likelihood function for m states can be expressed as: 

P
(
Yi

⃒
⃒Xm

i

)
=

1̅̅̅
̅̅

2π
√

σ
e

(

−
ζ2

2σ2

)

, (13)  

where ζ in Equation (13) is the distance between RGBp
̅̅̅ → and RGBt

̅̅̅→ as defined in the following equation: 

ζ = ‖RGBt
̅̅̅→

− RGBp
̅̅̅ →

‖2. (14) 

Particles are samples of a posterior distribution of unknown quantity concerning the states Xi [57]. In this problem, each particle is 
a vector consisting of four elements Xindex

i = [xi, yi, ci, di]
T. Xindex

i is a sample of the posterior distribution of states at time step i. The 
statement of the particle filter algorithm outlined in Fig. 1. 

The particle filter algorithm, as described in the workflow above, does not state any limitations regarding the type of noise dis
tribution or nonlinearity. Also, it should be noted that the estimation is multimodal, and all the likely estimations will be captured with 
the particle filter algorithm. These are among the main advantages of the particle filter over the Kalman filter for structural dynamics 
analysis. 

The performance of the particle filter tracker will be investigated on a sample video. Fig. 2(a) where the objective is to track the red 
disk as the target through its trajectory. This sample video was synthetically generated and captured at 10 (fps). 

The parameters that are defined by the user are RGBt
̅̅̅→ and the variance, σ2 associated with said vector. The user determines the RGB 

triplet value to find; such that, the particles will update at each state and locate the designated target. Fig. 2(b) shows four frames of the 
performance associated with the particle filter point tracking algorithm. In this tracking problem, the desired target is red; therefore, 

Fig. 1. Description of the particle filter algorithm used for ODS extraction.  
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RGBt
̅̅̅→

= [255,0,0]. At the first frame of the tracking, Frame 1, the particles are sampled under a random distribution. In Frame 4, the 
target appears in the analysis domain and the particles with a higher ξ value will be sampled more often. After a few frames of applying 
the particle filter tracker, all the particles with poor consistency with both the defined motion model and RGBt

̅̅̅→ will be removed. These 
particles will be replaced with ones that are highly correlated to the RGBt

̅̅̅→ and the motion model. Within the proposed framework for 
transforming the motion-magnified sequence of images into quantified ODS vectors, a particle filter will be used to eliminate the 
unreliable edge detection procedure. 

2.4. Clustering 

Using a particle filter is shown to be adequate for tracking a single target as shown Fig. 2. Averaging the location of all the particles 
in the field of view (FOV), will provide an estimation for the location of the target. With regards to structural dynamics, the objective is 
to track multiple targets to reconstruct a reliable and smooth mode shape or ODS vector. The multimodal estimator characteristic of the 
particle filter permits tracking multiple targets simultaneously. Therefore, the particles will be attracted to multiple points of interest in 
the same frame if there are multiple instances of pixels containing the desired RGBt

̅̅̅→. However, in this case, by averaging the location of 
all the particles, the result will be an arbitrary point with implies eventual failure of the tracking and mode extraction. To avoid this 
problem, all the particles should be clustered first, and then the averaging would take place among the particles that are grouped as a 

Fig. 2. (a) Trajectory of red of target, wheref(t) = t2 + 2sin(4πt). (b) Generated point cloud containing 10,000 particles tracking the distinct RGB 
target for time step: 1, 4, 7 and 100. 

Fig. 3. a) Raw data points before clustering. b-d) Iterations: 1, 3 and 5 of the k-means clustering algorithm.  
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unique cluster. Clustering is categorized as an unsupervised learning problem that can extract structure from an unlabeled dataset 
[58]. Among several clustering methods available in the context of unsupervised learning methods, k-means clustering algorithm is 
utilized in this work [59]. The k-means algorithm involves the averaging stage during the clustering procedure. As a result, the cluster 
centers associated with the cluster labels will be available once the convergence criteria of the algorithm are satisfied. The details on k- 
means clustering method and the proof of convergence can be found in machine learning textbooks and references [60]. In this 
application, a set of 2D points are initiated by populating the set P̂ with the location of all the particles at time step i as P̂ =

[p1, p2, p3, ⋯, pm]. The objective is to cluster a set of points P̂ = [p1, p2, p3, ⋯, pm] in the 2D image. Each point represents the location of 
the particles in the particle filter algorithm. An intuitive algorithm for solving this optimization problem is outlined in [58]. 

This algorithm will always converge to the local optimal solution of the optimization problem. The convergence of the clustering 
algorithm will result in, μm

k , which describes coordinates for k number of point clouds and m number of states. Fig. 3 shows an example 
of the convergence in k-means algorithm, which will be to perform clustering with the particles that are attracted to multiple target 
locations. Assume that the data points in Fig. 3(a) are unlabeled particles that are attracted to three different targets in the scene. The 
objective is to divide the particles into three different groups to represent each of the three targets. Fig. 3(b) through Fig. 3(d) show the 
convergence and clustering procedure using the k-means algorithm. As displayed in Fig. 3(b), the cluster centers are initiated 
randomly. Convergence is ultimately achieved for the desired number of clusters as the assignment of particles begins due to sequential 
updating. 

2.5. Outlier removal via total variation denoising 

PMM is notorious for producing ringing effects, which ultimately can create gray-scale variation in images. This high-frequency 
ringing can cause inaccurate placement of particles and subsequent clusters. Total variation, as introduced by Rudin et al., has 
been implemented over a wide variety of image based analyses [61,62]. In addition, this image processing technique has been used to 
suppress phase-based motion magnification artifacts for frequency validation [63]. Equation (15) defines the iterative process using 
the divergence operator ∇ where K and K̃ are the magnified smoothed images respectively. 

∂K̃
∂t

= ∇ •

(
∇K̃

‖∇K̃‖

)

+ β
(

K − K̃
)

(15) 

The non-trivial selection of the regularization parameter β provides a degree of smoothing. Its value can range from 0 to 1, where 
smoothing becomes more severe as it approaches its minimum allocation. The images are deemed smooth when the total variation 
becomes equivalent to the gradient magnitude. This process is achieved after a series of computations ,h, which can be set to a desirable 
amount. Fig. 4 displays the systematic procedure that is used to yield the processed images that can be inputted into the particle filter 
algorithm. The hand-speckled pattern that is seen in the foreground is highlighted using common image processing techniques such as 

Fig. 4. Image denoising process for artifact and outlier removal. For each of the four magnified videos, β = 0. 5 and h = 100.  
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erosion and adaptive thresholding. This ultimately produces a series of processed images,J. This approach will remove any background 
information that will contaminate the extraction of ODS vectors. 

Following the smoothing and definition of each hand-speckled target, the processed frames are entered into the particle filtering 
algorithm for ODS extraction. 

At this point, the theoretical background on the tools for structural dynamics identification via a hybrid-computer vision approach 
has been described. In the next section, these techniques will be merged to construct the framework to estimate ODS, and the overall 
picture of the methodology will be revisited. 

3. Workflow and procedures 

As aforementioned, the use of particle filtering and clustering algorithms will automate the extraction of ODS vectors for system 
dynamics identification and SHM applications. As discussed previously, the variations of the phase will be proportional to the actual 
motion of the vibrating structure. Therefore, the resonant frequencies of the structure can be obtained by analyzing the variations of 
the phase in the frequency domain. Having a reliable estimation of the resonant frequencies of the structure is crucial for the motion 
magnification process. This is due to the structuring of the band-pass filters where the center frequencies of the band-pass filters used 
for PMM will be selected based on the resonant frequencies from PME, as shown in Fig. 5. 

Once the resonant frequencies of the structure are available, the motion magnification algorithm will be used to magnify the subtle 
vibrations of the structure in designated frequency bands. At this point of the analysis, the visual perception of the ODS is available 
which can provide qualitative knowledge regarding the structure’s motion patterns. Visual perceptions are not considered sufficient 
for engineering purposes ranging from model updating to SHM decision making. To convert the visual perceptions into quantified ODS 
vectors in a reliable and semi-automated manner, the next stage concerns applying the particle filter point tracking on the motion- 
magnified videos. Applying phase-based motion magnification before the particle filter tracker is necessary because the PMM is 
more sensitive to small motions compared to the particle filter. By applying the PMM, the higher order modes of the structure can also 
be identified. Applying the particle filter algorithm on the raw video may only extract the lowest or lower order modes that dominate 
the dynamic motion. Due to the ghosting artifacts that appear at larger magnification factors, total variation denoising in used to 
smooth high frequency noise that appear in exaggerated video. 

At this stage, all the particles will be attracted to the multiple targets on the hand-speckled structure. Therefore, the particles will be 
clustered using the k-means clustering method, which will separate the particles into individual clusters. Each cluster found will 
correspond to one of the targets. The location of targets can be estimated with the cluster centers, so that the quantified ODS vectors 
can be extracted automatically. Fig. 6 shows the overall structure of the proposed magnified video processing methodology for ODS 
extraction. 

The main advantage to this approach is that the human supervision and intervention in the process of transforming the motion- 
magnified videos to the quantified ODS vectors will be decreased considerably. 

Fig. 5. a) Phase-based motion estimation (PME) algorithm methodology; b) Design of the band-pass filter used for PMM based on the resonant 
frequencies found from PME. 
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4. Experimental test setup and FEM 

The performance of the proposed methodology is evaluated on a benchmark lab-scale cantilever beam. Fig. 7 shows the overview of 
the test setup, where the beam is clamped at the bottom of the test structure. The cantilever beam is excited with a modal impact 
hammer near the bottom of the beam to excite higher order dynamics. A Photron FASTCAM-CMOS high-speed camera records the 
video of the vibrating cantilever-beam at a rate of 2500 frames per second (fps). To enhance image quality, high contrast black dots are 
painted on the beam before testing, which will be used later as feature points for ODS vector extraction. Fig. 7(a-b) show the CMOS 
high-speed camera and the cantilever beam. Fig. 7(c) shows the field of view of the camera while capturing the sequence of images 
from the vibrating beam. 

The reliability PME and PMM in structural dynamics identification have been evaluated several times in the literature [21,28,63- 

Fig. 6. The general workflow of the proposed method for extracting the quantified ODS vectors. In this figure, the capturing of a third bending ODS 
is depicted. 

Fig. 7. (a-b) The CMOS high-speed camera and the cantilevered beam test structure, (c) field of view for the camera capturing the sequence of 
images of the vibrating beam. 
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65]. Nonetheless, for validation of this specific case study, a finite element model (FEM) of the test structure is established in ABAQUS/ 
CAE. The material properties of the test article and FEM parameters are outlined in Table 1 below. 

The lower part of the beam is subjected to a horizontal impact, and the boundary condition of the beam is considered fixed in all 
directions as shown in Fig. 8(a). 

As an additional validation technique, the frequency response function (FRF) between two measurement points on the cantilever 
beam is obtained using an accelerometer. This will be used to validate the estimated natural frequencies obtained from PME and FEM. 
Fig. 8(b) shows the experiment layout used for FRF measurement. 

5. Results and discussion 

The results and discussion section is divided into two parts. The first part discusses the results of PME and the estimated resonant 
frequencies of the structure from the raw recorded video of the vibrating cantilever beam. The second part is mainly focused on 
transforming the motion-magnified videos (visual perceptions) to quantified ODS vectors. 

5.1. Resonant frequencies 

As mentioned earlier, the variations of the phase in the sequence of images are proportional to the actual subtle motions of the 
surface of the structure. Therefore, the phase variations and the actual motion must have the same frequency content. In other words, 
the location of the peaks in the frequency domain representation of the phase signal is equivalent to the resonant frequencies of the 
cantilever beam. It is worth mentioning that the variations of the phase are always measured with respect to the first frame of the video 
as the reference point in time. Fig. 9 shows the signal of phase variations in the frequency domain and the resonant frequencies of the 
cantilever beam can be easily identified by observing the dominant peaks. 

As a final validation for the estimated resonant frequencies obtained from PME, Fig. 10 displays FRF between a measured impact 
and accelerometer response. Table 2 shows the comparison of extracted resonant frequencies using EMA, FEM and PME. 

The estimated resonant frequencies of the beam that are obtained from three different sources are presented in Table 2. Due to the 
mass loading effect from the accelerometer, resonant frequencies from EMA will decrease slightly compared to the results gathered 
from PME and FEM. This ultimately could provide inaccuracies in measurement, which are typically not seen from optical or finite 
element approaches. Although correlation is seen between FEM and PME, it should be noted that discrepancies in resonant frequencies 
can be caused due to a coarsely defined mesh. Typically, a coarsely defined mesh will aid computation time; however, optimization and 
accuracy of FEM are beyond the scope of this work. Ultimately, the results shown in Table 2 indicate that the PME can provide 
consistent estimations of the resonant frequencies of the cantilever beam. 

5.2. Operating deflection shapes 

Center frequencies of the band-pass filters are selected as the resonant frequencies of the beam that were estimated using PME. The 
width of the passband of the filter is set to be b = 1.5 Hz for all four ODSs. The relative displacement will decrease for higher order 
modes; therefore, the magnification factor α increases for the higher order ODS. For example, the amplification factor for the first ODS 
is α = 10, due to the first mode dominating the dynamic motion captured in video. On the contrary, the fourth ODS is not perceivable 
in the raw video so it will require a magnification factor of α = 100. 

Fig. 11 is the visual perception of all four ODS and provides an intuitive understanding of the qualitative data. The location nodes 
and antinodes for each ODS can be identified visually. Due to the amplification of subtle motion, ghosting artifacts tend where the 
motion has reached its local extrema. For engineering applications, deflection extrema of ODS should be quantified. Applying the next 
stages of the proposed methodology will lead to reliable and quantified ODS vectors. 

The particle filter point tracking is applied to each of the four motion-magnified videos. The number of particles is selected using 
25% of the total number of pixels present in the image. This number of particles provide efficient execution time and accuracy of the 
algorithm. In this case study, the images are 1600 by 256 indicating that there are 409,600 pixels. Therefore, 102,400 particles are 
used for tracking the hand-speckled targets. As Fig. 12 shows, the particles are attracted to the desired targets along the length of the 
cantilever beam. One of the advantages of the particle filter point tracking over traditional edge detection is that particle filters are less 
sensitive to background features. In consequence, the user can mount desired targets with unique features on the structure and track 
them throughout a sequence of frames. In addition, in most motion-magnified videos, distortions and artifacts occur very close to the 

Table 1 
List of FEM parameters used for ABAQUS/CAE simulation.  

Property Value 

Density 7850 (kg/m3) 
Young’s Modulus 195 (GPa) 
Poisson’s Ratio 0.28 
Geometric Dimensions of Cantilever Beam 205 mm × 25 mm × 3 mm 
Element Size 1 (mm) 
Number of Elements 780  
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extrema of oscillatory motion. These artifacts are most likely detected with edge detection algorithms, which may lead to the false 
representation of the ODS vector. 

RGBt
̅̅̅→ in Equation (14) as well as σ2 are defined by the user. Defining RGBt

̅̅̅→ is straightforward for the hand-speckled targets because 
they contain a uniform pixel intensity. In The targets are black for each case; therefore, RGBt

̅̅̅→
= [15, 15, 15] and σ2 = 20. The particle 

filter algorithm has an acceptable margin of robustness to the variations of these variables. It should be noted that some particles might 
get attracted to the locations on the background of the scene, if they have similar intensities to the desired targets. These outlier 
particles can be partially dealt with using several well-suited techniques to filter out the outliers such as total variation denoising, 
which will be discussed in the following section. The sensitivity of the particle filter to the background and other artifacts are 
considerably less than edge detection, because the edges are very low-level features of an image. Also, they tend to appear on the 
background more often compared to individual targets that are mounted on a structure. 

All the particles are attached to the desired targets as the particle filter incrementally updates the likelihood function, but they are 
not assigned to a specific target. In other words, the particles presented in Fig. 12 are a 2D point cloud with no specific structure. This 
issue is resolved by applying a clustering algorithm on the 2D point cloud. The k-means clustering algorithm is applied, which partions 
the particles into individual groups. There are 29 targets on the beam; on account of this, 30 cluster centers were chosen for the k- 

Fig. 8. (a) The geometry of the ABAQUS model of the beam, (b) The setup for measuring the FRF using the accelerometer and modal hammer.  

Fig. 9. Frequency response of the phase variation time-series extracted via PME. The peaks are located at the resonant frequency of the canti
lever beam. 
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means clustering algorithm. An additional number of clusters was chosen to ensure capturing of all targets captured in the scene. In 
general, the algorithm is relatively robust with regard to the number of selected cluster centers. However, selecting an abundance 
number of cluster centers may introduce unnecessary computations. The cluster centers of each 2D point cloud can be used to estimate 
the ODS of the structure. Fig. 13 shows the grouped particles with color-coding based on the order of ODS. 

After clustering all 2D point clouds, the transformation of the motion-magnified videos to quantify ODS vectors is established. For a 
better visualization, Fig. 14 displays the cluster centers for each of the four ODS. As Fig. 14 shows, the quantified ODS vectors of the 

Fig. 10. FRF of the accelerometer with respect to the impact hammer force measurement.  

Table 2 
Comparison of resonant frequencies obtained from EMA, FEM and PME.  

Mode Number PME (Hz) EMA (Hz) FEM (Hz) Frequency Difference, 
EMA vs. PME (%) 

Frequency Difference, 
FEM vs. PME (%) 

1  34.2  31.6  33.7  7.6  1.5 
2  212.4  207.0  211.0  2.5  0.7 
3  594.5  594.0  590.3  0.1  0.7 
4  1167.0  1162.0  1155.0  0.4  1.0  

Fig. 11. ODS of the cantilever beam with corresponding parameters used for magnification.  
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cantilever beam are extracted in a semi-automated procedure.RGBt
̅̅̅→

, σ2 and the number of cluster centers are determined by the user, 
while the rest of ODS vector estimation is deployed automatically. 

For a quantitative comparison, the Modal Assurance Criterion (MAC) values between the estimated ODS vectors and the FEM mode 
shapes are presented in Table 3 and Fig. 15. To evaluate MAC values, the data points in the finite element model were interpolated to 
obtain a set of data points to match with the location of the targets present in the captured video. 

The MAC values on the main diagonal are relatively close to one, which indicates a high correlation between the shapes obtained 
from the proposed approach and FEM. Moreover, the off-diagonal terms in the MAC matrix are close to zero which implies orthog
onality across different modes. MAC values are computed for the frame where the beam is at its maximum deflection shape. In theory, 
ODS vectors are unscaled mode shapes, and multiplying the ODS vector with a non-zero number will not affect the MAC value. Using 
the frame where the beam is at its maximum deflection can provide a better signal to noise ratio when comparing ODS. 

Fig. 12. Particle filter target tracking applied on motion-magnified videos for: (a) 1st Bending ODS, blue particles (b) 2nd Bending ODS, red 
particles (c) 3rd Bending ODS, green particles (d) 4th Bending ODS, pink particles. 

Fig. 13. Clustering the point clouds of particles for: (a) 1st Bending ODS, blue particles (b) 2nd Bending ODS, red particles (c) 3rd Bending ODS, 
green particles (d) 4th Bending ODS, pink particles. 
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Fig. 14. Representation of the cluster centers as the estimated quantified vectors for: (a) 1st Bending ODS, blue particles (b) 2nd Bending ODS, red 
particles (c) 3rd Bending ODS, green particles (d) 4th Bending ODS, pink particles. 

Table 3 
Comparative analysis of extracted frequencies and MAC values at resonant frequencies.  

Mode Number FEM Frequency (Hz) PME Frequency 
(Hz) 

Frequency Difference (%) MAC 
Value 

1  33.69  34.18  1.45  0.972 
2  211.0  212.4  0.66  0.957 
3  590.3  594.5  0.71  0.953 
4  1155.0  1167.0  1.04  0.920  

Fig. 15. Graphical representation of MAC values between PMM ODS vectors and modes shapes obtained from FEM.  
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5.3. Outlier reduction 

The presence of outliers in the extracted ODS vectors drastically affect the accuracy of the result when compared to the finite 
element model. As aforementioned, total variation denoising can aid in smoothing ringing effects that appear following magnification 
of subtle motion. Following the procedure outlined in Fig. 4, Fig. 16 displays the clustered point clouds for each of the first four ODS 
vectors. 

Outliers that were present in the original video were reduced due to the smoothing of motion-magnified artifacts in addition to 
suppression of background features. Fig. 17 depicts the estimated quantified ODS using the updated point cloud centers. 

MAC values were computed once again using the updated ODS vectors in addition to the modal vectors gathered from the finite 
element model. This metric is re-computed to evaluate any potential improvements concerning ODS extraction. Table 4 and Fig. 18 list 
and display the updated MAC values post outlier removal. 

The results obtained show improvement over the raw motion-magnified images; thus, providing a more accurate approximation of 
the corresponding operational deflection shapes. Fig. 19 presents a percent difference comparison between the two approaches used to 
quantify the first four ODS vectors. 

It is seen that each MAC value is improved significantly following artifact and background suppression. Most significantly, the 
fourth extracted ODS vector is improved by approximately 3%, which shows the image processing is effective while handling high- 
frequency vibration. 

6. Conclusions 

This paper proposes a unified computer vision approach to magnified video data for structural dynamic identification. The motion- 
magnified videos are transformed into quantified ODS vectors with minimal human supervision and interference. PME is adapted to 
estimate resonant frequencies of the structure. The qualitative perception of the structural ODS are extracted by amplifying subtle 
vibration within specific frequency bands using PMM. The primary challenge this study aims to resolve is to find a semi-automated 
method to transfer motion-magnified videos into quantified ODS vectors. The particle filter is employed to perform point tracking 
on the motion-magnified videos, and afterward, the particles are clustered using the k-means clustering algorithm. It is shown in the 
paper that the cluster centers provide an accurate representation of a structure’s ODS. The proposed methodology overcomes the 
drawbacks of conventional edge detection methods and requires significantly less human supervision. Furthermore, the hybrid non- 
contact approach’s operational shapes MAC values for the first four modes range from 0.972 to 0.920 when compared to the finite 
element model. The proposed methodology requires elementary surface preparation, such as painting or mounting targets on the 
surface of the structure and is evaluated on a lab-scale cantilever beam. The method is further improved by implementing total 
variation denoising to smooth any potential artifacts that would affect quantification results. Due to the nature of high frequency 
dynamics, larger magnification factors are necessary to excite energy at higher order modes. Total variation can provide a robust 
outlier production for videos that require large amounts of magnification for structural dynamic identification. Specifically, the 
correlation of the fourth mode when compared to the finite element model is improved by 3%. 

It should be noted that a significantly large magnification factor could ultimately degrade the particle filter’s effectiveness in 
motion estimation due to the large amounts of spatial aliasing. Future studies will serve in investigating the particle filter’s robust 
nature to handling larger motions seen in exaggerated videos. This includes an in-depth study into the sensitivity of the approach to 
factors such as: environmental noise that affect image data, background occlusions that appear in real-world applications, and 
observation noise related to particle filtering. In addition, investigations regarding the performance of the method on different types of 
structures with more complex geometry and sophisticated ODS vectors are necessary. Furthermore, the sensitivity of the methodology 

Fig. 16. Clustering the point clouds of particles used processed images: (a) 1st Bending ODS, blue particles (b) 2nd Bending ODS, red particles (c) 
3rd Bending ODS, green particles (d) 4th Bending ODS, pink particles. 
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Fig. 17. Representation of the cluster centers as the estimated quantified vectors using processed images for: (a) 1st Bending ODS, blue particles (b) 
2nd Bending ODS, red particles (c) 3rd Bending ODS, green particles (d) 4th Bending ODS, pink particles. 

Table 4 
MAC values between the ODS vectors obtained from PMM following outlier reduction.  

Mode Number FEM Frequency (Hz) PME Frequency 
(Hz) 

Frequency Difference (%) MAC 
Value 

1 33.7 34.2  1.45  0.987 
2 211.0 212.4  0.66  0.980 
3 590.3 594.5  0.71  0.971 
4 1155 1167  1.04  0.952  

Fig. 18. Graphical representation of MAC values between smoothed PMM ODS vectors and modes shapes obtained from FEM.  
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to the user-defined parameters, such as target RGB vector, the variance associated with the target RGB value, and the optimal number 
of cluster centers needs to be investigated further in future studies. 
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