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Abstract

To evaluate the potential utility of isotope ratios in plant materials as an archaeological proxy for
past crop water status, relationships between water availability and stable isotope ratios in Cs4
species must be established. This study quantified the isotopic values (8'3C and §!°N) of pearl
millet (Pennisetum glaucum) seeds and leaves in response to varying degrees of water stress.
Under greenhouse conditions, we exposed five strains of pearl millet to three different watering

treatments. Pearl millet seed 3!3C values (mean and SD = -13.9 + 0.5 %o, n = 48) and leaf 8'3C

values (mean and SD =-14.8 + 0.7 %0, n = 75) were positively correlated with water availability

across 75 plants from five strains. The magnitude of the relationship for seeds (0.24 + 0.04 %o

per 0.1 m? m™ increase in soil moisture) and leaves (0.24 £ 0.06 %o) was similar. The five strains
showed differences in bulk carbon isotope ratios but had indistinguishable responses to water
availability. Water availability had no discernible effect on 8'°N in any of these strains. These
results suggest that, while in some cases sensitive to water availability, the differences in the
isotope ratios of pearl millet seeds and leaves across treatments were not of sufficient magnitude

for reconstructing past crop water status without additional information.
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1. Introduction
1.1 Background

Strong relationships have been identified between water availability and the carbon and
nitrogen isotope values (8'3C and 8'°N) of plant materials (e.g. Stewart et al., 1995; Handley et
al., 1999; Schuur & Matson, 2001; Weiguo et al., 2005). For carbon isotopes in particular, these
relationships have been integral to identifying past shifts in regional precipitation and aridity
(e.g. Kohn, 2010; Kress et al., 2010; Schubert et al., 2011; Kress et al., 2014). Paleoclimate
reconstructions have relied on the well-established negative correlation between 3'3C values of
plant material and water availability in C; plants (Farquhar et al., 1989). In archaeology, this
relationship can be applied to identify the presence of artificial water management practices (e.g.
irrigation systems). Higher-than-expected water availability is consistent with human
manipulation of water resources and is reflected in plant isotope ratios. As such, stable carbon
and nitrogen isotope analyses of archaeobotanical remains have been employed to investigate
crop water status in ancient times (e.g. Stokes et al., 2011; Bogaard et al., 2013; Wallace et al.,
2013, Styring et al., 2017). Quantification of the relationships between water availability and
isotope ratios for C4 species, including pearl millet (Pennisetum glaucum), provides an important
reference for investigations into archaeological use of these cereals by people in the past. In this
study, we conducted a greenhouse watering experiment to establish relationships between water
availability and carbon and nitrogen isotope ratios in the seeds and leaves of pearl millet.

The reliable identification of past water management is essential to our understanding of
agricultural innovation and its environmental adaptation in the past. This is particularly true in a
range of arid environments where early civilizations first developed (e.g. Steward, 1955; Adams,
1981). Numerous studies with an archaeological focus have sought to refine the relationship
between water availability and stable carbon isotope ratios for crop species and to establish the
limitations of this method for inferring past crop water status (e.g. Araus et al., 1999; Flohr et al.,
2011; Wallace et al., 2013). In order to use stable isotope values measured in ancient plant
materials as proxies for past water management practices, it is critical that the relationship
between isotope ratios and water availability is calibrated for specific crops and regions.

C4 crops are important to human diets globally. Maize and sugarcane rank among the 12
most profitable crops worldwide, and other C4 crops such as sorghum and varieties of millet are

among the United Nations Food and Agricultural Organization’s top 150 crops produced
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globally. C4 grasses also provide essential, indirect support to human nutrition as the primary
forage grasses for livestock in warm climates (Sage & Zhu, 2011). C4 photosynthesis began
appearing in the geologic record c. 30-35 million years ago, when atmospheric CO- levels were
near-present and global climate change produced dry, highly seasonal subtropical and temperate
regions that favored Cs4 evolution (Sage, 2003). Within the last ¢. 30 million years, Cs4
photosynthesis has independently evolved numerous times; 61 distinct evolutionary lineages of
C4photosynthesis have been identified (Sage, 2016). Modern C4 plants have particular
significance on a regional level, providing hardy and resilient food crops in the arid and semiarid
tropics due to their ability to withstand high temperatures and erratic rainfall patterns.

“Millet” describes a variety of C4 taxa originating from several continents, from genus
such as Panicum, Setaria, Sorghum, Echinochloa, Eleusine, Pennisetum (e.g. Weber, 1998).
Millet crops share common ecological features, including a short summer growing season and
modest water requirements, which made them vital food resources in arid environments
(Lightfoot et al., 2018). We elected to examine pearl millet (Pennisetum glaucum) in this study.
Pearl millet is the most geographically expansive millet crop being cultivated today,
archaeologically important both in Africa and South Asia, and one of the key cereals across the
Indian Ocean in the context prehistoric food globalization (e.g. Serba & Yadav, 2016, Manning
etal. 2011, Fuller et al. 2011). Pearl millet was possibly domesticated in the southern edge of
the Sahara up to 4,500 years ago and was subsequently cultivated throughout the African
continent, driving its adaptation to a variety of environments including semi-desert zones,
savannas and equatorial rainforests (e.g. Manning et al., 2011; Burgarella et al., 2018). It is an
essential staple cereal of sub-Saharan Africa and parts of India. Scholars noted that pearl millet is
the only African cereal that existing archaeobotanical evidence is adequate for quantitative
assessment of its cultivation history and domestication process, and charred pearl millet grains
are abundant in a series assemblages particularly in west Africa as well as across sub-Saharan

Africa and India (Manning et al. 2011, Fuller 2007,) ( Boivin and Fuller, 2009; Fuller and

Hildebrand, 2013; Boivin et al., 2014). In the modern day, pearl millet is a staple crop for

millions of rural communities in the hottest and most arid regions of Africa and the Indian
subcontinent (Serba & Yadav, 2016), and its resilience endows pearl millet with particular

relevance in planning for future food security.
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Controlled experiments constraining the relationship between carbon isotope
discrimination and water availability are more abundant in the literature for Cs plants than for Cy4
plants (e.g. Condon et al., 1992; Li, 1999; Clay et al., 2001; Zhao et al., 2004). Models and some
existing data suggest that isotope ratios in Cs plants should be less sensitive to water availability
than Cs plants (e.g. Farquhar et al.,1989; Van de Water et al., 2002; Swap et al., 2004; Weiguo et
al., 2005). Previous studies have quantified carbon isotope ratios in C4 species along regional
precipitation gradients, finding both positive (Schulze et al., 1996; Murphy & Bowman, 2009;
An et al., 2015) and negative (Weiguo et al., 2005) correlations in 8'*C with respect to water
availability (precipitation). In a controlled experimental set-up, '°C values in maize (Zea mays
L.) have been shown to be positively correlated with water availability (Dercon et al., 2005).
Additionally, a positive relationship between carbon isotope ratios and water availability was
found recently in foxtail millet (Setaria italica) varieties exposed to different watering regimes in
a growth chamber experiment (Lightfoot et al., 2020).

Existing data for pearl millet indicate that cumulative annual precipitation and
temperature together account for 48% and 34% of the variability in seed 8'3C and 8'°N values,
respectively (Reid et al., 2018). In this study, we sought to quantify previously observed
relationships between water availability and pearl millet isotope ratios. Our results bear on the
potential utility of stable isotopes in archaeological pearl millet seeds as a proxy for past water
management practices. Isotopic analyses of a variety of modern regional accessions (genetically

unique plant specimen added to an existing collection) also provide a useful baseline for

detecting environmentally-induced traits, if differences among accessions are distinct enough to

be discernible in archaeobotanical material.

1.2 Carbon isotopes and Cy4 plants

Pearl millet fixes carbon through the Hatch-Slack pathway (Moser et al., 2004). The
distinctive feature of this pathway is a carbon concentrating mechanism that delivers CO: to the
carbon-fixing enzyme ribulose-1,5,-bisphosphate carboxylase/oxygenase (Rubisco) (Hatch,
2002). One consequence of this carbon-concentrating mechanism is that carbon isotope
fractionations exhibited by Cs plants are generally smaller than those observed in C; plants

(Farquhar, 1989). C4 plants, including most warm season grasses and arid-adapted dicots, have
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been found to be more enriched in '3C relative to C3 plants. This relative enrichment is expressed
using 8'3C, defined (in %o) as:
d13C = (Rsample/Rstandard_ 1) x 103

8!3C values for C4 plants are understood to be c¢. -12.5 + 1.1 %o, while Cs plants have lower §'3C
values of ¢. -26.7 £ 2.3 %o (Cerling et al., 1997).

The carbon isotope fractionation observed in any plant can be influenced by
environmental conditions, including variations in temperature, light, and atmospheric CO;
concentration. For example, higher intracellular CO; concentrations (due to high atmospheric
CO; levels or high rates of stomatal diffusion) result in larger fractionations (Farquhar et al.,
1982; Farquhar & Richards, 1984; Farquhar et al., 1989). In Cs plants, decreased water
availability results in lower rates of stomatal diffusion, producing smaller fractionations
(Farquhar et al., 1989). However, in C4 plants, the relationship between water availability and the
8!3C values of plant material is more complex. Prior to carbon fixation, atmospheric CO> first
equilibrates — both chemically and isotopically — with intracellular dissolved bicarbonate. This
bicarbonate is incorporated into the C4 acid oxaloacetate, which is subsequently transported to
bundle-sheath cells and decarboxylated, releasing CO; that is fixed by Rubisco (Sage, 2003).

Carbon isotope fractionation between CO, and the final photosynthetic product can be positive,

negative, or zero depending on the ratio of intercellular to ambient partial pressure of CO> (? ,
a

the temperature, and the leakiness (@) of the bundle sheath cells (Farquhar et al., 1989; Williams
et al., 2001).

1.3 Nitrogen isotopes and Cy plants

Plant nitrogen isotope values integrate a range of environmental and physiological processes, but
reflect largely the 8'°N value of the soil in which they are growing. The ratio of nitrogen isotopes
in plant material depends on the nitrogen isotope composition of their soil, as well as isotopic
fractionation during assimilation (Evans, 2001). In an archaeological context, soil nitrogen
isotope ratios are influenced by land use history such as manuring (Peukert et al., 2012; Fraser et
al., 2011; Bogaard et al., 2013; Styring et al., 2019). In addition, a positive correlation between
aridity (low precipitation and high evapotranspiration) and 8'°N values has been documented in

various soil and vegetation studies (e.g. Handley et al., 1999; Amundson et al., 2003; Craine et
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al., 2009; Hartman & Danin, 2010). This is likely related to the ‘openness’ of the nitrogen cycle
— the extent to which N is in excess to plant demand and can therefore be lost through
volatilization (Austin & Vitousek, 1998). However, this simplified model is complicated by
fractionating physiological mechanisms within the plant, which remain an ongoing topic of
discussion.

Differences in N-isotope fractionation between Cs and C4 plants are not well established.
Relative to Cs plants, Cs species exhibit more efficient nitrogen use (Brown, 1977; Schmitt &
Edwards, 1981; Sage & Pearcy, 1987; Makino et al., 2003), which may cause 6'°N to differ
between the C; and C4 pathways (Murphy & Bowman, 2009). Though experimental data are
limited, a previous observational study illustrated a positive relationship between P. glaucum

seed 8'°N values and cumulative annual precipitation (Reid et al., 2018).

2. Methods
2.1 Experimental design and plant growth

We obtained pearl millet (Pennisetum glaucum) seeds from the collection of the United

States Department of Agriculture (USDA). Our strains (and USDA accession numbers) were:
Ghana (326520), Kenya (521624), Morocco (517022), Nigeria (286833), and South Africa
(263540). We chose to examine five accessions in an effort to balance optimal sample size with
space limitations in the greenhouse. For our experiment, we exposed five individuals of each of
the five accessions to three different water treatments, for a total of 75 plants overall.

We planted seeds in 4” diameter pots in a climate-controlled greenhouse 50 days prior to
the start of the experiment (temperature maintained at 26.8 + 3.2°C and humidity maintained at
25.8 £9.8% Rh). 25 days after planting, we transplanted the seedlings into larger 6” diameter
pots. To ensure a randomized distribution and eliminate the potential for unintended
environmental contributions to results (for example, variation in sunlight received), we arranged
the plants on the greenhouse bench using a random number generator.

Before the start of the experiment, all plants were watered with tap water daily to the soil
saturation limit (c. 0.5 = 0.1 L of water per pot). We worked with greenhouse staff to determine
this to be an appropriate water quantity, and thus daily watering to the saturation limit was used
as a reference point for non-water stressed conditions. Beginning on the 50" day after planting,

we watered plants in each of the three designated treatment groups to saturation at different
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scheduled intervals: the non-stressed treatment was watered daily, the moderately-stressed
treatment was watered every other day, and the highly-stressed treatment was watered every
three days (two days in between watering). Water treatment consisted of scheduled watering
partnered with soil moisture measurement using a Decagon Pro-Check (EC-5) moisture sensor.
Twelve days into our experiment, we reevaluated our experimental conditions to impose more
severe water restriction; from that point forward, we watered the moderately-stressed treatment
every three days and the highly-stressed treatment every four days (three days in between
watering). Relative to the non-water stressed group, the moderately- and highly-water stressed
groups experienced lower average soil moisture levels throughout the course of the experiment.
On average, soil moisture levels for each treatment group were: 0.41 m*m= + 0.09 (non-
stressed), 0.21 m?> m™ + 0.15 (moderately-stressed), and 0.16 m3>m™ =+ 0.14 (highly-stressed). The
degree of water stress imposed by infrequent watering is represented in Fig. 1; intervals without
watering allowed soil moisture to drop well below the saturation limit (Fig. 1). Water stress
indicators, such as wilting and gray tinting of leaves, were used in our experiment to confirm the
water stress imposed on our moderately- and highly-stressed treatments. Payne et al. (1992)
reported that an average soil moisture level of 0.17 m? m™ sustained non-water stressed
conditions for pearl millet in a growth chamber environment. However, differences in
experimental design prohibit direct comparison with our soil moisture measurements: (1) their
experimental design involved watering plants daily to maintain a designated moisture level,
while water stress in our experiment was instead administered through infrequent watering, and
(2) Payne et al.’s experiment utilized larger pots (0.035 m? area, relative to our 0.018 m? area), so
the net water input needed to achieve a specific soil moisture level differs. We imposed water
treatments for 73 days, and at the end of this time (123 days after planting) seed and leaf samples
were collected. The date of panicle emergence (in days from initial planting) was recorded for
plants when applicable, and plant height was measured at the time of harvesting.

From Day 82 to the end of the experiment we deployed a Picarro G2121i CO; analyzer to
quantify the concentration and isotope composition of CO; in the greenhouse. When using crop
8!3C values to infer water status of archaeological crop remains, it is crucial to account for the
change in the 3'3C value of atmospheric carbon dioxide (8!*Cair) over time. Present day 8'*Cair is
significantly lower than it was in the past, largely due to the fossil fuel-derived CO> (the Suess

effect; Keeling, 1979). We therefore calculated the average 8'3Cair value across the measurement
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period in order to determine discrimination during photosynthesis. This allows the interpretation
established from modern crop watering experiments to be applied to crop remains from different
time periods in future research:
Be=(1-0) x 10°
where o = Rplant/Rair = (1} Cplant/"*Cplant)/(** Cair/*Cair)

As defined here, *¢ is mathematically equivalent to the fractionation factor A'*C often utilized
by archaeologists (Farquhar et al., 1982; O’Leary, 1988):

ABC = (813Cair - 813Cplant) / (1 + 613Cair/1000)

Days Since Planting

55 60 65 70 75 80 85 90 95 100 105 110 115 120 125
_-/\
0.5 ; / \ \
\ N \ / ,
\ N7 \ AV
\//\\ AN AR A N
— v N \ \ \ A NWS
? 04 \ PN \ / \ (AN /\
£ Vo , v ~=Nnes N\
2 \ i \/\ \ //\ / \
\E’ NS \ v \~~
© 03 \\,/
=)
@
S
= 021
5]
7))
0.1

5 10 5 20 25 30 3 40 45 5 5 60 65 70 75
Treatment Day

Fig. 1 Average moisture sensor records by treatment for the duration of the water restriction

experiment. Treatment group designations: NWS = non-water stressed, MWS = moderately-

water stressed, HWS = highly-water stressed.

2.2 Stable isotope analyses

We prepared samples for isotopic analysis by washing seeds with deionized water and
oven-drying both seeds and leaves at 60°C for 48 hours. Seed samples (5-10 seeds) were ground
and homogenized in an agate mortar and pestle and leaf samples were homogenized using a rock
tumbler before being weighed into 5x9 mm tin capsules. Stable carbon and nitrogen isotope

analyses were performed using an elemental analyzer (EA) coupled to a Delta V Plus continuous
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flow isotope ratio mass spectrometer located in the Department of Earth and Planetary Sciences
at Washington University in St. Louis. We calibrated 3'3C and §!°N values to VPDB and AIR
scales with two-point calibration using USGS 40 (3'3C =-26.39 £ 0.04 %o, 6'"°N = -4.5 + 0.1 %o)
and USGS 41 (8"*C =37.63 £ 0.05 %o, 8'"°N = 47.6 + 0.2 %o). We monitored instrument
performance using IU acetanilide #1 (8'3C = -29.53 + 0.01 %o, 8'°N = 1.18 + 0.02 %o) and a well-
characterized internal standard (BR millet: Bob’s Red Mill millet flour; 3'3C = -13.18 £ 0.06 %o,
8N =3.28 + 0.13 %o). Using the equations presented in Appendices F and G of Szpak et al.
(2017), we determined the total analytical uncertainty to be + 0.08 %o for §'3C and + 0.16 %o for
8!°N based on the calibration and check standards (Notes A.1). Our measurements also included
pseudoreplicate samples of both leaf and seed material, selected at random; ultimately, this

yielded 6 seed 8'3C, 4 seed 6'°N, 41 leaf §'3C, and 3 leaf 3'°N pseudoreplicate measurements.

2.3 Statistical analyses

We conducted all statistical analyses in R (R Development Core Team, 2019; Notes A.2).
We evaluated the distribution of our 3'3C and §'°N results by performing Shapiro and Levene’s
tests for normality and equality of variance, respectively. Specific pairwise comparisons between
treatments were made using Tukey’s Honest Significant Difference (HSD) test. We used
generalized linear models (GLMs) to evaluate the effects of soil moisture, water treatment, and
accession on §!3C and 8'°N values and used AIC model selection to identify best-fit models.
Linear regression analysis was performed against both soil moisture and water treatment to
account for variability in water uptake (and thus soil moisture) within plants of the same
treatment group. We assessed model assumptions graphically by plotting standardized residuals

versus fitted values to check for homogeneity and verified the normality of the residuals with a

QQ-plot.

3. Results
The full dataset is available in the Supplementary Information (Tables A.1 and A.2).

3.1 Plant growth

At the end of the experiment a total of 48 plants representing all five accessions had

produced seeds, including 7 of the Ghanaian accession, 6 of the Kenyan accession, 11 of the

10
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Moroccan accession, 10 of the Nigerian accession, and 14 of the South African accession (Table
A.1). The other 27 plants did not produce seeds by the conclusion of the experiment. Of the
plants that developed panicles, the average number of days to panicle emergence was 92 days for
the Ghanaian accession, 99 days for the Kenyan accession, 80 days for the Moroccan accession,
98 days for the Nigerian accession, and 75 days for the South African accession. Average plant
height varied across accessions from 1.80 + 0.41 m for the Nigerian accession to 2.11 + 0.41 m

for the South African accession.

3.2 Carbon isotopes

P. glaucum seed 8'°C values ranged between -14.8 and -12.9 %o (mean and SD =-13.9 +
0.5 %o, n = 48) and leaf 3'3C values ranged between -16.9 to -13.3 %o (mean and SD = -14.8 +
0.7 %o, n = 75) (Table A.2). Considering all five accessions collectively, both seed and leaf §'°C
values differed among water treatments (F2,45=5.61, P = 0.007; F2,72=9.00, P < 0.001,
respectively). Seeds produced under the non-stressed water treatment had 8'°C values that were
higher than both the moderately- and highly-water stressed treatments, but the §'3C values of
seeds from the moderately- and highly-water stressed treatments could not be distinguished.
Plants in the highly-water stressed group produced leaves with 8'3C values that were lower than
from the non-stressed and moderately-water stressed treatments; non-stressed and moderately
water stressed groups did not differ (Fig. 2a,c). Based on AIC model selection, the best-fit model
for seed 8'°C values was a GLM that included both soil moisture and accession as explanatory
variables (Table 1; Fig. 3); the best-fit model for leaf '°C values included water treatment and
accession (Table 1). When data from all accessions were analyzed together, these models
indicated that seed 5!°C values are positively correlated with water availability (Fig. A.la,c),
such that for each 0.1 m* m? increase in average soil moisture, seed 8'°C values increase by 0.24
+ 0.04 %o. Likewise, for leaf 8'*C, a GLM with soil moisture and accession included as
explanatory variables showed that leaf 'C values increase by 0.24 + 0.06 %o per 0.1 m* m™
increase in soil moisture. Both seeds and leaves showed distinct, but relatively small, differences
in 8'3C values among accessions (Fs43=3.49, P = 0.015; F470= 3.05, P = 0.022); overall
variability in seed and leaf 3'3C values was within a range of 1.9 %o and 3.6 %o, respectively. We
found no significant interactions between water treatment and millet accession, indicating that

responses to water treatment did not differ among accessions. Seed 8'3C values across all five

11
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accessions showed somewhat higher variability in the non-stressed treatment group relative to

the highly water-stressed treatment group (evaluated via the standard deviation from mean values

for an accession within each treatment group): the difference in standard deviation was on the

order of 0.1-0.2 %o. The moderately-stressed treatment group showed seed §'3C variability

intermediate to that of the non-stressed and highly-stressed groups. On the other hand, the

magnitude of variability in leaf §'3C values with respect to water treatment was inconsistent

across the five accessions. For the Ghanaian, Kenyan, and Nigerian accessions, 83C values were

more variable for the non-stressed group relative to the highly-stressed group (on the order of

0.2. 0.6, 0.1 %o, respectively). However, the Moroccan accession showed higher variability in the

highly-water stressed group (on the order of 0.2 %o), and the South African accession showed

approximately the same magnitude of variability between the two groups. For the Moroccan,

Nigerian, and Kenyan accessions, the highest magnitude variability in 8'3C values was observed

in the moderately-stressed treatment group. Variability in the moderately-stressed group was

notably high for the South African accession (0.8 %o higher than variability in the non-stressed

and highly-stressed groups).

To examine additional factors potentially contributing to variability in 8'3C values, we
assessed linear relationships between GLM deviance residuals and physiological variables (plant
height, time of panicle emergence). For seed 8'°C values, a weakly negative linear relationship
existed between plant height and the GLM residuals (F145=5.14, P = 0.028) (Fig. A.2).
However, a similar relationship was not present for the leaf '3C data.

The average 3'3C value of the CO; in the greenhouse (-3.7 & 1.8 %o) allowed us to
determine A"*C (isotopic discrimination) for P. glaucum seeds as described under Materials and
Methods. Seeds had a mean A'*C value 10.2 + 0.5 %o (range 9.2 %o to 11.1 %o) (Fig. 4). As A3C
is based on a transformation of §'*C, isotopic discrimination also differed among water

treatments and accessions.

3.3 Nitrogen isotopes

P. glaucum seed 8'°N values ranged between 0.8 and 2.9 %o (mean and SD = 1.7 £ 0.5
%o, n = 48), and leaf 3'°N values ranged between -0.9 to 2.3 %o (mean and SD = 1.0 + 0.8 %o, n =
68) (Table A.2). In contrast with 8'C values, there were no discernable differences in the 6'°N

values of leaves and seeds between the non-stressed and highly-stressed treatment groups. Seed
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8!°N values did not differ at all among treatments (F245= 0.08, P = 0.928). Leaf 8!°N values only
had discernable differences between the non-stressed and moderately-stressed treatments (F2,65 =
3.44, P = 0.038); the non-stressed and highly-stressed groups were statistically indistinguishable
(Fig. 2b,d). The best-fit model for seed 8'°N was a GLM with accession as the lone explanatory
variable, while the best-fit model for leaf §'°N was a GLM with both water treatment and
accession included as explanatory variables (Table 1). Unlike the 8'3C models, there was no
isotopic signal associated with increasing soil moisture; the direction of the relationship between
8'N and water availability varied among accessions and was indistinct when all accessions were
considered together (Fig. A.1b,d). Both seeds and leaves showed differences in §!°N among
accessions (F443=3.99, P = 0.008; F4,63=5.86, P < 0.001); however, no single accession was
consistently more or less enriched in >N (relative to other accessions) across both the seed and
leaf data. The relationships between GLM deviance residuals and physiological variables for leaf
8'N data showed a positive relationship between GLM residuals and panicle emergence time
(F152=16.85, P < 0.001), but not plant height (Fig. A.3). No linear relationships exist between
GLM residuals and seed 8'°N values.
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363  Table 1 Comparison of GLM ability to account for §!*C and 3!°N variability in pearl millet seeds
364  and leaves, with best-fit model italicized.
Residual Residual

Model Deviance DF AICP AAIC®
Seed 8'3C
Treatment 7.94 45 57.85 29.01
Soil Moisture 5.73 46 40.23 11.39
Accession 7.49 43 59.04 30.20
Soil Moisture + Accession 3.83 42 28.84 0
Treatment + Accession 4.83 41 42.04 13.20
Soil Moisture * Accession 3.74 38 35.74 6.91
Treatment * Accession 4.01 33 49.08 20.24
Leaf 613C
Treatment 31.02 72 154.64 7.39
Soil Moisture 30.91 73 152.35 5.10
Accession 33.02 70 163.32 16.07
Soil Moisture + Accession 26.50 69 148.80 1.55
Treatment + Accession 25.27 68 147.25 0
Soil Moisture * Accession 23.99 65 149.35 2.10
Treatment * Accession 21.68 60 151.74 4.49
Seed 8'°N
Treatment 10.92 45 73.13 10.97
Soil Moisture 10.79 46 70.56 8.40
Accession 7.99 43 62.16 0
Soil Moisture + Accession 7.94 42 63.88 1.72
Treatment + Accession 7.90 41 65.61 3.45
Soil Moisture * Accession 7.25 38 67.50 5.34
Treatment * Accession 5.59 33 65.04 2.88
Leaf 6N
Treatment 37.00 65 159.59 17.20
Soil Moisture 40.88 66 164.37 21.98
Accession 29.82 63 148.91 6.52
Soil Moisture + Accession 29.29 62 149.69 7.30
Treatment + Accession 25.54 61 142.39 0
Soil Moisture * Accession 26.74 58 151.50 9.11
Treatment * Accession 21.89 53 147.89 5.50

365  *Residual degrees of freedom, ® Akaike Information Criterion, ¢ Difference in AIC from
366  best model
367
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369  Fig. 2 Boxplots of pear]l millet seed and leaf '°C and 8!°N values by water treatment. To avoid

370 overplotting, data points within each discrete treatment group have been distributed randomly

371  with respect to a set horizontal width. Treatment group designations: NWS = non-water stressed,
372  MWS = moderately-water stressed, HWS = highly-water stressed.
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4. Discussion
4.1 Carbon isotopes

Pearl millet seed and leaf 8'3C values are positively correlated with water availability,
and this relationship is observed in all accessions in this study. We infer from the
indistinguishable seed 3'3C values for the moderately- and highly-water stressed treatment
groups that these two treatments did not differ dramatically in the degree of water restriction
imposed; however, the non-water stressed treatment produced distinctly higher §'3C values (Fig.
2a,c). Linear regression analyses of 8!3C values against average soil moisture further reinforce
this finding, while accounting for disparities in average soil moisture within treatment groups.
The magnitude of the positive relationship between 6'3C values and water availability is
approximately equal in seeds and leaves, though pearl millet seeds do tend to have overall

slightly higher (less negative) 8!°C values than leaves, consistent with the findings of An et al.

(2015) for foxtail (Setaria italica) and common (Panicum miliaceum) millets. The positive
correlation between water availability and 8'3C values is the opposite of the trend that is typically
exhibited by Cs plants.

This relationship has also been observed in other Cs4 species, including foxtail millets
(Setaria italica) (An et al., 2015; Lightfoot et al., 2020) and grasses of the Aristida genus
(Schulze et al., 1996; Murphy & Bowman, 2009), and was previously reported for P. glaucum in
an observational study (Reid et al., 2018). Previous studies have attributed this relationship to C4
plant physiology, particularly to the equilibrium isotope effect between dissolved CO> and
bicarbonate in mesophyll cells (e.g., Schulze et al., 1996). All carbon incorporated by Rubisco in
C4 plants derives from bicarbonate in mesophyll cells, which is enriched in '3C relative to
dissolved CO: (by 9 %o at 25 °C; Mook et al., 1974). When this carbon is released as CO> in
bundle-sheath cells, it can be incorporated into photosynthate or leak away from the site of
decarboxylation and back into the mesophyll. The expressed fractionation is highly sensitive to
the flux of CO; that leaks (Farquhar et al., 1989), complicating the factors governing
photosynthetic control on isotopic fractionation in C4 plants. The overall carbon isotope
fractionation during carbon fixation by a C4 plant (€p) can be expressed using the equation

established by Hayes (2001) after Farquhar (1983):

Di
Ep =& T p_; [Ec - Sb/d + (P(Ef - 8tw) - Sta]
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where €. and &, are the isotope effects associated with mass transport of CO; in air and
water, respectively (4.4 and 0.8 %o; Hayes, 2001), €. is the isotope effect associated with fixation
of bicarbonate by phosphoenolpyruvate carboxylase (2.2 %o, as per O’Leary, 1981), g}, 4 is the
equilibrium isotope effect relating bicarbonate and dissolved CO2 (8.7 %o at 27° C as per Mook et
al., 1974), &¢is the isotope effect associated with the fixation of COz (27 %o for land plants, as per

Farquahar et al., 1989), % is the ratio of partial pressures of CO; inside and outside carbon-fixing

cells, and ¢ is the cellular ‘leakiness’ coefficient. Water availability directly alters the E—i term, as
a

plants respond to water stress by closing their stomatal pores, which results in a decrease in

stomatal conductance and the internal CO> concentration (decreasing %). The relationship
a

between 8'3C and water availability depends on whether the ‘leakiness’ of bundle-sheath cells is
above or below a threshold value dictated by the other fractionations taking place during carbon

fixation. If the cellular ‘leakiness’ is below this threshold value, then 8'*C of photosynthate

increases (ep decreases) with increasing E—i (increasing water availability). Above the threshold
a
value, the 8!3C of plant material decreases with increasing ?. In our greenhouse conditions,
a

using the model parameters defined above, this leakiness threshold (¢) is between 0.41 and 0.42.
Given the positive relationship observed in our data, ¢ is below that threshold for P. glaucum
under our experimental conditions. The §'3C values measured in this experiment are more
negative than the Hayes model’s theoretical isotopic discrimination would allow. One caveat to
this relationship is that we examine bulk leaf and seed materials, and not isolated primary
photosynthate. The low 3'3C values here may suggest that secondary processing of photosynthate
is producing an additional discrimination effect against '3C.

Our data also show 8'3C values of pearl millet vary for strains with different origins
(accessions). The strong linear relationship between GLM residuals and plant height for the seed
8'3C model suggests that differences in plant physiology (associated with regional accession)
may help explain the observed differences in seed carbon isotope ratios among accessions.
Physiological differences may contribute to different light-use or transpiration efficiencies that
ultimately influence carbon isotope fractionation during photosynthesis. However, according to
our best-fit model, the measured physiological variables are unable to explain 8'°C variability at

the leaf level.
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4.2 Nitrogen isotopes

We found no strong correlations between water availability and 3'°N, and overall
variability in both leaf and seed 8'°N values was relatively low (c. 2 %o in seeds and 3 %o in
leaves). The absence of a relationship between soil moisture and §'°N values differs from
patterns observed globally. Our data are consistent with the interpretation that the globally
observed trends are a consequence of environmental parameters affecting soil 8!°N, rather than

nitrogen isotope fractionation.

4.3 Isotopes as proxies for water management
While we were able to observe correlations between water availability and seed §'3C

values, the observed effects are small. Seed §'3C values for each accession showed a trend

toward decreasing variability (standard deviation from the mean) with increasing degree of water

restriction, though this effect is too minor to influence isotopic interpretation (0.1-0.2 %o):

moreover, this trend was not observed in the leaf '*C data. The weak signals observed here
within accessions are likely to be obscured by environmental and genetic individualities among
plants, which differ between environmentally-controlled greenhouses and “real-life” agricultural
set-ups. Our results are consistent with the recent findings of Lightfoot et al. (2020) for foxtail
millet (Setaria italica). Differences in 3'3C values produced by different watering treatments are
not large enough in magnitude to be distinguishable from the isotopic variability between millet
accessions. With this precaution in mind, however, should contextual information be rich (cf.
household storage), 8'°C values derived from archaeological grains could be useful for

addressing issues such as water stress or context-specific water availability. Future research to

address landrace-specific questions, including “real-life” field experiments based upon modern

agricultural water supply parameters, is needed.

4.4 Isotopes as proxies for past landraces

Phenotypic variations resulting from environmental adaptation may account for some of
the variability observed in isotope ratios, an observation that may be of use in ethnobotanical
studies. We observed that physiological traits, such as plant height and panicle emergence time,
may account for a small degree of variability in our seed 6'3C and leaf §'°N best-fit models (no

more than c. 1 %o and 2 %o, respectively) (Fig. A.2 and A.3). Previous ethnobotanical studies
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have documented morphological variations of African millet landraces (e.g. Eleusine coracana),

particularly in relation to seed size and shape, as well as environmental adaptations (e.g. Lule et
al., 2012; Umar & Kwon-Ndung, 2014). For example, Brunken et al. (1977) describe a number
of landraces of pearl millet that can be recognized on the basis of grain shape and plant
morphology and have distinctive geographic ranges. Studies also note that farmers sometimes
select landraces based on phenotypic characteristics, such as seed size and plant height, for
various reasons (Tseshaye et al., 2006). Thus, it may be possible to use such measurements in
combination with seed stable isotope values to identify specific landraces, if strong relationships

between morphology and isotope ratios are established.

4.5 Conclusions

Water availability plays a small but detectable role in determining 8'*C in P. glaucum
seeds and leaves. Based on established models of isotopic discrimination during C4 carbon
fixation, the positive relationship observed between 8'3C and water availability suggests that

bundle sheath ‘leakiness’ was below a threshold value (calculated to be 0.42) for our

experimental set-up, resulting in a positive relationship between 83C and ™. The relatively low

Pa

magnitude of variability (less than c. 2 %o) in response to water stress suggests that millet 3'3C
values are not a reliable proxy for past water management practices, as the isotopic signal
associated with water availability is likely to be masked by the equally significant genetic

variability among landraces.
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Appendix A. Supplementary Information

Fig. A.1 Scatter plots demonstrating the relationship between pearl millet seed and leaf §'3C and
8!°N and average soil moisture for each of five accessions.

Fig. A.2 Scatter plots demonstrating the relationship between GLM residuals and plant height for
pearl millet seed 5!°C values.

Fig. A.3 Scatter plot demonstrating the relationship between GLM residuals and time of panicle
emergence for pearl millet leaf §'°N values.

Table A.1 Summary of data for each accession.

Table A.2 Data collected from experimental plants.

Notes A.1 R Code for calculating total analytical uncertainty.

Notes A.2 R Code for analyzing C and N isotope data for pearl millet seeds and leaves.
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