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a b s t r a c t

We investigate a quasi-static tensile fracture in nonlinear strain-limiting solids by
coupling with the phase-field approach. A classical model for the growth of fractures
in an elastic material is formulated in the framework of linear elasticity for deformation
systems. This linear elastic fracture mechanics (LEFM) model is derived based on the
assumption of small strain. However, the boundary value problem formulated within
the LEFM and under traction-free boundary conditions predicts large singular crack-
tip strains. Fundamentally, this result is directly in contradiction with the underlying
assumption of small strain. In this work, we study a theoretical framework of nonlinear
strain-limiting models, which are algebraic nonlinear relations between stress and strain.
These models are consistent with the basic assumption of small strain. The advantage
of such framework over the LEFM is that the strain remains bounded even if the crack-
tip stress tends to the infinity. Then, employing the phase-field approach, the distinct
predictions for tensile crack growth can be governed by the model. Several numerical
examples to evaluate the efficacy and the performance of the model and numerical
algorithms structured on finite element method are presented. Detailed comparisons
of the strain, fracture energy with corresponding discrete propagation speed between
the nonlinear strain-limiting model and the LEFM for the quasi-static tensile fracture
are discussed.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Fracture mechanics has been one of major research interests in several different areas such as civil, mechanical,
nvironmental, petroleum engineering fields and applied mathematics. Initially, Griffith [1] gave a solid foundation for
he linear elastic fracture mechanics (LEFM). This energy-based brittle fracture theory was modeled on energy balance
etween the stored elastic energy of a material and the energy required to create a new crack increment. It has been one
f the widely utilized and successful theories in applied mechanics, and many mathematical problems of material failure
r fracture were conventionally modeled within the framework of LEFM.
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However, the LEFM model, when coupled with an idealized zero-traction crack–surface boundary condition, contains a
noticeable inconsistency. It predicts the crack-tip strain singularity even though the model is predicated upon infinitesimal
strains [2]. The assumption of uniform infinitesimal strains leads to the constitutive relation of the LEFM and thereby it
reduces to a linear relationship between the Cauchy stress and strain tensors. The study of fracture within the theory of
finite elasticity also resulted in singular stress and strain at the crack-tip [3]. It has been argued for a long time that the
erroneous prediction of crack-tip strain singularity may be a consequence of modeling error in the LEFM.

Many studies have attempted to correct the inconsistency by augmenting the LEFM based on different modeling
paradigms, such as the cohesive/process zone models [2,4], or surface mechanics-based theories [5–13]. However, some
of these methods are based on introducing a separate conceptual zone or utilizing different models. On the other hand,
the insufficiency of the LEFM can be further illuminated regarding many new engineering materials as well. There are
some clear experimental evidences that certain materials such as the titanium alloy manifest the nonlinear behaviors
well within the small strain regime [14–17]. However, the classical linear model cannot properly describe the nonlinear
response from stress even when strains are only around 2% [18,19]. Hence, it is also important to provide and study some
new class of elasticity models that can capture the stress–strain relationship of such nonlinear materials.

Recently, a new class of nonlinear theoretical models – derived from the implicit relationship between the Cauchy
stress and the Cauchy–Green stretch tensors – has been introduced in [20–22]. Structured on the implicit relationship
and by appealing to the standard linearization process under the assumption that the norm of the displacement gradient
is small, one can arrive at a non-customary nonlinear relationship between the linearized strain and the Cauchy stress
tensors. Structured on this nonlinear relation, the strain can remain bounded even if the stress tends theoretically
to the infinity. Such a class of nonlinear models is known as the nonlinear strain-limiting models [23–25]. Rigorous
mathematical analyses to show the existence of weak solutions for variety of problems formulated within the implicit
theory of elasticity are shown in [26–28]. Convergence analysis of the numerical schemes for crack problems are described
in [29,30]. Moreover, by employing the nonlinear elasticity within the general strain-limiting theory, the responses
of elastic bodies [31–33], electro-elastic bodies [34], magneto-elastic bodies [35], and thermo-elastic bodies [36] are
presented in previous studies.

In this study, our main focus is on coupling the strain-limiting model with the phase-field approach to investigate a
quasi-static tensile fracture propagation. Recently, the phase-field or the regularized crack method has become a powerful
tool to simulate the evolution of cracks and fractures in elastic materials. In particular, the phase-field formulation derived
from the variational theory has received a lot of attention from the applied mechanics community due to its strong ties
to the Griffith’s theory for brittle fracture [37,38]. The advantages of this approach include the ability for automatically
determining direction – joining and branching – of crack propagation through minimization of an energy functional
without any additional constitutive rules or criteria. Thus, computing the stress intensity factor near the crack-tip is
intrinsically embedded in the model. In addition, all computations are performed entirely on the initial, un-deformed
configuration and there is no need to disconnect, remove, move elements or introduce additional discontinuity. This
feature results in a significant simplification of numerical implementation to handle realistic heterogeneous properties of
solid or porous media with adaptive mesh refinements in two and three dimensional applications. Furthermore, recent
advances and numerical studies for treating the multiphysical phase-field fractures include the following: thermal shocks
and thermo-elastic–plastic solids [39–41], elastic gelatin for wing crack formation [42], pressurized fractures [43,44],
fluid-filled (i.e., hydraulic) fractures [45–50], proppant-filled fractures [51], variably saturated porous media [52], crack
initiations with microseismic probability maps [53,54], and many other applications [55–62].

To couple the nonlinear strain-limiting model with the phase-field approach for the quasi-static tensile (or mode I)
fracture propagation, we employ an iterative coupling algorithm, the staggered L-scheme [63]. The algorithm provides an
efficient iterative coupling between the phase-field and the nonlinear mechanics. An adaptive mesh refinement to localize
the mesh refining the regularized fractures is applied for the efficiency of the algorithm as in [64]. Then, several numerical
simulations are illustrated to compare between the LEFM and the nonlinear strain-limiting elasticity — the convergence of
the iterative solvers, stress–strain values, and the fracture propagation along with their energies and discrete crack speed.
In summary, the main novelty of this study is to extend the strain-limiting theory to consider the quasi-static fracture
initiation and its propagation. Thus, a new computational framework of formulating a quasi-static strain-limiting fracture
by iteratively coupling the nonlinear strain-limiting model with the phase-field approach is established.

The organization of the paper is as follows: In Section 2, we briefly introduce the derivation of strain-limiting model
and recapitulate the main idea of phase-field approach. Moreover, the mathematical models and governing system for
our problem are discussed. Spatial and temporal discretizations using finite element method and the solution algorithm
are presented in Section 3. Finally, several numerical examples comparing the classical linear elasticity (i.e., the LEFM)
nd the nonlinear strain-limiting models for the quasi-static fracture propagation are illustrated in Section 4.

. Mathematical model

In this section, a brief overview of the physical modeling including the nonlinear strain-limiting elasticity and the
hase-field approach is presented structured on previous studies. We first introduce the kinematical setting and notations
hat we use for the LEFM and the nonlinear strain-limiting models.
2
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2.1. Strain-limiting theories for elasticity

The strain-limiting model for elasticity which was established and discussed in [20–22,24,65] is briefly described in
this section. Let x := f (X, t) denote the current position of a particle (motion of a particle) that is at X of a material
ody A in the stress-free reference configuration. Here, f is a deformation of the body which is differentiable and the
isplacement is denoted by u := x − X. Then, the displacement gradients are defined

∂u
∂X

:= ∇Xu = F − I and
∂u
∂x

:= ∇xu = I − F−1, (1)

where I is the identity tensor and F is the deformation gradient

F :=
∂ f
∂X
. (2)

The left and right Cauchy–Green stretch tensors B and C are given by

(left) B := FFT, (right) C := FTF, (3)

respectively. Then, the Green–St.Venant strain tensor E and the Almansi–Hamel strain e are defined as

E :=
1
2
(C − I) and e :=

1
2
(I − B−1). (4)

2.1.1. The linearized theory of elasticity for isotropic bodies
Let σ denote the Cauchy stress tensor in a deformed configuration, then the first and second Piola–Kirchhoff stress

tensors in a reference configuration are

S := det(F)F−1σ and S̄ := SF−T , (5)

respectively. The material body A is called Cauchy elastic if its constitutive class is determined by a scalar function of the
deformation gradient, i.e.,

S = S̃(F). (6)

Thus, the Cauchy stress σ is a function of the deformation gradient F, and the stress depends on the stress-free and
final configurations of the body [66]. For a compressible homogeneous isotropic Cauchy elastic body, the constitutive
relation [66] is

σ = α1I + α2B + α3B2, (7)

where αi, i = 1, 2, 3 depend on isotropic invariants of ρ, tr(B), tr(B2), and tr(B3), where ρ is the density of the body, and
tr(·) is the trace operator.

Next, the body A is called Green elastic (or hyper-elastic) [67] if the stress response function is the gradient of a scalar
valued potential, i.e.,

Ŝ(F) = ∂Fŵ(F), (8)

and hence a stored energy, ŵ(F), exists. Thus, the stress in a Cauchy elastic body and the stored energy associated with
a Green elastic body depend only on the deformation gradient as discussed in [68].

2.1.2. Implicit and strain-limiting constitutive models
A general class of elastic materials than Cauchy or Green elastic bodies, which assumes that the stress and the

deformation gradient are related by implicit constitutive relations, is introduced by Rajagopal in [20,21]. A special subclass
of these implicit models is an explicit representation where the left Cauchy–Green stretch tensor B is given in terms of
Cauchy stress σ. These models for elastic bodies are neither Cauchy elastic nor Green elastic.

First, let us consider an isotropic implicit constitutive relation of the form

F(σ,B) = 0, (9)

between the Cauchy stress and the left Cauchy–Green tensor. Following [69], with the assumption that the elastic body
is isotropic homogeneous compressible, we obtain

B = α̃1I + α̃2σ + α̃3σ
2, (10)

where α̃i, i = 1, 2, 3 are the scalar-valued functions of the isotropic invariants of ρ, tr(σ), tr(σ2), and tr(σ3). Note that
the stress and the left Cauchy–Green stretch are reversed compared to the classical model in Eq. (7). Eq. (10) cannot
e obtained from the class of general Cauchy elastic bodies by inverting the stress as a function of the deformation
radient [21]. Under the assumption of small displacement gradient such that

max ∥∇ u∥ = 0(δ), δ ≪ 1, (11)
x

3
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we obtain

E = ϵ + 0(δ2), e = ϵ + 0(δ2), B = I + 2ϵ + 0(δ2), (12)

where ϵ is the linearized strain:

ϵ := ϵ(u) =
1
2

(
∇u + (∇u)T

)
, (13)

here (·)T is the transpose of (·). Finally, the linearization of the model, Eq. (10), under the assumption of small
isplacement gradient (Eqs. (11)–(12)) leads to

ϵ = β1I + β2σ + β3σ
2, (14)

here the linearized strain is given as a nonlinear function of the Cauchy stress and here the β1 is dimensionless coefficient
nd material moduli β2 and β3 need to have dimensions that are the inverse of the stress and the square of the stress,
espectively.

The above approximation, Eq. (14), has no restrictions on the stress while requiring the strain still to be small. This
onlinear relationship can be crucial since bounded strain can be obtained even if the stress tends to a large value.
uch models have very interesting applications, particularly dealing with crack and notch problems – which may lead
o unrealistic singular strains within the classical linearized elasticity.

emark 2.1. Under the assumption of Eq. (11), we note that there is no distinction between E, e and ϵ, and we do not
istinguish between the reference (or the undeformed) and the deformed configurations for linear elastic materials.

emark 2.2. For the isotropic linear elastic material in the absence of body forces, the linear and angular momentum
alance reduces to

− ∇ · σ = 0, σ = σT . (15)

f the displacement (including in the neighborhood of stress concentrators as crack-tips, reentrant notch-tips, etc.) is
mooth enough, one can consider formulating boundary value problem using (15). Further, the linearized strain tensor
eeds to satisfy the compatibility conditions such as

curl (curl ϵ) = 0, (16)

here curl is the classical operator for tensors and (curlA)ij = eilk
∂Alj

∂xk
, where e is the standard basis vector in a given

Euclidean space. Eq. (16) implies that the displacement in a simply-connected body without any overlaps or gaps can be
obtained by the integration of the linearized strain. In the view of Eq. (15), Eq. (16) will be automatically satisfied for a
linear elastic material.

For an isotropic, homogeneous, linear elastic material, the constitutive relationship for the Cauchy stress is given by
the Hooke’s law

σ = 2µ ϵ + λ tr (ϵ) I, (17)

where µ and λ are Lamé parameters and tr(·) is the trace operator for tensors. Since Eq. (17) is invertible, we can express
linearized strain tensor ϵ as a (linear) function of the Cauchy stress

ϵ =
1
2µ

σ −
λ

6µ(λ+ (2/3)µ)
tr (σ) I. (18)

ence, one can formulate the boundary value problems for the linear elastic material either within Eq. (17) or Eq. (18).
However, it may lead to the fact that the strains in the neighborhood of crack-tips will be large, which clearly violates the
fundamental assumption of Eq. (11), which is a consequence of the derived theory of linear elastic materials. In Eq. (18)
for elastic materials, the shear modulus µ is always positive and the term λ + (2/3)µ, called the bulk modulus (which
has the same unit as stress), cannot be zero.

Now, let us consider the special subclass of strain-limiting constitutive relationship from Eq. (14), having the form

ϵ = Ψ0 (tr(σ), |σ|) I + Ψ1 (|σ|) σ, (19)

and which is generally non-invertible. In the above Eq. (19), Ψ0(·, ·),Ψ1(·) are scalar functions of stress invariants, and
more importantly, the assumption of no residual stress implies Ψ0 (0, ·) = 0.

In this paper, we extend these previous frameworks for static cracks [70–72] to a quasi-static crack evolution by
considering a special subclass of nonlinear models that are invertible, yet rank-one convex [73,74], and strongly elliptic
when the strains are small [73]. To that end, let us consider a nonlinear, hyperelastic model in the infinitesimal strain
regime:

E = φ(K[S̄])K[S̄], (20)
4
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where K is the fourth-order compliance tensor, E is the Green–Lagrangian strain, and S̄ is the second Piola–Kirchhoff
tress. Note that the above model can be customized for an anisotropic material model and it was shown in [75] that the
odels of the type, Eq. (20), fail to be rank-one convex (or, equivalently, lose the notion of strong ellipticity) if the strains
re large. A simpler model to consider within the general class of models described by Eq. (20) is

φ(K[S̄]) := φ̃(|K1/2
[S̄]|), (21)

s described in [72]. In Eq. (21), φ̃(r) is a positive, monotonic decreasing function and rφ̃(r) is uniformly bounded for
< r < ∞, and K1/2

[·] denotes the unique, positive definite square-root of the compliance tensor K. One special case
f Eq. (21) is defined with

φ̃(r) :=
1

(1 + (βr)α)1/α
, (22)

here α and β are the nonlinear model parameters [26,70–72]. Some detailed studies of these parameters are presented
n the numerical example section.

emark 2.3. The function φ̃(r) in (22) needs to be a decreasing function with β > 0 and α > 0 for the strains to be
‘limited’’ near the crack-tip. Using the function φ̃(r), one can fix an upper bound for strains a priori to model specific
aterials or physical experiments with real data. The assumption of β being positive is very important for the model

o be hyperelastic and invertible, and the same has been observed in several other studies involving strain-limiting
odels [26–29,76,77].

Thus, under the infinitesimal strain assumption, we arrive at the nonlinear relation between strain ϵ and stress, such
as

ϵ = φ̃(|K1/2
[S̄]|)K[S̄], (23)

where S̄ can be viewed as the Cauchy stress, i.e., K[S̄] = K[σ]. Then, we have

ϵ = φ̃(|K1/2
[σ]|)K[σ], (24)

nd from the relation in Eq. (18), we obtain

K[σ] :=
σ

2µ
−

λ tr(σ) I
2µ(2µ+ 3λ)

, (25)

here σ is obtained from Eq. (17). Finally, by using Eqs. (22)–(25), we obtain the following nonlinear relation for the
train ϵ by

ϵ := ϵNL =
K[σ]

(1 + (β|K1/2[σ]|)α)1/α
, (26)

here

|K1/2
[σ]| =

(
σ : σ

2µ
−

λ tr(σ)2

2µ(2µ+ 3λ)

)1/2

.

e note that the strain ϵ is denoted in two different forms depending on the formulations. The nonlinear strain-limiting
train (denoted as ϵNL) is the same as ϵ in Eq. (18) provided β = 0 or α → ∞. Henceforth, unless otherwise noted, we
se the notation ϵNL only for the strain obtained by the nonlinear model.
To formulate boundary value problems within the framework of the new class of nonlinear models, we start by

etting the displacement (u) as the primary variable as expressed in Eq. (13). Here, the strain compatibility condition
Eq. (16)) is automatically satisfied. Then, we invert the relation of Eq. (24) to get the stress tensor components, and
eplace components in Eq. (15) with these to obtain a quasi-linear partial differential equation. Recently, it was shown
n [70–72,78] that models within the context of Eq. (19) for the problem of a static crack in a body under the anti-plane
hear lead to solutions with the bounded strains at the crack-tip. In addition, a model for the evolution of quasi-static
rack under the same type of loading is developed in [79]. It was shown that the crack-tip strain does not grow in the
ame order as the linear model and the result is consistent with the linearization assumption used in the derivation of
he model.

Then, since Eq. (26) is invertible and letting S̄ = σ to formulate in a deformed configuration, the partial differential
quation in the form of Eq. (15) for the proposed strain-limiting model is derived as

−∇ ·
E[ϵ]

(1 − (β|E1/2[ϵ]|)α)1/α
= 0. (27)

ere E is the fourth-order linearized elasticity tensor and is symmetric and positive definite. For the isotropic, homoge-
eous materials, we have

E[ϵ] := σ = 2µ ϵ + λ tr(ϵ) I, (28)
5
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Fig. 1. An example of a fracture defined with the phase-field function ϕ(·, t) ∈ [0.1].

y considering the displacement as the primary unknown variable, and ϵ is given as the symmetric gradient of the
isplacement (Eq. (13)). The other method to directly compute the explicit nonlinear stress by using the Airy stress
unction is shown in [79–82].

emark 2.4. From Eq. (27), it is required to satisfy the following condition,(
1 −

(
β|E1/2 [ϵ] |

)α)1/α
> 0, (29)

for the ellipticity for the weak formulation. This condition is similar to the results provided in [29,76,77] for their analyses.
We note that this condition is related to the mechanical properties such as Lamé coefficients within the calculation
of |E1/2 [ϵ] | and the choice of the nonlinear parameters, α and β . More detailed conditions particularly regarding the
strain-limiting effects are addressed in Section 4.

2.2. Phase-field approach for fracture propagation with nonlinear strain-limiting elasticity

Let Λ := Λ(t) ∈ Rd (d = 2, 3) be a smooth open and bounded computational domain, with a given boundary ∂Λ. Here,
the time is denoted by t ∈ [0, T ], with the final time T > 0 in the computational time interval. As discussed in [83,84], the
fracture C(t) is contained compactly in Λ(t). In the phase-field fracture approach, discontinuities in the displacement field
u across the lower-dimensional crack surface is approximated by a smooth scalar function ϕ(·, t) : Λ×[0, T ] → [0, 1]. This
hase-field function ϕ(·, t) introduces a diffusive transition zone, which has a bandwidth ξ for regularization, between

the fractured region (ΩF ) having ϕ(·, t) = 0 and the un-fractured (or intact) region (ΩR) having ϕ(·, t) = 1. See Fig. 1 for
more details. The boundary of the fracture is denoted by ΓF (t) := Ω̄F (t) ∩ Ω̄R(t).

To discuss the phase-field fracture, we first introduce the Francfort–Marigo functional [84], which describes the energy
with a fracture in an elastic body as

E(u, C) =
1
2

∫
ΩR

σ(u) : ϵ(u) dx + GcHd−1(C), (30)

where u(·, t) : ΩR × [0, T ] → Rd is the solid’s displacement, σ(u) is the Cauchy stress tensor and ϵ(u) is the linearized
train tensor. Here the first term in the right-hand side is the strain energy in an un-fractured region and the second term
s the fracture energy, where the Hausdorff measure Hd−1(C) denotes one dimension less fracture scale such as the length
f the fracture in two-dimensional domain and is multiplied by Gc , i.e., the critical energy release rate.
Next, we consider the global constitutive dissipation functional of Ambrosio–Tortorelli type [85,86] to regularize the

otal energy with the introduction of a phase-field function. Eq. (30) is rewritten as the global dissipation formulation
uch as

Eξ (u, ϕ) =
1
2

∫
Λ

((1 − κ)ϕ2
+ κ) σ(u): ϵ(u) dx + Gc

∫
Λ

(
1
2ξ

(1 − ϕ)2 +
ξ

2
|∇ϕ|

2
)

dx, (31)

here all definitions are extended to Λ. Finally, we seek the solution u and ϕ which minimizes the energy functional
ξ (u, ϕ), i.e., find {u, ϕ} such that

min
u,ϕ

Eξ (u, ϕ), (32)

f which approach was initially introduced for linear elasticity in [83,84,87]. In addition, the convergence of time discrete
olutions of Eq. (32) to continuous solutions as timestep goes to zero was discussed in [88,89]. This approach becomes
s a variational inequality since the fracture propagation is required to satisfy a crack irreversibility constraint, which is
iven as ∂tϕ(·, t) < 0. This condition only allows the phase-field value to decrease in time and enforces the fracture to
nly propagate but not to be healed. The phase-field function is subject to homogeneous Neumann conditions on ∂Λ. For
he quasi-static system, the initial domains, ΩF (·, 0) and ΩR(·, 0), are defined by a given initial phase-field value ϕ(·, 0),
ither by 0 or 1.
6
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We note that the previous numerical results of phase-field approach in [42,46,50] employ the classical linear elasticity
with the LEFM such as

σ(u) = 2µϵ(u) + λ(∇ · u)I, (33)

nd several numerical examples illustrate large stress thus large strain values near the crack-tip. In this study aiming to
vercome the issue, we extend the nonlinear strain-limiting theory to the quasi-static fracture model. In the associated
train energy function of Eq. (31), the linear elastic stress tensor Eq. (33) will be replaced by the proposed strain-limiting
model (Eq. (27)),

σ(u) =
E[ϵ]

(1 − (β|E1/2[ϵ]|)α)1/α
, (34)

here α, β > 0, and E[ϵ] := 2µ ϵ + λ tr(ϵ) I. In this paper, we implement both Eq. (33) and Eq. (34) as two different
odels – the LEFM and the nonlinear strain-limiting models, respectively – and compare the results.

. Numerical method

In this section, we present the finite element method utilized for the spatial discretization with the temporal
iscretization to consider the quasi-static problem and the irreversibility condition. In addition, the Euler–Lagrange
ormulation for our governing system and the linearization of the given nonlinear problems are discussed. Finally, the
oupling between the nonlinear elasticity and the phase-field equations, so-called the L-scheme [63] is presented.

.1. Temporal discretization and augmented Lagrangian penalization

We define a partition of the time interval 0 =: t0 < t1 < · · · < tN := T and denote the uniform timestep size by
t := tn − tn−1. Then, we denote the temporal discretized solutions by

un
:= u(·, tn) and ϕn

:= ϕ(·, tn). (35)

Here, the irreversibility condition ∂tϕ < 0 is discretized by ϕn
≤ ϕn−1 (ϕn

− ϕn−1
≤ 0) with employing the backward

uler method. Due to this irreversibility condition, the energy minimization problem (32) becomes the constrained energy
inimization problem. Thus, now we seek for the solution un and ϕn minimizing

min
un,ϕn

Eξ (un, ϕn) +
1
2γ

∥[ωγ + γ (ϕn
− ϕn−1)]+∥

2, (36)

or each timestep n with given ϕn−1. The last term is the penalization term to enforce the irreversibility condition as
iscussed in [63,90]. Here γ > 0 is the penalization parameter and the choice of γ is very sensitive to the numerical
esults. If γ is too small, the irreversibility condition will not be enforced enough and if γ is too large, the linear system
ecomes ill-conditioned. For the better performance, we utilize the augmented Lagrangian method [90–92] by adding a
unction ωγ ∈ L2(Λ) which is given as an initial guess and updated through the iteration. Moreover, here [·]

+ denotes
he positive part of a function, i.e., [f ]+ := max(0, f ).

.2. Spatial discretizations and Euler–Lagrange equations

We consider the continuous Galerkin finite element methods for the coupled system. A mesh family {Th}h>0 is assumed
o be shape regular in the sense of Ciarlet, and we assume that each mesh Th is a subdivision of Λ̄made of disjoint elements
, i.e., quadrilaterals when d = 2 or hexahedrons when d = 3. Each subdivision is assumed to exactly approximate the
omputational domain, thus Λ̄ = ∪K∈ThK. The diameter of an element K ∈ Th is denoted by h and we denote hmin for the
inimum. For any integer k ≥ 1 and any K ∈ Th, we denote by Qk(K) the space of scalar-valued multivariate polynomials
ver K of partial degree of at most k. The vector-valued counterpart of Qk(K) is denoted Qk(K). Here, we set k = 1 to
onsider the piecewise bilinear finite elements.
Let Vh × Wh be the discrete space formulated by the continuous Galerkin approximations where

Vh(Th) := {W ∈ C0(Λ̄;Rd) | W = 0 on ∂Λ,W |K∈ Q1(K),∀K ∈ Th}, (37)

Wh(Th) := {Z ∈ C0(Λ̄;R)| Zn
≤ Zn−1

≤ 1, Z |K∈ Q1(K),∀K ∈ Th}. (38)

he spatial discretized solution variables are uh ∈ C1([0, T ]; Vh(T )) and ϕh ∈ C1([0, T ];Wh(T )). For simplicity of our
resentation, we omit the h-subscript for the displacement and the phase-field, and we only consider the discrete solutions

enceforth.
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Fig. 2. The global iterative algorithm flowchart.

Next, we formulate the variational form of the energy functional Eξ (un, ϕn) in Eq. (36) by employing the Euler–Lagrange
quations and the finite element discretizations. Thus, find Un

:= {un, ϕn
} ∈ Vh × Wh such that

A(Un)(ψ) = (((1 − κ)(ϕn)2 + κ) σ(un), ϵ(w)) − Gc(
1
ξ
(1 − ϕn), ψ) + Gc(ξ∇ϕn,∇ψ)

+([ωγ + γ (ϕn
− ϕn−1)]+, ψ) = 0, ∀ψ ∈ Ψ := {w, ψ} ∈ Vh × Wh, (39)

or each tn. We note that κ (0 < κ ≪ ξ ≪ 1) is a numerical regularization parameter depending on h to ensure the
umerical stability [43]. For simplicity, we define the degradation function as

g(ϕ) := (1 − κ)(ϕn)2 + κ.

Then, by computing the directional derivative of Eq. (39) with respect to u and ϕ, we obtain the following subproblems

A1(un,w) := (g(ϕ) σ(un), ϵ(w)) = 0, ∀w ∈ Vh, (40)

and

A2(ϕn, ψ) := (1 − κ)(ϕnσ(un) : ϵ(u), ψ) − Gc(
1
ξ
(1 − ϕn), ψ)

+Gc(ξ∇ϕn,∇ψ) + ([ωγ + γ (ϕn
− ϕn−1)]+, ψ) = 0, ∀ψ ∈ Wh. (41)

ere, we denote A1 as the mechanics subproblem and A2 as the phase-field subproblem. We note that the time-discretized
ystem, Eqs. (40)–(41), was analyzed in [93,94] by showing the existence of one global minimizer (un, ϕn) ∈ Vh × Wh.

.3. Newton method and iterative algorithm

In this section, we briefly recapitulate and extend the staggered L-scheme introduced in [63] for iteratively coupling the
echanics subproblem (Eq. (40)) and the phase-field subproblem (Eq. (41)). For each timestep n, the iterative algorithm

defines a sequence {un,i, ϕn,i
}, where each i = 1, 2, . . . ,Ni indicates each iteration step. The L-scheme iteration for

our system is formulated with two steps. First, the mechanics subproblem (Eq. (40)) is solved with the given phase-
field and displacement values given from the previous iteration, {un,i−1, ϕn,i−1

}. For the first iteration (i = 1), we set
un,i−1

= un,0
:= un−1 (ϕn,i−1

= ϕn,0
:= ϕn−1). Then, the phase-field subproblem of Eq. (41) is solved with the displacement

value, un,i. Each nonlinear subproblem is linearized by utilizing the Newton method. For the faster convergence of our
nonlinear problem, we note that the linear problem of the LEFM is employed for the initial guess for the initial iteration.

In summary, Fig. 2 illustrates the overall global solution algorithm for our proposed coupled system. We note that the
ugmented-Lagrangian iteration to update the penalty parameter γ and ωγ is combined with the L-scheme iteration.

.3.1. Step 1. Solve the mechanics subproblem
In this section, we describe the details of the solution algorithm with the L-scheme iteration for the mechanics

ubproblem to find the displacement (u). For each timestep n and for each iteration i, we seek for un,i
∈ Vh with given

n,i−1, ϕn,i−1 satisfying

A1(un,i,w) = 0, ∀w ∈ Vh, (42)

here

A1(un,i, w) := (g(ϕn,i−1) σ(un,i), ϵ(w)) + Lu(un,i
− un,i−1,w). (43)

ere, the last term is an additional term from the L-scheme iterative method [63] with a given positive parameter Lu.
To solve Eq. (42), we employ the Newton iteration, and we find δun,i,a

∈ Vh by solving

A′ (un,i,a−1, ϕn,i−1)(δun,i,a,w) = −A (un,i,a−1)(w), ∀w ∈ V , (44)
1 1 h

8
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for the Newton iteration step, a = 1, 2, . . ., until ∥δun,i,a
∥ ≤ εa. Then, the Newton update is given by

un,i,a
= un,i,a−1

+ ωuδun,i,a, (45)

here ωu ∈ [0, 1] is a line search parameter. If the Newton iteration converges, we set

un,i
= un,i,a.

ere, the Jacobian of A1 is computed as

A′

1(u
n,i,a−1, ϕn,i−1)(δun,i,a,w) := (g(ϕn,i−1) σ(δun,i,a), ϵ(w)) + Lu(δun,i,a,w), (46)

nd

A1(un,i,a−1,w) := (g(ϕn,i−1) σ(un,i,a−1), ϵ(w)) + Lu(un,i,a−1
− un,i−1,w). (47)

As aforementioned, here we consider two different cases for the choice of σ. First, for the classical linear elasticity case,
e define

σ(un,i,a−1) := µ
(
∇un,i,a−1

+ (∇un,i,a−1)T
)
+ λ(∇ · un,i,a−1)I. (48)

ext, we recall the nonlinear constitutive relationship between linearized strain and the Cauchy stress. The inverted form
f stress by considering the displacement u as the primary variable is defined as

σ(un,i,a−1) :=

µ

(
∇un,i,a−1

+
(
∇un,i,a−1

)T)
+ λ (∇ · un,i,a−1) I(

1 −
(
β|E1/2

[
ϵn,i,a−1

]
|
)α)1/α , (49)

here⏐⏐E1/2 [ϵn,i,a−1]⏐⏐2 = E1/2
[ϵn,i,a−1

]:E1/2 [ϵn,i,a−1]
= ϵn,i,a−1:E1/2

[E1/2 [ϵn,i,a−1]
]

= ϵn,i,a−1:E
[
ϵn,i,a−1]

= 2µ
(

∇un,i,a−1
+ (∇un,i,a−1)T

2

)
:
(

∇un,i,a−1
+ (∇un,i,a−1)T

2

)
+ λ

(
∇ · un,i,a−1)2 . (50)

Due to the complexity from the nonlinear formulation, the terms in Eq. (46) and Eq. (47) require some computations.
n particular, the first term in Eq. (46) is rewritten as

(g(ϕn,i−1)σ(δun,i,a), ϵ(w)) =

(
g(ϕn,i−1)

( 2µ
(

∇δun,i,a
+ (∇δu n,i,a)T

2

)
+ λ (∇ · δun,i,a) I(

1 −
(
β|E1/2 [ϵ] |

)α)1/α
+
βαθ1{un,i,a−1

}θ2{un,i,a−1, δun,i,a
}E[ϵ](

1 − βα|E1/2 [ϵ] |α
)1+1/α

)
:
(

∇w + ∇wT

2

) )
, (51)

here

θ1{u} :=
⏐⏐E1/2 [ϵ]

⏐⏐α−2
, (52)

θ2{u, δu} :=
(⏐⏐E1/2 [ϵ]

⏐⏐)′
= 2µ

(
∇u + ∇uT

2

)
:
(

∇δu + ∇δuT

2

)
+ λ (∇ · u) (∇ · δu) . (53)

oreover, the first term in Eq. (47) is derived as

(g(ϕn,i−1)σ(un,i,a−1), ϵ(w))

=

(
g(ϕn,i−1)

(2µ
(

∇un,i,a−1
+ (∇u n,i,a−1)T

2

)
+ λ (∇ · un,i,a−1) I(

1 −
(
β|E1/2 [ϵ] |

)α)1/α
)
:
(

∇w + ∇wT

2

))
. (54)

.3.2. Step 2. Solve the phase-field subproblem
Secondly, the phase-field subproblem (Eq. (41)) is solved with the displacement and phase-field values given from the

revious iteration {un,i, ϕn,i−1, and ϕn−1
}.

Given un,i, ϕn,i−1, and ϕn−1, we seek for ϕn,i
h ∈ Wh satisfying

A (ϕn,i
, ψ) = 0, ∀ψ ∈ W , (55)
2 h h
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where

A2(ϕn,i, ψ) := (1 − κ)(ϕn,iσ(un,i) : ϵ(un,i), ψ) − Gc(
1
ξ
(1 − ϕn,i), ψ) + Gc(ξ∇ϕn,i,∇ψ)

+(ηi(ωn,i
γ + γ (ϕn,i

− ϕn−1)), ψ) + Lϕ(ϕn,i
− ϕn,i−1, ψ). (56)

ere the last term is the L-scheme stabilization term with a positive constant value Lϕ , and ηi ∈ L∞(Λ) is defined as

ηi(x) :=

{
1, if x = ωn,i

γ + γ (ϕn,i
− ϕn−1) > 0,

0, if x = ωn,i
γ + γ (ϕn,i

− ϕn−1) ≤ 0,

o replace the operator [·]
+.

To solve the nonlinear problem of Eq. (55), we employ the Newton iteration algorithm coupled with an appropriate
ine search. Thus, we find δϕn,i,b

∈ Wh by solving

A′

2(ϕ
n,i,b−1)(δϕn,i,b, ψ) = −A2(ϕn,i,b−1)(ψ), ∀ψ ∈ Vh, (57)

or the iterations step, b = 1, 2, . . ., until ∥δϕn,i,b
∥ ≤ εb. Then we update

ϕn,i,b
= ϕn,i,b−1

+ ωϕ δϕ
n,i,b, (58)

n which ωϕ is a line search parameter and ωϕ ∈ [0, 1]. Here the Jacobian of A2 applied to a direction of δϕ is

A′

2(ϕ
n,i,b−1)(δϕn,i,b, ψ) := (1 − κ)(δϕn,i,b σ(un,i) : ϵ(un,i), ψ) + Gc(

1
ξ
δϕn,i,b, ψ)

+Gc(ξ ∇δϕn,i,b,∇ψ) + ηiγ (δϕn,i,b, ψ) + Lϕ(δϕn,i,b, ψ), (59)

and

A2(ϕn,i,b−1)(ψ) := (1 − κ)(ϕn,i,b−1 σ(un,i) : ϵ(un,i), ψ) − Gc(
1
ξ
(1 − ϕn,i,b−1), ψ)

+Gc(ξ ∇ϕn,i,b−1,∇ψ) + (ηi(ωn,i
γ + γ (ϕn,i,b−1

− ϕn−1)), ψ) + Lϕ(ϕn,i,b−1
− ϕn,i−1, ψ). (60)

f the Newton iteration converges, we set

ϕn,i
= ϕn,i,b.

e note that the choice of the σ is either Eq. (48) for the linear case, or Eq. (49) for the nonlinear strain-limiting case,
depending on the mechanics subproblem that we solve.

As we discussed in the previous section, the augmented-Lagrangian iteration is embedded in the L-scheme iteration.
Thus, the augmented term ωn,i

γ is updated every staggered step of i:

ωn,i
γ = [ωn,i−1

γ + γ (ϕn,i,b−1
− ϕn−1)]+. (61)

We also note that the phase-field function has three different categories for the iteration index: the previous time-step
index n − 1, the staggered step of the L-scheme iteration index i and i − 1, and the Newton iteration index b and b − 1.
Meantime, the displacement value is given as un,i, which is computed from the first step of the L-scheme, i.e., the
mechanics subproblem.

Finally, we employ both the mechanics subproblem residual ∥A1(un,i,w)∥ ≤ TOL and the phase-field subproblem
residual ∥A2(ϕ

n,i
h , ψ)∥ ≤ TOL, where TOL is a tolerance value of the stopping criteria for both the L-scheme and the

augmented Lagrangian. If the whole iteration converges, we obtain

un
= un,i,a and ϕn

= ϕn,i,b. (62)

4. Numerical examples

In this final section, we present several numerical examples to verify the proposed nonlinear algorithm. Moreover, we
illustrate the capabilities and the effectiveness of the framework compared to the linear elastic fracture mechanics (LEFM)
model. The code extends IPACS [95], which is built on the open-source finite element package deal.II [96], to consider
nonlinear elasticity. All the computations are performed utilizing high performance computing machines at Texas A&M
University - Corpus Christi. For the nonlinear strain-limiting (NLSL) model, the computations are developed by the authors
based on the previous studies [63,90].

From the displacement (u) obtained from the governing equations coupled with the phase-field, i.e., Eq. (15) for the
LEFM and Eq. (27) for the NLSL, the stress values are calculated using the Hooke’s law (Eq. (17)) for both models. Each
strain value calculation is based on each model: ϵ from Eq. (13) for the LEFM, and ϵNL for the NLSL with Eq. (26). Note
that if the nonlinear parameter β goes to zero in Eq. (26), then ϵ is identical to ϵ from Eq. (13) for the LEFM.
NL
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Table 1
Example 1. The results of L2 error convergence test of the approximated displacement for the linear
(LEFM) and the nonlinear (NLSL) mechanics subproblem are illustrated. We observe the optimal
convergence for both cases.
Cycle h Linear Nonlinear

L2 error Rate L2 error Rate

1 0.25 0.033493958414 0.0 0.031402524561 0.0
2 0.125 0.008457780816 2.6942 0.007450392935 2.8163
3 0.0625 0.002119761659 2.3542 0.001790875453 2.4253
4 0.03125 0.000530273421 2.1788 0.000437507028 2.2160
5 0.015625 0.000132589164 2.0898 0.000108024578 2.1088
6 0.0078125 0.000033148594 2.0450 0.000026842623 2.0540

Fig. 3. Example 2. A setup and the boundary conditions: the blue line indicates the slit and the arrows on the top denote the axial traction.

4.1. Example 1: The error convergence tests

In the first example, the error convergence is tested to verify the implementation for the NLSL formulation presented
in previous sections. For simplicity, only the mechanics subproblem is considered by neglecting the phase-field variable.
Thus, we set the phase-field to be a constant one (ϕ = 1) and κ = 0 for the whole domain.

Here, the given exact solution for the mechanics subproblem is defined as

u(x, y) := (sin x sin y, cos x cos y), (63)

in the computational domain Λ = [0, 1]2. The right hand side and the boundary conditions are chosen accordingly to
satisfy the homogeneous boundary conditions on ∂Λ. In addition, Lamé coefficients are set as λ = µ = 0.01 and the
nonlinear parameters are given as (α, β) = (0.1, 0.1). Six computations on uniform meshes were computed where the
mesh size h is divided by two for each cycle, and the corresponding number of cells for each cycle is 4, 16, 64, 256, 1024,
and 4096.

The results of the L2(Λ) errors for the approximated displacement solution versus the mesh size h are shown in Table 1.
We observe the expected optimal convergence rate for both linear and nonlinear cases for our mechanics subproblem.

4.2. Example 2: Strain-limiting effects for a static fracture

In this example, we compare the presented NLSL model with the LEFM model in a domain with a static fracture.
In Λ = [0, 1]2, the initial fracture is described as a slit on (0.5, 0.5) − (1.0, 0.5). For the tensile crack in mode I, the
Dirichlet boundary condition u = (0, ūtop) is employed on the top boundary, ΓD1 , where the values of ūtop are chosen
differently with respect to the test cases. On the bottom boundary, ΓD2 , only the y-component is imposed with zero value
but the x-component is traction-free. The homogeneous traction-free Neumann boundary condition is employed for the
left and right boundaries, ΓN , including the slit. See Fig. 3 for more details. The initial mesh is refined 7 times globally,
thus h = 0.0078125. Moreover, we utilize the linear problem, i.e., the LEFM, for the initial guess for the first nonlinear
Newton iteration of the NLSL to expedite the convergence.

Here, we test four different cases for the displacement values on the top boundary as ūtop = 2.0, 1.0, 0.5, and 0.1,
corresponding to CASE 1, CASE 2, CASE 3, and CASE 4, respectively. As we discussed in Remark 2.4, a suitable nonlinear
parameter pair of (α, β) should be chosen to satisfy the condition of Eq. (29). More precisely, we obtain

0 ≤ β <

(
1

1/2 α

)1/α

, (64)

|E [ϵ] |
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Fig. 4. Example 2. Different test cases for α and β .

nd the condition simplifies to β|E1/2 [ϵ] | < 1 by assuming α > 0. In this case, we only need to satisfy 0 ≤ β|E1/2 [ϵ] | < 1
or a given value of β . Therefore, by setting Lamé coefficients as λ = µ = 1.0, the β values of maximum (rounding to
2 decimal places) for each cases are presented in Fig. 4 for each top boundary condition, ūtop, satisfying the condition in
the inequality above with any given positive α.

Moreover, to investigate the effects of the modeling parameters (α, β) for the NLSL, we vary the choice for the α values.
Starting with α = 2, we arbitrarily set α reducing by half as shown in Fig. 4. Thus, we study a total of 16 different cases
for the NLSL model, and 4 different cases for the LEFM (which are identical to the corresponding the NLSL models when
β = 0) are also computed for the comparison. Eventually, we aim to see the maximized strain-limiting effect from the
optimized combinations of (α, β).

To this end, we calculate the axial stress and strain along the center line, (0, 0.5) − (0.5, 0.5), i.e., starting from the
left boundary to the tip location of slit. The axial stress (σ22) corresponds to the component of σ from the Hooke’s law
(Eq. (17) or E(ϵ) in Eq. (28)), whereas the axial strain (ϵ22) is calculated with the corresponding component of ϵ or ϵNL. If
we have β = 0 or α → ∞, then ϵNL is identical to ϵ for the LEFM, without any strain-limiting effect. Also note that we
compute the average values of σ22 and ϵ22 in quadrature points for each cell.

First, Fig. 5 illustrates the axial stresses for each case by varying the α and β values as shown in Fig. 4. For each case,
the stress values are compared with the LEFM, which is identical to the NLSL when β = 0. The overall pattern of stress
rowth near the crack-tip is a clear evidence that there is a near-tip stress concentration similar to the linear model. And
he stress concentration is invariably observed even with different values of modeling parameters α and β .

On the other hand, Fig. 6 presents the strains along the same center line from the left boundary to the tip location of
slit. Here, the axial strain values for each case are illustrated. We note that the obvious strain-limiting effect is shown by
comparing with the values from the LEFM. The different effects are observed by different choice of α values. With this
setup, the most strain-limiting effect occurs with the smallest value of α = 0.25 given for each case. This is a consistent
result from the theory that the NLSL becomes the LEFM if α → ∞.

Finally from this example, we observe that the stress–strain behavior in the neighborhood of the crack-tip, is sensitive
to the choice of modeling parameters of (α, β) [29,76,77]. Thus, for calibration purpose with experiments for a certain
material of specific mechanical parameters, one can choose the nonlinear parameters in the strain-limiting model by
comparing the simulation results with the experimental data.

4.3. Example 3: A static phase-field fracture

In this example, we replace the fracture representation in Example 2 with the phase-field approach and investigate
the NLSL model. Most of the setup is the same as the previous example, but here the phase-field variable (ϕ) is employed
to describe the fracture. Thus, in the computational domain Λ = [0, 1]2, a (prescribed) initial crack with length l0 = 0.5
s placed on (0.5, 1) × (0.5 − hmin, 0.5 + hmin) ⊂ Λ. The initial phase-field values are set to zero for the initial fracture
escribed above and ϕ = 1 otherwise. This replaces the slit in the previous example.
The initial mesh is seven times uniformly refined as the previous example but here three additional levels of adaptive

esh refinement is employed near the fracture, where ϕ < 0.9, resulting in hmin = 0.0009765625. For the phase-
ield, homogeneous Neumann condition is employed and the regularization parameters are chosen as ξ = 2hmin, and
= 10−10hmin. See Fig. 7 for more details.
The same displacement boundary conditions on ΓD1 and ΓD2 as the previous example are employed, but here we

et ū = 0.0001. For the coupling between the mechanics and the phase-field, the presented L-scheme is utilized by
top
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s

Fig. 5. Example 2. Axial stresses for each case from CASE 1 (Top Left) to CASE 4 (Bottom Right). Approaching to the crack-tip, X = 0.5, similar
ingular patterns for the stress values are shown in each case.

Table 2
Example 3. Different test cases for α and β .

Fixed parameter Value Changing parameter Value

CASE 1
i

β 127 α

2
ii 1
iii 0.5

CASE 2
i

α 0.25 β

1
ii 10
iii 50

choosing the L-constant as 10−6 for both the mechanics and the phase-field (i.e., Lu = Lφ = 10−6). The stopping criteria
for the staggered L-scheme is TOL = 10−6, and the stopping criteria for the Newton’s method for both the displacement
and the phase-field are set as εa = εb = 10−8. Note that for mechanics subproblem in the NLSL, only the first Newton
iteration is utilizing the initial guess from the linear problem of the LEFM for faster convergence. In addition, the penalty
parameter γ = 104 is set for the irreversibility condition. The critical energy release rate is chosen as Gc = 5Nm−1. Then,
all the other numerical and physical parameters are the same as the ones in the previous example.

With the given conditions above, here we investigate the effects of the nonlinear parameters for both (α, β). First,
by Eq. (64), we obtained the maximum of β as βmax = 127 for varying α. In addition, we varied the choice for the value
of β < βmax by fixing the value of α. Thus, as shown in Table 2, we investigated the total 6 different cases for the NLSL
model.

Fig. 8 presents the effect of our proposed nonlinear strain-limiting model with the phase-field approach. Here, the axial
stress (σ22) and strain (ϵ22) values along the center line (0, 0.5)− (0.5, 0.5) are computed for both the LEFM and the NLSL
as the previous example, i.e., Example 2. Overall, the strain-limiting effect is well presented through each combination of
(α, β) with the phase-field fracture. Especially, we observe the dramatic limiting effect of strain when α < 1.0.

We note that the values of stress and strain are reduced near the crack-tip region (Fig. 8), due to the phase-field, since
there is nearly no mechanics when ϕ = 0. In particular, the stress with the phase-field is defined as σϕ := g(ϕ)σ =

((1 − κ)ϕ2
+ κ) σ, and the stress values approach to zero near the front of the phase-field crack-tip.
13
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Fig. 6. Example 2. Axial strains for each case from CASE 1 (Top Left) to CASE 4 (Bottom Right). With smaller values of α, strain is distinctively
limited for the nonlinear strain-limiting (NLSL) model in each case.

Fig. 7. Example 3. (Left) illustrates the setup with an initial phase-field fracture. As the previous example, the stress and strain values are plotted
n the dashed line (0.0, 0.5)-(0.5,0.5). (Right) adaptive mesh refinement is employed near the fracture.

.4. Example 4: A quasi-static propagating fracture

In this final example, we consider the fracture propagation by employing the quasi-static phase-field approach with
he given boundary condition for each timestep. The basic setup including the initial and boundary conditions is similar
o Example 2 (See Fig. 3), but in this example, we march the timesteps to propagate the given fracture. The timestep
ize is chosen as ∆t = 0.0001 and we set ūtop = t , thus the displacement imposed at the top boundary is increased by
marching the timesteps. The total number of timesteps is set to N = 50, which is enough to observe the full propagation
f the fracture toward the left end. The initial mesh is refined 7 times globally and we pre-refine around the expected
rack path (0.0 ≤ x ≤ 0.6, 0.4 < y < 0.6) locally for two more levels. Here, hmin = 0.002 and we set Lamé coefficients as
= 121.15 kPa, µ = 80.77 kPa with G = 1Nm−1.
c
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Fig. 8. Example 3. Axial stress (Left) and strain (Right) values for each case. We observe the strain-limiting effect near the tip of phase-field fracture
ith an appropriate choice of α and β .

Table 3
Example 4. Newton iteration numbers for each subproblem in the LEFM and the NLSL at the time
t = 0.001 (n = 10), 0.002 (n = 20), and 0.003 (n = 30). More computations are for the NLSL and much
more for the time when the crack propagates.
Model Subproblem t = 0.001 t = 0.002 t = 0.003

LEFM Mechanics 3 3 5
Phase-field 2 2 4

NLSL Mechanics 7 13 182
Phase-field 4 4 60

For the NLSL model, we set the nonlinear parameter pair as (α, β) = (0.25, 4.8×10−4) to satisfy the condition Eq. (64).
Since the displacement load is increased in every timestep, we take the minimum of β for the entire timesteps. Then, we
note that the condition from Eq. (64) is enforced throughout the whole simulation. The same Newton iteration tolerance
nd staggered L-scheme coefficients as the previous example (Example 3) are chosen, and the penalty parameter for the
rreversibility condition is set as γ = 10−7.

First, Figs. 9 and 10 illustrate the propagation of the fracture with the phase-field values for the LEFM and the
LSL, respectively. We observe that the NLSL model initiates the fracture earlier than the LEFM. In addition, the overall
istribution patterns of axial strain (ε22) values are different. For the LEFM, it is only concentrated near the vicinity of the
rack-tip with quite larger (around 3 to 5 times) values than the NLSL. Meanwhile, the NLSL has more distributed values
ver the domain, relatively avoiding the singular strain in front of the tip.
Fig. 11 illustrates the comparisons of the axial stress (Left) and axial strain (Right) values at the center line of

0, 0.5) − (0.5, 0.5) between the LEFM and the NLSL models for 3 different times (snapshots) of simulations. From (Top)
ow through (Middle) to (Bottom) row, the timesteps of n = 10, 20, and 30, respectively, are presented for axial stress
σ22) and strain (ε22) values. We emphasize that the expected strain-limiting effects are observed from the NLSL model
nd these results also illustrate that the proposed strain-limiting model initiates the fracture propagation earlier than the
EFM model. For the NLSL model, the crack-tip has moved forward around n = 30 and the stress and strain values near
he tip are decreased due to the crack initiation with the phase-field function.

Regarding the same timesteps, we present in Table 3 the total Newton iteration numbers for each subproblem (A1 of
he mechanics subproblem and A2 of the phase-field subproblem in Eqs. (40) and (41), respectively) within each method.
he Newton iteration counts here are during the whole span of the L-scheme including the augmented Lagrangian for
ach subproblem until the whole problem converges within each timestep. Thus, it counts till obtaining the solutions (un

nd ϕn) as Eq. (62) by satisfying TOL in the corresponding timestep. Note that the NLSL has several times more iterations
verall due to the nonlinearity and also that the nonlinearity gets severer when the phase-field crack starts to grow and
ropagate at t = 0.003 (n = 30). Even for the LEFM, the phase-field crack growth (although not presented here) requires
uch more iterations (more than 10 times) than the static state shown with t = 0.001 (n = 10), t = 0.002 (n = 20),
nd t = 0.003 (n = 30).
In this example, we are also interested in the bulk (or strain) energy, the crack (or surface) energy, and the total energy.

he total energy is defined as

Eϵ := Total Energy = Bulk Energy + Surface Energy, (65)

nd we have two different bulk energy formulations. For the LEFM, we have

Linear Bulk Energy :=

∫
((1 − κ)ϕ2

+ κ) [
2µϵ(u): ϵ(u) + λ (∇ · u)2

]
dx, (66)
Λ 2
15



S. Lee, H.C. Yoon and S.M. Mallikarjunaiah Journal of Computational and Applied Mathematics 399 (2022) 113715

λ

w

Fig. 9. Example 4. (Left) illustrates the phase-field values during crack evolution for each timestep with the LEFM. (Right) present the corresponding
ϵ22 values for each case. The dark blue line indicates the corresponding fracture (phase-field) from (Left).

and for the NLSL (based on Eq. (27)) we have,

Nonlinear Bulk Energy :=

∫
Λ

((1 − κ)ϕ2
+ κ)

2

[
2µϵ(u): ϵ(u) + λ (∇ · u)2

]
(1 − βα|E1/2(u)|α)1/α

dx, (67)

where κ is a regularization parameter taken as κ = 10−10hmin. For this example, we have the Lamé coefficients as
= 121.15 kPa, µ = 80.77 kPa. On the other hand, the crack energy is defined as

Crack Energy :=
Gc

2

∫
Λ

[
(1 − ϕ)2

ξ
+ ξ |∇ϕ|

2
]

dx, (68)

here ξ = 2hmin, and the critical energy release rate (Griffith’s criteria) is Gc = 1Nm−1.
Fig. 12 (Left) presents the comparisons of bulk and crack energies following the above definitions between the LEFM

and the NLSL models. Fig. 12 (Right) represents the evolution of crack-tip speed as a function of time, which is computed
approximately by the discrete variation of the crack–surface energy given in Eq. (68). We see the crack-tip speed depends
linearly on the loading speed (ūtop = t), since the quasi-static problem is considered in this work. It is also clear that the
crack-tip sprints immediately after the initiation from the original slit. The same is hinted in the decrease of bulk energy
as depicted in Fig. 12 (Left) in both models. As seen in Fig. 12 (Left) and (Right), we highlight a possibility of deviation
16
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Fig. 10. Example 4. (Left) illustrates the phase-field values during crack evolution for each timestep with the NLSL model. (Right) presents the
corresponding ϵ22 values for each case. The blue (lighter and thinner than the LEFM) line indicates the corresponding fracture (phase-field) from
(Left). We note that the ϵ22 values are smaller than the LEFM.

for the NLSL model compared to the LEFM model in the crack propagation speed along with the bulk/crack energies.
However, any validation of the different crack-tip speed between the LEFM and the NLSL is a future work.

5. Conclusion

In this paper, we investigate the strain-limiting nonlinear elasticity model coupled with the phase-field for the quasi-
static tensile fracture propagation. A Newton iteration is employed for the nonlinear mechanics and the phase-field
equations, and an iterative L-scheme is utilized for coupling of the corresponding subproblems. The augmented Lagrangian
method is employed for the constrained minimization problem which accommodates the irreversibility condition of
the phase-field variable. Several numerical results for propagating fractures, under the mode I loading, illustrate the
performance of our algorithm with the capabilities of the computational framework. It is shown that using the proposed
strain-limiting framework to model any bulk material of strain-limiting guarantees to bound the crack-tip strains even
with the singular stresses. Although the presented strain-limiting model requires a careful selection for the modeling
parameters α and β , any reasonable choice can illustrate the desired limited strain. Future work can include a pertinent
validation of the current strain-limiting model for the real experimental data, extending the model to consider more
freedom for the choice of the parameters, along with enhancing the capability of nonlinear solver.
17
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(
p

Fig. 11. Example 4. Comparisons of axial stress σ22 (Left) and strain ϵ22 (Right) values between the LEFM and the NLSL models at the time t = 0.001
Top), 0.002 (Middle), and 0.003 (Bottom). We observe the strain-limiting effect near the tip of the fracture for the NLSL model when the fracture
ropagation is initiated before t = 0.003 for the NLSL.

Fig. 12. Example 4. (Left) Comparisons of the bulk and crack energy between the LEFM and the NLSL models. (Right) The discrete crack-tip speed
computed as a derivative of the crack surface energy as a function of time.
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