
Measurement 189 (2022) 110508

Available online 24 November 2021
0263-2241/© 2021 Elsevier Ltd. All rights reserved.

Quantification of phase-based magnified motion using image enhancement 
and optical flow techniques 

Nicholas A. Valente a, Celso T. do Cabo b, Zhu Mao a,b,*, Christopher Niezrecki a 

a Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA 
b Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA   

A R T I C L E  I N F O   

Keywords: 
Phase-based motion magnification 
Image processing 
Optical flow 
Computer vision 
Noncontact sensing 
Motion extraction 

A B S T R A C T   

Phase-based motion magnification (PMM) has been widely implemented in the field of vibration and structural 
health monitoring for its non-invasive nature to reveal hidden system dynamics. The approach has shown success 
in magnifying subtle structural oscillatory motions for system identification and observation of operating shapes. 
Although this method has been implemented and is becoming increasingly popular, the amount of physical 
motion associated with the degree of magnification has yet to be quantified. Within this work, a synthetic 
simulation containing an oscillating geometry is presented to quantify its magnified pixel displacement. Com
puter vision techniques including centroid detection and edge-feature tracking via optical flow are adopted to 
quantify the relation between amplification and true motion. The quantification techniques are also tested and 
verified on an experimental structure with the use of a high-speed optical sensing system. Motion artifacts distort 
the integrity of the magnified motion, which can pose problems for accurate quantification. Image enhancement 
techniques such as the two-dimensional Wiener filter and Total Variation Denoising (TVD) are used to smooth 
the high-frequency content that is observed following magnification. Associative error concerning a discrete shift 
of the Gabor wavelet is analytically derived to show the justification of spatial aliasing. An adjusted bound on 
magnification is presented to display the limitations of the technique, while providing insight into associated 
error. The results of this work will help to enhance PMM from a qualitative evaluation tool to a quantitative 
measurement tool of magnified displacements.   

1. Introduction 

The study of subtle motion has been an area of interest in the vi
bration community over the past decade. Sensors such as accelerometers 
and strain gauges have been used to capture dynamic characteristics 
from large structures. Due to the laborious setup using contact instru
mentation, the use of cameras has proven to be a well adopted non- 
invasive technique for motion data acquisition. In the field of dy
namics, structures tend to oscillate with subtle amplitudes, which may 
not appear to the naked eye. Although studies have shown, that PMM 
can be used for structural dynamics extraction qualitatively, there has 
yet to be an investigation into the quantitative capabilities and associ
ated error of extracting magnified motion. 

Liu et al. introduced a linear motion magnification approach, where 
imperceptible motion could be amplified and studied [1]. Most notably, 
Wadhwa et al. improved upon the linear magnification technique by 
manipulating the phase of an image where noise was translated rather 

than amplified with motion [2–3]. Since then, several modifications 
have been made to the algorithm for speed and noise improvements 
[4–7]. PMM has also been implemented in a wide variety of applications 
related to structural dynamics [8–13]. In particular, the use of PMM 
permitted computation of full-field operating deflection shapes in 
addition to fundamental frequencies of a structure that was subtly 
oscillating. [14–20]. Computation of modal parameters using a non- 
invasive approach was shown to be robust and require less contact 
and manual instrumentation [21–24]. Poozesh et al. demonstrated this 
approach for large-scale structures such as wind turbine blades [25]. 

In this work, image-processing techniques such as the two- 
dimensional Wiener filter and Total Variation Denoising (TVD) are 
implemented to smooth out the phase-based motion magnification ar
tifacts that appears in distorted video. Quantifying magnified motion is 
achieved with the use of centroid and edge-feature tracking approaches 
as displayed in Fig. 1. 
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2. Literature background 

Extraction of quantitative information in videos has been widely 
investigated over the past several decades. Developments in optical 
flow, tracking, and image filtering has served to enhance the capabilities 
of non-invasive measurement [26–29]. This in conjunction with PMM 
can serve as a means to extract the operating deflection characteristics as 
well as dynamic range of motion [30–33]. As a modification to [26], 
Tomasi introduced a feature window; such that, particular pixels are 
tracked from a reference characteristic frame [34]. The Kanade-Lucas- 
Tomasi (KLT) algorithm has been implemented in simple to complex 
computer vision problems ranging from face detection to image stabi
lization [35]. 

As magnification is increased, ringing artifacts (ghosting) appear due 
to the limited spatial support that is provided by the complex steerable 
pyramid [36]. Currently, there are a wide variety of smoothing algo
rithms that are available to aid in de-noising images. The two- 
dimensional Wiener filter serves as an adaptive noise removal 
approach; such that, noise variance is estimated in an image based on 

the average values of local variance [37]. For example, Rudin et al. 
introduced the total variation based approach, i.e. TVD, to tackle the 
noise removal process. This method poses an optimization problem that 
will return a denoised image based on a regularization parameter [38]. 
The elimination of ghosting artifacts will ultimately make quantifying 
magnified motion more simplistic and accurate. Adaptation of said al
gorithms for robust denoising of phase-based magnified videos has yet to 
be investigated in literature. 

The novelty of the proposed work is the quantification of magnified 
motion and associative discrete error using different augmentation 
methods to enhance motion extraction. The implementation of the two- 
dimensional Wiener filter and TVD will suppress motion artifacts mak
ing quantification more simplistic and accurate. This could enable the 
use of PMM as both a qualitative and quantitative tool for non-invasive 
measurement. A comparison is made between the differing algorithms 
and their effect on the quantified displacement. The remainder of the 
paper is organized as follows: Section 3 presents the theoretical back
ground while Section 4 introduces the test setup for experimental vali
dation that is performed on a lab and synthetic data set. Section 5 
provides an overview of the collected results and subsequent discussion. 
Finally, in Section 6 conclusions of the work are presented. 

3. Theoretical background 

3.1. Phase-based motion magnification (PMM) 

There have been several improvements made to amplify subtle mo
tion in video including alternative image pyramids and deep learning 
applied to motion magnification [2–4,31,39]. Displacement from phase 
information can be extracted and then magnified by decomposing the 
complex steerable pyramid based on the Fourier Shift Theorem; that is, 
the output displacement is proportional to the phase change between 
consecutive frames of the video in the frequency domain. As introduced 
by [2], PMM decomposes an intensity profile of an image, f(x) where x 
represents pixels across the width of an image. This image profile is 
expressed as a sum of complex sinusoids in time, t, undergoing a global 
translation, δ(t) where 

f (x + δ(t) ) =
∑∞

ω=−∞
Aωeiω(x+δ(t) ). (1) 

Similarly to the Fourier shift theorem, Aω is representative of the 
respective amplitude while the phase ω(x +δ(t) ) contains pertinent 
motion information. The separation of particular motion can be ach
ieved by specifying bands of the filter that are represented by a single 

Nomenclature 

Symbol Name 
α Magnification factor 
γ Translation coordinates 
δ(t) Image profile translation 
δ’ Magnitude of original displacement 
∊ Restriction factor 
η Neighborhood of pixels 
λ Regularization parameter 
λ’ Spatial wavelength 
μ Local mean 
ν Average local variance 
τ Time shift 
σ Spatial smoothing parameter 
σ’ Variance 
ϕ Peak-to-peak magnitude of magnified motion 
ϕ(t) True displacement time history 
ϕ̂(t) Approximate displacement time history 
ω Single frequency 
ω0 Selected frequency of filter 
ψ Scaling Factor  

Fig. 1. Algorithm workflow diagram for the proposed work. Incremental steps include: (1) Video Acquisition, (2) PMM, (3) Signal Processing Options, (4) Tracking 
Methodology, and (5) Quantified Displacement. 
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frequency ω . A band-passing of the phase in the temporal domain, 
removes the DC component of the phase shift such that 

Bω(x, t) = ωδ(t). (2) 

Amplifying the motion in the sub-bands, Sω(x, t) of the complex 
steerable pyramid comes as a result by multiplying the band-passed 
phase Bω(x, t) by some magnification factor α . Reconstructing the in
tensity profile with magnified displacement yields 

Sω(x, t) = Aωeiω(x+(1+α)δ(t) ). (3) 

It is then expressed that Sω(x, t) is comprised of complex sinusoids 
that are modulated exactly (1 + α) times. Collapsing the complex- 
steerable pyramid in each sub-band will result in a magnified image 
intensity profile , f(x +(1 + α)δ(t) ) . The computation of local phase in 
each sub-band takes place at each scale and orientation of the filter as 
show in Fig. 2 (a). For visual representation, Fig. 2(b), and Fig. 2(c) 
display the frequency response of the octave and half-octave filter banks. 
The spacing between each orientation is correspondent to a base two 
frequency ratio. That is, for the octave and half-octave filter bank, the 
spacing between each orientation will be 21 and 21/2 respectively for the 
angular direction. In the radial direction, the octave filter contains four 
scales while the half-octave contains eight. Having more orientations 
and scales in the frequency domain permit larger amplification of mo
tion due to their support in the spatial domain. 

Amplification of subtle displacement has been helpful in visualizing 
imperceptible motion; however, motion artifacts start to become a 
burden when dealing with large amplification factors. This occurs due to 
the complex steerable pyramid’s limited spatial support once magnifi
cation exceeds the filters bound. An approximate one-dimensional rep
resentation of the complex steerable pyramid is a Dirac function that is 
shifted δ(t) by a Gabor filter [2]. These wavelets contain a Gaussian 
function with a specific width , σ that attenuates the motion of the 
sinusoid underneath the bell curve. Eq(s). 4 through 7 are derived by 
Wadhwa et al. where the impulse response is defined as 

Sω(x, t) = e−(x−δ(t) )2/(2σ2)e2πiω0(x−δ(t) ). (4) 

A band-pass filtering and magnification of the phase at t = 0 and t , 
yields 

Bω(x, t) = 2πω0αδ(t). (5) 

Therefore, the band-passed phase difference will shift the motion by 
αδ(t) pixels. The bound-on magnification plays an important role in 
determining where exaggeration of true motion has reached a 
maximum. The appropriate bound on αδ(t) is a constant, C [2]. As δ 
approaches 3π/4 , spatial aliasing begins to appear which leads to the 
ghosting artifacts that are generally seen in magnified video as show in 
Fig. 3. An L1 normalized error for a particular phase shift is computed by 
comparing a true and Gabor shifted signal. The impulse response for a 

Fig. 2. Frequency Response of the Complex Steerable Pyramid [36]; (a) definition of orientation and scale, (b) Frequency Response of the Octave Filter Bank, (c) 
Frequency Response of the Half-Octave Filter Bank. 

Fig. 3. (a) One-dimensional representation of phase shifting Gabor filters. As δ approaches 3π/4 , the Gaussian window or dotted curve truncates the signal which 
produces spatial aliasing resulting in ghosting artifacts, (b) Degradation of images due to the ghosting artifacts present in magnified video where true non- 
exaggerated motion is two pixels. 
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Dirac function is defined in Eq. (4). The approximated shift , Sω(x, t), that 
is attenuated by the Gaussian bell curve of Gabor wavelet is defined as 

Sω(x, t) = e−x2/(2σ2)e2πiω0(x−δ(t) ). (6) 

Fig. 4 (a) depicts the difference in phase shift for the true and Gabor- 
shifted signal. For a discrete set of points, the L1 error function in pixels 
is written from j = (1, n) where n is the length of signal as 

L1 =
∑n

j=1

⃒
⃒
⃒Sω(x(j), t) − Sω(x(j), t )

⃒
⃒
⃒ , and 

L1 =
∑n

j=1

⃒
⃒
⃒
⃒e

2πiω0(x(j)−δ(t) )

(

e−
(x(j)−δ(t) )2

2σ2 − e−
x(j)2

2σ2

) ⃒
⃒
⃒
⃒. (7) 

Fig. 4 (b) displays the L1 norm error function from Eq. (7) comparing 
the true versus Gabor shifted signal. It should be noted that the sug
gested shift of π/2 represents one-quarter of a full cycle/wavelength. As 
aforementioned and depicted in Fig. 3 (b), the phase unwrapping that 
takes place past 2π will extend the provided spatial support; thus, the 
justification of ghosting artifacts. The generation of motion artifacts will 
make quantification of motion via computer vision more difficult due to 
their gray scale variation at the boundary. The implementation of two- 
dimensional filters will aid in suppressing said artifacts making quan
tification more accurate. 

3.2. Two-dimensional wiener filter 

Image filtering has been used in applications of PMM due to its 
ability to account for distortions that appear in video [40]. The two- 
dimensional Wiener filter is a computationally effective tool to smooth 
the ghosting artifacts that appear at large magnification factors. As 
introduced by [37], the two-dimensional Wiener filter first computes the 
local mean , μ, and variance , σ’2, of an N -by- M image, X where 

μ =
1

NM

∑

n1 ,n2∈η
X(n1, n2), and (8)  

σ’2
=

1
NM

∑

n1 ,n2∈η
X2(n1, n2) − μ2. (9) 

The specific coordinates , (n1, n2) are defined within the specified 
neighborhood of pixels η . As η increases, the computation time of the 
two-dimensional filter becomes larger due to the densely populated 
number of pixels. Following computation of Eq. (8) and Eq. (9), a 

denoised image , X̂, is computed using , ν2, the average of the local 
variances defined in the pixel neighborhood η . 

X̂(n1, n2) = μ +
σ’2

− ν2

σ’2 (X(n1, n2) − μ ) (10) 

The denoised image X̂ ideally would aid in smoothing the ghosting 
artifacts or ripples that appear following a desired magnification of 
subtle motion. 

3.3. Total-variation denoising (TVD) 

Posing an optimization approach to image enhancement can be an 
alternative to utilizing traditional image processing techniques. TVD, as 
introduced by [38] has shown to be useful in a wide variety of image 
processing problems including smoothing of medical imaging and signal 
enhancement [20,41]. An iterative process is used to compute the total 
variation between a noisy image f and a smoothed image u where ∇ is 
the differential operator. This processed is defined as 

∂u
∂t

= ∇∙
( ∇u

‖∇u‖

)
+ λ(f − u). (11) 

The regularization parameter λ ranges from 0 to 1 where the 
smoothing becomes more severe as it approaches its minimum value. It 
should be noted that when u is denoised, the total variation is equal to 
the gradient magnitude. This equivalency can only be achieved after 
many iterations and computation of the L2 norm, which can become 
computationally expensive especially with larger images. Comparably 
to the two-dimensional Wiener filter, the denoised image u will display 
fewer ghosting artifacts than the original magnified frame f . Due to the 
smoothing of defined boundaries, edge-preservation may not be as 
robust compared to traditional image processing algorithms. 

3.4. Centroid tracking 

Computer vision approaches have been implemented over several 
decades to track pixelated motion [27]. The centroid tracking of a 
particular region of interest first begins with applying a threshold to 
compute a binary image. Global thresholding is applied to individual 
frames; such that, pixel intensities are converted to 0 or 1 for each co
ordinate (i, j) . These intensities are based on an adaptive grayscale 
threshold , h, that is found in the image , I . A binary image B is defined as 

Fig. 4. (a) Phase shifted impulse function by δ = π/2 ; the plot displays the difference in modulation using pure translation versus using Gabor wavelet, (b) L1 error 
function for phase shifts δ . 
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B(i, j) = I(i, j) > h. (12) 

From this point, it becomes simplistic to compute the coordinates for 
the region of interest. The x and y coordinates for the n -by- m frame are 
expressed as 

x =

∑n−1
i=0

∑m−1
j=0 jB(i, j)
A

, y =
−

∑n−1
i=0

∑m−1
j=0 iB(i, j)

A
. (13) 

In this context, A is regarded as the area of a binary image B . There 
are differing approaches from the traditional centroid tracking, which 
aim to pinpoint boundaries surrounding the region of interest. 

3.5. Edge tracking via Kanade-Lucas-Tomasi feature tracker (KLT) 

Optical flow algorithms have been widely implemented to quantify 
changes in pixel intensity for motion extraction [26]. The use of optical 
flow helps estimate motion in images by evaluating a pixel’s intensity 
over time. Tomasi et al. made improvements to the traditional Lucas- 
Kanade (LK) optical flow algorithm to track select regions of interest 
within an image [34]. This ultimately produced the enhanced Kanade- 
Lucas-Tomasi (KLT) algorithm. When evaluating subtle motion in 

video, edge-features are presented as an alternative to traditional 
centroid tracking approaches [35]. The KLT algorithm pays heavy 
attention to the squared sum of the gray difference between frames. This 
difference is only tracked in a window or region of interest that is 
specified by the user. The position of sequential images I(x, y, t) and 
I(x, y, t +τ) at time t and t +τ satisfy 

I(x, y, t + τ) = I(x − Δx, y − Δy, t), where (14) 

The corresponding displacements here are defined as Δx and Δy . 
Specifying a region of interest at a reference frame, J(x, y, t) and a 
sequential frame K(x, y, t +τ) yields 

J(X − γ) = J(x − Δx, y − Δy, t), (15)  

K(X) = K(x, y, t + τ). (16) 

X is comprised of the image coordinates (x, y) for respective frames 
where our shifted displacements is γ . Second order moments of the 
image can now be obtained by computing the gradient of the image g in 
the (x, y) directions 

Fig. 5. A qualitative assessment of frame distortion due to an increase in magnification factor, where α = 10 .  

Fig. 6. Binary frame comparison of various methods where I is the magnified image and I is the processed frame. For the no image filtering case , I = I .  
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Z =

∫∫

g(X)gT (X)dX =

∫∫ [
g2

x gxgy

gxgy g2
y

]

dxdy (17) 

This sets up the final solution to obtain the approximate translation γ 
where 

γ = Z−1
∫∫

[J(X) − K(X) ]g(X)dxdy. (18) 

For small regions of interest with a distinct boundary, the use of the 
KLT algorithm will be useful in tracking subtle displacement due to its 
pixel-by-pixel operations. In the following sections, quantified dis
placements draw comparisons between centroid versus the edge-feature 
tracking for a sequence of images or magnified video. 

4. Test setup for experimental validation 

4.1. Implementation of 2D filtering 

There are several differing parameters available to the user when 
using PMM, which without familiarity can affect magnified results. 
Currently, magnification factor, α is arbitrarily selected based on the 
visual representation of motion. This work aims to compute an appro
priate magnification factor for quantification of exaggerated motion. 
The test case will be a black square that is given a particular size and 
amplitude of motion. Fig. 5 displays a rigid geometry undergoing 
magnified translation for one-full cycle. Once the region of interest 
reaches it maximum or minimum, there is a significant drop in peak- 

Fig. 7. Spatiotemporal slices of images for varying degrees of magnification. αmax is computed using a 400 × 400 (pixel) frame to determine λ.  

Fig. 8. FFT of spatiotemporal image slice where α ranges from 0 to αmax . As α increases, the difference in power spectrum amplitude ΔE is depreciated in the 
side lobes. 
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signal to noise ratio (PSNR) when comparing the purely translated 
versus magnified frames. On the contrary, once the region reaches its 
equilibrium position, the PSNR is restored due to the limited distortion 
when comparing the raw versus magnified frames. Even at low values of 
α , frame distortion is still present which provides necessity in imple
menting image filtering such as the two-dimensional Wiener filter and 
TVD. 

Fig. 6 displays binary images following magnified translation for 
filtered and non-filtered frames. As a result of Eq. (12), each pixel in the 
frame will be converted to a 0 or 1 intensity value. Due to the grayscale 
variation of the ghosting artifacts, the amplified displacement may not 
be well represented in a binary image due to the adaptive thresholding. 
Shown in Fig. 6, the use of Eq. (10) and Eq. (11), smooth the boundary, 
such that adaptive thresholding will not affect the magnified result. 
Ultimately, this places limitations on using a centroid-based quantifi
cation approach due to applying an improper image threshold prior to 
computing Eq. (13). 

4.2. Determination of magnification factor for accurate quantification 

As presented in the previous section, a selection of α drastically af
fects the results of magnified data. Wadhwa et al. define the bound on 
magnification for the half-octave filter bank as 

α <
λ’

2δ’ (19) 

where λ’ is defined as the spatial wavelength and δ’ is the magnitude 
of the original displacement [2]. The necessity to stay within the bounds 
of magnification plays a key-role in determining an accurate quantita
tive assessment of exaggerated motion. To compute the limit of α, a 
simple case of a rectangular region of interest will be examined. Spatial 
frequency , ω0, is computed using the width of the image in pixels. The 
reciprocal of ω0 is equivalent to λ’ . The increase in λ’ supports larger α 
due to the gain of spatial support. Although the maximum α is computed, 
quantification will be more difficult as magnification approaches its 
theoretical maximum. Eq. (20) presents a modification of the derived 
bound by Wadhwa et al. [2] to ensure accurate quantification of motion, 
where ∊ is a constant restriction factor. 

αmax <
λ’∊
2δ’ (20) 

As ∊ decreases, the maximum α is subsequently decreased resulting 
in less ghosting artifacts, which simplifies motion extraction. This can 
visually be proven in the frequency domain. For example, Fig. 7 displays 
the spatiotemporal slices of a frame from t(1) to t(n) where n is a distinct 
instance of time. It can be seen that as α is increased the region of in
terest’s edges become less smooth and more jagged. The jagged edges 
are representative of the degradation that takes place due to ghosting 
artifacts. 

The motion artifacts become more evident at the boundary once 

Fig. 9. Experimental test structure using PCB Smartshaker™, 3-D Printed Cube 
(region of interest), and LVDT. 

Fig. 10. A synthetic region of interest that is given horizontal sinusoidal motion with a specific frequency and displacement amplitude.  

Table 1 
Synthetic video parameter selection prior to quantification.  

Synthetic Video Independent Variable Selection 

δ’, Peak-to-Peak Displacement Amplitude of Motion (pixel)  5.8 

Frequency of Motion (Hz) 5 
Sampling Frequency (Hz) 125 
Frame Dimension (pixel) 500 × 1000 
Box Dimension (pixel) 220 × 220 
Filter Bank Half-Octave 
α, Magnification Factor  0–12 
σ, Spatial Smoothing Parameter (pixel)  0 
Image Filtering Properties 
2-D Wiener Filter, η (pixels)  (15,15) 
Total Variation Denoising, λ  0.2  
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motion is amplified. As aforementioned, a two-dimensional rectangular 
region of interest can be evaluated as a rectangular pulse function for a 
one-dimensional case. These functions are well characterized in the 
frequency domain, where the Fourier transform of a rectangular func
tion is a sinc function. The power spectrum at specific magnification 
factors can be evaluated by taking the Fast Fourier Transform (FFT) of a 
spatiotemporal slice. Fig. 8 depicts the evaluated image slices in the 
frequency domain. As α reaches a maximum, the high-frequency com
ponents of the signal are compromised due to magnification ghosting 

Fig. 11. Quantification of magnified displacement for synthetic data; (a) magnified images at α = 0, αmax/2, and αmax , (b) Comparison of peak-to-peak displacement 
amplitude for varying α . 

Fig. 12. Quantification of error comparison for computed peak-to-peak magnitudes of displacement.  

Table 2 
Synthetic data scaling factors (ψ) used to correct limitations of quantification 
measurements when compared to the theoretical trend line.  

Tracking Methodology Scaling Factor (ψ) R2 

Centroid Tracking, No Filtering  1.221  0.9956 
Centroid Tracking, Wiener Filter  1.126  0.9976 
Centroid Tracking, Total Variation  1.152  0.9951 
Edge-Feature Tracking (KLT), 

No Filtering  
1.104  0.9987  
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artifacts which limits it potential for motion extraction. It can be 
deduced that quantification error at αmax will be larger due to the larger 
difference in the power spectrum ΔE when comparing magnified and 
unmagnified image slices. By reducing the maximum α by half, the 
quantification boundary will be reduced. This is a direct result of 
conserving the signal’s power post magnification. 

4.3. Experimental verification setup 

The objective of PMM is to amplify subtle motion in video for further 
structural dynamic analysis. The use of high-speed cameras has been 
integral in capturing subtle motion and pose as a suitable non-invasive 
approach to data analysis. Fig. 9 captures the experimental test struc
ture that is used to quantify a baseline motion measurement using a 
Linear Variable Differentiable Transformer (LVDT). A PCB Miniature 

Fig. 13. Scaled magnitudes of displacement to match that of the theoretical curve, Eq. (21) for synthetic data.  

Fig. 14. Absolute error comparison of scaled displacements for synthetic data.  
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Electrodynamic Shaker is used for excitation of the three-dimensional 
cube, while a single 4-megapixel PHOTRON high-speed camera cap
tures data at 125 (fps). The working distance is 50 (cm) with a corre
sponding calibration factor of approximately 0.15 (mm/pixel). 

A 5 (Hz) sine-wave pulse was applied to the 3D-printed cube to 
generate subtle motion. The peak-to-peak magnitude of the displace
ment time history is 0.86 (mm). According to [2], the magnified motion 
should be equivalent to (1 +α) times true motion. This can concisely be 
expressed as, 

ϕ = δ’(1 + α) (21) 

where ϕ is the peak-to-peak magnitude of magnified motion, α is 
magnification factor, and δ is the peak-to-peak magnitude of unmagni
fied motion. Once the data is collected, a αmax value is computed using 
Eq. (20). 

4.4. Synthetic data generation 

A synthetic video is generated in this work to mimic that of the 
experimental setup that would contain a moving object. As shown in 
Fig. 10, the video contains a rigid square geometry that will oscillate 
back and forth at a particular frequency and amplitude that is specified 
by the user. Following the initial generation of the video, a selection of 
PMM parameters such as: filter bank, magnification factor and spatial 
smoothing parameter are designated. Table 1 outlines the selected pa
rameters for the synthetic video test including the image filtering 
considerations. 

The parameters that were chosen closely resemble the experimental 
test; such that, comparisons could be drawn between synthetic and 
experimental structure data. For example, δ’ was determined using the 
0.86 (mm) displacement and corresponding calibration factor from the 
experimental validation test. It should be noted that the upper bound on 
α is determined using Eq. (20) where ∊ = 1 . Relaxing the restriction 
factor ∊ will permit evaluation of how well magnified motion can be 

Fig. 15. Quantification of magnified displacement for experimental structure data; (a) magnified images at α = 0, αmax/2, and αmax , (b) Comparison of peak-to-peak 
displacement amplitude for varying α . 

Fig. 16. (a) Quantification error comparison of computed peak-to-peak displacement magnitudes for experimental structure data, (b) TRAC values of experimental 
data time history for varying magnification factor and quantification technique. 
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quantified at αmax . The peak-to-peak displacement amplitude, δ’ was 
determined based on an experimental structure experiment test; such 
that, comparisons could be drawn between synthetic and experimental 
structure data. Following the determination of all parameters, quanti
fication of motion is computed using both centroid detection and edge- 
feature tracking. 

5. Results and discussion 

5.1. Synthetic data test results 

Quantification of exaggerated motion is achieved using unprocessed 

Fig. 17. Comparison of ideally magnified motion versus tracked motion via KLT. The TRAC value for comparing the two curves is 0.9871.  

Table 3 
Experimental data scaling factors (ψ) used to correct limitations of quantifica
tion measurements when compared to the theoretical trend line.  

Tracking Methodology Scaling Factor (ψ) R2 

Centroid Tracking, No Filtering  1.170  0.9980 
Centroid Tracking, Wiener Filter  1.060  0.9983 
Centroid Tracking, Total Variation  1.052  0.9984 
Edge-Feature Tracking (KLT), 

No Filtering  
1.041  0.9987  

Fig. 18. Scaled magnitudes of displacement to match that of the theoretical curve, Eq. (21) for the experimental structure data.  

N.A. Valente et al.                                                                                                                                                                                                                              



Measurement 189 (2022) 110508

12

or raw images and filtered magnified frames. For comparison purposes, 
the parameters selected for image filtering in Table 1 were used for both 
the experimental structure and synthetic test. Fig. 11 displays the 
quantified motion with α ranging from 0 to 16. Eq. (21) is used as 
comparative magnified motion that Wadhwa et al. suggests in the 
original work [2]. As shown in the figure, the image-enhancement 
methods greatly affect the centroid based tracking approach. This is 
attributed to smoothing the ghosting artifacts that appear once the im
age’s phase is wrapped through 2π . The discrepancies in quantified 
amplitude at larger values of α are attributed to the assumptions made 
with both the centroid and edge feature tracking techniques. The re
striction factor presented in Eq. (20) not only limits magnification, but 
also ensures accurate quantification. To account for inaccuracy in scaled 
data, absolute error quantifies the discrepancy between the theoretical 
target values (ϕ) versus the experiment results of peak-to-peak ampli
tude δ’ multiplied by (1 + α). Eq. (22) computes the absolute error e 
with respect to the increase in magnification factor α . 

e =
|ϕ − (δ’(1 + α) ) |

ϕ
∙100% (22) 

Fig. 12 displays the error associated with each quantification 
method. 

The percent error comparison displays that the centroid tracking 
algorithm without image filtering does not perform as well as the pro
posed alternative methods. An empirical scaling factor, ψ is applied to 
the magnitudes of displacement using the difference in slope between 
each method and the theoretical curve. A first order assumption using a 
linear least square approach was used to compute corresponding scaling 
factors. This scaling factor is used to correct for the limitations of 
quantification assumptions due to the ghosting artifacts and could prove 
to be useful if displacement measurements are not known a-priori. 
Table 2 lists the scaling factors used for each approach, while Fig. 13 
depicts the scaled magnitudes of displacement amplitude. Fig. 14 dis
plays the quantified absolute error associated with each method and 

magnification factor. 

5.2. Experimental data test results 

Similarly, for the experimental structure experiment, Figs. 15 and 16 
(a) display the magnitude of quantified motion and associative percent 
error using Eq. (22), respectively. Additionally, Fig. 15 (b) depicts the 
time-response assurance criterion (TRAC) values for each respective 
quantitative approach at differing magnification factors. A TRAC value 
is used to draw comparison between a theoretical and measured time- 
history. Here, the true motion ϕ(t) will be compared to the approxi
mate displacement time curve ϕ̂(t) for each quantification method. The 
TRAC equation is expressed as, 

TRAC =

(
ϕ(t)T ϕ̂(t)

)
2

(
ϕ(t)T ϕ(t)

)(
ϕ̂(t)T ϕ̂(t)

) (23) 

In Eq. (23), a value of unity represents perfect correlation where zero 
represents no correlation between the two discrete signals. Fig. 17 dis
plays the overlayed time history of the ideal magnified displacement 
versus the tracked motion via KLT. 

Similarly to the synthetic data experiment Table 3 lists the scaling 
factors used for each approach. In addition, Fig. 18 depicts the scaling 
factor for each individual quantification approach for the experimental 
structure experiment. Comparatively to the synthetic test results, Fig. 19 
quantifies the absolute error for each method at individual magnifica
tion factors. Glancing at the results, the KLT algorithm proves to be the 
best approach among the methods investigated for tracking due to its 
ability to distinguish and interpolate between dark and light boundaries 
for magnified motion extraction. Due to the categorical nature of 
creating a binary frame, the centroid approach is more vulnerable to 
discarding a group of pixels that could prove to be important for 
quantification. Also the tracking performed on the experimental video 
was superior to that of the synthetic test due to the grayscale transition 
from light to dark. The synthetic data containing a cluster of dark pixels 

Fig. 19. Absolute error comparison of scaled displacements for experimental structure data.  
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on a bright background provided more artifacts due to the distinctive 
transition between edge features (high) and low frequency content in 
images. 

6. Conclusion 

In this work, phase-based motion magnification is used to extract 
quantitative measurement of magnified motion. Up until this point, 
PMM has solely been used to qualitatively show exaggerated motion, 
frequency of motion or deflection characteristics. Associative error is 
also derived for the Gabor-wavelet undergoing translation by an arbi
trary phase shift. Two methods are introduced to quantify magnified 
motion: centroid tracking, edge-feature tracking via KLT. Also, addi
tional image-enhancement filters are presented to serve as a tool for 
smoothing of ghosting artifacts that appear at larger magnification 
factors. Continuation of this work could center on automating deter
mination of particular parameters such as regularization (λ) and 
thresholding (th) with respect to magnification factor. Analysis of 
quantified data for synthetic and experimental structure tests is pre
sented, where a restriction factor is presented to limit the amount of 
quantitative error as a function of magnification. KLT, proved to be the 
most accurate of the proposed methods due to its noise handling capa
bilities at large magnification factors. TRAC values for each method was 
computed, where KLT outperformed the image denoising prior to 
computing the centroid. Scaling factors were computed to compensate 
for distortion error found in frames as a result of magnification. A linear 
least squares regression was used to approximate the degrees of accu
racy for each of the outlined approaches. Future studies will further 
investigate automation of image processing parameters with respect to 
magnification in addition to uncertainty quantification of the methods 
presented. 
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