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In the context of the potential laser-induced enhancement to the rates of DHe3 and DT fusion,
we discuss the frequently-used Wentzel-Kramers-Brillouin (WKB) method and the imaginary-time
method (ITM). For static external electric fields, we find that these methods predict significant
enhancement to the fusion cross section for electric-field strengths > 1014 V/m, especially at low
values (≈ keV) for the enter-of-mass (CoM) energy. When considering dynamic electric fields, this
enhancement can be amplified by considering increased photon frequencies. However, we also pro-
vide a review of the region of laser-parameter phase space where these semiclassical methods are
applicable. We conclude that this allowable region decreases for higher photon frequencies in con-
junction with lower values for the electric-field strength, motivating the need for future experiments
to test the predictions of these methods and their ranges of validity.

I. INTRODUCTION

Nuclear fusion has the potential of providing a much
needed clean source of energy, and with steady techno-
logical advances is becoming an ever more approachable
goal [1–3]. Fusion is made possible through the process
of quantum-mechanical tunneling. Though this process
has been discovered and used since around the dawn of
quantum mechanics itself [4–8], it is still very elusive in
terms of understanding. Fortunately, this has not pre-
vented the scientific community from using it to explain
a plethora of observable events, including field ioniza-
tion, nuclear fusion, and α decay. Though fusion is a
ubiquitous process throughout the Universe [9, 10], the
conditions to achieve nuclear fusion on a terrestrial level,
whether through magnetic confinement fusion [11–13] or
inertial confinement fusion [14–19], are extremely diffi-
cult to achieve. A relatively new avenue to help achieve
higher fusion rates is the potential enhancement from
high-power lasers.

The effects of a strong external laser field on the tun-
neling process have been the subject of much research
over the last decades [20–38]. The overall consensus has
arisen that a strong external laser field has the capabil-
ity to enhance the tunneling probability. The majority of
disagreement originates from how much enhancement can
be expected as a function of the laser parameters, such
as the intensity, or equivalently the electric-field strength,
the photon energy, the temporal profile of the pulse, and
the level of coherence. With the advent of increasingly
more powerful laser facilities (LCLS [39], SACLA [40],
EuXFEL [41, 42], PAL-XFEL [43], SwissFel [44]), the
potential laser-induced enhancement to quantum tunnel-
ing, and in particular to fusion reactions, may usher in a
new era of laser-fusion science.

The theoretical modeling of the effect of an external
laser field on the nuclear process of fusion is very chal-

lenging. Researchers frequently resort to perturbative
methods, such as a Floquet-like approach (used in, e.g.,
Refs. [32, 34]) or the use of the Kramers-Henneberger
(KH) approximation (used in, e.g., Refs. [23, 33, 35]), or
semiclassical approaches, such as the Wentzel-Kramers-
Brillouin (WKB) method (e.g., Refs. [30, 32, 36]) or the
imaginary-time method (ITM) (e.g., Refs. [22, 30, 45]).
However, despite numerous theoretical models being used
to predict laser-induced fusion enhancement, the present
lack of any controlled experimental verification has led
to varying conclusions about the practicality of laser-
induced enhancement, i.e., whether current-day or near-
future laser facilities will allow for observable fusion en-
hancement. Preceding works have attempted to deter-
mine those laser parameters for which a significant en-
hancement to the transparency, and/or the fusion cross
section, would be achieved (see Refs. [32–38]). However,
it is never really discussed exactly how much a “signif-
icant” enhancement entails, or how much is needed to
be experimentally observable. The work of Queisser and
Schützhold [32] sets an enhancement in the transparency
by one or two orders of magnitude as a goal, whereas the
work of Lv et al. [33] is satisfied with an increase in the
cross section by a factor of around 5. The work of Wang
[34] indicates an increase to the cross section by at least
an order of magnitude is necessary, whereas the work
of Kohlfürst et al. [35] considers an order-of-magnitude
increase to the tunneling rate. In addition, these esti-
mates are typically made for a fixed set of center-of-mass
(CoM) energies, at which enormous enhancements may
be highlighted (up to eight to twelve orders of magni-
tude [32, 34, 36]). However, on the one hand a large en-
hancement to an already minute cross section may not be
enough for experimental verification, while on the other
hand a large enhancement that only persists for a very
small range of CoM energies may get “washed away” in
an experiment.

In light of this, the goal of this paper is the following:
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we wish to determine whether the aforementioned and
frequently used semiclassical approaches are in fact ca-
pable of achieving accurate predictions of laser-enhanced
fusion rates in a way that is immediately verifiable by an
experiment on a laser-created plasma state [46]. In do-
ing so, we will discern the realm of applicability of these
semiclassical methods and comment on their practicality
regarding the aforementioned goal. We did not perform
a similar analysis for perturbative methods as these are
typically used in the literature to obtain qualitative pre-
dictions of laser-induced enhancement that justify further
research and the use of more sophisticated methods (see,
e.g., Refs. [30, 32]).

The paper is structured as follows: in Sec. II we elab-
orate on calculable theoretical quantities of phenomeno-
logical relevance. In addition we briefly outline the WKB
method and the ITM and apply them to the fusion pro-
cess in the absence of an external laser field for clarifica-
tion. Subsequently, we show how to incorporate the rele-
vant laser parameters into these frameworks and discuss
their ranges of applicability. In Sec. III we apply these
methods to calculate the enhancement in fusion rates
stemming from the introduction of both a constant, time-
independent (static) electric field and a time-dependent
(dynamic) electric field. We also compare with prior the-
oretical predictions. Section IV provides conclusions and
an outlook.

II. THEORY

The fusion reactions that will be considered in this pa-
per are deuterium-helium fusion and deuterium-tritium
fusion:

2
1D+ 3

2He → 4
2He +

1
1p + 18.3 MeV, (1)

2
1D+ 3

1T → 4
2He +

1
0n + 17.6 MeV. (2)

D and T refer to the isotopes 2
1H and 3

1H, respectively.
In the absence of an external laser field, the fusion cross
section is modeled by the phenomenological form [10, 16]

σ(E) = S(E)
E TE , (3)

where E is the CoM energy of the two fusing particles,
S(E) is the astrophysical S factor, which is assumed to
be a slowly varying function of E , and TE is the tunnel-
ing transparency. The astrophysical S factor for DHe3

and DT fusion used throughout this work was obtained
from the work of Bosch and Hale [47] and provides a
parametrized form for S(E). This parametrization is
valid for CoM energies in the ranges of [0.3, 900] keV
and [0.5, 550] keV for DHe3 and DT, respectively. The
transparency is dominated by its exponential nature and
is approximated as [7]

TE = e−
√

EG
E , (4)

where the Gamow energy EG = 2µπ2κ2/ℏ2, with µ the
reduced mass, and κ = e2Z1Z2/(4πε0). The modifica-
tion to this transparency factor as a result of a high-
power laser field is how the fusion cross section will be
enhanced. From the enhanced transparency, the cross
section is obtained and this cross section is subsequently
used to obtain the reactivity ⟨σv⟩, given by [10, 16]

⟨σv⟩ =
(

µ

2πkBT

)3/2 ∫
d3v exp

(
− µ

2kBT
v2

)
σ(v)v,

(5)

where kB is the Boltzmann constant, T is the tempera-
ture, v is the relative velocity of the reduced two-particle
system, and v = |v|. As an approximation, a thermal
Maxwellian velocity distribution may be assumed, lead-
ing to a representation with respect to the CoM energy:

⟨σv⟩ =
√

8

µπ(kBT )3

∫ ∞

0

dE S(E) exp
(
−
√

EG
E − E

kBT

)
.

(6)

In doing so, the relations E = µv2/2 and d3v = 4πv2dv
were used. The integral over E is practically handled by
means of a cutoff value. The reactivity is accurate to
within an order of magnitude if the cutoff is at least the
energy at the Gamow peak, which is the CoM value for
which the exponential in the integrand has a maximum,
at Epeak = (EGk2BT 2/4)1/3. With the reactivity, the total
fusion yield can be easily estimated after determining the
irradiated volume, which can be obtained provided the
laser focus spot size and the density of the target.
In the upcoming semiclassical approaches, the laser-

induced modification to the transparency will appear as
a direct result from including the external electric field
in the potential that is considered. The dynamics of
the fusion process are governed by the two-body time-
dependent Schrödinger equation (TDSE), which can be
reduced to two one-body TDSEs: one for the center-of-
mass motion and one for the relative motion. An excel-
lent pedagogical elaboration on obtaining these equations
is given by Mişicu and Rizea [23]. We need only concern
ourselves with the relative motion, governed by an effec-
tive reduced one-body Schrödinger equation, presented
in the length gauge:

iℏ
∂ψ(r, t)

∂t
=

[
− ℏ2

2µ
∇2

r + V (r)− eZeffr ·E(t)

]
ψ(r, t),

(7)

where r denotes the relative separation coordinate be-
tween the two fusing particles and V (r) describes the
Coulomb and nuclear potential in the absence of a laser
field. The effective charge is given by Zeff = (Z1A2 −
Z2A1)/(A1 + A2), with Zi and Ai the charge number,
and atomic number of the ith fusing particle. The elec-
tric field is denoted by E(t). An important note is that
this equation is derived by assuming the Coulomb gauge,
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i.e., the vector potential A is purely transversal, so that
E(t) = −∂A(t)/∂t, and also by assuming the dipole ap-
proximation, i.e., E(r, t) ≈ E(t). This is a valid approxi-
mation so long as the wavelength of the laser field is much
larger than the spatial extent of the interacting system,
i.e., the extent of the sub-barrier tunneling region. We
will use this to place clear restrictions on the applicability
of the upcoming models. The reason for employing the
length gauge in favor of the more frequently employed
velocity gauge (where the r · E(t) part is replaced by
p ·A(t)/µ; see, e.g., [23, 32, 33, 36]) is that this allows us
to distinguish between time-independent (static) electric
fields and time-dependent (dynamic) electric fields. (In
the velocity gauge, a static electric field still implies a
dynamic vector potential.)

We emphasize that, as we model a two-body fusion
reaction, we are neglecting plasma effects, such as the
screening from electrons (briefly discussed in Queisser et
al. [32]) and the effect of the laser on the velocity dis-
tribution of the particles. Our sole focus will be on the
enhancement caused by the deformation of the Coulom-
bic potential caused by the external laser field.

We proceed with an outline of the two semiclassical
approaches that are employed in this work.

A. Semiclassical approaches

The semiclassical approximation can be made in the
case when the action functional S[q], with q denoting
a set of generalized coordinates, between two spacetime
points (qa, ta) and (qb, tb) is much larger than ℏ, i.e.,

S[q] =

∫ tb

ta

dtL(q, q̇, t) ≫ ℏ, (8)

where the L denotes the Lagrangian L = T − V , T
being the kinetic energy and V the potential energy.
This is equivalent to the transition amplitude between
the aforementioned spacetime points being dominated by
the contribution of the trajectory, qeom, which obeys the
classical equation of motion, hence the term “semiclassi-
cal”. For this trajectory, the Lagrangian obeys the Euler-
Lagrange equations, and the action functional, S[q], re-
verts to Hamilton’s principle function, S(qeom). It can
be shown [20, 45] that in the semiclassical approximation
the transparency can be calculated via

T = e−2 ImS/ℏ. (9)

There are two semiclassical methods we will be em-
ploying to calculate the above expression: the Wentzel-
Kramers-Brillouin (WKB) method [48, 49] and the
imaginary-time method (ITM) [45]. For each of these
methods, S is given by

S =


±
∫
tunnel

dr p(r) for WKB,

∫
tunnel

dt[L+ E ] for ITM.

(10)

For the WKB method, the imaginary part can be read
off by using

p(r) =
√

2µ[E − V (r)] = i
√
2µ[V (r)− E ], (11)

and the choice in the sign of ImS is taken, in conjunction
with the integration over the tunneling region, in such a
way that the result is positive, ensuring an exponentially
decaying behavior in the transparency. For the ITM, L is
the conventional Lagrangian and the integration is taken
over the time it takes to tunnel through the barrier. Ap-
plying the change of coordinate t = −iτ , with τ = it the
imaginary-time coordinate, will allow for the imaginary
part to be easily read off as follows:

SITM =

∫ tE

0

dt

[
µ

2

(
∂r(t)

∂t

)2

− V (r(t)) + E
]

=

∫ −iτE

0

d(−iτ)
[
µ

2

(
∂r(τ)

∂(−iτ)

)2

− V (r(τ)) + E
]

= i

∫ −iτE

0

dτ

[
µ

2

(
∂r(τ)

∂τ

)2

+ V (r(τ))− E
]
.

(12)

Thus, we can see that if the potential does not explic-
itly depend on t, r(τ) describes the classical trajectory
of a particle moving in the potential −V . For a time-
dependent potential, the change in coordinate t = −iτ
must be done explicitly in the potential as well, but can
perfectly well be treated with the ITM. Conversely, the
standard WKB method does not consider time depen-
dence and is ill suited for time-dependent potential bar-
riers. Time-dependent extensions of the WKB method
do exist [32, 50–52] and are in principle rather straight-
forward to implement. However, in doing so one arrives
at a set of coupled ODE equations, for which it is not
clear what initial conditions ought to be imposed when
integrating for the solution (see Refs. [50–52]). An excel-
lent review is provided in Ref. [52]. In light of this, we
will not employ the WKB method for time-dependent
electric fields. This was part of the reason for desiring
a clear distinction between static and dynamic electric
fields and preferring the length gauge in our modeling of
the laser field. We highlight ahead of our results that the
WKB method and ITM agreed with each other in both
the field-free and the static-field configurations, as will
be shown in Secs. II B and IIIA, respectively.
Let us clarify the use of these approaches by recovering

the transparency in the absence of an external electric
field.

B. Field-free transparency

In the absence of an external electric field, the potential
that defines the barrier under which the fusing particles
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must tunnel is given by

Vl(r) =
κ

r
+

ℏ2l(l + 1)

2µr2
, (13)

where l denotes the azimuthal quantum number. This
potential only accounts for r ∈ [R,∞), where R denotes
the length scale below which the strong nuclear force
dominates over the Coulomb potential and is taken to

be R = 1.44(A
1/3
1 + A

1/3
2 ) [16]. Below this value, we as-

sume a constant, flat nuclear potential well. Note that
the centrifugal term (dependent on l) is a positive con-
tribution to the potential. The larger l is, the larger
the potential barrier through which to tunnel becomes.
For that reason, it is common to only consider l = 0,
for which the tunneling is most probable. Thus, we are
working with V (r) = κ/r. For two fusing particles with
a CoM energy E , the tunneling barrier is defined by the
region R ≤ r ≤ RE , where R is equal to 3.891 fm for both
DHe3 and DT and the classical turning point RE = κ/E
is defined by the condition V (RE) = E .
WKB. To calculate the field-free transparency in the

WKB approximation, we wish to calculate, from Eq. (9),
TE = exp (−2 ImSE/ℏ) with [Eqs. (10) and (11)]

ImSE =

∫ RE

R

dr

√
2µ
(κ
r
− E

)
, (14)

where the integration limits have pre-emptively been
switched to ensure a positive result. In this case, the in-
tegral can be evaluated analytically (see, e.g., Ref. [48]),
and results in

ImSE =
√
2µE

[
RE cos

−1

(√
R

RE

)
−
√
R(RE −R)

]
.

(15)

Making the approximation R/RE ≪ 1, this can be re-
duced to

ImSE ≈
√
2µE

[
REπ

2
− 2
√
RRE

]
,

lim
R→0

ImSE →
√

2µERE
π

2
. (16)

With RE = κ/E , the last expression recovers the Gamow
energy from the value of −2 ImSE/ℏ as

−2

ℏ
√
2µERE

π

2
= −

√
2µκ2π2

ℏ2E = −
√

EG
E , (17)

revealing that the Gamow form for the transparency
[Eq. (4)] is the result of applying the WKB method with
the additional assumption of R = 0 [7].

ITM. To calculate the field-free transparency in
the ITM approximation, we wish to calculate TE =
exp (−2 ImSE/ℏ), with

SE =

∫ tE

0

dt

[
µṙ2(t)

2
− κ

r(t)
+ E

]
. (18)

To find the required sub-barrier solutions for r(τ) and
ṙ(τ) in imaginary time τ , we solve for the classical equa-
tions of motion in the sub-barrier region with a sign-
flipped potential:

µr̈(τ) = − d

dr

(
− κ

r(τ)

)
= − κ

r2(τ)
, (19)

with the boundary conditions r(0) = RE and ṙ(0) = 0.
This is simply Kepler’s problem, if we were to redefine
κ = Gm1m2, which has been extensively studied and for
which a parametrized solution is available:{

r(ξ) = RE cos
2 ξ

2 ,

τ(ξ) = RE
2

√
µ
2E (ξ + sin ξ),

(20)

for 0 ≤ ξ ≤ ξF < π and r(ξF ) = R. Note that R → 0 is
equivalent to ξF → π. One can check that this solution
satisfies the original equation of motion, Eq. (19), and
additionally find that ṙ(ξ) = −(2E/µ)1/2 tan(ξ/2). As
such, we obtain

SE = i

∫ −iτE

0

dτ

[
µ

2

(
dr(τ)

dτ

)2

+ V − E
]

= iE
∫ −iτE

0

dτ

[
4

1 + cos ξ
− 2

]
,

ImSE = 2E
[
ξF
2

√
2κ2µ

E3
− τE

]

=

√
µE
2
RE [ξF − sin ξF ] , (21)

where the tunneling time is τE = τ(ξF ) − τ(0) = τ(ξF ).
The ITM exactly recovers the WKB exponent if we as-
sume R/RE ≪ 1. This can be easily seen by using ξF =

2arccos(
√
R/RE), with the approximation arccos(x) ≈

π/2 − x for small x, and sin(2 arccos(x)) = 2x
√
1− x2.

As R is of the order of a few fm and RE is of the or-
der of pm for most E , the WKB method and ITM are
practically indistinguishable.
When including the effects of an external electric field

in the potential, the relevant integrals will no longer have
analytically closed solutions and will instead be evaluated
numerically.

C. Accounting for nonzero R

From the previous section, we have seen that the
Gamow form that we use to model the fusion cross sec-
tion [Eq. (3)] is equivalent to a WKB/ITM description in
the limit R = 0 fm. However, for our upcoming calcula-
tions, we wish to keep R nonzero for the reasons that, (a)
it models a more physically realistic system and (b) the
integrands in the WKB and ITM exponents diverge for
r → 0. For their numerical treatment this divergence is
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kept at bay by keeping R nonzero. However, this choice
has two consequences.

First, if R is nonzero, the potential exhibits a maxi-
mum at r = R and there exist values of E that exceed
this maximum V (R). In such cases, we are no longer
considering quantum tunneling. The requirement that
E < V (R), or equivalently R < RE = κ/E , set upper
limits on allowable CoM energies E , which are 750 and
375 keV for DHe3 and DT respectively. This in turn
sets upper limits on the temperatures T for which an
accurate reactivity estimate is possible. For an order-
of-magnitude calculation, we mentioned that the cutoff
energy for the reactivity integral should be at least the
Gamow peak, at Epeak = (EGk2BT 2/4)1/3. So, the largest
allowable temperatures for reactivity estimates become
kBT ≈ 600 keV and kBT ≈ 450 keV for DHe3 and DT,
respectively. This restriction does not arise when assum-
ing R = 0 as in that case R = 0 < RE for all energies
E . At this point, however, we note that an even stricter
restriction occurs for the upper bound of E by the re-
quirement of ImS > ℏ. For nonzero R, the upper limits
on E become 183 and 66.8 keV, for DHe3 and DT respec-
tively, corresponding to allowable temperatures of up to
kBT ≈ 72 keV and kBT ≈ 31 keV, respectively. Keeping
R = 0 only the reduces the upper bound for DT fusion to
a value of 295 keV (kBT ≈ 295 keV). For DHe3, ImS > ℏ
remains true for CoM energies up to 1.18 MeV, so the up-
per bound for DHe3 at R = 0 comes from the limitation
of the astrophysical S factor, at 900 keV (kBT ≈ 785
keV).

Second, keeping R nonzero will induce an error in the
cross section from the astrophysical S factor, which must
be corrected for in the following way. The astrophysical S
factor is obtained in the literature from the Gamow-result
for the tunneling cross section [Eq. (3)]. From experi-
mental values of σ(E), a discrete selection of points for
S(E) may be inferred, which are subsequently fitted and
parametrized [47, 53]. However, the obtained fit for S(E)
came from using the prior ansatz that the transparency
takes on the form exp(−

√
EG/E), assuming R = 0. Thus,

to keep R nonzero, we ought to obtain an R-dependent
S factor, denoted by SR(E), from the relation

σ(E) = SR(E)
E e−

√
ẼG(R)/E , (22)

where a redefined, R-dependent, Gamow energy can be
extracted from the WKB result at nonzero R [Eq. (15)],
given by

ẼG(R) =
8µκ2

ℏ2

[
cos−1

(√
R

RE

)
− R

RE

√(
RE

R
− 1

)]2
.

(23)

For comparison of our results to the values in the liter-
ature, we ought to parametrize SR ourselves using the
R-dependent ansatz in Eq. (22). However, to avoid this
tedious work, we may instead write SR(E) in terms of the

old S factor, denoted as S0(E), as follows:

SR(E)
S0(E)

=
σ(E)Ee+

√
ẼG(R)/E

σ(E)Ee+
√

EG/E

= e
√

ẼG(R)/E−
√

EG/E . (24)

If this correction factor is not used, an unphysically large
enhancement can already be seen in the reactivity for the
field-free case, between the assumptions of R = 0 and
R ̸= 0. This is illustrated in Fig. 1. One can see that the

100 101 102 103

kBT [keV]

10−20

10−19

10−18

10−17

10−16

10−15

10−14

〈σ
v
〉[

cm
3
s−

1
]

DHe3

DT

R = 3.891 fm with SR(E)
R = 0 with S0(E)
R = 3.891 fm with S0(E)

Field-free reactivity; S0(E) vs SR(E)

FIG. 1. The field-free reactivity for DHe3 (red) and DT (blue)
fusion. The solid and dashed lines correspond to the WKB
result using S0(E) for the cases of both R = 0 (solid) and R =
3.891 fm (dashed). The dotted lines refer to the results from
WKB for R = 3.891 fm using the rescaled SR(E). The dashed
lines illustrate that using a nonzero R in conjunction with
S0(E) may predict unphysical enhancements to the reactivity
of up to one order of magnitude as compared the conventional
method depicted by the solid lines. Conversely, the agreement
between the solid and dotted lines justifies the use of SR(E)
when considering a nonzero R.

erroneous result of R ̸= 0 with S0(E) (dashed lines) pre-
dicts a consistent unphysical enhancement of around an
order of magnitude compared to the conventional usage
of the R = 0 result with S0(E) (solid lines). The R = 0 re-
sult with S0(E) nearly perfectly coincides with the R ̸= 0
result corrected with SR(E) (dotted lines), thus illustrat-
ing that, to accurately compare our result with previous
literary work, the use of SR(E) is necessary. Results are
only shown up to those temperatures where the reactiv-
ity is certain to be within an order of magnitude, corre-
sponding to the temperatures mentioned in the previous
paragraph. These values coincide with the cutoff energy
used in the reactivity integral, and the fact that they dif-
fer explains the slight difference between the R = 0 result
with S0(E) (solid lines) and the R ̸= 0 result corrected
with SR(E) (dotted lines). In cross section calculations,
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we will use SR(E) consistently and assume that it remains
unaltered when including an external laser field.

In the next section, we show how an external electric
field is included in the WKB method and the ITM and
go over the relevant laser parameters.

D. Inclusion of an external laser field

When including a static external electric field, the po-
tential becomes [Eq. (7)]

VE(r) =
κ

r
− eZeff r|E| cos θ, (25)

where |E| is the static-field amplitude and θ ∈ [0, π] de-
fines the angle between the relative particle motion and
the polarization direction. Note that θ = 0 or θ = π
denote that the polarization of the electric field is in the
radially outward or inward direction, respectively. Also,
the case θ = π/2 is equivalent to the field-free case. For
brevity, we will employ the notation λ ≡ eZeff|E|. In the
following formulation, it is assumed that the CoM energy
is unaffected by the external field, which enables us to use
the same definition of E from the field-free case. This as-
sumption will also be used for the upcoming dynamical
case.

The region under which the fusing particles must tun-
nel in this case is defined by r ∈ [R,RE ], where RE is
defined by the condition E = VE(RE), which gives

RE =
−E ±

√
E2 + 4κλ cos θ

2λ cos θ
, (26)

where only the positive branch recovers lim|E|→0RE =
RE . The change in the classical turning point caused by
the deformation of the potential is the underlying cause
for why laser-induced enhancement (or indeed suppres-
sion as we shall see in a bit) is possible. Even though
RE can never become negative, note that it can become
complex if E2 < −4κλ cos θ. This may occur only when
cos θ < 0 and is an artifact of the employed dipole ap-
proximation. The validity in the use of the dipole ap-
proximation, requiring λlaser ≫ |RE − R|, sets a lower
bound on the CoM energy E for which the approach in
this paper is applicable. At large r, the λr cos θ part
of the potential dominates and can be made arbitrarily
and unphysically large. This is shown in Fig. 2, which
denotes a schematic of the deformation of the poten-
tial VE(r) to be tunneled through as a function of r for
electric-field strengths |E1| and |E2|, with |E1| < |E2|
for cos θ > 0 (left) and cos θ < 0 (right). One clearly
sees that for higher |E| values at cos θ > 0 there will
always be an intersection between VE(r) and E . Con-
versely, for cos θ < 0, the potential may be deformed such
that tunneling becomes impossible at the given E , for
which |RE−R| → ∞, which obviously violates the use of
the dipole approximation. A discussion surrounding the
employed approximations and the consequent region of

R

E

RE1
RE2

(a)

cos θ > 0

VE1
(r)

VE2
(r); |E1| < |E2|

R

E

RE1

(b)

cos θ < 0

VE1
(r)

VE2
(r); |E1| < |E2|

FIG. 2. Schematic static-case illustration of the deformation
to the potential, as a function of r, caused by increasing values
of |E| for the cases cos θ > 0 (a) and cos θ < 0 (b). In the
illustration, the value |E2| is larger than |E1|. The schematic
shows that in the case of cos θ > 0 a classical turning point
can always be defined, whereas in the case of cos θ < 0, this
may not always be the case. If a classical turning point can
be defined for cos θ < 0 (by increasing E or decreasing |E|) a
suppression to the fusion cross section is expected compared
to the field-free case rather than an enhancement.

phase space where the semi-classical approaches may be
applied will be given in the upcoming Sec. II E. If a classi-
cal turning point can be defined for cos θ < 0 (by increas-
ing E or decreasing |E|) a suppression to the fusion cross
section is expected compared to the field-free case rather
than an enhancement. We proceed by calculating the
new static-field transparency, TE = exp (−2 ImSE/ℏ),
with the WKB method and with ITM.
WKB. To calculate the static-field transparency in the

WKB approximation, we wish to calculate

ImSE =

∫ RE

R

dr

√
2µ
(κ
r
− λr cos θ − E

)
, (27)

where the integration limits were chosen again to en-
sure exponential decay in the end. The relevant integral
is evaluated numerically using Clenshaw-Curtis quadra-
ture.
ITM. With our new potential VE(r) = κ/r − λr cos θ,

our classical sub-barrier equation of motion becomes

µr̈(τ) = − κ

r2(τ)
− λ cos θ, (28)

which is readily solved using any conventional ODE
solver. To calculate the static-field transparency we cal-
culate

ImSE =

∫ τE

0

dτ

[
µ

2

(
dr(τ)

dτ

)2

+ VE − E
]
, (29)

along the solution of Eq. (28).
As for a dynamic external electric field, the time de-

pendence of the external laser field is assumed to be har-
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monic throughout this work, i.e.,

Vω(r, t) =
κ

r
− λr cos θ cos(ωt+ φ), (30)

where ω is the angular photon frequency and φ denotes
the phase of the electric field. In Sec. IIID we will briefly
comment on other temporal profiles. As was mentioned
previously, we are only considering the ITM for the dy-
namic case. To calculate the dynamic-field transparency
with the ITM, Tω = exp (−2 ImSω/ℏ), we wish to calcu-
late

ImSω =

∫ τω

0

dτ

[
µ

2

(
dr(τ)

dτ

)2

+ Vω(τ)− E
]
, (31)

with Vω(τ) = κ/r − λr cos θ cosφ cosh(ωτ) and where,
as before, the trajectory along which we integrate is the
solution to the sub-barrier equation of motion:

µr̈(τ) = − κ

r2(τ)
− λ cos θ cosh(ωτ) cosφ. (32)

With the entire theoretical framework laid out, we are
in a position to discuss all approximations and restric-
tions that are imposed in the next section.

E. Applicability of semiclassical approaches

In order to use the semiclassical approaches elaborated
on in the prior sections, the following necessary restric-
tions are required:

• The imaginary part of the action in the trans-
parency exponent must be much larger than ℏ, as
a consequence of Eq. (8):

ImS ≫ ℏ. (33)

Practically, the more lax restriction of Im S > ℏ is
employed.

• The classical turning point must always be larger
than R.

• The use of a one-particle Schrödinger equation ne-
glects all kinds of initial correlation effects between
the fusing particles, as well as relativistic effects..

• The presence of the external electric field is mod-
eled using the dipole approximation, for which the
wavelength of the laser must be much larger than
the spatial extent of the system under considera-
tion, i.e., λlaser ≫ |RE −R|.

• The definition of E remains unaltered when consid-
ering an external electric field.

• The parametrized version of the astrophysical S
factor is limited to a certain range of CoM energies
[47]. In addition, it is assumed that an external
electric field does not affect this term.

For the field-free case, we need not be concerned with
the dipole approximation. The other points above limit
the range for allowable CoM energies to E ∈ [0.3, 183]
keV and E ∈ [0.5, 66.8] keV for DHe3 and DT fusion,
respectively. The low values for the upper limit stem
from the first point in keeping ImS > ℏ. If we impose
the more strict ImS > 10ℏ, these ranges are reduced
dramatically to E ∈ [0.3, 8.75] keV and E ∈ [0.5, 2.35]
keV, respectively.
When considering an electric field, we need a value for

the laser wavelength λlaser in the condition λlaser ≫ |RE−
R|, which is practically handled with λlaser ≥ 10|RE−R|.
The wavelength λlaser is easily related to the photon en-
ergy ℏω in the dynamic case. However, when considering
a static electric field, we have no such parameter ω. In
that case, we account for the dipole approximation as
follows. The static-field results are still applicable to a
dynamic scenario so long as the timescale of the laser
field is much larger than the timescale of the tunneling
process. From the trajectories found with the ITM, this
tunneling timescale was found to be of the order of 10
as or smaller. Thus, our static-field results are still ap-
plicable to dynamic laser fields on a timescale of around
100 as or longer, corresponding to photon energies up to
ℏω ≈ 41 eV. This in turn sets a lower limit on λlaser of
30 nm. Thus, for a static field, we practically used 3 nm
≥ |RE −R| to account for the dipole approximation.

We show the allowed region in phase space (E , |E|) im-
posed by the aforementioned approximations and con-
ditions for the two extreme cases of θ = 0 and θ = π
in the static-field case in Fig. 3. An upper limit on the
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1014
1015
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1017
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|E
|[

V
/m

] (a)
DHe3

10−2 10−1 100 101 102 1031012
1013
1014
1015
1016
1017
1018

θ = 0

(b)
DT

10−2 10−1 100 101 102 103

E [keV]

1012
1013
1014
1015
1016
1017
1018

|E
|[

V
/m

] (c)Im S ≥ 10h̄

Im S ≥ h̄

10−2 10−1 100 101 102 103

E [keV]

1012
1013
1014
1015
1016
1017
1018

θ = π

(d)

FIG. 3. The region in phase space (E , |E|) for which the semi-
classical approaches in this paper are valid in the static case
for DHe3 fusion [(a),(c)] and DT fusion [(b),(d)], at θ = 0
[(a),(b)] and θ = π [(c),(d)]. Allowed pairs of (E , |E|) are
shown by the colored regions, where the red region denotes
the stricter restriction of ImS ≥ 10ℏ as opposed to the more
lax ImS ≥ ℏ used elsewhere. The large reduction to the al-
lowable region of phase space at θ = π comes from the break-
down of the dipole approximation when cos θ < 0 and already
occurs at, for instance, (E , |E|) = (1 keV, 1015 V/m) for both
systems.

electric-field strength is placed at the Schwinger limit of
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|E| = 1018 V/m, near which spontaneous pair production
is expected to substantially occur. The colored regions
denote allowed pairs of (E , |E|), where the red region de-
notes the stricter restriction of Im S ≥ 10ℏ as opposed
to the more lax ImS ≥ ℏ used elsewhere. The region
enclosed by the vertical dashed lines denote those values
of E for which the S-factor parametrization of Bosch and
Hale [47] is valid. Worthy of note is that the transition
between the forms of the two rows in Fig. 3 is not con-
tinuous. A sudden change occurs as θ varies between the
cases of cos θ > 0, cos θ = 0, and cos θ < 0, whereas
keeping the sign of cos θ fixed and varying θ accounts
for small, but continuous changes. For cos θ = 0 the
shapes of course revert to rectangles with the red and
blue widths ranging from 0.3 to 8.75 keV and from 8.75
to 183 keV for DHe3, and from 0.5 to 2.35 keV and from
2.35 to 550 keV for DT.

A plot similar to Fig. 3 is shown for the dynamic
case with ℏω = 1 keV and ℏω = 10 keV at θ = 0
and φ = 0 in Fig. 4. One can see the vast reduction

10−2 10−1 100 101 102 1031012
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1016
1017
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|E
|[

V
/m

]

h̄ω = 1 keV

(a)
DHe3 at θ = 0

10−2 10−1 100 101 102 1031012
1013
1014
1015
1016
1017
1018

h̄ω = 1 keV

(b)
DT at θ = 0

10−2 10−1 100 101 102 103

E [keV]

1012
1013
1014
1015
1016
1017
1018

|E
|[

V
/m

]

h̄ω = 10 keV

(c)

10−2 10−1 100 101 102 103

E [keV]

1012
1013
1014
1015
1016
1017
1018

h̄ω = 10 keV

(d)

Im S ≥ 10h̄

Im S ≥ h̄

FIG. 4. The region in phase space (E , |E|) for which the semi-
classical approaches in this paper are valid for DHe3 fusion
[(a), (c)] and DT fusion [(b), (d)], at ℏω = 1 keV [(a), (b)]
and ℏω = 10 keV [(c), (d)], with θ = 0 and φ = 0. Allowed
pairs of (E , |E|) are shown by the colored regions, where the
red region denotes the stricter restriction of Im S ≥ 10ℏ as
opposed to the more lax ImS ≥ ℏ used elsewhere. The region
of phase space where the semiclassical methods are valid is
seen to diminish for increasing ℏω.

of allowed phase space as compared to the static case,
which becomes worse for higher values of ℏω. This is
mainly attributed to a breakdown of the dipole approxi-
mation in the affected regions. Note that from the rela-
tion T = exp (−2 ImS/ℏ) an enhancement to the trans-
parency is captured by a reduction in Im S. Thus, when
attempting to capture this enhancement by means of
semiclassical methods, for which one inherently requires
ImS ≫ ℏ, one will inevitably encounter scenarios where
the predictions are no longer within their realm of appli-
cability.

III. RESULTS

In this section we calculate the modification to the
transparency as a result of a static and a dynamic ex-
ternal electric field and determine their effects on the
fusion cross section and reactivity.

A. Static-field enhancement

The values for ImSE at θ = 0 in the WKB method and
with ITM are compared to each other in Fig. 5. The value
of ℏ = 0.6582 eV fs is also shown to illustrate ImSE > ℏ.
One can see that the WKB (lines) and the ITM (dots)
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(b)

DT at θ = 0

Field-free

|E| = 1013 V/m

|E| = 1014 V/m

|E| = 1015 V/m

|E| = 1016 V/m

|E| = 1017 V/m

FIG. 5. The static-field value of ImSE at θ = 0 for DHe3

(a) and DT (b) at electric-field strengths |E| = 1013 V/m to
|E| = 1017 V/m. The lines and dots refer to the WKB and
ITM result respectively. Also shown are the field-free values
(|E| = 0 V/m) and the value of ℏ = 0.6582 eV fs (black dotted
line). Note that the scales on the y axes differ and that the
two legends refer to both plots simultaneously. A reduction
in ImSE signifies enhancement with respect to the field-free
case, which starts to set in for both systems at |E| > 1014

V/m and is more prominent for lower values of E .

results practically overlap. Note that a lower value of
ImSE denotes a larger enhancement to the transparency.
We emphasize that the scales on the y axes in Fig. 5 differ
between the DHe3 and DT results. This is done for aes-
thetic reasons to showcase the DT results more clearly.
In addition, the two legends refer to both plots simul-
taneously. We will adhere to similar conventions for all
subsequent figures in this paper. One can conclude from
Fig. 5 that nearly no enhancement is present for electric-
field strengths below a certain critical value, which echoes
the conclusions of Queisser and Schützhold [32], Lv et
al. [33], and Liu et al. [36]. An important observation
from Fig. 5 is that this critical field value depends on E .
For low values of E enhancement appears to set in for
both systems at |E| > 1014 V/m. However, at higher
values for E , the enhancement appears to wane, which is
partly why we do not show higher E values than 10 keV.
This trend is also present in the works of Wang [34] and
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Liu et al. [36]. Lastly, note that the enhancement is more
prominent for DHe3 than it is for DT. We expect this to
be a consequence of the fact that the product Z1Z2 is
larger for DHe3 (Z1Z2 = 2) than for DT (Z1Z2 = 1) for
the following reason. As the Coulomb repulsion in DHe3

is larger than in DT, the field-free classical turning point
RE is also larger for DHe3 than for DT, when consid-
ering the same CoM energy E . From Fig. 2 it is clear
that an external laser field deforms the potential more
drastically further away in the tail, rather than close to
the origin. Hence, the inclusion of the external laser field
reduces the classical turning point much more in the case
of DHe3 than in DT and thus causes a more pronounced
enhancement to the former. Therefore, even though a
larger Coulomb repulsion would hinder a typical fusion
process, we conclude that the laser-induced enhancement
is actually larger in this case.

Figure 6 shows the effect of a static electric field on
the fusion cross sections. Again, any enhancement ap-
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FIG. 6. The static-field cross section at θ = 0 for DHe3 (a)
and DT (b) at electric-field strengths |E| = 1013 V/m to
|E| = 1017 V/m. The lines and dots refer to the WKB and
ITM result respectively, which are seen to agree well with one
another. Additionally, the field-free values practically overlap
with the results for |E| = 1013 V/m. One can see noticeable
enhancements for |E| > 1014 V/m, which are more prominent
for lower values of E .

pears to be most prominent for lower values of E . By
considering a specific CoM value, e.g., E = 1 keV, we can
highlight vast enhancements to the cross section when
considering the ambitious, but realistic, field strengths
of |E| = 1015 V/m and |E| = 1016 V/m. These enhance-
ments are six to eleven orders of magnitude for DHe3 fu-
sion and one to four orders of magnitude for DT fusion.
However, Fig. 6 illustrates that these large enhancements
do not persist for most CoM energies. The resulting ef-
fect on the reactivity is shown in Fig. 7, given a thermal
Maxwellian velocity distribution. The cutoffs for the en-
ergy integral were 183 and 66.8 keV for DHe3 and DT
respectively, corresponding to the largest shown values
for the temperatures at kBT = 72 keV and kBT = 31
keV. The reactivity plots show that the enhancement to
the cross sections is not enough to result in an overall
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FIG. 7. The static-field reactivity at θ = 0 for DHe3 (a)
and DT (b) at electric-field strengths |E| = 1013 V/m to
|E| = 1017 V/m. The solid lines and dots refer to the WKB
and ITM result respectively. Also shown are the field-free
values. The large laser-induced enhancements to the cross
section are seen to have a lasting impact only for the most
extreme values of |E|.

effect when integrating over E , with the extreme case
of |E| = 1017 V/m being the exception. We note that
even though the absolute values for the reactivity may
be rather crude, regarding the used approximation of a
thermal Maxwellian velocity distribution, the relative en-
hancement in the reactivity between different values for
the electric-field strength |E| does not depend on this
choice. Based on the prediction from the transparency
and cross section calculations, a noticeable enhancement
will only be present for a relatively small range of CoM
energies, at least for |E| values that are attainable at
present-day facilities (< 1016 V/m). Subsequently, an
overall enhancement in the reactivity as a result of the
potential deformation alone is not expected to appear.
We do note that Fig. 7 depicts a log log plot, so enhance-
ments below an order of magnitude, though present, are
hardly discernible. For example, the enhancements to
the reactivity at kBT = 1 keV for |E| = 1016 V/m are
factors of 1.67 and 1.43 for DHe3 and DT respectively.

The question remains whether or not the estimates for
the transparency enhancements may have been underes-
timated regarding the use of the semiclassical methods.
Despite the results presented thus far being within their
realm of applicability, the WKB method for example is
well known to deteriorate in accuracy as E decreases.
For CoM energies far below the largest potential values
of the barrier, the WKB method can underestimate the
transparency predictions by several orders of magnitude
[9]. The use of semiclassical approaches would be unwar-
ranted if unphysical results can be encountered even in
the regime where the employed approach fulfills the va-
lidity requirements. We return to this point in Sec. IIID
when considering the dynamic-field case. Let us first
comment on the effect of the polarization angle θ in a
more realistic setting.
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B. Polarization angle averaging

The angle between the relative movement of fusing par-
ticles and the polarization direction of the external laser
field will be, to a large degree, random in a real exper-
iment. The results presented thus far were given in the
best-case scenario of maximal enhancement at θ = 0.
However, suppression is expected to occur for those an-
gles with cos θ < 0, as is intuitively clear from Fig. 2.
Therefore, we must average over the angle θ to determine
whether any enhancement remains in a real experimental
setting. The averaging is done with respect to the cross
section as

σave(E , |E|) = 1

2

∫ π

0

dθ σ(E , |E|, θ) sin θ. (34)

However, recall that cases exist with cos θ < 0 for which
there is no more tunneling possible, which was an arti-
fact from using the dipole approximation where we ought
not to. How should this be handled during the averag-
ing? Simply equaling σ(E , |E|, θ) = 0 in that case will
artificially skew the average towards an overall smaller
enhancement. To avoid this, we will only show averaged
cross section values at those values of (E , |E|) for which
all values of θ ∈ [0, π] provided a physical result. These
are shown as dots in Fig. 8 for electric-field strengths
from |E| = 1013 V/m to |E| = 1017 V/m. The lines in
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FIG. 8. The static-field cross sections (WKB result) for DHe3

(a) and DT (b) at electric-field strengths |E| = 1013 V/m to
|E| = 1017 V/m. The lines and dots refer to the cases of
θ = 0 and averaged over θ, respectively. Averaged values are
only shown if all θ ∈ [0, π] provided physical answers for a
given set of input parameters. Though the θ-averaged cross
section is found to be generally smaller than the cross section
at θ = 0, an overall net enhancement can still be observed in
the former case.

Fig. 8 refer to the WKB result for the cross section at the
fixed angle of θ = 0. One can see that, even when averag-
ing over polarization directions, an overall enhancement
is still expected to arise in the static-field case, albeit by
a much smaller amount as compared to θ = 0. Also,
the amount of points for which data can be acquired is
heavily limited.

We now turn to comparing these results with other
theoretical predictions from the literature.

C. Theoretical predictions comparison: Static

The large majority of works in the literature have em-
ployed the use of the velocity gauge and therefore con-
sider the frequency, and consequent photon energy, of the
laser field as a parameter in their enhancement estimates.
As our field is static, we have no such parameter. How-
ever, we noted before that the static-field results are still
applicable to a dynamic scenario for photon energies up
to ℏω ≈ 40 eV.
The work of Wang [34] considered the effect of near-

infrared lasers on DT fusion. They predicted an enhance-
ment to the θ-averaged DT fusion cross section of nine
orders of magnitude at E = 1 keV for an 800-nm laser
(ℏω = 1.55 eV) at I = 5 × 1021 W/cm2 (|E| = 2 × 1014

V/m). At E = 5 keV and E = 10 keV for the same laser
parameters their enhancement was two orders of mag-
nitude and one order of magnitude, respectively. How-
ever, for the same parameters we predict an enhance-
ment by factors of 1.135, 1.006, and 1.002, respectively.
The discrepancy between our results and those of Wang
stems from the fact that the Coulomb barrier is ignored
in Ref. [34], which is incidentally mentioned as a similar
cause for discrepancy in Ref. [36].
Next, we consider the work of Liu et al. [36], which con-

siders DT fusion using the WKB method. The difference
with the current work is that the classical turning point is
not determined analytically, but rather determined from
a Monte Carlo sampling of many classical pre-barrier tra-
jectories of a Gaussian wave packet. At E = 1 keV and
ℏω = 1 eV they see θ-averaged cross section enhance-
ments occur at intensities I = 1020 W/cm2, I = 1021

W/cm2, and I = 1022 W/cm2 by 3, 6, and 7 orders of
magnitude, respectively. At those same parameters, we
found enhancements by factors of 1.0701, 1.0866, and
1.2166, respectively. The discrepancy may be caused by
the use of a time-dependent potential in the inherently
time-independent WKB expression for the transparency
[Eqs. (9) and (10)] in Ref. [36], though admittedly it is
not explicitly mentioned how the time dependence is han-
dled. We discuss their dynamic enhancement predictions
in Sec. III F.
We now proceed by considering the enhancement due

to dynamic external electric fields.

D. Dynamic-field enhancement

In this section, we assume θ = 0 and φ = 0. An av-
eraging over the phase angle φ is briefly addressed in
Sec. III E. Figure 9 shows ImSω as a function of the
CoM energy E for DHe3 fusion. Each panel denotes a
different electric-field strength, ranging from |E| = 1014



11

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Im
S

[e
V

fs
]

|E| = 1014 V/m|E| = 1014 V/m|E| = 1014 V/m|E| = 1014 V/m|E| = 1014 V/m

h̄

Field-free (ITM)

h̄ω = 0.0 keV

h̄ω = 0.5 keV

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25
|E| = 1015 V/m|E| = 1015 V/m|E| = 1015 V/m|E| = 1015 V/m|E| = 1015 V/m

h̄

h̄ω = 1.0 keV

h̄ω = 5.0 keV

h̄ω = 10.0 keV

1 2 3 4 5 6 7 8 9 10
E [keV]

0

5

10

15

20

25

Im
S

[e
V

fs
] |E| = 1016 V/m|E| = 1016 V/m|E| = 1016 V/m|E| = 1016 V/m|E| = 1016 V/m

h̄
1 2 3 4 5 6 7 8 9 10

E [keV]

0

5

10

15

20

25
|E| = 1017 V/m|E| = 1017 V/m|E| = 1017 V/m|E| = 1017 V/m|E| = 1017 V/m

h̄

DHe3 at θ = 0

FIG. 9. The dynamic-field enhanced results for ImSω as a
function of the CoM energy E , calculated by the ITM at
θ = 0 for DHe3 at electric-field strengths |E| = 1014 V/m to
|E| = 1017 V/m and various photon energies ℏω. A larger en-
hancement is expected for higher ℏω. However, this enhance-
ment can be unphysically large, especially for lower values of
|E|, showcasing the reduced applicability of the semi-classical
methods at increasing ℏω.

V/m to |E| = 1017 V/m, and shows the results for dif-
ferent values of ℏω at a given field strength. The results
from Fig. 9 show an increased enhancement for increas-
ing photon energy ℏω as compared to the static-field case
(consistently shown as the red curve in this section), most
prominently for higher values of |E| and again for lower
values of E . However, Fig. 9 reveals a worrying trend,
as for higher values of ℏω the values of ImSω may be of
the order of and even far below ℏ, whereas the ITM is
only valid in the limit of ImSω ≫ ℏ. The sudden drop in
ImSω for decreasing values of E are undoubtedly unphys-
ical, as they lead to enormous enhancements in the cross
section, shown in Fig. 10. And this despite being in the
range of applicability of semiclassical methods. The re-
sults indicate that the range of applicability of the ITM in
the dynamic case is more restricted for low electric-field
strengths. In the case of |E| = 1017 V/m, all values of
ImSω are larger than ℏ for all ℏω. For the cross sections
in Fig. 10, the solid lines refer to the results obtained from
the transparency shown in Fig. 9. The dots refer to cross
section results obtained with the much more strict re-
quirement of ImSω > 10ℏ to determine if the unphysical
exponential enhancement at low E disappears. However,
Fig. 10 shows that it may persist even then, especially at
lower values of |E|. The inevitable conclusion is that the
dynamic-field enhancement cannot be suitably described
by semiclassical approaches. The region of phase space
that gives accurate results is far too restricted to be able
to provide reactivity estimates and thus they are not pre-
sented here. The results for ImSω for DT fusion largely
mimic the behaviors of Figs. 9 and are omitted for this
reason. The dynamically enhanced fusion cross section
for DT is presented in Fig. 11 for completeness.

Temporal profiles other than a harmonic one were also
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FIG. 10. The dynamic-field enhanced cross section as a func-
tion of the CoM energy E , calculated by the ITM at θ = 0 for
DHe3, at electric-field strengths |E| = 1014 V/m to |E| = 1017

V/m and photon energies ℏω. The lines refer to results ob-
tained from the requirement that ImSω > ℏ and the dots were
obtained using the more strict requirement ImSω > 10ℏ. One
can see that the unphysical enhancements that arose from the
rapidly decreasing values of ImSω with decreasing E (Fig. 9)
persist in the cross section, even when ImSω > 10ℏ.
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FIG. 11. The dynamic-field enhanced cross section as a func-
tion of the CoM energy E , calculated by the ITM at θ = 0 for
DT, at electric-field strengths |E| = 1014 V/m to |E| = 1017

V/m and various photon energies ℏω. The solid lines refer
to results obtained from the requirement that Im Sω > ℏ
and the dots were obtained using the more strict requirement
ImSω > 10ℏ. The behavior from Fig. 10 is largely mimicked.

considered. Similar to Ref. [32], we considered a Gaussian
pulse and a de Sauter pulse, where the time dependence
is changed from cos(ωt) to exp{−(ωt)2} and 1/ cosh2(ωt)
respectively. Unfortunately, the only differences we saw
to the enhanced cross sections in these cases were in re-
gions where the results showed the unphysically large ar-
tifacts. For this reason, we omitted these plots.
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E. Phase angle averaging

The final parameter to model the external laser field
left to discuss is the phase angle present in the time de-
pendence as cos(ωt + φ). Assuming φ to be a constant,
we may assign its value to the one at t = 0 and average
the cross section from φ = 0 to φ = 2π as

σave(E , |E|, θ, ω) = 1

2π

∫ 2π

0

dφσ(E , |E|, θ, ω, φ). (35)

Note that the phase-angle averaging introduces a degree
of incoherence into the laser field. Unfortunately, a simi-
lar conclusion was found as when different temporal pro-
files were considered. Namely, the only differences that
were observed between the φ-averaged case and φ = 0
were in regions where the enhancements were unphysi-
cal. Therefore, these plots were omitted as well. How-
ever, for those parameters where the results did appear
physically justifiable, we could hardly discern a difference
between the phase-averaged results and the field-free re-
sults. This is in disagreement with the conclusion pre-
sented by Queisser and Schützhold [32] that dynamic en-
hancement will also occur with incoherent light sources.
However, a definite answer to this question would be
provided given accurate dynamic cross-section enhance-
ments for lower values of E , which is unfortunately not
possible within the semiclassical approximation.

F. Theoretical predictions comparison: Dynamic

Despite the limited range of applicability of the ITM
in the dynamic case, we may compare our enhancement
results for DT fusion with other theoretical works.

The work of Queisser and Schützhold [32] predicts sig-
nificant enhancement to the transparency for E = ℏω = 1
keV, provided either |E| = 1013 V/m or |E| = 1015 V/m,
depending on the method employed. It is not stated what
is meant with “significant,” but with the dynamic-field
calculation using the ITM we found enhancements to the
cross section at E = 1 keV and |E| = 1013 V/m by a
factor of 50 and a factor of ≈ 5 × 106 for |E| = 1015

V/m. However, these large enhancements are unphysical
as evidenced by Fig. 11. Realistic enhancement factors
are likely to be much smaller. Queisser and Schützhold
also predict a significant enhancement factor can be seen
at E = 9 keV and ℏω = 27 keV for electric-field strengths
below |E| = 1013 V/m. We predict at E = 9 keV,
ℏω = 27 keV, and |E| = 1013 V/m an enhancement fac-
tor to the cross section of 1.024. However, Queisser and
Schützhold did mention their predictions are less reliable
in this regime.

The work of Lv et al. [33] makes predictions for the
DT fusion cross section enhancement using the Kramers-
Henneberger (KH) approximation, which is applicable if
the time period of the laser is much smaller than the
time scale of the fusion process. It is stated that their

method is applicable for ℏω ≥ 1 keV. Predictions are
made with respect to the dimensionless parameter nd =
e
√
2cµ0I/(5µω

2R), which, with the intensity being I =
cε0|E|2/2, becomes nd = e|E|/(5µω2R). A single value
of nd defines a curve in the (|E|, ℏω) plane consistent of
pairs that lead to the same enhancement. At E = 64 keV
and nd = 9, they predicted an enhancement to the θ-
averaged cross section by a factor of 4.77. For a handful
of photon energies in the keV regime and corresponding
electric-field strengths that satisfy the relation nd = 9, we
show our dynamic-field enhancement to the cross section
at E = 64 keV in Table I. Nearly no enhancement is

ℏω (keV) |E| (V/m) σω/σE ImSω/ℏ
1.0 5.059 ×1015 1.0008 1.0445

2.5 3.162 ×1016 1.0037 1.0431

5.0 1.265 ×1017 1.0143 1.0378

7.5 2.846 ×1017 1.0318 1.0292

10.0 5.059 ×1017 1.0561 1.0176

TABLE I. Predictions for the enhancement factor to the cross
section using the dynamic-field ITM at laser parameters that
correspond to nd = 9 in Ref. [33] at E = 64 keV. Also shown
are the values for Im S/ℏ. We find hardly any enhancement
occurs at these values, mainly attributed to the consideration
of the relatively high value of E = 64 keV.

predicted for any of the suggested parameters, as it was
shown for the enhancements to be most prevalent for
low values of E in the ITM. Interestingly, this illustrates
a qualitative difference between the results of the ITM
and KH approximation, again showcasing the need for
experimental validation.

Finally, we reconsider the work of Liu et al. [36], which
also made predictions to the DT fusion θ-averaged cross
section enhancement at a photon energy of ℏω = 1 keV.
For this value, and with E = 1 keV and I = 1026 W/cm2,
I = 1027 W/cm2, and I = 1028 W/cm2, they find en-
hancements by factors of ≈ 5, 102, and 105, respectively.
These parameters unfortunately lie outside of the validity
range of our approach.

The vast differences in theoretical predictions for the
enhancements come from the fact that the laser-induced
enhancement does not set in until some critical value for
the electric-field strength is reached. As different models
predict different critical values, their enhancement pre-
dictions may indeed differ by several orders of magnitude.
This was already shown in Fig. 5 of Liu et al. [36], which
compares their work with Lv et al. [33] and Wang [34].
A similar critical photon energy is also expected to exist,
as mentioned by Queisser and Schützhold [32], but could
not be determined due to the restricted applicability of
semiclassical methods in this work
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IV. CONCLUSIONS AND OUTLOOK

In this paper, we have employed two frequently used
semiclassical approaches, the WKB method and the
ITM, to calculate the enhancement in the fusion rates ex-
pected to arise from an external laser field, for the cases
of DHe3 and DT fusion. The goals were to go beyond
a simple prediction of enhancement at a few select CoM
energies and laser parameters in order to provide a more
accurate and realistic enhancement prediction that is to
be expected during a real experiment, and to determine
whether semiclassical approaches are capable of doing so.
The conclusion is that a large range of input parame-
ters is necessary to make accurate predictions similar to
an experiment and that semiclassical approaches are not
applicable for the entire necessary region in phase space.
Especially the combination of small |E| and large ℏω hin-
ders the use of these methods. Furthermore, even where
the semiclassical approaches ought to be valid, the pre-
dicted result may still diverge at low CoM energies in the
dynamic case.

With the purpose of actually designing a laser-
enhanced fusion experiment, the optimal laser parame-
ters will most accurately be found by going beyond semi-
classical methods. The KH approximation is an excellent
start to consider the enhancement at high ℏω, but the
method seems to indicate larger enhancements for lower
values of ℏω [33, 37], where the method is less accurate.
A connection can be made to the low-ℏω regime by ex-
tending the framework presented in Ref. [34] to include
a Coulomb-Volkov state. Alternatively, the R-matrix
method may be employed to calculate the transparency,
similar to what was done in Ref. [54]. A benchmark
can be made with the transparency calculated from the
full numerical solution of the time-dependent Schrödinger
equation. This development is currently underway.
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