1 The effect of water availability on the carbon and nitrogen isotope composition of a C₄ 2 plant (pearl millet, *Pennisetum glaucum*) 3 Lily H. Sanborn^{a,1*}, Rachel E. B. Reid^{b,2*}, Alexander S. Bradley^a, and Xinyi Liu^b 4 5 6 ^a Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, 7 MO 63130, USA 8 ^b Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA 9 10 ¹ Present address: Massachusetts Institute of Technology/Woods Hole Oceanographic Institution 11 Joint Program, 266 Woods Hole Road, Woods Hole, MA 02543, USA 12 ² Present address: Department of Geosciences, Virginia Polytechnic Institute and State 13 University, Blacksburg, VA 24061, USA 14 15 * Corresponding authors: lsanborn@wustl.edu, 301-452-4310; rachel.beth.brown@gmail.com, 16 540-231-5952 17

18 **Abstract** 19 To evaluate the potential utility of isotope ratios in plant materials as an archaeological proxy for 20 past crop water status, relationships between water availability and stable isotope ratios in C₄ species must be established. This study quantified the isotopic values (δ^{13} C and δ^{15} N) of pearl 21 22 millet (*Pennisetum glaucum*) seeds and leaves in response to varying degrees of water stress. 23 Under greenhouse conditions, we exposed five strains of pearl millet to three different watering 24 treatments. Pearl millet seed δ^{13} C values (mean and SD = -13.9 \pm 0.5 %, n = 48) and leaf δ^{13} C 25 values (mean and SD = -14.8 ± 0.7 %, n = 75) were positively correlated with water availability across 75 plants from five strains. The magnitude of the relationship for seeds (0.24 \pm 0.04 \% 26 27 per 0.1 m³ m⁻³ increase in soil moisture) and leaves $(0.24 \pm 0.06 \%)$ was similar. The five strains 28 showed differences in bulk carbon isotope ratios but had indistinguishable responses to water 29 availability. Water availability had no discernible effect on $\delta^{15}N$ in any of these strains. These 30 results suggest that, while in some cases sensitive to water availability, the differences in the 31 isotope ratios of pearl millet seeds and leaves across treatments were not of sufficient magnitude 32 for reconstructing past crop water status without additional information. 33 34 **Key Words:** African millet, greenhouse experiment, palaeoenvironmental reconstruction, stable 35 isotope analysis, water restriction 36 37 **Word Count:** 38 Total: 4965 39 Introduction: 1573 40 Methods: 1164 41 Results: 904 42 Discussion: 1300 43 Acknowledgements: 24 44 Figures: 4 total 45 Fig. 1 (color, fits 1.5 columns) Fig. 2 (color, fits 2 columns) 46 47 Fig. 3 (color, fits 1.5 columns) 48 Fig. 4 (color, fits 1 column)

1. Introduction

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

1.1 Background

Strong relationships have been identified between water availability and the carbon and nitrogen isotope values (δ^{13} C and δ^{15} N) of plant materials (e.g. Stewart et al., 1995; Handley et al., 1999; Schuur & Matson, 2001; Weiguo et al., 2005). For carbon isotopes in particular, these relationships have been integral to identifying past shifts in regional precipitation and aridity (e.g. Kohn, 2010; Kress et al., 2010; Schubert et al., 2011; Kress et al., 2014). Paleoclimate reconstructions have relied on the well-established negative correlation between δ^{13} C values of plant material and water availability in C₃ plants (Farquhar et al., 1989). In archaeology, this relationship can be applied to identify the presence of artificial water management practices (e.g. irrigation systems). Higher-than-expected water availability is consistent with human manipulation of water resources and is reflected in plant isotope ratios. As such, stable carbon and nitrogen isotope analyses of archaeobotanical remains have been employed to investigate crop water status in ancient times (e.g. Stokes et al., 2011; Bogaard et al., 2013; Wallace et al., 2013, Styring et al., 2017). Quantification of the relationships between water availability and isotope ratios for C₄ species, including pearl millet (*Pennisetum glaucum*), provides an important reference for investigations into archaeological use of these cereals by people in the past. In this study, we conducted a greenhouse watering experiment to establish relationships between water availability and carbon and nitrogen isotope ratios in the seeds and leaves of pearl millet.

The reliable identification of past water management is essential to our understanding of agricultural innovation and its environmental adaptation in the past. This is particularly true in a range of arid environments where early civilizations first developed (e.g. Steward, 1955; Adams, 1981). Numerous studies with an archaeological focus have sought to refine the relationship between water availability and stable carbon isotope ratios for crop species and to establish the limitations of this method for inferring past crop water status (e.g. Araus et al., 1999; Flohr et al., 2011; Wallace et al., 2013). In order to use stable isotope values measured in ancient plant materials as proxies for past water management practices, it is critical that the relationship between isotope ratios and water availability is calibrated for specific crops and regions.

C₄ crops are important to human diets globally. Maize and sugarcane rank among the 12 most profitable crops worldwide, and other C₄ crops such as sorghum and varieties of millet are among the United Nations Food and Agricultural Organization's top 150 crops produced

globally. C₄ grasses also provide essential, indirect support to human nutrition as the primary forage grasses for livestock in warm climates (Sage & Zhu, 2011). C₄ photosynthesis began appearing in the geologic record c. 30-35 million years ago, when atmospheric CO₂ levels were near-present and global climate change produced dry, highly seasonal subtropical and temperate regions that favored C₄ evolution (Sage, 2003). Within the last c. 30 million years, C₄ photosynthesis has independently evolved numerous times; 61 distinct evolutionary lineages of C₄ photosynthesis have been identified (Sage, 2016). Modern C₄ plants have particular significance on a regional level, providing hardy and resilient food crops in the arid and semiarid tropics due to their ability to withstand high temperatures and erratic rainfall patterns. "Millet" describes a variety of C₄ taxa originating from several continents, from genus such as Panicum, Setaria, Sorghum, Echinochloa, Eleusine, Pennisetum (e.g. Weber, 1998). Millet crops share common ecological features, including a short summer growing season and modest water requirements, which made them vital food resources in arid environments (Lightfoot et al., 2018). We elected to examine pearl millet (*Pennisetum glaucum*) in this study. Pearl millet is the most geographically expansive millet crop being cultivated today, archaeologically important both in Africa and South Asia, and one of the key cereals across the Indian Ocean in the context prehistoric food globalization (e.g. Serba & Yaday, 2016, Manning et al. 2011. Fuller et al. 2011). Pearl millet was possibly domesticated in the southern edge of the Sahara up to 4,500 years ago and was subsequently cultivated throughout the African continent, driving its adaptation to a variety of environments including semi-desert zones, savannas and equatorial rainforests (e.g. Manning et al., 2011; Burgarella et al., 2018). It is an essential staple cereal of sub-Saharan Africa and parts of India. Scholars noted that pearl millet is the only African cereal that existing archaeobotanical evidence is adequate for quantitative assessment of its cultivation history and domestication process, and charred pearl millet grains are abundant in a series assemblages particularly in west Africa as well as across sub-Saharan Africa and India (Manning et al. 2011, Fuller 2007,) (Boivin and Fuller, 2009; Fuller and Hildebrand, 2013; Boivin et al., 2014). In the modern day, pearl millet is a staple crop for millions of rural communities in the hottest and most arid regions of Africa and the Indian subcontinent (Serba & Yadav, 2016), and its resilience endows pearl millet with particular relevance in planning for future food security.

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Controlled experiments constraining the relationship between carbon isotope discrimination and water availability are more abundant in the literature for C_3 plants than for C_4 plants (e.g. Condon et al., 1992; Li, 1999; Clay et al., 2001; Zhao et al., 2004). Models and some existing data suggest that isotope ratios in C_4 plants should be less sensitive to water availability than C_3 plants (e.g. Farquhar et al.,1989; Van de Water et al., 2002; Swap et al., 2004; Weiguo et al., 2005). Previous studies have quantified carbon isotope ratios in C_4 species along regional precipitation gradients, finding both positive (Schulze et al., 1996; Murphy & Bowman, 2009; An et al., 2015) and negative (Weiguo et al., 2005) correlations in $\delta^{13}C$ with respect to water availability (precipitation). In a controlled experimental set-up, $\delta^{13}C$ values in maize (*Zea mays* \underline{L} .) have been shown to be positively correlated with water availability (Dercon et al., 2005). Additionally, a positive relationship between carbon isotope ratios and water availability was found recently in foxtail millet (*Setaria italica*) varieties exposed to different watering regimes in a growth chamber experiment (Lightfoot et al., 2020).

Existing data for pearl millet indicate that cumulative annual precipitation and temperature together account for 48% and 34% of the variability in seed δ^{13} C and δ^{15} N values, respectively (Reid et al., 2018). In this study, we sought to quantify previously observed relationships between water availability and pearl millet isotope ratios. Our results bear on the potential utility of stable isotopes in archaeological pearl millet seeds as a proxy for past water management practices. Isotopic analyses of a variety of modern regional accessions (genetically unique plant specimen added to an existing collection) also provide a useful baseline for detecting environmentally-induced traits, if differences among accessions are distinct enough to be discernible in archaeobotanical material.

1.2 Carbon isotopes and C₄ plants

Pearl millet fixes carbon through the Hatch-Slack pathway (Moser et al., 2004). The distinctive feature of this pathway is a carbon concentrating mechanism that delivers CO₂ to the carbon-fixing enzyme ribulose-1,5,-bisphosphate carboxylase/oxygenase (Rubisco) (Hatch, 2002). One consequence of this carbon-concentrating mechanism is that carbon isotope fractionations exhibited by C₄ plants are generally smaller than those observed in C₃ plants (Farquhar, 1989). C₄ plants, including most warm season grasses and arid-adapted dicots, have

140 been found to be more enriched in ¹³C relative to C₃ plants. This relative enrichment is expressed 141 using δ^{13} C, defined (in %) as: 142 δ^{13} C = (R_{sample}/R_{standard} - 1) x 10³ 143 144 δ^{13} C values for C₄ plants are understood to be c. -12.5 ± 1.1 ‰, while C₃ plants have lower δ^{13} C values of c. -26.7 ± 2.3 % (Cerling et al., 1997). 145 146 The carbon isotope fractionation observed in any plant can be influenced by 147 environmental conditions, including variations in temperature, light, and atmospheric CO₂ 148 concentration. For example, higher intracellular CO₂ concentrations (due to high atmospheric 149 CO₂ levels or high rates of stomatal diffusion) result in larger fractionations (Farquhar et al., 150 1982; Farquhar & Richards, 1984; Farquhar et al., 1989). In C₃ plants, decreased water 151 availability results in lower rates of stomatal diffusion, producing smaller fractionations 152 (Farguhar et al., 1989). However, in C₄ plants, the relationship between water availability and the 153 δ^{13} C values of plant material is more complex. Prior to carbon fixation, atmospheric CO₂ first 154 equilibrates – both chemically and isotopically – with intracellular dissolved bicarbonate. This 155 bicarbonate is incorporated into the C₄ acid oxaloacetate, which is subsequently transported to 156 bundle-sheath cells and decarboxylated, releasing CO₂ that is fixed by Rubisco (Sage, 2003). 157 Carbon isotope fractionation between CO₂ and the final photosynthetic product can be positive, negative, or zero depending on the ratio of intercellular to ambient partial pressure of CO₂ ($\frac{p_i}{p_z}$), 158 159 the temperature, and the leakiness (φ) of the bundle sheath cells (Farquhar et al., 1989; Williams 160 et al., 2001). 161 162 1.3 Nitrogen isotopes and C₄ plants 163 Plant nitrogen isotope values integrate a range of environmental and physiological processes, but 164 reflect largely the δ^{15} N value of the soil in which they are growing. The ratio of nitrogen isotopes 165 in plant material depends on the nitrogen isotope composition of their soil, as well as isotopic 166 fractionation during assimilation (Evans, 2001). In an archaeological context, soil nitrogen 167 isotope ratios are influenced by land use history such as manuring (Peukert et al., 2012; Fraser et 168 al., 2011; Bogaard et al., 2013; Styring et al., 2019). In addition, a positive correlation between 169 aridity (low precipitation and high evapotranspiration) and δ^{15} N values has been documented in 170 various soil and vegetation studies (e.g. Handley et al., 1999; Amundson et al., 2003; Craine et

al., 2009; Hartman & Danin, 2010). This is likely related to the 'openness' of the nitrogen cycle – the extent to which N is in excess to plant demand and can therefore be lost through volatilization (Austin & Vitousek, 1998). However, this simplified model is complicated by fractionating physiological mechanisms within the plant, which remain an ongoing topic of discussion.

Differences in N-isotope fractionation between C_3 and C_4 plants are not well established. Relative to C_3 plants, C_4 species exhibit more efficient nitrogen use (Brown, 1977; Schmitt & Edwards, 1981; Sage & Pearcy, 1987; Makino et al., 2003), which may cause $\delta^{15}N$ to differ between the C_3 and C_4 pathways (Murphy & Bowman, 2009). Though experimental data are limited, a previous observational study illustrated a positive relationship between *P. glaucum* seed $\delta^{15}N$ values and cumulative annual precipitation (Reid et al., 2018).

2. Methods

2.1 Experimental design and plant growth

We obtained pearl millet (<u>Pennisetum glaucum</u>) seeds from the collection of the United States Department of Agriculture (USDA). Our strains (and USDA accession numbers) were: Ghana (326520), Kenya (521624), Morocco (517022), Nigeria (286833), and South Africa (263540). We chose to examine five accessions in an effort to balance optimal sample size with space limitations in the greenhouse. For our experiment, we exposed five individuals of each of the five accessions to three different water treatments, for a total of 75 plants overall.

We planted seeds in 4" diameter pots in a climate-controlled greenhouse 50 days prior to the start of the experiment (temperature maintained at 26.8 ± 3.2 °C and humidity maintained at 25.8 ± 9.8 % Rh). 25 days after planting, we transplanted the seedlings into larger 6" diameter pots. To ensure a randomized distribution and eliminate the potential for unintended environmental contributions to results (for example, variation in sunlight received), we arranged the plants on the greenhouse bench using a random number generator.

Before the start of the experiment, all plants were watered with tap water daily to the soil saturation limit (c. 0.5 ± 0.1 L of water per pot). We worked with greenhouse staff to determine this to be an appropriate water quantity, and thus daily watering to the saturation limit was used as a reference point for non-water stressed conditions. Beginning on the 50^{th} day after planting, we watered plants in each of the three designated treatment groups to saturation at different

scheduled intervals: the non-stressed treatment was watered daily, the moderately-stressed treatment was watered every other day, and the highly-stressed treatment was watered every three days (two days in between watering). Water treatment consisted of scheduled watering partnered with soil moisture measurement using a Decagon Pro-Check (EC-5) moisture sensor. Twelve days into our experiment, we reevaluated our experimental conditions to impose more severe water restriction; from that point forward, we watered the moderately-stressed treatment every three days and the highly-stressed treatment every four days (three days in between watering). Relative to the non-water stressed group, the moderately- and highly-water stressed groups experienced lower average soil moisture levels throughout the course of the experiment. On average, soil moisture levels for each treatment group were: $0.41 \text{ m}^3 \text{ m}^{-3} \pm 0.09$ (nonstressed), 0.21 m³ m⁻³ \pm 0.15 (moderately-stressed), and 0.16 m³ m⁻³ \pm 0.14 (highly-stressed). The degree of water stress imposed by infrequent watering is represented in Fig. 1; intervals without watering allowed soil moisture to drop well below the saturation limit (Fig. 1). Water stress indicators, such as wilting and gray tinting of leaves, were used in our experiment to confirm the water stress imposed on our moderately- and highly-stressed treatments. Payne et al. (1992) reported that an average soil moisture level of 0.17 m³ m⁻³ sustained non-water stressed conditions for pearl millet in a growth chamber environment. However, differences in experimental design prohibit direct comparison with our soil moisture measurements: (1) their experimental design involved watering plants daily to maintain a designated moisture level, while water stress in our experiment was instead administered through infrequent watering, and (2) Payne et al.'s experiment utilized larger pots (0.035 m² area, relative to our 0.018 m² area), so the net water input needed to achieve a specific soil moisture level differs. We imposed water treatments for 73 days, and at the end of this time (123 days after planting) seed and leaf samples were collected. The date of panicle emergence (in days from initial planting) was recorded for plants when applicable, and plant height was measured at the time of harvesting. From Day 82 to the end of the experiment we deployed a Picarro G2121i CO₂ analyzer to quantify the concentration and isotope composition of CO₂ in the greenhouse. When using crop δ^{13} C values to infer water status of archaeological crop remains, it is crucial to account for the change in the δ^{13} C value of atmospheric carbon dioxide (δ^{13} C_{air}) over time. Present day δ^{13} C_{air} is significantly lower than it was in the past, largely due to the fossil fuel-derived CO₂ (the Suess

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

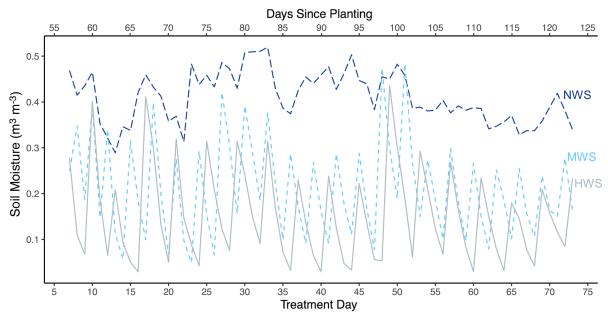
228

229

230

231

232


effect; Keeling, 1979). We therefore calculated the average $\delta^{13}C_{air}$ value across the measurement

period in order to determine discrimination during photosynthesis. This allows the interpretation established from modern crop watering experiments to be applied to crop remains from different time periods in future research:

236
$$^{13}\epsilon = (1-\alpha) \ x \ 10^{3}$$

$$237 \qquad \text{where } \alpha = R_{plant}/R_{air} = (^{13}C_{plant}/^{12}C_{plant})/(^{13}C_{air}/^{12}C_{air})$$

As defined here, ${}^{13}\epsilon$ is mathematically equivalent to the fractionation factor $\Delta^{13}C$ often utilized by archaeologists (Farquhar et al., 1982; O'Leary, 1988):

$$\Delta^{13}C = (\delta^{13}C_{air} - \delta^{13}C_{plant}) / (1 + \delta^{13}C_{air}/1000)$$

Fig. 1 Average moisture sensor records by treatment for the duration of the water restriction experiment. Treatment group designations: NWS = non-water stressed, MWS = moderately-water stressed, HWS = highly-water stressed.

2.2 Stable isotope analyses

We prepared samples for isotopic analysis by washing seeds with deionized water and oven-drying both seeds and leaves at 60°C for 48 hours. Seed samples (5-10 seeds) were ground and homogenized in an agate mortar and pestle and leaf samples were homogenized using a rock tumbler before being weighed into 5x9 mm tin capsules. Stable carbon and nitrogen isotope analyses were performed using an elemental analyzer (EA) coupled to a Delta V Plus continuous

254 flow isotope ratio mass spectrometer located in the Department of Earth and Planetary Sciences at Washington University in St. Louis. We calibrated δ^{13} C and δ^{15} N values to VPDB and AIR 255 256 scales with two-point calibration using USGS 40 (δ^{13} C = -26.39 ± 0.04 ‰, δ^{15} N = -4.5 ± 0.1 ‰) and USGS 41 (δ^{13} C = 37.63 \pm 0.05 ‰, δ^{15} N = 47.6 \pm 0.2 ‰). We monitored instrument 257 258 performance using IU acetanilide #1 (δ^{13} C = -29.53 ± 0.01 %, δ^{15} N = 1.18 ± 0.02 %) and a well-259 characterized internal standard (BR millet: Bob's Red Mill millet flour; $\delta^{13}C = -13.18 \pm 0.06$ %, 260 $\delta^{15}N = 3.28 \pm 0.13$ %). Using the equations presented in Appendices F and G of Szpak et al. (2017), we determined the total analytical uncertainty to be \pm 0.08 % for δ^{13} C and \pm 0.16 % for 261 262 δ^{15} N based on the calibration and check standards (Notes A.1). Our measurements also included 263 pseudoreplicate samples of both leaf and seed material, selected at random; ultimately, this yielded 6 seed δ^{13} C, 4 seed δ^{15} N, 41 leaf δ^{13} C, and 3 leaf δ^{15} N pseudoreplicate measurements. 264 265 266 2.3 Statistical analyses 267 We conducted all statistical analyses in R (R Development Core Team, 2019; Notes A.2). We evaluated the distribution of our δ^{13} C and δ^{15} N results by performing Shapiro and Levene's 268 269 tests for normality and equality of variance, respectively. Specific pairwise comparisons between 270 treatments were made using Tukey's Honest Significant Difference (HSD) test. We used 271 generalized linear models (GLMs) to evaluate the effects of soil moisture, water treatment, and accession on δ^{13} C and δ^{15} N values and used AIC model selection to identify best-fit models. 272 273 Linear regression analysis was performed against both soil moisture and water treatment to 274 account for variability in water uptake (and thus soil moisture) within plants of the same 275 treatment group. We assessed model assumptions graphically by plotting standardized residuals 276 versus fitted values to check for homogeneity and verified the normality of the residuals with a 277 QQ-plot. 278 279 3. Results 280 The full dataset is available in the Supplementary Information (Tables A.1 and A.2). 281 282 3.1 Plant growth 283 At the end of the experiment a total of 48 plants representing all five accessions had 284 produced seeds, including 7 of the Ghanaian accession, 6 of the Kenyan accession, 11 of the

285 Moroccan accession, 10 of the Nigerian accession, and 14 of the South African accession (Table 286 A.1). The other 27 plants did not produce seeds by the conclusion of the experiment. Of the 287 plants that developed panicles, the average number of days to panicle emergence was 92 days for 288 the Ghanaian accession, 99 days for the Kenyan accession, 80 days for the Moroccan accession, 289 98 days for the Nigerian accession, and 75 days for the South African accession. Average plant 290 height varied across accessions from 1.80 ± 0.41 m for the Nigerian accession to 2.11 ± 0.41 m 291 for the South African accession. 292 293 3.2 Carbon isotopes 294 P. glaucum seed δ^{13} C values ranged between -14.8 and -12.9 ‰ (mean and SD = -13.9 ± 0.5 ‰, n = 48) and leaf δ^{13} C values ranged between -16.9 to -13.3 ‰ (mean and SD = -14.8 \pm 295 296 0.7 %, n = 75) (Table A.2). Considering all five accessions collectively, both seed and leaf δ^{13} C values differed among water treatments ($F_{2.45} = 5.61$, P = 0.007; $F_{2.72} = 9.00$, P < 0.001, 297 298 respectively). Seeds produced under the non-stressed water treatment had δ^{13} C values that were 299 higher than both the moderately- and highly-water stressed treatments, but the δ^{13} C values of 300 seeds from the moderately- and highly-water stressed treatments could not be distinguished. Plants in the highly-water stressed group produced leaves with δ^{13} C values that were lower than 301 302 from the non-stressed and moderately-water stressed treatments; non-stressed and moderately 303 water stressed groups did not differ (Fig. 2a,c). Based on AIC model selection, the best-fit model 304 for seed δ^{13} C values was a GLM that included both soil moisture and accession as explanatory 305 variables (Table 1; Fig. 3); the best-fit model for leaf δ^{13} C values included water treatment and 306 accession (Table 1). When data from all accessions were analyzed together, these models 307 indicated that seed δ^{13} C values are positively correlated with water availability (Fig. A.1a,c), such that for each 0.1 m³ m⁻³ increase in average soil moisture, seed δ^{13} C values increase by 0.24 308 \pm 0.04 %. Likewise, for leaf δ^{13} C, a GLM with soil moisture and accession included as 309 310 explanatory variables showed that leaf δ^{13} C values increase by 0.24 ± 0.06 % per $0.1 \text{ m}^3 \text{ m}^{-3}$ 311 increase in soil moisture. Both seeds and leaves showed distinct, but relatively small, differences in δ^{13} C values among accessions (F_{4,43} = 3.49, P = 0.015; F_{4,70} = 3.05, P = 0.022); overall 312 variability in seed and leaf δ^{13} C values was within a range of 1.9 % and 3.6 %, respectively. We 313 314 found no significant interactions between water treatment and millet accession, indicating that

responses to water treatment did not differ among accessions. Seed δ^{13} C values across all five

316	accessions showed somewhat higher variability in the non-stressed treatment group relative to
317	the highly water-stressed treatment group (evaluated via the standard deviation from mean values
318	for an accession within each treatment group); the difference in standard deviation was on the
319	order of 0.1-0.2 ‰. The moderately-stressed treatment group showed seed $\delta^{13}C$ variability
320	intermediate to that of the non-stressed and highly-stressed groups. On the other hand, the
321	magnitude of variability in leaf δ^{13} C values with respect to water treatment was inconsistent
322	across the five accessions. For the Ghanaian, Kenyan, and Nigerian accessions, $\delta^{13}C$ values were
323	more variable for the non-stressed group relative to the highly-stressed group (on the order of
324	0.2, 0.6, 0.1 ‰, respectively). However, the Moroccan accession showed higher variability in the
325	highly-water stressed group (on the order of 0.2 %), and the South African accession showed
326	approximately the same magnitude of variability between the two groups. For the Moroccan,
327	Nigerian, and Kenyan accessions, the highest magnitude variability in $\delta^{13}C$ values was observed
328	in the moderately-stressed treatment group. Variability in the moderately-stressed group was
329	notably high for the South African accession (0.8 % higher than variability in the non-stressed
330	and highly-stressed groups).
331	To examine additional factors potentially contributing to variability in $\delta^{13}C$ values, we
332	assessed linear relationships between GLM deviance residuals and physiological variables (plant
333	height, time of panicle emergence). For seed δ^{13} C values, a weakly negative linear relationship
334	existed between plant height and the GLM residuals ($F_{1,45} = 5.14$, $P = 0.028$) (Fig. A.2).
335	However, a similar relationship was not present for the leaf $\delta^{13}C$ data.
336	The average $\delta^{13}C$ value of the CO_2 in the greenhouse (-3.7 \pm 1.8 ‰) allowed us to
337	determine Δ^{13} C (isotopic discrimination) for <i>P. glaucum</i> seeds as described under Materials and
338	Methods. Seeds had a mean $\Delta^{13}C$ value 10.2 ± 0.5 % (range 9.2 % to 11.1 %) (Fig. 4). As $\Delta^{13}C$
339	is based on a transformation of δ^{13} C, isotopic discrimination also differed among water
340	treatments and accessions.
341	
342	3.3 Nitrogen isotopes
343	P. glaucum seed $\delta^{15}N$ values ranged between 0.8 and 2.9 ‰ (mean and SD = 1.7 \pm 0.5
344	‰, n = 48), and leaf $\delta^{15}N$ values ranged between -0.9 to 2.3 ‰ (mean and SD = 1.0 \pm 0.8 ‰, n =
345	68) (Table A.2). In contrast with $\delta^{13}C$ values, there were no discernable differences in the $\delta^{15}N$
346	values of leaves and seeds between the non-stressed and highly-stressed treatment groups. Seed

Journal of Archaeological Science: Reports, 38, 103047 https://doi.org/10.1016/j.jasrep.2021.103047

 δ^{15} N values did not differ at all among treatments (F_{2,45} = 0.08, P = 0.928). Leaf δ^{15} N values only had discernable differences between the non-stressed and moderately-stressed treatments (F_{2,65} = 3.44, P = 0.038); the non-stressed and highly-stressed groups were statistically indistinguishable (Fig. 2b,d). The best-fit model for seed δ^{15} N was a GLM with accession as the lone explanatory variable, while the best-fit model for leaf δ^{15} N was a GLM with both water treatment and accession included as explanatory variables (Table 1). Unlike the δ^{13} C models, there was no isotopic signal associated with increasing soil moisture; the direction of the relationship between δ^{15} N and water availability varied among accessions and was indistinct when all accessions were considered together (Fig. A.1b,d). Both seeds and leaves showed differences in δ^{15} N among accessions (F_{4,43} = 3.99, P = 0.008; F_{4,63} = 5.86, P < 0.001); however, no single accession was consistently more or less enriched in 15 N (relative to other accessions) across both the seed and leaf data. The relationships between GLM deviance residuals and physiological variables for leaf δ^{15} N data showed a positive relationship between GLM residuals and panicle emergence time (F_{1,52} = 16.85, P < 0.001), but not plant height (Fig. A.3). No linear relationships exist between GLM residuals and seed δ^{15} N values.

Table 1 Comparison of GLM ability to account for δ^{13} C and δ^{15} N variability in pearl millet seeds and leaves, with best-fit model italicized.

Model	Residual Deviance	Residual DF ^a	AIC^b	ΔAIC^{c}
Seed δ ¹³ C				
Treatment	7.94	45	57.85	29.01
Soil Moisture	5.73	46	40.23	11.39
Accession	7.49	43	59.04	30.20
Soil Moisture + Accession	3.83	42	28.84	0
Treatment + Accession	4.83	41	42.04	13.20
Soil Moisture * Accession	3.74	38	35.74	6.91
Treatment * Accession	4.01	33	49.08	20.24
Leaf δ ¹³ C				
Treatment	31.02	72	154.64	7.39
Soil Moisture	30.91	73	152.35	5.10
Accession	33.02	70	163.32	16.07
Soil Moisture + Accession	26.50	69	148.80	1.55
Treatment + Accession	25.27	68	147.25	0
Soil Moisture * Accession	23.99	65	149.35	2.10
Treatment * Accession	21.68	60	151.74	4.49
Seed δ ¹⁵ N				
Treatment	10.92	45	73.13	10.97
Soil Moisture	10.79	46	70.56	8.40
Accession	7.99	43	62.16	0
Soil Moisture + Accession	7.94	42	63.88	1.72
Treatment + Accession	7.90	41	65.61	3.45
Soil Moisture * Accession	7.25	38	67.50	5.34
Treatment * Accession	5.59	33	65.04	2.88
Leaf δ ¹⁵ N				
Treatment	37.00	65	159.59	17.20
Soil Moisture	40.88	66	164.37	21.98
Accession	29.82	63	148.91	6.52
Soil Moisture + Accession	29.29	62	149.69	7.30
Treatment + Accession	25.54	61	142.39	0
Soil Moisture * Accession	26.74	58	151.50	9.11
Treatment * Accession	21.89	53	147.89	5.50

^a Residual degrees of freedom, ^b Akaike Information Criterion, ^c Difference in AIC from best model

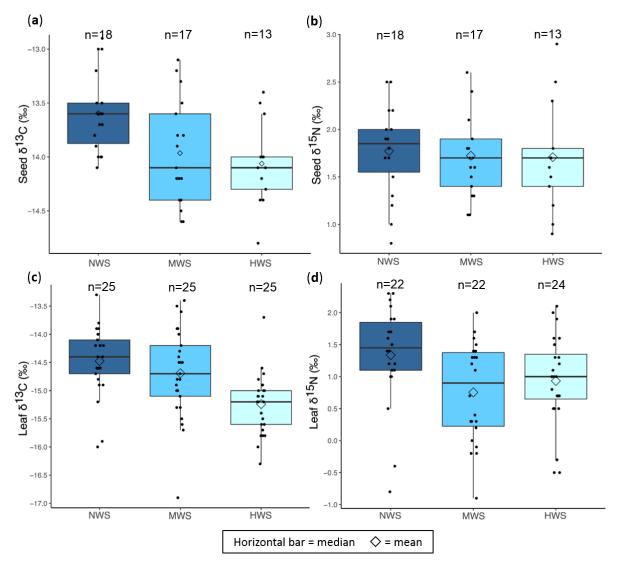
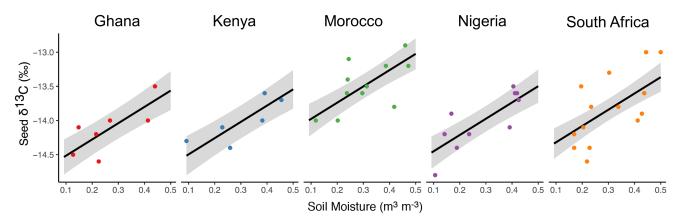



Fig. 2 Boxplots of pearl millet seed and leaf δ^{13} C and δ^{15} N values by water treatment. To avoid overplotting, data points within each discrete treatment group have been distributed randomly with respect to a set horizontal width. Treatment group designations: NWS = non-water stressed, MWS = moderately-water stressed, HWS = highly-water stressed.

Fig. 3 Best-fit regression lines for each pearl millet accession, plotted against average soil moisture; gray shaded region represents the standard error.

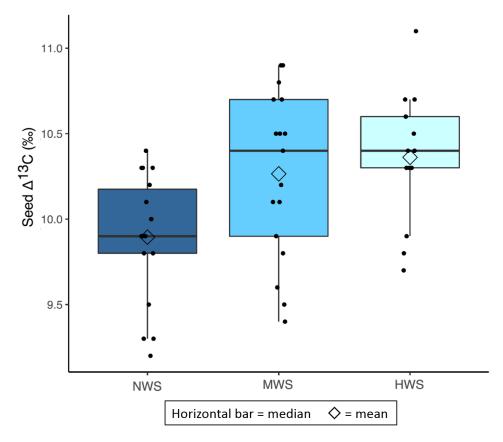


Fig. 4 Boxplot of pearl millet seed Δ^{13} C by water treatment. To avoid overplotting, data points within each discrete treatment group have been distributed randomly with respect to a set horizontal width. Treatment group designations: NWS = non-water stressed, MWS = moderately-water stressed, HWS = highly-water stressed.

4. Discussion

4.1 Carbon isotopes

Pearl millet seed and leaf δ^{13} C values are positively correlated with water availability, and this relationship is observed in all accessions in this study. We infer from the indistinguishable seed δ^{13} C values for the moderately- and highly-water stressed treatment groups that these two treatments did not differ dramatically in the degree of water restriction imposed; however, the non-water stressed treatment produced distinctly higher δ^{13} C values (Fig. 2a,c). Linear regression analyses of δ^{13} C values against average soil moisture further reinforce this finding, while accounting for disparities in average soil moisture within treatment groups. The magnitude of the positive relationship between δ^{13} C values and water availability is approximately equal in seeds and leaves, though pearl millet seeds do tend to have overall slightly higher (less negative) δ^{13} C values than leaves, consistent with the findings of An et al. (2015) for foxtail (*Setaria italica*) and common (*Panicum miliaceum*) millets. The positive correlation between water availability and δ^{13} C values is the opposite of the trend that is typically exhibited by C₃ plants.

This relationship has also been observed in other C_4 species, including foxtail millets (*Setaria italica*) (An et al., 2015; Lightfoot et al., 2020) and grasses of the Aristida genus (Schulze et al., 1996; Murphy & Bowman, 2009), and was previously reported for *P. glaucum* in an observational study (Reid et al., 2018). Previous studies have attributed this relationship to C_4 plant physiology, particularly to the equilibrium isotope effect between dissolved CO_2 and bicarbonate in mesophyll cells (e.g., Schulze et al., 1996). All carbon incorporated by Rubisco in C_4 plants derives from bicarbonate in mesophyll cells, which is enriched in ^{13}C relative to dissolved CO_2 (by 9 % at 25 °C; Mook et al., 1974). When this carbon is released as CO_2 in bundle-sheath cells, it can be incorporated into photosynthate or leak away from the site of decarboxylation and back into the mesophyll. The expressed fractionation is highly sensitive to the flux of CO_2 that leaks (Farquhar et al., 1989), complicating the factors governing photosynthetic control on isotopic fractionation in C_4 plants. The overall carbon isotope fractionation during carbon fixation by a C_4 plant (ε_P) can be expressed using the equation established by Hayes (2001) after Farquhar (1983):

412
$$\varepsilon_{p} = \varepsilon_{ta} + \frac{p_{i}}{p_{a}} \left[\varepsilon_{c} - \varepsilon_{b/d} + \phi(\varepsilon_{f} - \varepsilon_{tw}) - \varepsilon_{ta} \right]$$

where ε_{ta} and ε_{tw} are the isotope effects associated with mass transport of CO₂ in air and water, respectively (4.4 and 0.8 %; Hayes, 2001), ε_c is the isotope effect associated with fixation of bicarbonate by phosphoenolpyruvate carboxylase (2.2 ‰, as per O'Leary, 1981), $\varepsilon_{b/d}$ is the equilibrium isotope effect relating bicarbonate and dissolved CO₂ (8.7 ‰ at 27° C as per Mook et al., 1974), ε_f is the isotope effect associated with the fixation of CO₂ (27 % for land plants, as per Farquahar et al., 1989), $\frac{p_i}{p_2}$ is the ratio of partial pressures of CO₂ inside and outside carbon-fixing cells, and φ is the cellular 'leakiness' coefficient. Water availability directly alters the $\frac{p_i}{p_a}$ term, as plants respond to water stress by closing their stomatal pores, which results in a decrease in stomatal conductance and the internal CO₂ concentration (decreasing $\frac{p_i}{p_o}$). The relationship between $\delta^{13}C$ and water availability depends on whether the 'leakiness' of bundle-sheath cells is above or below a threshold value dictated by the other fractionations taking place during carbon fixation. If the cellular 'leakiness' is below this threshold value, then δ^{13} C of photosynthate increases (ϵ_P decreases) with increasing $\frac{p_i}{p_a}$ (increasing water availability). Above the threshold value, the δ^{13} C of plant material decreases with increasing $\frac{p_i}{n_0}$. In our greenhouse conditions, using the model parameters defined above, this leakiness threshold (φ) is between 0.41 and 0.42. Given the positive relationship observed in our data, φ is below that threshold for P. glaucum under our experimental conditions. The δ^{13} C values measured in this experiment are more negative than the Hayes model's theoretical isotopic discrimination would allow. One caveat to this relationship is that we examine bulk leaf and seed materials, and not isolated primary photosynthate. The low δ^{13} C values here may suggest that secondary processing of photosynthate is producing an additional discrimination effect against ¹³C. Our data also show δ^{13} C values of pearl millet vary for strains with different origins (accessions). The strong linear relationship between GLM residuals and plant height for the seed δ^{13} C model suggests that differences in plant physiology (associated with regional accession) may help explain the observed differences in seed carbon isotope ratios among accessions.

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

the leaf level.

Physiological differences may contribute to different light-use or transpiration efficiencies that

ultimately influence carbon isotope fractionation during photosynthesis. However, according to

our best-fit model, the measured physiological variables are unable to explain δ^{13} C variability at

4.2 Nitrogen isotopes

We found no strong correlations between water availability and $\delta^{15}N$, and overall variability in both leaf and seed $\delta^{15}N$ values was relatively low (c. 2 ‰ in seeds and 3 ‰ in leaves). The absence of a relationship between soil moisture and $\delta^{15}N$ values differs from patterns observed globally. Our data are consistent with the interpretation that the globally observed trends are a consequence of environmental parameters affecting soil $\delta^{15}N$, rather than nitrogen isotope fractionation.

4.3 Isotopes as proxies for water management

While we were able to observe correlations between water availability and seed δ^{13} C values, the observed effects are small. Seed δ^{13} C values for each accession showed a trend toward decreasing variability (standard deviation from the mean) with increasing degree of water restriction, though this effect is too minor to influence isotopic interpretation (0.1-0.2 %); moreover, this trend was not observed in the leaf δ^{13} C data. The weak signals observed here within accessions are likely to be obscured by environmental and genetic individualities among plants, which differ between environmentally-controlled greenhouses and "real-life" agricultural set-ups. Our results are consistent with the recent findings of Lightfoot et al. (2020) for foxtail millet (Setaria italica). Differences in δ^{13} C values produced by different watering treatments are not large enough in magnitude to be distinguishable from the isotopic variability between millet accessions. With this precaution in mind, however, should contextual information be rich (cf. household storage), δ^{13} C values derived from archaeological grains could be useful for addressing issues such as water stress or context-specific water availability. Future research to address landrace-specific questions, including "real-life" field experiments based upon modern agricultural water supply parameters, is needed.

4.4 Isotopes as proxies for past landraces

Phenotypic variations resulting from environmental adaptation may account for some of the variability observed in isotope ratios, an observation that may be of use in ethnobotanical studies. We observed that physiological traits, such as plant height and panicle emergence time, may account for a small degree of variability in our seed δ^{13} C and leaf δ^{15} N best-fit models (no more than c. 1 ‰ and 2 ‰, respectively) (Fig. A.2 and A.3). Previous ethnobotanical studies

have documented morphological variations of African millet landraces (e.g. *Eleusine coracana*), particularly in relation to seed size and shape, as well as environmental adaptations (e.g. Lule et al., 2012; Umar & Kwon-Ndung, 2014). For example, Brunken et al. (1977) describe a number of landraces of pearl millet that can be recognized on the basis of grain shape and plant morphology and have distinctive geographic ranges. Studies also note that farmers sometimes select landraces based on phenotypic characteristics, such as seed size and plant height, for various reasons (Tseshaye et al., 2006). Thus, it may be possible to use such measurements in combination with seed stable isotope values to identify specific landraces, if strong relationships between morphology and isotope ratios are established.

4.5 Conclusions

Water availability plays a small but detectable role in determining $\delta^{13}C$ in P. glaucum seeds and leaves. Based on established models of isotopic discrimination during C_4 carbon fixation, the positive relationship observed between $\delta^{13}C$ and water availability suggests that bundle sheath 'leakiness' was below a threshold value (calculated to be 0.42) for our experimental set-up, resulting in a positive relationship between $\delta^{13}C$ and $\frac{p_i}{p_a}$. The relatively low magnitude of variability (less than c. 2 ‰) in response to water stress suggests that millet $\delta^{13}C$ values are not a reliable proxy for past water management practices, as the isotopic signal associated with water availability is likely to be masked by the equally significant genetic variability among landraces.

Acknowledgements

- The authors thank Michael Dyer, Melanie Suess, Stephanie Moore, and the staff at the Goldfarb
- 496 Plant Growth Facility at Washington University in St. Louis.

Funding

- This work was supported by the National Science Foundation [grant number 1826727] and the
- 500 International Center for Energy and the Environment.

Declarations of Interest

503 None

Author Contributions

- XL and REBR conceptualized the research initially. LHS and REBR designed the study. LHS
- carried out the greenhouse experiment. LHS wrote the first draft of the manuscript, to which
- REBR, ASB and XL contributed revisions.

509 References

- Adams R. 1981. Heartland of Cities: Surveys of Ancient Settlement and Land Use on the
 Central Floodplain at the Euphrates. Chicago, USA: University of Chicago Press.
- Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A,
 Brenner D, Baisden WT. 2003. Global patterns of the isotopic composition of soil and
 plant nitrogen. Global Biogeochemical Cycles 17: 1031.
- 3. **An CB, Dong W, Li H, Zhang P, Zhao Y, Zhao X, Yu S-Y. 2015.** Variability of the stable carbon isotope ratio in modern and archaeological millets: evidence from northern China. *Journal of Archaeological Science* **53**: 316–322.
- 4. **Araus JL, Febrero A, Catala M, Molist M, Voltas J, Romagosa I. 1999.** Crop water availability in early agriculture: evidence from carbon isotope discrimination of seeds from a tenth millennium BP site on the Euphrates. *Global Change Biology* **5**: 201–212.
- 5. **Austin AT, Vitousek PM. 1998.** Nutrient dynamics on a precipitation gradient in Hawai'i. *Oecologia* **113**: 519–529.
- Bogaard A, Fraser R, Heaton THE, Wallace M, Vaiglova P, Charles M, Jones G,
 Evershed RP, Styring AK, Andersen NK et al. 2013. Crop manuring and intensive
 land management by Europe's first farmers. Proceedings of the National Academy of
 Sciences of the United States of America 110: 12589–12594.
- Boivin N, Fuller DQ. 2009. Shell middens, ships and seeds: exploring coastal
 subsistence, maritime trade and the dispersal of domesticates in and around the ancient
 Arabian Peninsula. Journal of World Prehistory 22: 113–180.
- 8. Boivin N, Crowther A, Prendergast M, Fuller DQ. 2014. Indian Ocean food globalisation and Africa. *African Archaeological Review* 31: 547–581.
- 9. Brown RH. 1977. A difference in N use efficiency in C₃ and C₄ plants and its
 implications in adaptation and evolution. *Crop Science* 18: 93–98.

- 10. **Brunken J, De Wet J, Harlan J. 1977**. The morphology and domestication of pearl millet. *Economic Botany* **31**: 163–174.
- 11. Buchmann N, Brooks JR., Rapp KD, Ehleringer JR. 1996. Carbon isotope
 composition of C₄ grasses is influenced by light and water supply. *Plant, Cell, & Environment* 19: 392–402.
- 12. Burgarella C, Cubry P, Kane NA, Varshney R.K, Mariac C, Liu X, Shi C, Thudi M,
 Couderc M, Xu X et al. 2018. A Western Sahara centre of domestication inferred from
 pearl millet genomes. *Nature Ecology & Evolution* 2: 1377–1380.
- 13. Cerling T, Harris J, MacFadden B, Leakey M, Quade J, Eisenmann V, Ehleringer J.
 1997. Global vegetation change through the Miocene/Pliocene boundary. *Nature* 389:
 153–158.
- 14. Clay DE, Engel RE, Long DS, Liu Z. 2001. Nitrogen and water stress interact to
 influence carbon-13 discrimination in wheat. *Soil Science Society of America Journal* 65:
 1823–1828.
- 15. Condon AG, Richards RA, Farquhar GD. 1992. The effect of variation in soil water
 availability, vapour pressure deficit and nitrogen nutrition on carbon isotope
 discrimination in wheat. Australian Journal of Agricultural Research 43: 935–947.
- 16. Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA,
 Kahmen A, Mack MC, McLauchlan KK, Michelsen A et al. 2009. Global patterns of
 foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar
 nutrient concentrations, and nitrogen availability. New Phytologist 183: 980–992.
- 17. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP. 2002. Stable isotopes
 in plant ecology. *Annual Review of Ecology and Systematics* 22: 507–559.
- 18. **Dercon G, Clymans E, Diels J, Merckx R, Deckers J. 2006.** Differential ¹³C isotopic discrimination in maize at varying water stress and at low to high nitrogen availability.

 Plant and Soil **282**: 313–326.
- 19. Evans RD. 2001. Physiological mechanisms influencing plant nitrogen isotope
 composition. *Trends in Plant Science* 6: 121–126.
- 20. Farquhar GD. 1983. On the nature of carbon isotope discrimination in C₄ species.
 Australian Journal of Plant Physiology 10: 205–226.

- 564 21. Farquhar GD, Richards RA. 1984. Isotopic composition of plant carbon correlates with
 565 water-use efficiency of wheat genotypes. *Australian Journal of Plant Physiology* 11:
 566 539–552.
- 567
 22. Farquhar GD, Ehleringer JR, Hubick K. 1989. Carbon isotope discrimination and
 568 photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40:
 569
 503–537.
- 570 23. **Flohr P, Müldner G, Jenkins E. 2011.** Carbon stable isotope analysis of cereal remains as a way to reconstruct water availability: preliminary results. *Water History* **3**: 121.
- 24. Fraser RA, Bogaard A, Heaton T, Charles M, Jones G, Christensen BT, Halstead P,
 Merback I, Poulton PR, Sparkes D et al. 2011. Manuring and stable nitrogen isotope
 ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of
 land use and dietary practices. *Journal of Archaeological Science* 38: 2790–2804.
- 576 25. Fuller D, Hildebrand L. 2013. Domesticating plants in Africa, In: Mitchell P, Lane P,
 577 eds. The Oxford Handbook of African Archaeology. Oxford, UK: Oxford University
 578 Press, 507–525.
- 26. Handley LL, Austin AT, Robinson D, Scrimgeour CM, Raven JA, Heaton THE,
 Schmidt S, Steward RG. 1999. The ¹⁵N natural abundance (δ¹⁵N) of ecosystem samples
 reflects measures of water availability. Australian Journal of Plant Physiology 26: 185–
 199.
- 583 27. **Hartman G, Danin A. 2010.** Isotopic values of plants in relation to water availability in the Eastern Mediterranean region. *Oecologia* **162**: 837–852.
- 585 28. **Hatch MD. 2002.** C₄ photosynthesis: discovery and resolution. *Photosynthesis Research* 586 **73**: 251–256.
- 587 29. **Hayes JM. 2001.** Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. *Reviews in Mineralogy and Geochemistry* **43**: 225–277.
- 30. Keeling CD. 1979. The Suess effect: ¹³Carbon-¹⁴Carbon interrelations. *Environment International* 2: 229-300.
- 31. Kohn MJ. 2010. Carbon isotope compositions of terrestrial C₃ plants as indicators of
 (paleo) ecology and (paleo) climate. Proceedings of the National Academy of Sciences of
 the United States of America 107: 19691–19695.

- 32. Kress A, Saurer M, Siegwolf RTW, Franks DC, Esper J, Bugmann H. 2010. A 350
 year drought reconstruction from Alpine tree ring stable isotopes. *Global Biogeochemical Cycles* 24: GB2011.
- 33. Kress A, Hangartner S, Bugmann H, Buntgen U, Frank DC, Leuenberger M,
 Siegwold RTW, Saurer M. 2014. Swiss tree rings reveal warm and wet summers during
 medieval times. *Geophysical Research Letters* 41: 1732–1737.
- 34. Li C. 1999. Carbon isotope composition, water-use efficiency and biomass productivity
 of Eucalyptus microtheca populations under different water supplies. *Plant and Soil* 214:
 165–171.
- 35. Lightfoot E, Liu X, Jones PJ. 2018. A world of C₄ pathways: on the use of δ¹³C values
 to identify the consumption of C₄ plants in the archaeological record. In: Lightfoot E, Liu
 X, Fuller DQ, eds. Far from the hearth: Essays in honour of Martin K. Jones.
 Cambridge, UK: McDonald Institute for Archaeological Research, 165–176.
- 36. Lightfoot E, Ustunkaya MC, Przelomska N, O'Connell TC, Hunt HV, Jones MK,
 Petrie CA. 2020. Carbon and nitrogen isotopic variability in foxtail millet (*Setaria* italica) with watering regime. Rapid Communications in Mass Spectrometry 34: e8615.
- 37. Lule D, Tesfaye K, Fetene M, De Villiers S. 2012. Multivariate analysis for quantitative
 traits in finger millet (*Eleusine coracana* subsp. *Coracana*) population collected from
 Eastern and Southeastern Africa: detection for patterns of genetic diversity. *International* Journal of Agricultural Research 7: 303–314.
- 38. **Makino A, Sakuma H, Sudo E, Mae T. 2003.** Differences between maize and rice in Nuse efficiency for photosynthesis and protein allocation. *Plant and Cell Physiology* **44**: 952–956.
- 39. Manning K, Pelling R, Higham T, Schwenniger J-L, Fuller DQ. 2011. 4500-year old
 domesticated pearl millet (*Pennisetum glaucum*) from the Tilemsi Valley, Mali: new
 insights into an alternative cereal domestication pathway. *Journal of Archaeological Science* 38: 312–322.
- 40. Mook WG, Bommerson JC, Staverman WH. 1974. Carbon isotope fractionation
 between dissolved bicarbonate and gaseous carbon dioxide. *Earth and Planetary Science Letters* 22: 169–176

- 41. Moser LE, Burson BL, Sollenberger LE. 2016. Warm-season (C₄) grass overview. In:
- Moser LE, Burson BL, Sollenberger LE, eds. Warm-season (C₄) grasses. Madison, WI,
- USA: American Society of Agronomy, Crop Science Society of America, Soil Science
- Society of America, 1–14.
- 42. **Murphy BP, Bowman DMJS. 2009.** The carbon and nitrogen isotope composition of
- Australian grasses in relation to climate. *Functional Ecology* **23**: 1040–1049.
- 43. **O'Leary MH. 1981**. Carbon isotope fractionation in plants. *Phytochemistry* **20**: 553–567.
- 44. **O'Leary MH. 1988.** Carbon isotopes in photosynthesis: fractionation techniques may
- reveal new aspects of carbon dynamics in plants. *BioScience* 38: 328–336.
- 45. Umar I, Kwon-Ndung E. 2014. Assessment of variability of finger millet (*Eleusine*
- 634 coracana (L) Gaertn) landraces germplasm in Northern Nigeria. Nigerian Journal of
- 635 *Genetics* **28**: 48–51.
- 46. Payne WA, Malcolm DC, Hossner LR, Wendt CW. 1992. Soil phosphorus availability
- and pearl millet water-use efficiency. *Crop Science* **32**: 1010–1015.
- 47. Peukert S, Bol R, Roberts W, Macleod CJA, Murray PJ, Dixon ER, Brazier RE.
- 2012. Understanding spatial variability of soil properties: a key step in establishing field-
- to farm-scale agro-ecosystem experiments. Rapid Communications in Mass Spectrometry
- **26**: 2413–2421.
- 48. **R Development Core Team. 2019.** *R: A language and environment for statistical*
- 643 computing. [WWW document] URL www.R-project.org. [accessed 1 July 2019].
- 49. **Reid REB, Lalk E, Marshall F, Liu X. 2018.** Carbon and nitrogen isotope variability in
- the seeds of two African millet species: *Pennisetum glaucum* and *Eleusine coracana*.
- *Rapid Communications in Mass Spectrometry* **32**: 1593–1702.
- 50. Sage RF, Pearcy RW. 1987. The nitrogen use efficiency of C₃ and C₄ plants. *Plant*
- 648 *Physiology* **84**: 959–963.
- 51. Sage RF. 2003. The evolution of C₄ photosynthesis. New Phytologist 161: 341–370.
- 52. Sage RF, Zhu X-G. 2011. Exploiting the engine of C₄ photosynthesis. *Journal of*
- *Experimental Botany* **62**: 2989–3000.
- 53. Sage RF. 2016. A portrait of the C₄ photosynthetic family on the 50th anniversary of its
- discovery: species number, evolutionary lineages, and Hall of Fame. *Journal of*
- 654 Experimental Botany **67**: 4039–4056.

- 54. Schmitt MR, Edwards GE. 1981. Photosynthetic capacity and nitrogen use efficiency of
 maize, wheat, and rice: a comparison between C₃ and C₄ photosynthesis. *Journal of Experimental Botany* 32: 459–466.
- 55. Schubert BA, Jahren AH. 2011. Quantifying seasonal precipitation using high resolution carbon isotope analyses in evergreen wood. *Geochimica et Cosmochimica* Acta 75: 7291–7303.
- 56. Schulze ED, Ellis R, Schulze W, Trimborn P, Ziegler H. 1996. Diversity, metabolic
 types and δ¹³C carbon isotope ratios in the grass flora of Namibia in relation to growth
 form, precipitation and habitat conditions. *Oecologia* 106: 352–369.
- 57. Schuur EA, Matson PA. 2001. Net primary productivity and nutrient cycling across a
 mesic to wet precipitation gradient in Hawaiian montane forest. *Oecologica* 128: 431–
 442.
- 58. **Serba DD, Yadav RS. 2016.** Genomic tools in pearl millet breeding for drought tolerance: status and prospects. *Frontiers in Plant Science* **7**: 1724.
- 59. Steward JH. 1955. A symposium on method and result in cross-cultural regularities. In:
 Irrigation civilizations: A Comparative Study. Washington, DC, USA: Pan American
 Union, 1–5.
- 60. Stewart GR, Turnbull MH, Schmidt S, Erskine PD. 1995. ¹³C natural abundance in
 plant communities along a rainfall gradient: a biological integrator of water availability.
 Australian Journal of Plant Physiology 22: 51–55.
- 61. **Stokes H, Müldner G, Jenkins E. 2011.** An investigation into the archaeological application of carbon stable isotope analysis used to establish crop water availability: Solutions and ways forward. In: Mithen S, Black E, eds. *Water, life and civilisation:* climate, environment and society in the Jordan Valley. Cambridge, UK: Cambridge University Press, 373–380.
- 62. Styring A, Charles M, Fantone F, Hald MM, McMahon A, Meadow RH, Nicholls
 GK, Patel AK, Pitre MC, Smith A et al. 2017. Isotope evidence for agricultural
 extensification reveals how the world's first cities were fed. *Nature Plants* 3: 17076.
- 63. Styring AK, Diop AM, Bogaard A, Champion L, Fuller DQ, Gestrich N, Macdonald KC, Neumann K. 2019. Nitrogen isotope values of *Pennisetum glaucum* (pearl millet)

- grains: towards a reconstruction of past cultivation conditions in the Sahel, West

 Africa. *Vegetation History and Archaeobotany* **28**: 663–678.
- 64. Swap RJ, Aranibar JN, Dowty PR, Gilhooly III WP, Macko SA. 2004. Natural abundance of ¹³C and ¹⁵N in C₃ and C₄ vegetation of southern Africa: patterns and implications. *Global Change Biology* **10**: 350–258.
- 65. **Szpak P, Metcalfe JZ, Macdonald RA. 2017**. Best practices for calibrating and reporting stable isotope measurements in archaeology. *Journal of Archaeological Science: Reports* **13**: 609–616.
- 66. **Tsehaye Y, Berg T, Tsegaye B, Tanto T. 2006.** Farmers' management of finger millet (*Eleusine coracana* L.) diversity in Tigray, Ethiopia and implications for on-farm conservation. *Biodiversity and Conservation* **15**: 4289–4308.
- 67. Van de Water PK, Leavitt SW, Betancourt JL. 2002. Leaf δ¹³C variability with
 697 elevation, slope aspect, and precipitation in the southwest United States. *Oecologica* 132:
 698 332–343.
- 68. Wallace M, Jones G, Charles M, Fraser R, Halstead P, Heaton THE, Bogaard A.

 2013. Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. *World Archaeology* 45: 388–409.
- 702 69. Weber S. 1998. Out of Africa: the initial impact of millets in South Asia. *Current* 703 Anthropology 39: 267-274.
- 70. Weiguo L, Hong FX, Youfeng N, Qingle Z, Yunning C, Zhisheng A. 2005. δ¹³C
 705 variation of C₃ and C₄ plants across an Asian monsoon rainfall gradient in arid
 706 northwestern China. Global Change Biology 11: 1094-1100.
- 71. Williams DG, Gempko V, Fravolini A, Leavitt SW, Wall GW, Kimball BA, Pinter
 708 Jr. PJ, LaMorte R, Ottman M. 2001. Carbon isotope discrimination by Sorghum
 709 bicolor under CO₂ enrichment and drought. New Phytologist 150: 285–293.
- 72. **Zhao B, Kondo M, Maeda M, Ozaki Y, Zhang J. 2004.** Water-use efficiency and carbon isotope discrimination in two cultivars of upland rice during different developmental stages under three water regimes. *Plant and Soil* **261**: 61–75.

- 713 Appendix A. Supplementary Information
- 714 Fig. A.1 Scatter plots demonstrating the relationship between pearl millet seed and leaf δ^{13} C and
- δ^{15} N and average soil moisture for each of five accessions.
- 716 Fig. A.2 Scatter plots demonstrating the relationship between GLM residuals and plant height for
- 717 pearl millet seed δ^{13} C values.
- 718 Fig. A.3 Scatter plot demonstrating the relationship between GLM residuals and time of panicle
- 719 emergence for pearl millet leaf δ^{15} N values.
- 720 **Table A.1** Summary of data for each accession.
- 721 **Table A.2** Data collected from experimental plants.
- 722 **Notes A.1** R Code for calculating total analytical uncertainty.
- 723 Notes A.2 R Code for analyzing C and N isotope data for pearl millet seeds and leaves.