Digital Experiences in Mathematics Education (2021) 7:48-65
https://doi.org/10.1007/540751-020-00083-3

®

Check for
updates

Programming as Language and Manipulative
for Second-Grade Mathematics

E. Paul Goldenberg'® - Cynthia J. Carter? - June Mark" - Kristen Reed' -
Deborah Spencer’ - Kate Coleman’

Accepted: 14 October 2020 /Published online: 27 February 2021
© The Author(s) 2021

Abstract

This article reports on an exploration of how second-graders can learn mathematics
through programming. We started from the theory that a suitably designed program-
ming language can serve children as a language for expressing and experimenting with
mathematical ideas and processes in order to do mathematics and thereby, with
appropriate tasks and teaching, learn and enjoy the subject. This is very different from
using the computer as a teaching app or a digital medium for exploration. Children
tackled genuine puzzles — problems for which they did not already have a pre-learned
solution. So far, we have built four microworlds for second-graders and tested them
with a diverse population of well over three hundred children. The microworlds focus
on the most critical second-grade mathematical content (as mandated in state stan-
dards), let children pick up all key programming ideas in contexts that make them
‘obvious’ (to maintain focus on the mathematics) and suppress all other distractions to
minimize overhead for teachers or students using the microworlds. Because children
see the results of the actions they articulate (in the computer language, Snap/), they can
evaluate their methods and solutions themselves. The feedback is purely the outcome,
not happy or sad sounds from the computer. Notably, nearly all children showed
intense engagement, some choosing microworlds even outside of mathematics time.
Teachers spontaneously reported this as well, with special mention of children whom
they found hard to engage in regular lessons. We report our experiments and observa-
tions in the spirit of sharing the ideas and promoting more research.

Keywords Elementary school mathematics - Programming as expressive language -
Microworlds

P4 E. Paul Goldenberg
pgoldenberg @edc.org

' Education Development Center, 43 Foundry Ave, Waltham, MA 02453, USA
2 The Rashi School, 8000 Great Meadow Rd, Dedham, MA 02026, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40751-020-00083-3&domain=pdf
http://orcid.org/0000-0002-2077-1430
mailto:pgoldenberg@edc.org

Digital Experiences in Mathematics Education (2021) 7:48-65 49

Most digital manipulatives for mathematics function in one of three ways. Some are
metaphorically physical, even if they have properties that are not easily instantiated
physically: e.g. ‘negative chips’ that automatically annihilate ‘positive chips’, as a way
to illustrate aspects of arithmetic with signed numbers. Others only exhibit properties of
physical tools, but enhance or restrict manipulations, or help track results: e.g. virtual
Pattern Blocks that are not scattered or dislodged as you work, or that draw explicit
attention to transformations by allowing only certain ones. Thirdly, some manipulable
environments, like The Geometer’s Sketchpad,' have no physical analogue, but still
involve direct physical manipulation of elements of the objects of interest.

In this article, we report on a project that explored programming as a virtual
manipulative, involving: (1) indirect manipulation via programming, influencing ob-
jects of interest; (2) program blocks themselves as the manipulative. We are building
microworlds where children give instructions to a virtual manipulative — in the tradition
of Logo’s instructions to a ‘turtle’ — but with mathematical objects reminiscent of the
common physical manipulatives or images used in school mathematics. We believe
that programming may help make more explicit the link between the visual/physical
properties of the manipulatives and the mathematical objects they symbolize.

Children must be able to see the manipulative as a symbol for a mathematical
idea. This may be why using “bland,” compared to realistic, manipulatives are
more likely to serve as symbols, even for children as young as preschoolers
(Sarama & Clements, 2016, p. 81)

Through iterative design guided by close observations of children and consultation with
teachers, we built four microworlds in order to try to understand how children’s
programming about and for the sake of mathematics supports (or detracts from) their
mathematics learning. In our experiment, elementary school children — so far, mostly
second-graders in their regular mathematics classes — programmed as an integral part of
their mathematical learning. The visible enthusiasm of the children and teachers
pleased us, of course, but that could easily be solely attributed to change from the
routine — something new and different (and not downright odious). What really
captured our interest, however, was a growing collection of surprises — observations
we had not anticipated — that suggest that this kind of programming can supportively
alter children’s mathematical thinking.

(1) Abstraction: more (or just quicker?) internalization of the manipulations they
made with the programming blocks than we see with the manipulation of
physical objects. Children may build mental abstractions more readily when they
build programming abstractions than when they do comparable work with phys-
ical manipulatives or on paper.

(2) Precision and clarity of thought and communication: clearer (or just earlier?)
verbal articulation of their mathematical actions, perhaps because their explana-
tions in English were scaffolded by already having ‘explained’ the process to the
machine through programming. When children assemble blocks of code to solve
problems, they appear to have readier access to the steps they took (the algorithm)

! See also: https://blogs.ams.org/matheducation/2019/03/18/interactive-images-pictures-for-the-minds-eye/

@ Springer

https://blogs.ams.org/matheducation/2019/03/18/interactive-images-pictures-for-the-minds-eye/

50 Digital Experiences in Mathematics Education (2021) 7:48-65

and the train of thought behind their solution, potentially making it easier for them
to articulate their thinking when asked to explain. This contrasts with what we see
in children’s use of physical manipulatives.

(3) Proof and problem analysis: analyzed working programs are, themselves, con-
structive proofs. Age-appropriate experiences with proof in elementary school are
plausibly ‘habit-forming’, building an inclination to prove and an understanding
of the role and (some) forms of proof students will encounter later. Plausible, yes,
but will it hold?

(4) Mental representation: the ability to program the objects and algorithms that
elementary students encounter as they learn to manipulate fractions and multipli-
cative operations might help them build better mental representations and make
some of the typically difficult concepts more accessible. This seems to have been
the case, but, so far, it remains conjecture.

Background

Our overall project was inspired by two earlier models for integrating programming
into elementary school mathematics, one pioneered in Bulgaria and one (ScratchMaths)
from the UK. The 1980s Bulgarian idea was that students could, over time and in age-
appropriate contexts, learn to express and explore mathematical ideas smoothly in a
computer language — their adaptation of Logo. That language would complement fluent
expression in their natural language and description in mathematical notation. Starting
in elementary school, students learned age-appropriate functional programming both in
language and in mathematical contexts, and their school text, e3uk m MaremaTHka
(Language and mathematics), creatively intertwined the two subjects.

Students composed elementary mathematical operations to make and explore simple
functions and composed elementary language operations to explore grammatical con-
structions the same way. Starting early, infusing programming regularly into the
children’s other learning, and sticking to one computer language, gave students
sufficient programming fluency that, by middle school, they could usethe language
expressively, creating more complex programs to investigate geometry and algebra
(Sendova & Sendov, 1994; Sendova, 2013).

The UK ScratchMaths project (from University College London’s Institute of
Education) involved children in a two-year experience in mathematics and program-
ming, built on the premise that mathematics becomes more accessible when children
have better language options — explicitly including an appropriately designed computer
language — with which to express their mathematical ideas. A randomized-control trial
in over 110 elementary schools across the UK evaluating the effect of learning to
program on children’s computational and mathematical thinking at grades 4 and 5 has
shown significant impact (Benton et al., 2018a; Benton et al., 2018b).

Both projects revealed that, when suitably designed, programming had the potential
to help students develop mathematical understanding within the context of a school
curriculum. The way we articulate the theory to ourselves is that programming, unlike
notation on paper, is a ‘live’ language; notation on a computer can be run, giving
feedback on what it says. This is much like how we learn, and learn through, natural

@ Springer

Digital Experiences in Mathematics Education (2021) 7:48-65 51

language. We dialogue. We say things, others react, and we see what effects we have
created. Conventional algebraic notation on paper just sits there, correct or incorrect,
‘dead’. It gives no feedback unless we can rerun the code mentally.

Integrating Programming into Elementary Mathematics

Language develops through use and over time. And, of course, mathematics grows over
time, ideally building on earlier experience. So, the real test of our idea would start early,
with second-graders, and would assess growth both in mathematical and in computational
thinking (CT), and in breadth and facility in their programming at the end of fifth or sixth
grade. The design requirement, then, is a coherent progression of programming skill and a
coherent view of mathematics, synergistically co-ordinated in a way that fits naturally into
what schools and teachers already expect in their mathematics classrooms. Both CT and
mathematical reasoning must grow in developmentally appropriate ways. At each point,
they must be laser-focused on current goals — both to support children as they face
externally-imposed hurdles like tests, and to have credibility with principals and teachers.
The must also, ideally, foreshadow mathematical ideas to come.
Guiding principles include:

» focus on most critical mathematical content for the grade;

» center locus of control and authority in the child;

* use an accessible programming language that supports mathematical thinking;

* design for high cognitive demand, low cognitive distraction;

» design so that each environment can, with only small variations, serve multiple
grades;

e create ‘classroom-safe’ environments, easy to enter with very brief, teacher-led
introductions, while not requiring special teacher knowledge and intervention.

For second grade, we focused on addition and subtraction on the number line, base-ten
arithmetic, navigating on a co-ordinate grid, and arrays as a foundation for multiplica-
tion. The children experienced programming strictly as sequences of commands to tell
the computer what to do, but they had already learned to create new ‘words’ for the
computer, compressing what they had originally created as sequences of commands
into new single instructions. For third- and fourth-graders, the number line is extended
to include fractions and decimals, and the programming begins to include functional
programming — the creation of composable function machines that process input
numbers and output results that other function machines take as inputs — to accord
with their growing mathematics, with particular emphasis on multiples and factors and
associative multiplication.

Choice of Language

We selected a blocks-based language so children could focus their attention on
mathematics, not on semi-colons. Our choice of Snap/, in particular, was so children

could create functions like ~6,/ and ia_J , and compose

@ Springer

52 Digital Experiences in Mathematics Education (2021) 7:48-65

them like 12 and 78 J . While algebra’s

function notation f{x)=x+ 10 is inappropriate (not to mention unacceptable) in ele-
mentary school, the idea of function is not. Children regularly encounter processes that
produce a single output for each given input in elementary school’s ubiquitous input—
output tables. Being able to create and compose objects with such behavior could let
students explore the ideas and extend the arithmetic that they were intended to be
taught.

Our own needs in designing the microworlds also influenced our switch to Snap! All
blocks-based languages provide some blocks (e.g., repeat) that take code — blocks and
scripts (block assemblies), not just numbers, words or lists — as input. For our
microworlds, we needed to create other kinds of blocks (like combine steps, explained
later) that take code as input (see Fig. 1), and we needed to create some behind-the-
scenes tools that required recursive functions.

Finally, to adapt the programming environment for very young, first-time program-
mers, we needed a ‘safe’ environment. We would not ‘dumb down’ the programming —
after all, we wanted children, even early on, to be able to create their own functions with
outputs and, over time, to have the full expressivity of a powerful language. But, in
order to acquire that language, the first contacts must not be overwhelming or
distracting. Minimally, we needed to present all necessary blocks, regardless of color,
in the same palette. In our first trials, children still stumbled — out of curiosity or by pure
accident — into places that neither they nor their teachers knew how to extricate them
from. We also had to hide unused palettes, the sprite corral, as well as all features,
controls and menu options not yet required. ‘Safety’ also required creating new
features. Bernat Romagosa, of the Snap! development team, built capabilities into it
with which we could tailor each new microworld, offering increased power and options
as children needed them.

The Four Second-Grade Microworlds

All four are engines for extensible microworlds with common features. For brevity, we
describe only the variants we researched with second-graders, with brief notes on
possible variants for other grades and uses. The NUMBER LINE is described in greatest
depth as a way to illustrate general features of all the microworlds.

(¢ -GID 1}
a@o-o)» EI@@e-0)); =

Fig. 1 Examples of blocks that take code as input: (top) two blocks that take scripts as inputs; (bottom) a
child’s script for making 30, and a tool we built to allow recording both code and result

@ Springer

Digital Experiences in Mathematics Education (2021) 7:48-65 53

Fig. 2 A number line with ticks representing consecutive integers
Number Line Microworlds

Adding and subtracting on the number line is grade two content, as specified in many
US state standards (and the Common Core). The idea — and this is critical — is not to use
the number line as a ‘crutch’ for getting the answer, though students may initially use it
that way, but as a tool for building an image of the meaning of addition and subtraction.

We display a number line with ticks that mark regular intervals, but interval size
(and overall range) is adjustable (consecutive integers, eighths or other fractions, skip
counting by any amount, starting anywhere). For seven-year-olds, the line is simple.?
Ticks identify consecutive integers, but only 0 is labeled, intentionally chosen not to be
left-most on the line (see Fig. 2).

The child starts with a very spare but playful environment (see Fig. 3): on the left is a
palette containing five programming blocks® that can be dragged into the center
‘scripting area’ and used alone or snapped together to make a script. Clicking on a
block or script runs it. That left-hand palette also contains six buttons that can be
clicked, but not dragged out — they are not part of any program. Five of them let the
child change puzzles, while the sixth (used much later) lets a child turn a script into a
block. On the right is the stage with the number line and Dino suggesting a starting
activity.

Because the environment is so spare, preparing a class of total novices for indepen-
dent work at their own computers takes no more than a highly interactive, five- to eight-
minute introduction on the rug. The teacher invited a child to read the puzzle; the

[Y - 3% math+C2 numberline
Exploration 1

3

(You can move the circle

by dragging out a biue block
and clicking on it

Try it a fow times.

Fig. 3 A very spare environment for seven-year-olds’ first experience programming in mathematics: pro-
gramming tools, mathematics and images differ in each microworld, but all are this focused

2 See: https:/go.edc.org/MW-number-line
3 This refinement is a further simplification of earlier versions, reported elsewhere, that had more blocks.

@ Springer

https://go.edc.org/MW-number-line

54 Digital Experiences in Mathematics Education (2021) 7:48-65

teacher then demonstrated dragging a block and, separately and explicitly, clicking on
it. Another child was invited to choose a block, drag it out, click on it and explain what
happened. Fig. 4 shows the number line as it appeared after the teacher has dragged and

clicked B/l and a child has dragged and clicked [EEMN-

One or two more children illustrated and then, leaving the blocks in the scripting
area, the teacher introduced two new programming things. “I can clean up and start

back at 0 by clicking this green block .” This incomplete description

deliberately left out, for now, changing the input, which children later (and regularly)
discover on their own. Finally, the teacher showed how the first two blocks that had
been used, the +5 and +3, could be snapped together to make a script (a new word,
used in context, but not explained further), and then clicked.

“To work on your own, you need to know one last thing: how to change puzzles.
Any ideas?” Novices readily noticed the buttons for different explorations. When the
puzzle was successfully changed, the teacher finished: “OK, you’re ready to work on
your own. Back to your computers!” If children failed to get a result they wanted, they
learned to refine their work from the result they got.

The stage was always labeled with the current puzzle’s name, and the children had a
paper list of all the puzzle names with check boxes for “I did it!” and “T showed
someone”, so they could tick off each puzzle they have done, and choose the next one
(or skip around if they preferred). The puzzles vary. Early ones are very open, like,
“How many numbers from 1 to 10 can you label?” Even this elicited behavior we had
not anticipated. While many children’s early experiments followed no plan we recog-
nized, several obviously invented their own challenges. Some were attracted
asthetically to patterns produced by the arrows, and kept restarting at 0, systematically
reworking and trying to label a// the numbers in some special way (Fig. 5).

Olivia, who had turned seven just a few months earlier, explained how she solved this
puzzle. She said, “[To get to 1] I just went plus three, plus three, minus five. [
Then [...] I just click it fifteen times.” Nobody asked why she had said, “fifteen”. %3
Five clicks would do. What a great informal example of reasoning by B&S
mathematical induction! From a seven-year-old!

Some of the two dozen puzzles (three of which are shown in Fig. 6) are more
specific, requiring planning, mental arithmetic and experimentation. Some, still within
this first experience in second grade, replace £3 and+5 with +300 and =500 on a
zoomed-out number line. This felt ‘new’ to the children, but their expectations made
them succeed and feel brilliant using such big numbers.

A'AQQQOQ'.
LSBT B B

Fig. 5 All the numbers, labeled in one of the patterns we saw

@ Springer

Digital Experiences in Mathematics Education (2021) 7:48-65 55

Try to make a
script that starts at
0 and ends at 2
Make a script that Make a script that and doesn't use
starts at 0 and starts at 0 and the -3 block.

ends at 6. ends at 2.

Fig. 6 Three mathematical puzzles (solutions are expressed through programming)

Teachers used class discussion to elicit and share students’ thinking, and
to let children analyze and explain why a script did what it did or predict a
result they could not actually see. For example, given a script like Olivia’s that
moves from 0 to 1, one puzzle asks children “[to] predict where that script will
land if you start at 197, a number that is not visible on the number line they
have.

The point is to give students experiences that are a foundation for later
formality: opportunities to explore and experiment, to learn from interaction
(acting and seeing the result) and to use programming to express their ideas,
which, we hypothesize, supports verbal expression of their ideas and furthers
mathematical understanding. As children gained experience, and found a need
for the Make a block button, we introduced it, individually at first, then to the
whole class, once a few meaningful uses emerged. Several children, even early
in their work with the microworlds, wanted to make a block.

We illustrated this with Olivia’s script. Click the button,
name the new block — in this case, they named it +1 because “
that is what Olivia intended it to do — and drag in the script ‘

that makes it work.* The result was, m a new block

added to their palette for them to use. The children liked what
this new abstraction did and understood it as a way to name a
faithful reproduction of Olivia’s script’s behavior, but some
of them clearly wished for a ‘true’ +1 block that worked the
same way that their other blocks did, drawing a single short
arrow from one number to the next. This is a second level of
abstraction, naming the purpose of Olivia’s algorithm and not
just its steps. So, we developed the combine steps block,
which takes a script like Olivia’s and produces a single arrow

to reach the same end result.’i‘o ?

This environment has mathematical legs. It can grow with the child to serve
learning in later grades; so its design permits a set of microworlds (plural). Just
as children quickly understood the zoomed-out number line, the very same
puzzle set could be used on a zoomed-in view to explore fractions. Now,

replacing u, u, children could see blocks like u, u

4 As we began to notice children who would click Make a Block, but forget to drag in the script, apparently
thinking that the name, alone, made it work, we changed the interface to offer a direct way to turn a script into
a block. It is easier and avoids the misconception, but we are not yet convinced that it is the better choice.
More research may tell us whether facing the misconception may be more educational.

@ Springer

56 Digital Experiences in Mathematics Education (2021) 7:48-65

N T e ¥ sz C oM RO O A o O
0 2 & 0 : & = u 2 B
0 0 ¢ € § s

Fig. 7 a Adding eighths to eighths is like adding hundreds to hundreds, it just gives more of them; b results
are always eighths, but there are some surprises mixed in, too

That the puzzles feel so familiar as to seem “trivial” is the point; fractions are
just numbers too. On paper, the written notation 3/ + 3/ often pulls fourth-
graders to add everything in sight, getting the canonically wrong %/¢. But here,
+3 +300 +%) ,
, and appear to tell the same story, leading children to
+3 +300 +%
expect °/3 (see Fig. 7a). Using ¢/ rather than the reduced form 3/, helps to
support their logic.

Except at integer locations, fractions in these beginning microworlds are
expressed only as eighths (see Fig. 7b). Preserving the integers leaves children
something to puzzle out, and something familiar, so children can quickly reason
it out. As before, we allow accidental or deliberate excursions to the left of 0,
but no puzzle requires them: for example, one puzzle says, “Start at 3/; and then
move to 3/3”. Children may not anticipate the solution until they type 3/; into

START AT and see that it moves to the correct spot but labels it ¢%4. This

design lets students build experience and knowledge from discoveries of their
own, without the punch-line or surprise being explained first. Surprise adds
salience and interest in mathematics, just as it always adds salience and interest.’
The initial choice of #3 and +5 is strategic: at the most superficial level, these
are numbers that are small enough for students to handle, yet offer challenge and
opportunities for useful learning and serve as a basis for all integers. At a deeper
level, this choice contrasts with one that will be used in later grades when the
available blocks might be +6 and + 15, from which not all integers can be made.
Having one format that can address fractions, decimals, factors, multiples, ...
shows coherence in mathematics and foreshadows, in grade-appropriate ways,
ideas children will likely make explicit later. A central design principle is to craft
our microworlds so that essentially the same manipulative can serve closely
related mathematical ideas at different levels of the curriculum, consistent with
best practice (see, for example, Sarama & Clements, 2016; Willingham, 2017).
In our second-grade number line microworld, a/l of the children visited the
negatives, either deliberately or accidentally. Good? Bad? Indifferent? If it left
children with the I-don’t-get-it feeling or led to confusions that the teacher had to
field, it would have been bad, because it would have put the teacher in an
awkward spot, whatever good opportunities it might also have created. Few
second-grade teachers, even those who are totally comfortable with the mathe-
matics itself, will have thought about what level of detail to use with second-
graders: formal treatment of negative numbers is not appropriate. But no

* We often misunderstand memory to depend on repetition. But think of a juicy bit of gossip or a frightening
accident you see: one experience and you remember! Regular occurrences of something that matters can also
make it salient, but it is the salience, not the repetition, that makes us remember it.

@ Springer

Digital Experiences in Mathematics Education (2021) 7:48-65 57

confusion ever arose to be unraveled. When the (common!) sequence +3, —5 moved
the little circle to —2, or when the children landed to the left of 0 by some other action, the
children either ooohed at the negative numbers — a// had heard of them from older
siblings or some other way — or pronounced the symbol as the familiar ‘minus two’ of
subtraction or asked only what the number was called and then ooohed when the
response was ‘“negative two”. Nobody — none of the children — then asked any more
questions. They all knew how to ‘get back’ to familiar territory and did not need
anything else.® So, it was not ‘bad’ at all.

We would not make this happy accident an explicit task — it is not for second grade —
but we allow it because it foreshadows ideas that are studied formally later and,
perhaps, will make them easier. And the way children behaved in these cases even
served second-grade goals. When sitting on one of the visible negative numbers, many
children knew immediately where the +5 block would move them. Almost certainly
they were not thinking of this as addition of two numbers, 5 and the negative number
they were on; they were thinking how far past 0 that 5 would take them, composing that
5 out of two distances, both ‘just plain numbers’, one of which they already knew.

Physical manipulatives can also leave space on the other side of zero — floor number
lines for children to hop on or small ones upon which to move a plastic frog — but that
would draw deliberate, not accidental, attention to the negatives (because they would
need labels), inappropriate at second grade. Programming gives access to experience
without the formality.

+1, £10, 100 Microworlds 200 + 100
Hmmm...

The tools are similar — blocks that add or subtract 1,
10 or 100 — but the range of numbers is too great for
an easily viewable number line, so, in this second-
grade version,” Dino thinks for a moment ...

... and then just records the results and celebrates suc-
cess. When asked to build the shortest script that would
make Dino say 9, few children counted up by +1s; most
built a +10 —1 script. In a related, off-computer, mental ;
mathematics task, children practiced playing Dino them-
selves with that two-step process applied to arbitrary
two- or even three-digit numbers, e.g. the teacher said,
“twenty-three”; the child added ten and then subtracted
one; then responded, “thirty-two”. This two-step way of
thinking about adding 9 is mathematically important, so
we provide combine steps to let children build a true +9
block. We also provide a limited repeat block: given
because children need it; limited because unlimited rep-
etition was often an unproductive distraction. Minimizing unproductive distraction is a key
design principle.

Avv + avwe —-vw

200 + 100 = 300

© For more on a kindergartener’s ideas about negative, positive and ‘just numbers’, see Goldenberg (2018).
7 See: https:/go.edc.org/MW-1-10-100

@ Springer

https://go.edc.org/MW-1-10-100

58 Digital Experiences in Mathematics Education (2021) 7:48-65

+1

a b c

Fig. 8 Three (of many) ways to create the number 291 using only +100, £10, £1: (a) what a child creates with
base-10 blocks; (b) what schools teach about expanded notation; (¢) how mental computation for adding 291
might best proceed, using rounding and adjustment

Children were intrigued (which, we believe, meant that their logic was engaged and
tickled) that they could create 291 in such very different ways (as shown in Fig. 8). In fourth
grade, similar puzzles might reappear with decimals +0.1, +1, 10, or+0.01, £0.1, £1.

Map Grid Microworlds

Many introduction-to-coding materials® use movements in a grid-like space as the
foundation for their first lessons. Our map grid microworlds — unlike the NUMBER LINE
and + 1, £10, £100 microworlds — share this feature, but with mathematics, not intro-to-
coding, as the primary purpose. We rely on the power of children’s curiosity and
readiness to learn from experimentation.

The two prior microworlds needed hardly more than a five-minute introduction; at
this point, the second-grade map grid world® (see Fig. 9) was almost self-explanatory,
but, for seven-year-olds, some predicting and trying-out ideas as a group on the rug was
a natural start. A ‘tiny town’ of seven paper-strip roads on the rug, three going one way
and four crossing them, can give experience naming the roads (possibly with local
street names) and describing intersections by naming the roads that intersect. Then, on
the computer, the teacher points to the smiley face and says, “This is where you are
now. You’re outside, playing! There are places to visit.” and with no further introduc-
tion invites a child to show how to “Visit Carla’s home™'°.

& Choosing only from Hour of Code activities, we have, for example: https://lightbot.com/hour-of-code.html,
https://www.kodable.com/hour-of-code#maze-maker and http:/www.grinchhourofcode.com/game.html.

¥ See: https:/go.edc.org/MW-map

1% House locations are fixed, but the teacher can pre-tailor names, so that when the children first see the
microworld, it names eight children in that class. Children can change names. Names used in the puzzle-tasks
automatically match names assigned to the houses.

@ Springer

https://lightbot.com/hour-of-code.html
https://www.kodable.com/hour-of-code#maze-maker
http://www.grinchhourofcode.com/game.html
https://go.edc.org/MW-map

Digital Experiences in Mathematics Education (2021) 7:48-65 59

Exploration 1

go North 1 block

R Max | Michael
go East 1 block °
> Carla
go South 1 block
N HOME | Ryan
go West 1 block T
L |Rashid
[1 |
Sarah
*
Karima
Faod Horld
Y o

N Garoline | |
name some friends [[(ZTA 2 B C D E F H I J K L M

\’/usn Carla 's home. E N

w E
rjow many blocks long is your path}] ‘

Exnloration 3

Fig. 9 The Map environment

But why program if the rug task is appealing and concrete and already seems
enough? It may be enough to inform, but not enough to internalize. On the rug, the
only source of information about the correct use of ‘east’ or ‘west’ is the external
authority of the teacher. But when programming is the ‘manipulative’, children learn by
trying things. If they choose the ‘wrong’ blue block, they can see what it does, use a
reset button to cover unwanted tracks and try a different block, learning compass
directions the way they learn nearly all of their natural vocabulary: by use in context.

We see the programming advantage with [T T EEEGHTTINTTN 4 B as well.

The children had already twice seen blocks of this color and name; those were powerful
hints at its purpose and even though its inputs were unfamiliar, they, too, contain hints.
Some children spontaneously played with it''; some asked; some mostly ignored it, as
it is not core content. But playing with it tells the child what it does. It does not need
pre-explaining. Physical manipulatives are different: they let a child build a visible
structure, but, unlike programming, the structure gives no feedback, placing the burden
for any needed feedback on the teacher or perhaps classmates.

Children want to see their names on the map, so we provide a way. When we ask
which block might let them put their own name on the map, they regularly guess

with no further prompting. Beyond contributing to social

relevance and personalization, this feature provides another chance to rehearse the
distinction between giving input (typing it) and using it (clicking the block).

Some puzzles ask children to build and keep scripts to get from one place to another;
some ask children to look at scripts they have and see if any of them can solve a new
puzzle. For example, the script that got them from Karima to Sarah can be reused to get
from Rashid to Ryan. One puzzle asks them to write a script to visit everybody. Getting

" The fact that it has not been explained may be an incentive for some children to play with it. See, for
example, Schulz and Bonawitz (2007).

@ Springer

60 Digital Experiences in Mathematics Education (2021) 7:48-65

OOO-OO®

Fig. 10 Cookies on plates: commutativity is a miracle

from Max to Michael creates a very strong spontaneous incentive to use the limited
repeat block.

First-graders have also excitedly used this microworld. Grade 5 students would use
co-ordinates more.

Array Microworlds

The US state standards for second-graders include working with, “equal groups of
objects” and “objects arranged in [small] rectangular arrays”, in order to build “foun-
dations for multiplication”. These two foundations emphasize different properties. The
image of cookies on plates (see Fig. 10) is easy to perceive, but the fact that three plates
of four contain as many cookies as four plates of three — the essential commutative
property of multiplication — appears as a miracle; we can count and check, but no logic
is exposed. The array image — cookies in the baking pan (see Fig. 11) — makes it
completely clear that 4 x 3 =3 x 4 Fig. 12.

But if, as Clements points out (Goldenberg & Clements, 2014), young children do
not always perceive the underlying row—column structure, this image may not be clear
either! Perhaps experience creating the arrays of tiles — not by shoving them together, but
by articulating the explicit lengths of rows or columns and the explicit number of them —
would help. This, and our overall strategy of providing experience (and puzzling
through) before formality, was the mathematical motivation for the array microworld.

Though the first three microworlds could be introduced in a different order, the
ArrAY microworld significantly advances the programming ideas that children face. It
thus relies on earlier learning.

Still, with that prior learning, getting started needed little introduction. “Explo-
ration 07 says, “Try each of your blocks and see what you can do”. Children
experimentally determined what each block does. The logical challenges involved

Fig. 11 Cookies in arrays: no miracle at all that 4 x 3 =3 x 4, since baking pans can be turned any way round

select pen color paint row of @ squares | move down one row | move up one row

ov.

r it
mov ot €0 spces | move it €D spaces |t at o 60 |

Fig. 12 Blocks in the second—/third-grade array microworld

@ Springer

Digital Experiences in Mathematics Education (2021) 7:48-65 61

in this programming, though, took more time. In
NumBER LINE and 1-10-100, order hardly
mattered. In Mar Grip, some puzzles called
attention to order. But here, in the Array micro-
world, sequence became central to the program-
ming. We wondered whether the programming
challenges might eclipse the mathematics. Early
observation with seven-year-olds showed that
children were entranced by the colors and,
through spontaneous play, by drawing their initials and other patterns on the stage
(not ideas we proposed), many children grasped the navigation quickly, making
programming challenges manageable. Observation also helped us shape the mathe-
matical experience: puzzling through tasks that set constraints on the figure to be
produced — observing dimensions or using total area (expressed as the number of
internal squares), or needing to fill a region in some complex way. It also helped us to
decide which blocks (like move right/left) should take inputs and which (like move up/
down) should be absolutes, which was initially not an obvious choice.

As always, puzzles graduate from exploratory and low threshold to ones that
involve challenge, but also invite creative flexibility. On the programming side,
some are best solved with repeated sequences of blocks. And some asked
children to Make a block for potential use in later puzzles that call for
building n x m arrays. Though we created puzzles in sequence, and introduced
a single new challenge at each step, children remained free to ignore our
sequence and explore on their own.

This microworld expanded second-graders’ programming, algorithm-building and
abstraction skills, and appealed to children in several grades, but its utility for mathe-
matics in later grades remains uncertain. While arrays model two-digit-by-two-digit
multiplication well, it was not clear that programming such models added anything
mathematical. This remains to be explored.

Discussion

Designing materials to address specific learning goals sets the agenda, automatically
removing some agency from the student. In print media, the order and structure are set;
the student’s role is to respond. Tutoring systems add flexibility, but initiative still
resides in the tutor; it asks, then the student responds and the system determines the
path. Manipulatives — physical, virtual or programming — are different, almost inevita-
bly calling for some ‘messing about’ (see Hawkins, 1965). They leave room for
accidents — some messy and some happy — along with whatever deliberate purpose
they were meant to serve.

Programming gives a programmer a lot of agency. Our microworlds offer students
room to direct their own creative experimentation. The design challenge, then, is how
to support a specific, externally imposed agenda of in-school mathematical learning,
while leaving room for unscripted ‘happy accidents’ that enhance or foreshadow, like
briefly visiting negative numbers (intentionally or by error) or discovering multiple
ways of making 291.

@ Springer

62 Digital Experiences in Mathematics Education (2021) 7:48-65

Choosing programming as the medium for expressing and exploring mathematics
adds two things, one for mathematics and one for programming. For programming, the
added value is clear: children have a context, built into regular school, for developing
programming facility that they can apply for their own purposes.

For mathematics, some of what programming added was part of the hypothesis that
motivated our initial work. Programming is a live notation that let students articulate
explicit mathematical statements — a kind of conscious intentionality that analogous
physical manipulatives or visual aids do not require — and get feedback, which physical
manipulatives do not provide. For example, we saw children treat drawing on a number
line on paper as a distinct act to know how to perform, divorced from the mathematical
idea it was meant to support. In one case, a boy (not in our current sample) who could
casily add 3 to small numbers nevertheless consistently drew number line arcs con-
taining three ticks rather than three intervals. Though the result on the line showed +2,
not +3, he perceived no conflict because, “that’s how you do it on a number line”.

Also, programming blocks, as a manipulative, are more flexible than physical
blocks. Physical base-10 blocks do not have negative correlates. One could invent
them — for example, a set of red blocks identical to the blue ones — but, as with
extending physical number lines below 0, it becomes more contrived and far more
difficult to manipulate and manage. The metaphor of 1-bits, 10-rods, and 100-flats is
their physicality. Ten bits make a rod; ten rods make a flat. “Negative’ bits or rods or
flats make no more sense than negative apples. They are inherently not physical — that
metaphor, like the red-and-black chips, is a different idea.

But there were also some genuine surprises. The first surprise we
saw was the total comfort the children had with negative numbers on
the line. A more profound surprise for us was a difference in what
students seemed to pay attention to and internalize, particularly in
the 1-10-100 microworld.

When children built numbers like 230 and 140 with physical base-10
blocks, some arranged the blocks carefully, but most just set out the
required pieces and were done. When asked what the sum of those two
numbers was, they often looked down at the blocks and counted. But
when they made a cartoon dinosaur say those numbers by constructing
scripts (as shown here) with programming blocks, at least some of them
also appeared to have built an internal model. When asked to predict what Dino would say
when one script and then the other is clicked, the abstraction already seemed to be in their
heads. They could still count the blocks on the screen, of course, by looking at the scripts, but
what it looked like they were doing was looking up to the adult — often with a confident grin
— as they said 370.

We do not yet know why, nor what prior experiences are required for children to be
able to do this.'> Are the important mathematical ideas more readily brought to
conscious awareness when dragging these blocks than when picking up and putting
down physical objects? Or does producing a script better impose structure — the
elements seen together rather than scattered about — and demand attention? Or is the
act of assembling programming blocks, with names, somehow more linguistic than

12 To be even more honest, we do not yet know how prevalent this is, but it was prevalent enough for us to
notice — and to leave us daring enough to report it here!

@ Springer

Digital Experiences in Mathematics Education (2021) 7:48-65 63

moving physical ones and therefore slightly closer to the form in which the new
challenge about the sum is posed and will be answered?

A critique of physical manipulatives — for example, base-10 blocks — is that children
can learn the manipulations without connecting them to place value (Sarama &
Clements, 2016). By asking children to create a script that tells the computer the steps
to take, the feedback is immediate and the outcome is explicitly linked to the process
that created it. Is that why our children were more readily building mental abstractions
of the mathematics? Although the /inguistic aspect of programming — formal articula-
tion of ideas — was part of our original motivating theory, we had not thought about its
effects on children’s explanations in classroom discourse, which seemed to become
more articulate, perhaps because the children had already articulated their thinking to
the machine in the form of code.

Another surprise was programming’s apparent effect on first-graders’ mental com-
putation. Their teacher had worked with them to help them add 9 by thinking “add ten,
subtract one”. (They had even acted it out with base-10 blocks, which frankly seemed
cumbersome and unclear: adding 1 ten-rod, trading it in for 10 one-bits, removing 1
one, then resorting back to just counting.) When paper-and-pencil exercises asked them
to add 9 to various two-digit numbers, they all counted. In our initial trials of the 1-10—
100 microworld in second grade, we had not yet invented the combine steps block, but
when first-graders used it to build 9 and 19, five of the stronger students quickly
became adept not only at adding 9 mentally to any arbitrary 2-digit number, but at
adding 19 and 99 as well. We did not have the chance to check with other first-graders,
but we suspect that most would have been able to learn to do what these high-flyers did.
Was it because of combine steps, or even the use of the microworld, or was it just the
extra focused attention the children got?'? Children also seemed readily able to invent a
new algorithm, e.g. for adding 98, or 8, or 18 after such play.

Is the programming advantage due to its different metaphor? Physical base-10
blocks use size/shape to identify a 10 as ten 1s, and 100 as ten 10s. Programming does
not show that, but makes the denomination more easily visible.'* Second-graders could
not be expected to know what to make of a physical “~1” block, but they easily treated
the ‘negative’ programming blocks as subtraction (i.e. not as addition of a negative
number), because that is what they looked like. Most of the children readily saw
as a way of making Dino say 9. Those who could comfortably add 10 to arbitrary two-
digit numbers without counting'® then seemed to internalize +10, —1 as a way not just
to make 9, but also mentally to add 9, perhaps because they had invented it and saw that
it worked.

This report is worded with a lot of tentativeness — seem, may, conjecture, question
marks — all obligatory, because the data are still coming in. But there are things we
already know with certainty. A/l of the second-graders we have worked with — over 300

13 All we know at this point about the combine steps block is that it was clearly very satisfying to the children
— they liked the fact that it compressed multiple steps into one action. Perhaps that, in itself, had a meaning.
' In other work, we have watched children count the individual segments of the 10-rod, as if its physicality
did not convey its meaning. Also see Sarama and Clements (2016) on bean sticks.

'3 Not all the second-graders built that skill (and Goldenberg et al., 2015, describe a bright ninth-grader who
had not), but nearly all added 10 comfortably in the context of counting by 10 (adding 10 to a multiple of 10).

@ Springer

64 Digital Experiences in Mathematics Education (2021) 7:48-65

in their classrooms and many more in informal settings — and the first-graders, and even
fifteen sixth-graders, are enthusiastic, puzzling hard, posing their own challenges to
themselves, and thoroughly engaged. We know that the tasks they are engaged in are
fully focused on mathematics, not overhead nor distraction.

Why first and sixth grade? We tested above and below grade level assuming we
would need to calibrate our tasks. Instead of ‘calibration error’, we found surprises.
When we tried the microworlds tentatively with end-of-the-year first-graders, they were
as interested and able to do most of the puzzles as mid-year second-graders. Does that
mean we aimed too low for second grade? Neither the second-graders nor their teachers
thought so. Was the first grade not a ‘matched’ class? Perhaps, but no evidence we have
suggests that. Or does programming, or exploration, help kids do things earlier than
they otherwise might? We do not know. And sixth-graders definitely ‘knew the math’,
but looked with greater depth. Learning through programming is just different.

Our work with students has already led to a better understanding of children’s mathe-
matical thinking, resulting in many refinements of the instructions and microworld envi-
ronments. Given the exploratory nature of this project, we, of course, continue to work to
understand some observations. One puzzle that nearly all students found very hard was
“START AT 120. Build a script that makes Dino say 420.” Even with Dino already saying
120 — and with the START AT block that let them make Dino say 120 —most children built
scripts that made (which is to say added) 420, rather than ones that added 300.

Generally, children had difficulty with puzzles that asked them to create results after
starting elsewhere than 0. Is this a failure to understand the puzzle’s wording? The
initial state of Dino? The true nature of the blue blocks? Does this mean that working
with physical blocks might have been better for the children, at least initially? Surely, if
120 were already represented on the floor in physical blocks, children would respond
only by placing the additional 100-blocks with it. If the screen had virtual analogues of
the physical blocks, children would likely respond the same way. If, with physical
blocks, the puzzle stated “if 120 were already on the floor, show what else you would
need to make 4207, would they still understand? Would that have been better than
START AT? We do not yet know. Perhaps the extra focus needed to solve these
puzzles in the programming environment enhanced children’s learning, but without
further study we could not say that it did not just take up extra time.

All else being equal, the enthusiasm and engagement alone are clearly a contribu-
tion; the flexibility allows more variation in mathematical tasks; and the focused time
on task means, at the very least, that the learning time for mathematics is not
diminished. What we are now trying to learn is how any of this might translate into
positive effects that can be seen clearly in the standard measures of mathematical
growth on which teachers, districts and the research literature rely.

Our own research continues. Our microworlds are freely available and we are eager
for others to research similar questions.

Acknowledgments Funding for doing and reporting the work described in this paper was provided, in part, by the
National Science Foundation, grants 1934161 and 1741792. Views expressed here are those of the authors and do not
necessarily reflect the views of the Foundation.

Compliance with Ethical Standards @

=

@ Springer

Digital Experiences in Mathematics Education (2021) 7:48-65 65

Conflict of Interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the
article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Benton, L., Kalas, 1., Saunders, P., Hoyles, C., & Noss, R. (2018a). Beyond jam sandwiches and cups of tea:
An exploration of primary pupils’ algorithm-evaluation strategies. Journal of Computer-Assisted
Learning, 34(5), 590-601.

Benton, L., Saunders, P., Kalas, I., Hoyles, C., & Noss, R. (2018b). Designing for learning mathematics
through programming: A case study of pupils engaging with place value. International Journal of Child—
Computer Interaction, 16, 68-76.

Goldenberg, E, P. (2018). Ideas under construction: Children saying what they know. (https://blogs.ams.org/
matheducation/2018/09/02/ideas-under-construction-children-saying-what-they-know/).

Goldenberg, E. P., & Clements, D. (2014). Developing essential understanding of geometry and measurement
for teaching mathematics in pre-K—grade 2. Reston, VA: National Council of Teachers of Mathematics.

Goldenberg, E. P., Mark, J., Kang, J., Fries, M., Carter, C., & Cordner, T. (2015). Making sense of algebra:
Developing students’ mathematical habits of mind. Portsmouth, NH: Heinemann.

Hawkins, D. (1965). Messing about in science. Science and Children, 2(5), 5-9.

Sarama, J., & Clements, D. (2016). Physical and virtual manipulatives: What is “concrete”? In P. Moyer-
Packenham (Ed.), International perspectives on teaching and learning mathematics with virtual manip-
ulatives (pp. 71-93). Cham: Springer.

Schulz, L., & Bonawitz, E. (2007). Serious fun: Preschoolers engage in more exploratory play when evidence
is confounded. Developmental Psychology, 43(4), 1045-1050.

Sendova, E. (2013). Assisting the art of discovery at school age: The Bulgarian experience. In P. Sanchez-
Escobedo (Ed.), Talent development around the world: A global perspective on gifted education (pp. 39—
98). Mérida: Lambert Academic Publishing.

Sendova, E., & Sendov, B. (1994). Using computers in school to provide linguistic approaches to mathemat-
ics: A Bulgarian example. Machine-mediated Learning, 4(1), 27-65.

Willingham, D. (2017). Ask the cognitive scientist: Do manipulatives help students learn? American
FEducator, 41(3), 25-30 40.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/
https://blogs.ams.org/matheducation/2018/09/02/ideas-under-construction-children-saying-what-they-know/
https://blogs.ams.org/matheducation/2018/09/02/ideas-under-construction-children-saying-what-they-know/

	Programming as Language and Manipulative for Second-Grade Mathematics
	Abstract
	Background
	Integrating Programming into Elementary Mathematics
	Choice of Language

	The Four Second-Grade Microworlds
	Number Line Microworlds
	±1, ±10, ±100 Microworlds
	Map Grid Microworlds
	Array Microworlds

	Discussion
	References

