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ARTICLE INFO ABSTRACT
Keywords: Phase-based motion magnification (PMM) has been widely implemented in the field of vibration and structural
Phase-based motion magnification health monitoring for its non-invasive nature to reveal hidden system dynamics. The approach has shown success

Image processing
Optical flow
Computer vision
Noncontact sensing
Motion extraction

in magnifying subtle structural oscillatory motions for system identification and observation of operating shapes.
Although this method has been implemented and is becoming increasingly popular, the amount of physical
motion associated with the degree of magnification has yet to be quantified. Within this work, a synthetic
simulation containing an oscillating geometry is presented to quantify its magnified pixel displacement. Com-
puter vision techniques including centroid detection and edge-feature tracking via optical flow are adopted to
quantify the relation between amplification and true motion. The quantification techniques are also tested and
verified on an experimental structure with the use of a high-speed optical sensing system. Motion artifacts distort
the integrity of the magnified motion, which can pose problems for accurate quantification. Image enhancement
techniques such as the two-dimensional Wiener filter and Total Variation Denoising (TVD) are used to smooth
the high-frequency content that is observed following magnification. Associative error concerning a discrete shift
of the Gabor wavelet is analytically derived to show the justification of spatial aliasing. An adjusted bound on
magnification is presented to display the limitations of the technique, while providing insight into associated
error. The results of this work will help to enhance PMM from a qualitative evaluation tool to a quantitative
measurement tool of magnified displacements.

than amplified with motion [2-3]. Since then, several modifications
have been made to the algorithm for speed and noise improvements
[4-7]. PMM has also been implemented in a wide variety of applications
related to structural dynamics [8-13]. In particular, the use of PMM
permitted computation of full-field operating deflection shapes in
addition to fundamental frequencies of a structure that was subtly
oscillating. [14-20]. Computation of modal parameters using a non-
invasive approach was shown to be robust and require less contact
and manual instrumentation [21-24]. Poozesh et al. demonstrated this
approach for large-scale structures such as wind turbine blades [25].

In this work, image-processing techniques such as the two-
dimensional Wiener filter and Total Variation Denoising (TVD) are
implemented to smooth out the phase-based motion magnification ar-
tifacts that appears in distorted video. Quantifying magnified motion is
achieved with the use of centroid and edge-feature tracking approaches
as displayed in Fig. 1.

1. Introduction

The study of subtle motion has been an area of interest in the vi-
bration community over the past decade. Sensors such as accelerometers
and strain gauges have been used to capture dynamic characteristics
from large structures. Due to the laborious setup using contact instru-
mentation, the use of cameras has proven to be a well adopted non-
invasive technique for motion data acquisition. In the field of dy-
namics, structures tend to oscillate with subtle amplitudes, which may
not appear to the naked eye. Although studies have shown, that PMM
can be used for structural dynamics extraction qualitatively, there has
yet to be an investigation into the quantitative capabilities and associ-
ated error of extracting magnified motion.

Liu et al. introduced a linear motion magnification approach, where
imperceptible motion could be amplified and studied [1]. Most notably,
Wadhwa et al. improved upon the linear magnification technique by
manipulating the phase of an image where noise was translated rather
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a Magnification factor

y Translation coordinates

&(¢) Image profile translation
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the average values of local variance [37]. For example, Rudin et al.
introduced the total variation based approach, i.e. TVD, to tackle the
noise removal process. This method poses an optimization problem that
will return a denoised image based on a regularization parameter [38].
The elimination of ghosting artifacts will ultimately make quantifying
magnified motion more simplistic and accurate. Adaptation of said al-
gorithms for robust denoising of phase-based magnified videos has yet to
be investigated in literature.

The novelty of the proposed work is the quantification of magnified
motion and associative discrete error using different augmentation
methods to enhance motion extraction. The implementation of the two-
dimensional Wiener filter and TVD will suppress motion artifacts mak-
ing quantification more simplistic and accurate. This could enable the
use of PMM as both a qualitative and quantitative tool for non-invasive
measurement. A comparison is made between the differing algorithms
and their effect on the quantified displacement. The remainder of the
paper is organized as follows: Section 3 presents the theoretical back-
ground while Section 4 introduces the test setup for experimental vali-
dation that is performed on a lab and synthetic data set. Section 5
provides an overview of the collected results and subsequent discussion.
Finally, in Section 6 conclusions of the work are presented.

3. Theoretical background

3.1. Phase-based motion magnification (PMM)

1. Input: 2. Motion

Raw Video

Magnification

Capture (PMM)

3. Signal Processing Options:

Raw Magnified Frame (No Processing)
2D Wiener Filter
Total Variation Denoising (TVD)

5. Output:
Quantified

4. Tracking Methodology:

Centroid Tracking
Edge-Feature Tracking via
Kanade-Lucas-Tomasi (KLT)

Displacement

Fig. 1. Algorithm workflow diagram for the proposed work. Incremental steps include: (1) Video Acquisition, (2) PMM, (3) Signal Processing Options, (4) Tracking

Methodology, and (5) Quantified Displacement.

2. Literature background

Extraction of quantitative information in videos has been widely
investigated over the past several decades. Developments in optical
flow, tracking, and image filtering has served to enhance the capabilities
of non-invasive measurement [26-29]. This in conjunction with PMM
can serve as a means to extract the operating deflection characteristics as
well as dynamic range of motion [30-33]. As a modification to [26],
Tomasi introduced a feature window; such that, particular pixels are
tracked from a reference characteristic frame [34]. The Kanade-Lucas-
Tomasi (KLT) algorithm has been implemented in simple to complex
computer vision problems ranging from face detection to image stabi-
lization [35].

As magnification is increased, ringing artifacts (ghosting) appear due
to the limited spatial support that is provided by the complex steerable
pyramid [36]. Currently, there are a wide variety of smoothing algo-
rithms that are available to aid in de-noising images. The two-
dimensional Wiener filter serves as an adaptive noise removal
approach; such that, noise variance is estimated in an image based on

There have been several improvements made to amplify subtle mo-
tion in video including alternative image pyramids and deep learning
applied to motion magnification [2-4,31,39]. Displacement from phase
information can be extracted and then magnified by decomposing the
complex steerable pyramid based on the Fourier Shift Theorem; that is,
the output displacement is proportional to the phase change between
consecutive frames of the video in the frequency domain. As introduced
by [2], PMM decomposes an intensity profile of an image, f(x) where x
represents pixels across the width of an image. This image profile is
expressed as a sum of complex sinusoids in time, t, undergoing a global
translation, 6(t) where

flx+6(2)) = Z A, e@ton) 6))

Similarly to the Fourier shift theorem, A, is representative of the
respective amplitude while the phase w(x+5(t)) contains pertinent
motion information. The separation of particular motion can be ach-
ieved by specifying bands of the filter that are represented by a single
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Fig. 2. Frequency Response of the Complex Steerable Pyramid [36]; (a) definition of orientation and scale, (b) Frequency Response of the Octave Filter Bank, (c)

Frequency Response of the Half-Octave Filter Bank.
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Fig. 3. (a) One-dimensional representation of phase shifting Gabor filters. As § approaches 37/4 , the Gaussian window or dotted curve truncates the signal which
produces spatial aliasing resulting in ghosting artifacts, (b) Degradation of images due to the ghosting artifacts present in magnified video where true non-

exaggerated motion is two pixels.

frequency @ . A band-passing of the phase in the temporal domain,
removes the DC component of the phase shift such that

B, (x,1) = 0(t). ()

Amplifying the motion in the sub-bands, S,(x,t) of the complex
steerable pyramid comes as a result by multiplying the band-passed
phase B, (x,t) by some magnification factor « . Reconstructing the in-
tensity profile with magnified displacement yields

Sm(x, l) — Ameiw(x+(1+a)5(z))_ (3)

It is then expressed that S, (x,t) is comprised of complex sinusoids
that are modulated exactly (1 + @) times. Collapsing the complex-
steerable pyramid in each sub-band will result in a magnified image
intensity profile ,f(x+(1 + a)5(t) ) . The computation of local phase in
each sub-band takes place at each scale and orientation of the filter as
show in Fig. 2 (a). For visual representation, Fig. 2(b), and Fig. 2(c)
display the frequency response of the octave and half-octave filter banks.
The spacing between each orientation is correspondent to a base two
frequency ratio. That is, for the octave and half-octave filter bank, the
spacing between each orientation will be 2! and 2!/2 respectively for the
angular direction. In the radial direction, the octave filter contains four
scales while the half-octave contains eight. Having more orientations
and scales in the frequency domain permit larger amplification of mo-
tion due to their support in the spatial domain.

Amplification of subtle displacement has been helpful in visualizing
imperceptible motion; however, motion artifacts start to become a
burden when dealing with large amplification factors. This occurs due to
the complex steerable pyramid’s limited spatial support once magnifi-
cation exceeds the filters bound. An approximate one-dimensional rep-
resentation of the complex steerable pyramid is a Dirac function that is
shifted §(t) by a Gabor filter [2]. These wavelets contain a Gaussian
function with a specific width ,c that attenuates the motion of the
sinusoid underneath the bell curve. Eq(s). 4 through 7 are derived by
Wadhwa et al. where the impulse response is defined as

S, (x, t) _ e—(x—é(r))Z / (252) P20 (x—=5(1)) 4)

A band-pass filtering and magnification of the phase att =0 and t,
yields

)

Therefore, the band-passed phase difference will shift the motion by
aé(t) pixels. The bound-on magnification plays an important role in
determining where exaggeration of true motion has reached a
maximum. The appropriate bound on aé(t) is a constant, C [2]. As §
approaches 37/4 , spatial aliasing begins to appear which leads to the
ghosting artifacts that are generally seen in magnified video as show in
Fig. 3. An Lj normalized error for a particular phase shift is computed by
comparing a true and Gabor shifted signal. The impulse response for a

B, (x,1) = 2mwoad(t).
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Fig. 4. (a) Phase shifted impulse function by § = /2 ; the plot displays the difference in modulation using pure translation versus using Gabor wavelet, (b) L, error

function for phase shifts § .

Dirac function is defined in Eq. (4). The approximated shift, S, (x, t), that
is attenuated by the Gaussian bell curve of Gabor wavelet is defined as

Sm(X, t) _ e—xz/(zﬁ)ezmmo(xfa(z))_ ®)

Fig. 4 (a) depicts the difference in phase shift for the true and Gabor-
shifted signal. For a discrete set of points, the L; error function in pixels
is written from j = (1,n) where n is the length of signal as

L, = Z;:l Sa)(x(j)at) - Sm(x(j):t)

) . _)=60)% _a0?
elmwo(—r(/)%(t))(e W — e 27 ) ’ @

, and

n

Li=Y

j=1

Fig. 4 (b) displays the L norm error function from Eq. (7) comparing
the true versus Gabor shifted signal. It should be noted that the sug-
gested shift of 7/2 represents one-quarter of a full cycle/wavelength. As
aforementioned and depicted in Fig. 3 (b), the phase unwrapping that
takes place past 2z will extend the provided spatial support; thus, the
justification of ghosting artifacts. The generation of motion artifacts will
make quantification of motion via computer vision more difficult due to
their gray scale variation at the boundary. The implementation of two-
dimensional filters will aid in suppressing said artifacts making quan-
tification more accurate.

3.2. Two-dimensional wiener filter

Image filtering has been used in applications of PMM due to its
ability to account for distortions that appear in video [40]. The two-
dimensional Wiener filter is a computationally effective tool to smooth
the ghosting artifacts that appear at large magnification factors. As
introduced by [37], the two-dimensional Wiener filter first computes the

local mean , u, and variance 70'2, of an N -by- M image, X where

1
”:N_M Z X(nl,nz),and (8)
nyyEn
2 = S Xy — ©
NMn..anv] v '

The specific coordinates , (n;,n,) are defined within the specified
neighborhood of pixels # . As 7 increases, the computation time of the
two-dimensional filter becomes larger due to the densely populated
number of pixels. Following computation of Eq. (8) and Eq. (9), a

denoised image ,)? , is computed using ,1?, the average of the local
variances defined in the pixel neighborhood 7 .

2 5

- o —v
X(moma) = p+—

(X(ni,m2) —p) (10)

The denoised image X ideally would aid in smoothing the ghosting
artifacts or ripples that appear following a desired magnification of
subtle motion.

3.3. Total-variation denoising (TVD)

Posing an optimization approach to image enhancement can be an
alternative to utilizing traditional image processing techniques. TVD, as
introduced by [38] has shown to be useful in a wide variety of image
processing problems including smoothing of medical imaging and signal
enhancement [20,41]. An iterative process is used to compute the total
variation between a noisy image f and a smoothed image u where V is
the differential operator. This processed is defined as
ou Vu
== -(W)—H(f—u). an

The regularization parameter 1 ranges from 0 to 1 where the
smoothing becomes more severe as it approaches its minimum value. It
should be noted that when u is denoised, the total variation is equal to
the gradient magnitude. This equivalency can only be achieved after
many iterations and computation of the Ly norm, which can become
computationally expensive especially with larger images. Comparably
to the two-dimensional Wiener filter, the denoised image u will display
fewer ghosting artifacts than the original magnified frame f . Due to the
smoothing of defined boundaries, edge-preservation may not be as
robust compared to traditional image processing algorithms.

3.4. Centroid tracking

Computer vision approaches have been implemented over several
decades to track pixelated motion [27]. The centroid tracking of a
particular region of interest first begins with applying a threshold to
compute a binary image. Global thresholding is applied to individual
frames; such that, pixel intensities are converted to 0 or 1 for each co-
ordinate (i,j) . These intensities are based on an adaptive grayscale
threshold , h, that is found in the image ,I. A binary image B is defined as
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Fig. 5. A qualitative assessment of frame distortion due to an increase in magnification factor, where a = 10 .
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Fig. 6. Binary frame comparison of various methods where I is the magnified image and I is the processed frame. For the no image filtering case ,I =17 .

B(i,j) =1(i,j) > h. (12)

From this point, it becomes simplistic to compute the coordinates for
the region of interest. The x and y coordinates for the n -by- m frame are
expressed as

—1 —1 s+
Z?:() jmzo JB(i,))
A

n—1 m—1 . .o
_Zi:O =0 iB(i,j)
A

X

In this context, A is regarded as the area of a binary image B . There
are differing approaches from the traditional centroid tracking, which
aim to pinpoint boundaries surrounding the region of interest.

3.5. Edge tracking via Kanade-Lucas-Tomasi feature tracker (KLT)

Optical flow algorithms have been widely implemented to quantify
changes in pixel intensity for motion extraction [26]. The use of optical
flow helps estimate motion in images by evaluating a pixel’s intensity
over time. Tomasi et al. made improvements to the traditional Lucas-
Kanade (LK) optical flow algorithm to track select regions of interest
within an image [34]. This ultimately produced the enhanced Kanade-
Lucas-Tomasi (KLT) algorithm. When evaluating subtle motion in

video, edge-features are presented as an alternative to traditional
centroid tracking approaches [35]. The KLT algorithm pays heavy
attention to the squared sum of the gray difference between frames. This
difference is only tracked in a window or region of interest that is
specified by the user. The position of sequential images I(x,y,t) and
I(x,y,t+7) at time t and t +7 satisfy

I(x,y,t+7) =I(x — Ax,y — Ay, t), where (14)

The corresponding displacements here are defined as Ax and Ay .
Specifying a region of interest at a reference frame, J(x,y,t) and a
sequential frame K(x,y, t+7) yields

J(X*}')ZJ(X*AXQ/*A)),I), (15)

K(X) = K(x,y,1+7). (16)

X is comprised of the image coordinates (x,y) for respective frames
where our shifted displacements is y . Second order moments of the
image can now be obtained by computing the gradient of the image g in
the (x,y) directions
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Fig. 7. Spatiotemporal slices of images for varying degrees of magnification. amq, is computed using a 400 x 400 (pixel) frame to determine A.
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This sets up the final solution to obtain the approximate translation y

4. Test setup for experimental validation
4.1. Implementation of 2D filtering

There are several differing parameters available to the user when

where i using PMM, which without familiarity can affect magnified results.
y=2" / / [J(X) — K(X)g(X)dxdy. 18) Currently, magnification factor, a is arbitrarily selected based on the
visual representation of motion. This work aims to compute an appro-

For small regions of interest with a distinct boundary, the use of the priate magnification factor for quantification of exaggerated motion.
KLT algorithm will be useful in tracking subtle displacement due to its The test case will be a black square that is given a particular size and
pixel-by-pixel operations. In the following sections, quantified dis- amplitude of motion. Fig. 5 displays a rigid geometry undergoing

placements draw comparisons between centroid versus the edge-feature magnified translation for one-full cycle. Once the region of interest
tracking for a sequence of images or magnified video. reaches it maximum or minimum, there is a significant drop in peak-
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3D-Printed
Cube

Shaker LVDT

Fig. 9. Experimental test structure using PCB Smartshaker™, 3-D Printed Cube
(region of interest), and LVDT.

signal to noise ratio (PSNR) when comparing the purely translated
versus magnified frames. On the contrary, once the region reaches its
equilibrium position, the PSNR is restored due to the limited distortion
when comparing the raw versus magnified frames. Even at low values of
a , frame distortion is still present which provides necessity in imple-
menting image filtering such as the two-dimensional Wiener filter and
TVD.

Fig. 6 displays binary images following magnified translation for
filtered and non-filtered frames. As a result of Eq. (12), each pixel in the
frame will be converted to a 0 or 1 intensity value. Due to the grayscale
variation of the ghosting artifacts, the amplified displacement may not
be well represented in a binary image due to the adaptive thresholding.
Shown in Fig. 6, the use of Eq. (10) and Eq. (11), smooth the boundary,
such that adaptive thresholding will not affect the magnified result.
Ultimately, this places limitations on using a centroid-based quantifi-
cation approach due to applying an improper image threshold prior to
computing Eq. (13).

4.2. Determination of magnification factor for accurate quantification
As presented in the previous section, a selection of « drastically af-

fects the results of magnified data. Wadhwa et al. define the bound on
magnification for the half-octave filter bank as

Measurement 189 (2022) 110508

@< 19)

25
where 1 is defined as the spatial wavelength and & is the magnitude
of the original displacement [2]. The necessity to stay within the bounds
of magnification plays a key-role in determining an accurate quantita-
tive assessment of exaggerated motion. To compute the limit of a, a
simple case of a rectangular region of interest will be examined. Spatial
frequency , wo, is computed using the width of the image in pixels. The
reciprocal of wy is equivalent to A’ . The increase in A’ supports larger a
due to the gain of spatial support. Although the maximum « is computed,
quantification will be more difficult as magnification approaches its
theoretical maximum. Eq. (20) presents a modification of the derived
bound by Wadhwa et al. [2] to ensure accurate quantification of motion,
where € is a constant restriction factor.

le

Ay < ==

26 20

As e decreases, the maximum « is subsequently decreased resulting
in less ghosting artifacts, which simplifies motion extraction. This can
visually be proven in the frequency domain. For example, Fig. 7 displays
the spatiotemporal slices of a frame from t(1) to t(n) where n is a distinct
instance of time. It can be seen that as « is increased the region of in-
terest’s edges become less smooth and more jagged. The jagged edges
are representative of the degradation that takes place due to ghosting
artifacts.

The motion artifacts become more evident at the boundary once

Table 1
Synthetic video parameter selection prior to quantification.

Synthetic Video Independent Variable Selection

&', Peak-to-Peak Displacement Amplitude of Motion (pixel) 5.8
Frequency of Motion (Hz) 5

Sampling Frequency (Hz) 125

Frame Dimension (pixel) 500 x 1000
Box Dimension (pixel) 220 x 220
Filter Bank Half-Octave
a, Magnification Factor 0-12

o, Spatial Smoothing Parameter (pixel) 0

Image Filtering Properties

2-D Wiener Filter, n (pixels) (15,15)
Total Variation Denoising, 4 0.2

Waveform of Motion
Peak to Peak Displacement Amplitude, r)", = 5.8 (pixel)

Synthetic Data 5 v '
. Period of Motion
Generation (L ]
N
L/ / 1 _
) / {
- . - | ; |
L J /“‘ _
—> / /
Width I / y v, J |
4L ]
-5 ! L I '
0 0.2 0.4 0.6 0.8 1

Time (s)

Fig. 10. A synthetic region of interest that is given horizontal sinusoidal motion with a specific frequency and displacement amplitude.
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(a) (b)

Peak to Peak Magnitude of Displacement with Varying Magnification Factor

!
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Fig. 11. Quantification of magnified displacement for synthetic data; (a) magnified images at @ = 0, Qnqx/2, and Amqx , (b) Comparison of peak-to-peak displacement
amplitude for varying « .

Percent Error Comparison for Quantification

Bl
9 T T T T T T T T T T T T T T T T T
I Centroid Tracking, No Filtering
I Centroid Tracking, Wiener Filter
I Centroid Tracking, Total Variation Amax € = 1
20 | | Edge Feature Tracking, KLT \ J
5 15) ]
: .
K Umax, € = 1/2
3
5
a 10F N
5
0

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
a, Magnification Factor

Fig. 12. Quantification of error comparison for computed peak-to-peak magnitudes of displacement.

motion is amplified. As aforementioned, a two-dimensional rectangular
region of interest can be evaluated as a rectangular pulse function for a
one-dimensional case. These functions are well characterized in the
frequency domain, where the Fourier transform of a rectangular func-

Table 2
Synthetic data scaling factors (y) used to correct limitations of quantification
measurements when compared to the theoretical trend line.

. . 2

Tracking Methodology Scaling Factor (y) R tion is a sinc function. The power spectrum at specific magnification
Centroid Tracking, No Filtering 1.221 0.9956 factors can be evaluated by taking the Fast Fourier Transform (FFT) of a
Centroid Tracking, Wiener Filter 1.126 0.9976 spatiotemporal slice. Fig. 8 depicts the evaluated image slices in the
Centroid Tracking, Total Variation 1.152 0.9951 frequency domain. As a reaches a maximum, the high-frequency com-
Edge-Feature Tracking (KLT), 1.104 0.9987

No Filtering ponents of the signal are compromised due to magnification ghosting
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Peak to Peak Magnitude of Displacement with Varying Magnification Factor
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Fig. 13. Scaled magnitudes of displacement to match that of the theoretical curve, Eq. (21) for synthetic data.
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Fig. 14. Absolute error comparison of scaled displacements for synthetic data.

artifacts which limits it potential for motion extraction. It can be
deduced that quantification error at apmq, Will be larger due to the larger
difference in the power spectrum AE when comparing magnified and
unmagnified image slices. By reducing the maximum a by half, the
quantification boundary will be reduced. This is a direct result of
conserving the signal’s power post magnification.

4.3. Experimental verification setup

The objective of PMM is to amplify subtle motion in video for further
structural dynamic analysis. The use of high-speed cameras has been
integral in capturing subtle motion and pose as a suitable non-invasive
approach to data analysis. Fig. 9 captures the experimental test struc-
ture that is used to quantify a baseline motion measurement using a
Linear Variable Differentiable Transformer (LVDT). A PCB Miniature
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Peak to Peak Magnitude of Displacement with Varying Magnification Factor
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Fig. 15. Quantification of magnified displacement for experimental structure data; (a) magnified images at @ = 0, @max/2, and dmax , (b) Comparison of peak-to-peak

displacement amplitude for varying «a .
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Fig. 16. (a) Quantification error comparison of computed peak-to-peak displacement magnitudes for experimental structure data, (b) TRAC values of experimental

data time history for varying magnification factor and quantification technique.

Electrodynamic Shaker is used for excitation of the three-dimensional
cube, while a single 4-megapixel PHOTRON high-speed camera cap-
tures data at 125 (fps). The working distance is 50 (cm) with a corre-
sponding calibration factor of approximately 0.15 (mm/pixel).

A 5 (Hz) sine-wave pulse was applied to the 3D-printed cube to
generate subtle motion. The peak-to-peak magnitude of the displace-
ment time history is 0.86 (mm). According to [2], the magnified motion
should be equivalent to (1 +a) times true motion. This can concisely be
expressed as,

¢=5(+a)

where ¢ is the peak-to-peak magnitude of magnified motion, « is
magnification factor, and § is the peak-to-peak magnitude of unmagni-
fied motion. Once the data is collected, a g, value is computed using
Eq. (20).

(21)

10

4.4. Synthetic data generation

A synthetic video is generated in this work to mimic that of the
experimental setup that would contain a moving object. As shown in
Fig. 10, the video contains a rigid square geometry that will oscillate
back and forth at a particular frequency and amplitude that is specified
by the user. Following the initial generation of the video, a selection of
PMM parameters such as: filter bank, magnification factor and spatial
smoothing parameter are designated. Table 1 outlines the selected pa-
rameters for the synthetic video test including the image filtering
considerations.

The parameters that were chosen closely resemble the experimental
test; such that, comparisons could be drawn between synthetic and
experimental structure data. For example, 5§ was determined using the
0.86 (mm) displacement and corresponding calibration factor from the
experimental validation test. It should be noted that the upper bound on
a is determined using Eq. (20) where € = 1 . Relaxing the restriction
factor € will permit evaluation of how well magnified motion can be
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Time History of Quantified Motion
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Fig. 17. Comparison of ideally magnified motion versus tracked motion via KLT. The TRAC value for comparing the two curves is 0.9871.

Table 3

Experimental data scaling factors () used to correct limitations of quantifica-

tion measurements when compared to the theoretical trend line.

quantified at ayq . The peak-to-peak displacement amplitude, 5 was
determined based on an experimental structure experiment test; such
that, comparisons could be drawn between synthetic and experimental
structure data. Following the determination of all parameters, quanti-

Tracking Methodology Scaling Factor (y)
Centroid Tracking, No Filtering 1.170
Centroid Tracking, Wiener Filter 1.060
Centroid Tracking, Total Variation 1.052
Edge-Feature Tracking (KLT), 1.041

No Filtering

R? fication of motion is computed using both centroid detection and edge-
0.9980 feature tracking.

0.9983

0.9984 5. Results and discussion

0.9987

5.1. Synthetic data test results

Quantification of exaggerated motion is achieved using unprocessed

Peak to Peak Magnitude of Displacement with Varying Magnification Factor
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Fig. 18. Scaled magnitudes of displacement to match that of the theoretical curve, Eq. (21) for the experimental structure data.
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Fig. 19. Absolute error comparison of scaled displacements for experimental structure data.

or raw images and filtered magnified frames. For comparison purposes,
the parameters selected for image filtering in Table 1 were used for both
the experimental structure and synthetic test. Fig. 11 displays the
quantified motion with a ranging from 0 to 16. Eq. (21) is used as
comparative magnified motion that Wadhwa et al. suggests in the
original work [2]. As shown in the figure, the image-enhancement
methods greatly affect the centroid based tracking approach. This is
attributed to smoothing the ghosting artifacts that appear once the im-
age’s phase is wrapped through 2z . The discrepancies in quantified
amplitude at larger values of a are attributed to the assumptions made
with both the centroid and edge feature tracking techniques. The re-
striction factor presented in Eq. (20) not only limits magnification, but
also ensures accurate quantification. To account for inaccuracy in scaled
data, absolute error quantifies the discrepancy between the theoretical
target values (¢) versus the experiment results of peak-to-peak ampli-
tude & multiplied by (1 + a). Eq. (22) computes the absolute error e
with respect to the increase in magnification factor a .

:w—wg+mndm%

(22)

Fig. 12 displays the error associated with each quantification
method.

The percent error comparison displays that the centroid tracking
algorithm without image filtering does not perform as well as the pro-
posed alternative methods. An empirical scaling factor, y is applied to
the magnitudes of displacement using the difference in slope between
each method and the theoretical curve. A first order assumption using a
linear least square approach was used to compute corresponding scaling
factors. This scaling factor is used to correct for the limitations of
quantification assumptions due to the ghosting artifacts and could prove
to be useful if displacement measurements are not known a-priori.
Table 2 lists the scaling factors used for each approach, while Fig. 13
depicts the scaled magnitudes of displacement amplitude. Fig. 14 dis-
plays the quantified absolute error associated with each method and

12

magnification factor.

5.2. Experimental data test results

Similarly, for the experimental structure experiment, Figs. 15 and 16
(a) display the magnitude of quantified motion and associative percent
error using Eq. (22), respectively. Additionally, Fig. 15 (b) depicts the
time-response assurance criterion (TRAC) values for each respective
quantitative approach at differing magnification factors. A TRAC value
is used to draw comparison between a theoretical and measured time-
history. Here, the true motion ¢(t) will be compared to the approxi-

mate displacement time curve $(t) for each quantification method. The
TRAC equation is expressed as,

(#079())*
(#(079(0)) (@) (1)

In Eq. (23), a value of unity represents perfect correlation where zero
represents no correlation between the two discrete signals. Fig. 17 dis-
plays the overlayed time history of the ideal magnified displacement
versus the tracked motion via KLT.

Similarly to the synthetic data experiment Table 3 lists the scaling
factors used for each approach. In addition, Fig. 18 depicts the scaling
factor for each individual quantification approach for the experimental
structure experiment. Comparatively to the synthetic test results, Fig. 19
quantifies the absolute error for each method at individual magnifica-
tion factors. Glancing at the results, the KLT algorithm proves to be the
best approach among the methods investigated for tracking due to its
ability to distinguish and interpolate between dark and light boundaries
for magnified motion extraction. Due to the categorical nature of
creating a binary frame, the centroid approach is more vulnerable to
discarding a group of pixels that could prove to be important for
quantification. Also the tracking performed on the experimental video
was superior to that of the synthetic test due to the grayscale transition
from light to dark. The synthetic data containing a cluster of dark pixels

TRAC = (23)
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on a bright background provided more artifacts due to the distinctive
transition between edge features (high) and low frequency content in
images.

6. Conclusion

In this work, phase-based motion magnification is used to extract
quantitative measurement of magnified motion. Up until this point,
PMM has solely been used to qualitatively show exaggerated motion,
frequency of motion or deflection characteristics. Associative error is
also derived for the Gabor-wavelet undergoing translation by an arbi-
trary phase shift. Two methods are introduced to quantify magnified
motion: centroid tracking, edge-feature tracking via KLT. Also, addi-
tional image-enhancement filters are presented to serve as a tool for
smoothing of ghosting artifacts that appear at larger magnification
factors. Continuation of this work could center on automating deter-
mination of particular parameters such as regularization (1) and
thresholding (th) with respect to magnification factor. Analysis of
quantified data for synthetic and experimental structure tests is pre-
sented, where a restriction factor is presented to limit the amount of
quantitative error as a function of magnification. KLT, proved to be the
most accurate of the proposed methods due to its noise handling capa-
bilities at large magnification factors. TRAC values for each method was
computed, where KLT outperformed the image denoising prior to
computing the centroid. Scaling factors were computed to compensate
for distortion error found in frames as a result of magnification. A linear
least squares regression was used to approximate the degrees of accu-
racy for each of the outlined approaches. Future studies will further
investigate automation of image processing parameters with respect to
magnification in addition to uncertainty quantification of the methods
presented.
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