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ABSTRACT 

Digital image correlation (DIC) has been widely accepted in the vibration community for 
extracting strain and displacement using noncontact optical techniques. Due to the nature of DIC, 
the preparation of a test structure with an applied pattern is important for obtaining accurate results. 
Investigation into pattern-less optical methods would be beneficial and it would be ideal if a test 
structure no longer needed pre-treatment prior to optical testing. Recently in the literature, Phase 
Based Motion Magnification (PMM) has been utilized to exaggerate subtle motion for structural 
identification. In this work, template matching is used to correlate a template facet over a series of 
magnified images. Following the determination of a template facet, virtual red, green and blue 
(RGB) targets are placed along the principal direction of displacement. Particles are then randomly 
generated and used to find the RGB coded targets and clustered to obtain sub-pixel displacements 
that can be used for frequency extraction of magnified data. Application of the template match 
particle filter (TMPF) approach will further enhance non-contact sensing, in addition to providing 
a more efficient way of processing optical data. This method is implemented to experimentally 
characterize parameters of two structures (i.e. a cantilever beam and bridge) having both high and 
low frequencies.  

Keywords: Phase Based Motion Magnification, Digital Image Correlation, Particle Filter, K-
Means Clustering, Frequency Extraction 

INTRODUCTION 

Non-contact sensing is a broad research topic that aims to gather data remotely rather than 
with physical sensors. Optical techniques are adopted for structural dynamic evaluation due to the 
laborious task of instrumenting a structure. Larger structures typically oscillate at a lower 
frequency and can make it difficult to extract structural dynamic parameters. To combat this, 
adoption of phase-based motion magnification (PMM) has proven to be successful in amplifying 
subtle motion [1]. This approach has been applied to extract structural dynamic behavior ranging 
from wind-turbine blades, bridges and other complex architecture [2-6]. In recent years, there has 
been improvements in the motion magnification technique using machine learning and image 
enhancement approaches [7, 8]. This augmentation of the phase-based algorithm can aid in 
extracting structural dynamic parameters such as resonant frequencies and operating shapes more 
easily [9-16]. Recently, adoption of template matching and particle filters have been used to 
evaluate complex dynamics [17-20]. The implementation of said approaches have created a more 
autonomous way of analyzing dynamics. In this work, a combination of both template matching 
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and particle filtering (TMPF) will aid characterizing the motion of both a cantilever beam and full-
scale bridge structure. 

BACKGROUND 

Template matching has been a computer vision tool that has permitted region of interest 
tracking over a sequence of images. The use of normalized cross-correlation between sequential 
frames is typically used for optical flow processes such as DIC. A template or facet of pixels, 𝐼1, is 
selected within a pre-determined window, 𝐻, over a 𝑛 number of frames. The pre-determined 
template is compared to the sequential video frame, 𝐼2 displaced in the coordinate plane where 𝑢 
and 𝑣 are displacements in the (𝑥, 𝑦) plane. Eq. 1 expresses the relationship between 𝐼1 and 𝐼2, 
which yields the correlation matrix 𝑅 [19]. 

 

𝑅 = 
∑  (𝑢,𝑣)∈𝐻 𝐼1(𝑢, 𝑣) ⋅ 𝐼2(𝑥 + 𝑢, 𝑦 + 𝑣)

√∑  (𝑢,𝑣)∈𝐻 𝐼1
2(𝑢, 𝑣) ⋅ ∑  (𝑢,𝑣)∈𝐻 𝐼2

2(𝑥 + 𝑢, 𝑦 + 𝑣)

 
 
(1) 

 
The correlation matrix contains weights ranging from zero to one that signify low to high 
correlation between the template and sequential image. The shift in the image template from frame 
to frame is measured by global pixel displacement. Adoption of the particle filter is used to gain 
sub-pixel resolution of displacements between frames.  
 Particle filtering is commonly used in estimation theory with several applications in control 
systems. Common algorithms such as Kalman filters have shown trialed success in extracting 
dynamic motion; however, they are limited to linear dynamics and Gaussian noise. The benefit of 
using the particle filtering algorithm, is its ability to estimate non-linear dynamics in addition to 
handling non-Gaussian noise. The formulation of the particle filter will not be discussed as it is 
beyond the scope of this paper, but comments on its application will be highlighted. Particle filters 
are used to estimate system dynamic or states, which can be used to predict further states as they 
change in time [21].  

{

𝑥𝑛
𝑦𝑛
𝑥̇𝑛
𝑦̇𝑛

} = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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𝑦̇𝑛−1

} +
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𝜓𝑥
𝜓𝑦

𝜓𝑥
𝜓𝑦
̇

̇

}
 
 

 
 

 

 
 
(2) 

 
Within Eq. 2, the location and velocity of the particle filter targets at frame 𝑛 are represented 
by (𝑥𝑛, 𝑦𝑛) and (𝑥̇𝑛, 𝑦̇𝑛) respectively. The additional terms, 𝜓𝑥, 𝜓𝑦, 𝜓̇𝑥, 𝜓̇𝑦 are representative of 
additive noise that is present in the dynamic system. The Euclidean distance, 𝑘, between RGB 
values of the virtual target and the corresponding RGB virtual target vector is expressed as,  
 

𝑘 = √(𝑟 − 𝑟𝑖)
2 + (𝑔 − 𝑔𝑖)

2 + (𝑏 − 𝑏𝑖)
2, (3) 
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where 𝑟, 𝑔, 𝑏 are the RGB values of the generated particles in the image and 𝑟𝑖, 𝑔𝑖 , 𝑏𝑖 are the RGB 
target values that are to be tracked in the image. Eq. 4 is used to resample the particles and update 
their location in sequential frames [21]. 
 

𝑃(𝑌𝑛 | 𝑋 𝑛 | 𝑛−1) =
1

√2𝜋𝜎
𝑒
(−

𝑘2

2𝜎2
) 

 
(4) 

 

The likelihood distribution and corresponding standard deviation, 𝜎, relates the Euclidean 
distance, 𝑘 and successive dynamic states. As 𝑘 gets smaller, the particle filter will be tracking the 
RGB targets in the frame. Due to the number of particles generated, the k-means clustering 
algorithm is used to localize the target and provide sub-pixel resolution [22]. K-means clustering 
will aid in taking a cluster of particles and determining an (𝑥, 𝑦) coordinate in the image.  

ANALYSIS 

 The objective of PMM is to amplify subtle motion in video for further structural dynamic 
analysis. For this study, a specific algorithm is created to capture magnified motion using several 
computer vision approaches. Fig. 1 below, displays the algorithm architecture used to extract 
magnified time history.  

 

Fig. 1: TMPF algorithm structure for sub-pixel displacement extraction. 

 Experimental validation is conducted on a cantilever beam and full-scale bridge structure. 
Both structures are chosen to verify that the proposed algorithm can capture both high and low 
frequency oscillations. Following the initial capturing of video, a selection of PMM parameters 
such as: magnification factor and frequency bandwidth are designated for displacement extraction.  
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Beam Experiment 

 A cantilever beam is used to validate the high-frequency capturing capability of the 
proposed algorithm. A single 4-megapixel PHOTRON high-speed camera captures data at 2500 
(fps).  The corresponding calibration factor of approximately 0.4 (mm/pixel). Fig. 2 below displays 
the experimental setup and frequency response function (FRF) of the cantilever beam. 

 

Fig. 2: (a) Image of cantilever beam experiment, (b) FRF of beam excitation and acceleration 
response up to the third resonant frequency. 

Experimental modal analysis (EMA) provides resonant frequencies that are used to compare 
accelerometer results with TMPF. Following the steps outlined in Fig. 1, TMPF generates 5 
elements or templates along the length of the beam that each contain three RGB coded targets, 
which produces 15 particles in total. The results from the TMPF algorithm are displayed in Fig. 3.  

 

Fig. 3: (a) Template (yellow rectangle) and particle filter RGB coded targets for the first six of ten 
elements, (b) Mean of extracted displacements using particle filter for the first six of ten templates, 
(c) Fast Fourier Transform of extracted displacement (Element 6). 
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Given the extraction of time histories for the length of the cantilevered beam, it is also possible to 
extract operating deflection shapes (ODS) after magnification of resonant frequencies. Table 1 
lists the resonant frequencies, magnification band and magnification factor necessary to gain 
insight into higher order dynamics. 

Table 1: Comparative analysis of experimental frequencies, magnification band and factor for 
each resonant frequency. 

Resonant 
Frequency 

EMA 
Frequency (Hz) 

TMPF 
Frequency 

(Hz) 

Magnification 
Frequency Band 
𝜔𝑙 − 𝜔ℎ (Hz) 

Magnification 
Factor 
𝛼 

1 30.0 33.3 29.0-35.0 10 
2 205.8 208.3 204.0-210.0 15 
3 592.5 591.7 590.0 – 595.0 25 

 

 Following the magnification of each bending mode, the extracted operating shapes are 
computed using a peak-picking approach for the length of the beam at the first three resonant 
frequencies as show in Fig. 4.  

 

Fig. 4: Peak-picking approach for computation of the first three operating shapes, where 𝑝(1) to 
𝑝(15) represent the fifteen RGB coded targets. 

 TMPF computes magnified time history in addition to ODS for the cantilever beam. The 
cross-correlation calculation that is computed using Eq. 1 is necessary to track a region of interest 
from frame to frame. This is consistent with traditional DIC, where a facet of pixels is chosen to 
track over a series of images. Hand speckle interferometry makes template matching more 
simplistic; however, it is not practical on large scale structures due to the pre-treatment necessary 
for non-destructive evaluation. Following the determination of the reference template using TMPF, 
the particle filtering and clustering of the RGB coded targets provide sub-pixel resolution of 
magnified displacement. This will rid the need for pretreatment of a structure so long that a 
template can be found between sequential frames. 
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Bridge Test 

 A full-scale, 25 meter span bridge in Maine is used to collect low frequency vibration data 
via the proposed TMPF approach. This structure does not contain a pre-treatment of DIC’s 
trademark stochastic pattern. Therefore, the computation of dynamics will solely rely on the TMPF 
approach. A commercial truck is driven over the bridge at 20 (mph) for excitation purposes. As 
shown in Fig. 5, PMM is implemented to exaggerate the motion of the bridge, such that frequency 
can be computed using magnified time history.  

 

Fig. 5: Bridge data collection and magnification for frequency validation via TMPF. 

A SONY PXW-FX9 XDCAM Full-Frame camera system at 60 (fps) was used to capture the raw 
video of the bridge. A calibration factor of 12 (mm/pixel) is computed utilizing the working 
distance of the camera. Fig. 6 displays the magnified time history and frequency for each RGB 
coded target.  
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Fig. 6: (a) Magnified time history for a 20 (mph) excitation using five RGB coded targets, (b) 
Frequency response of magnified time history to identify the first resonant frequency. 

 Glancing at Fig. 6 (a), it is clear where the 20 (mph) excitation takes place during the 
captured video. TMPF can not only extract the dynamic motion at approximately 3 (mm), but it is 
also able to identify a resonant frequency of the bridge at approximately 1.6 (Hz).  
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CONCLUSION 

TMPF is a non-invasive computer vision approach that fuses a normalized cross-
correlation between frames in addition to sub-pixel determination of magnified displacement. 
Hand speckle interferometry, commonly seen with techniques such as DIC, is an arduous pre-
treatment of a particular region of interest. Also, the accuracy of said results are dependent on the 
size of each facet. TMPF serves to use the distinct features available in an image to make 
correlation between sequential frames. Particle filtering in conjunction with k-means clustering 
aid in gathering sub-pixel resolution of magnified displacement without having to pre-treat the 
structure. In addition to magnified time history, TMPF can also compute structural dynamic 
parameters such as resonant frequencies and operating deflection shapes. To further confirm the 
technique, a full-scale bridge structure was excited and its first resonant frequency was identified 
using the proposed algorithm. Future works will investigate the limitations of this approach, one 
major concerning being the rigidity of the template matching approach. At higher order dynamics, 
it becomes more cumbersome to place RGB coded targets if the region of interest contains two or 
more inflection points.   
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