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LOCKING-FREE ENRICHED GALERKIN METHOD FOR LINEAR
ELASTICITY\ast 

SON-YOUNG YI\dagger , SANGHYUN LEE\ddagger , AND LUDMIL ZIKATANOV\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We propose a new locking-free enriched Galerkin method for solving the linear elastic-
ity problem. The method is based on the discontinuous Galerkin formulation, but its approximation
space is a continuous piecewise linear vector-valued function space enriched by some discontinuous
piecewise linear functions. An a priori error estimate of optimal order in the energy norm is proved
and shown to be independent of a Lam\'e parameter \lambda , hence the proposed method is free of volu-
metric locking when modeling incompressible materials. Moreover, a uniform preconditioner with
respect to the mesh size is established in the operator preconditioning framework. We provide several
numerical examples to confirm the accuracy and the robustness of the new method and demonstrate
a good performance of the preconditioner.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . linear elasticity, enriched Galerkin method, locking-free, operator preconditioning
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\bfD \bfO \bfI . 10.1137/21M1391353

1. Introduction. Let \Omega be a bounded, connected, Lipschitz domain in \BbbR d, d =
2, 3, with boundary \partial \Omega . Then, the governing equation for linear elasticity reads as
follows: Find the displacement u \in \BbbR d that satisfies

 - \nabla \cdot \bfitsigma (u) = f in \Omega ,(1.1a)

u = uD on \partial \Omega ,(1.1b)

where f is an external body force. Here, \bfitsigma is the symmetric d\times d stress tensor defined
as

\bfitsigma (u) := 2\mu \bfitepsilon (u) + \lambda (\nabla \cdot u)I,

where \bfitepsilon (u) = 1
2 (\nabla u+(\nabla u)T ) is the strain tensor, I is the d\times d identity tensor, and \lambda 

and \mu are the Lam\'e parameters such that 0 < \lambda <\infty and 0 < \mu 1 < \mu < \mu 2 for some
positive constants \mu 1 and \mu 2. In the case of plane strain, \lambda and \mu can be rewritten as

\lambda =
E\nu 

(1 + \nu )(1 - 2\nu )
and \mu =

E

2(1 + \nu )
,

where E is the modulus of elasticity, and \nu is Poisson's ratio. In this paper, we will
assume that f \in L2(\Omega )d and uD = \widetilde uD| \partial \Omega for some \widetilde uD \in H2(\Omega )d and that the true
solution u satisfies the following H2-regularity:

(1.2) \| u\| 2 + \lambda \| \nabla \cdot u\| 1 \leq C(\| f\| 0 + \| \widetilde uD\| 2),
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LOCKING-FREE EG METHOD FOR LINEAR ELASTICITY 53

where C > 0 is independent of the Lam\'e constant \lambda . The other notation including the
Sobolev norms will be defined in section 2. The regularity assumption (1.2) is true if \Omega 
is sufficiently smooth or if \Omega is a convex polygon in two dimensions [41, 10]. In three-
dimensional cases, it is very technical to derive such regularity. See the monograph
[20] for details.

As the Lam\'e constant \lambda tends to \infty (equivalently, when \nu \rightarrow 1/2), the material
becomes nearly incompressible. The incompressibility of the material can be described
mathematically by \nabla \cdot u \approx 0, which can be derived from (1.2) as \lambda \rightarrow \infty . It is well
known that this incompressibility constraint may cause a loss of uniformity (with
respect to \lambda ) in the convergence regime of a low-order continuous Galerkin (CG)
method, a phenomenon known as volumetric locking.

There exists an extensive literature that proposed alternative numerical methods
to alleviate locking in linear elasticity. The most popular methods fall into classes
of mixed finite element methods [5, 4, 47, 48, 6], nonconforming finite element meth-
ods [16, 10], and discontinuous Galerkin (DG) methods [34, 42, 43], among others.
Mixed finite element methods tend to be locking-free and provide accurate stress ap-
proximations; however, the choice of mixed finite element spaces is restricted due to
the well-known inf-sup condition. On the other hand, DG methods employ function
spaces that are only piecewise continuous, and thus often comprise more inclusive
function spaces than traditional CG methods. Moreover, they allow the possibility
of high-order methods on unstructured mesh while maintaining high locality. Never-
theless, DG methods have some disadvantages in efficiency due to the large number
of degrees of freedom, which in turn requires an efficient linear solver. In order to
address such disadvantages of the DG methods, more efficient variants of DG meth-
ods, including the hybridizable DG methods [38, 17] and embedded DG methods [14],
have been proposed.

In this paper, we propose an enriched Galerkin (EG) method for solving the
linear elasticity problem. The original EG method, which we refer to as the locally
conservative EG (LC-EG) method, was introduced by Sun and Liu [39] for solving a
second-order elliptic problem and was tested for a coupled flow and transport problem
in porous media. The crux of their idea was to enrich the approximation space of
the classical CG method with piecewise constant functions and use it in the DG
formulation. Thus, one can achieve the local mass conservation property inherited
from the DG method at a low computational cost comparable to that of the CG
method. Since then, the LC-EG method has been successfully employed to problems
of modeling flow and transport in porous media [28, 29, 30, 35, 27, 3], the shallow
water equations [23], computational poromechanics [12, 18, 25, 26], and the Stokes
equations [11].

The main goal of this paper is to propose and analyze a locking-free EG (LF-
EG) method. Indeed, there was a prior attempt by Mital [33] to utilize the LC-EG
method for solving the linear elasticity problem with a moderate-sized \lambda . As a matter
of fact, the LC-EG space is still not rich enough to approximate the divergence-free
state of the solution when \lambda is very large. In light of this observation, we propose
to enrich the linear CG space with some discontinuous piecewise linear vector-valued
functions whose gradient is a constant multiple of the identity tensor in each element.
Indeed, this new enriched function space requires only one additional local degree
of freedom (DoF) in each element compared to the linear CG space. Therefore, it
requires even fewer DoFs than the linear LC-EG space and significantly fewer DoFs
than the linear DG space. Yet, the new space now has nontrivial divergence-free
functions, hence the potential for the locking-free property. To distinguish this new

D
ow

nl
oa

de
d 

05
/0

4/
22

 to
 1

44
.1

74
.2

12
.7

3 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

54 SON-YOUNG YI, SANGHYUN LEE, AND LUDMIL ZIKATANOV

EG method from the LC-EG method, we will refer to the new EG method as the
LF-EG method. Besides the aforementioned advantages, one can utilize the existing
CG and DG codes to implement the LF-EG method with some slight modifications.
Among recent work related to ours is work by Harper et al. [22] in that they also
use enriched Lagrangian finite elements but on quadrilateral and hexahedral meshes.
However, their enrichment spaces consist of edge/face-based bubble vector functions,
hence requiring more DoFs than our method. Moreover, their weak formulation is
based on the reduced integration method, unlike our DG-type weak formulation.

In this paper, we prove existence and uniqueness of the solution for our LF-EG
method and establish an optimal-order error estimate in the energy norm in which
the error bound is independent of \lambda . Therefore, our LF-EG method is locking-free
even for a large \lambda . To construct a uniform preconditioner (with respect to the mesh
size), we utilize the operator-preconditioning framework developed by [31] and [32].
In that framework, constructing field-of-values equivalent preconditioners amounts
to the construction of an operator that provides a norm that is equivalent to the
energy norm. Our choice for such construction is the well-known additive Schwarz
preconditioner (see, e.g., [40, 44, 19, 45]) corresponding to an appropriate splitting of
the underlying finite element space.

We provide several numerical experiments in two dimensions to support our the-
oretical results of the optimal convergence rate and the locking-free property of the
LF-EG method. For each example, we solve the problem using both our LF-EG
method and the classical linear CG method for the sake of comparison and demon-
strate the advantage of our new method over the linear CG method when simulating
incompressible materials. We also include some results of numerical experiments il-
lustrating the performance of the proposed additive Schwarz preconditioner.

The rest of this paper is organized as follows. In section 2, some useful nota-
tion and preliminaries are introduced. Then, the new LF-EG method for the linear
elasticity problem is introduced in section 3 and a convergence analysis is presented
in section 4. Then, in section 5, we propose a preconditioner for the linear system
resulting from the LF-EG method. Finally, some numerical results are provided in
section 6.

2. Notation and preliminaries. In this section, we will introduce some nota-
tion and preliminaries that will be useful throughout the rest of the paper. We use the
standard notation for Sobolev spaces [1] and their norms. For example, let E \subset \BbbR d

be a bounded domain; then the space Hs(E) for integer s is

Hs(E) = \{ v \in L2(E) : \forall 0 \leq | \omega | \leq s, D\omega v \in L2(E)\} ,

where the vector space L2(E) is the space of square-integrable functions, and for a

multi-index \omega = (\omega 1, . . . , \omega d) \in \BbbN d such that | \omega | =
\sum d

i=1 \omega i, D
\omega v is the distributional

derivative. The Sobolev norm and seminorm associated with Hs(E) are denoted by
\| \cdot \| s,E and | \cdot | s,E , respectively. We extend these definitions and notation naturally
to vector functions \zeta : E \rightarrow \BbbR d and tensor functions \bfittau : E \rightarrow \BbbR d\times d. When s = 0,
Hs(E) coincides with L2(E), and the inner product will be denoted by (\cdot , \cdot )E in this
case. For simplicity, the subscript E will be dropped if E = \Omega .

On the other hand, broken Sobolev spaces are natural spaces to work with the
DG and EG methods, and these spaces depend on the partition of the domain. Let
\scrT h be the shape-regular triangulation by a family of partitions of \Omega into elements T ,
where T is a triangle when d = 2 or a tetrahedron when d = 3. We denote by hT
the diameter of T , and we set h = maxT\in \scrT h

hT . Let nT be the unit outward normal
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vector to \partial T for T \in \scrT h. The broken Sobolev space Hs(\scrT h) for any real number s is
defined by

Hs(\scrT h) = \{ v \in L2(\Omega ) : v| T \in Hs(T ) \forall T \in \scrT h \} .

Again, these definitions and notation can be naturally extended to vector and tensor
functions.

In addition, we denote by \scrE h the set of all edges (or faces) and by \scrE I
h and \scrE \partial 

h the
collections of all interior and boundary edges (faces), respectively. For any e \in \scrE I

h,
there are two neighboring elements T+ and T - such that e = \partial T+ \cap \partial T - . We
associate one unit normal vector ne with e, which is assumed to be oriented from T+

to T - . If e \in \scrE \partial 
h , then ne is taken to be the unit outward normal vector to \partial \Omega .

Now, we define the jump and average of functions in H1(\scrT h)d on e \in \scrE h. For
\zeta \in H1(\scrT h)d, the trace of \zeta along \partial T for any element T is well defined. If e \in \scrE I

h

is shared by two elements T+ and T - , there are two traces of \zeta on e, which will be
denoted by \zeta \pm , respectively. Now, we introduce the so-called average operator \{ \cdot \} on
e \in \scrE I

h as follows:

\{ \zeta \} :=
1

2

\bigl( 
\zeta + + \zeta  - 

\bigr) 
.

Also, the jump across interior edges e \in \scrE I
h will be defined by

[[\zeta ]] := \zeta +  - \zeta  - .

On the other hand, on the boundary edges e \in \scrE \partial 
h , we set

\{ \zeta \} = [[\zeta ]] := \zeta .

We close this section by recalling some important trace inequalities that will
frequently be used in the analysis of our EG method. Let | T | denote the area of T in
two dimensions and the volume of T in three dimensions. Similarly, for e \subset \partial T , | e| 
denotes the length of e in two dimensions and the area of e in three dimensions. Then,
there is a constant Ct independent of hT and v such that for any v \in Hs(T ), s \geq 1,

(2.1) \| v\| 0,e \leq Cth
 - 1/2
T (\| v\| 0,T + hT \| \nabla v\| 0,T ) \forall e \subset \partial T.

Let \BbbP k(T ) be the space of polynomials of total degree at most k for a nonnegative
integer k. If v \in \BbbP k(T ), then the trace inequality becomes

(2.2) \| v\| 0,e \leq \~Cth
 - 1/2
T \| v\| 0,T \forall e \subset \partial T,

where \~Ct is independent of hT and v but depends on the polynomial degree k. Anal-
ogous results to (2.1) and (2.2) still hold for vector- and tensor-valued functions.

3. Locking-free enriched Galerkin method for linear elasticity. In this
section, we will define our LF-EG method and prove its solvability. First, let us
introduce the finite element space. Let \scrM h be the standard finite element space of
d-vectors whose components are continuous piecewise linear polynomials:

(3.1) \scrM h :=
\bigl\{ 
\psi \in H1(\Omega )d| \psi | T \in \BbbP 1(T )

d \forall T \in \scrT h
\bigr\} 
.

Also, let

\scrD h :=
\bigl\{ 
\psi \in L2(\Omega )d| \psi | T = cT (x - xT ), cT \in \BbbR , \forall T \in \scrT h

\bigr\} 
,
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where x = [x1, . . . , xd]
t and xT is the position vector of the center of T \in \scrT h, that is,

(x  - xT , 1)T = 0. We note that \scrM h and \scrD h are disjoint subspaces of the linear DG
space \bigl\{ 

\psi \in L2(\Omega )d| \psi | T \in \BbbP 1(T )
d \forall T \in \scrT h

\bigr\} 
.

Then, the LF-EG finite element space \scrV h is defined as a direct sum of these two
spaces:

\scrV h := \scrM h \oplus \scrD h.

It is worth mentioning that we deliberately chose the space \scrD h instead of the piecewise
constant vector-valued space used in the existing LC-EG method [33]. Recall that
the linear CG space \scrM h suffers from locking because it is not rich enough to have
nontrivial divergence-free vectors.

The LF-EG space requires only NT more DoFs compared to that of the linear
CG (P1-CG) space method regardless of the dimension d, where NT is the number of
elements T in \scrT h. This means that the LF-EG method requires fewer DoFs than the
LC-EG method and significantly fewer DoFs than the linear DG (P1-DG) method.
Figure 1 illustrates the DoFs on a coarse two-dimensional Cartesian grid for four
compatible methods employing piecewise linear vector-valued polynomials: P1-CG,
P1-DG, LC-EG, and our new LF-EG methods.

Now, we are in a position to present the LF-EG method. Our LF-EG method for
solving the linear elasticity problem (1.1) reads as follows: Find U \in \scrV h such that

(3.2) \scrS (U, v) = \scrF (v) \forall v \in \scrV h,

where \scrS and \scrF are the bilinear form and linear functional, respectively, defined as

\scrS (U, v) :=
\sum 
T\in \scrT h

(\bfitsigma (U), \bfitepsilon (v))T  - 
\sum 
e\in \scrE h

(\{ \bfitsigma (U)ne\} , [[v]])e

+
\sum 
e\in \scrE h

([[U ]] , \{ \bfitsigma (v)ne\} )e +
\sum 
e\in \scrE h

\alpha 

he
([[U ]] , [[v]])e,+\lambda 2

\sum 
e\in \scrE I

h

\beta he([[\nabla \cdot U ]] , [[\nabla \cdot v]])e,

\scrF (v) :=
\sum 
T\in \scrT h

(f, v)T +
\sum 
e\in \scrE \partial 

h

(uD,\bfitsigma (v)ne)e +
\sum 
e\in \scrE \partial 

h

\alpha 

he
(uD, v)e,

where \alpha > 0 and \beta > 0 are penalty parameters, and he is defined by he = | e| 
1

d - 1 .
In general, the penalty parameters may vary over e, but we assume that they are
constants in this paper. Also, notice that the Dirichlet boundary condition (1.1b) is

(a) P1-CG. (b) P1-DG. (c) LC-EG. (d) LF-EG.

Fig. 1. Comparison of DoFs on a two-dimensional Cartesian grid for four methods: (a) P1-
CG, (b) P1-DG , (c) LC-EG, and (d) LF-EG methods. A red circle ( ) represents two DoFs and a
blue triangle ( ) represents one DoF.
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imposed weakly in this method. The following generalized Korn's inequality easily
follows from (1.19) in [8]: There is a constant CKorn > 0 such that

(3.3)
\sum 
T\in \scrT h

\| \nabla v\| 20,T \leq CKorn

\Biggl( \sum 
T\in \scrT h

\| \bfitepsilon (v)\| 20,T +
\sum 
e\in \scrE h

1

he
\| [[v]] \| 20,e

\Biggr) 
\forall v \in \scrV h.

In light of the above Korn's inequality, we now introduce the following energy norm
for \alpha > 0 in the LF-EG finite element space \scrV h:

\| v\| \scrE =

\Biggl( \sum 
T\in \scrT h

\| \bfitepsilon (v)\| 20,T +
\sum 
e\in \scrE h

\alpha 

he
\| [[v]] \| 20,e

\Biggr) 
.

3.1. Consistency.

Lemma 3.1. Let u be the solution of (1.1) and assume that u \in Hs(\Omega )d for
s > 3/2. Then, u satisfies the variational problem (3.2):

(3.4) \scrS (u, v) = \scrF (v) \forall v \in \scrV h.

Proof. Multiply (1.1a) by v \in \scrV h on both sides, then integrate using Green's
theorem and the symmetry of the stress tensor:

 - 
\sum 
T\in \scrT h

(\nabla \cdot \bfitsigma (u), v)T =
\sum 
T\in \scrT h

(\bfitsigma (u), \bfitepsilon (v))T  - 
\sum 
T\in \scrT h

(\bfitsigma (u)nT , v)\partial T

=
\sum 
T\in \scrT h

(\bfitsigma (u), \bfitepsilon (v))T  - 
\sum 
e\in \scrE h

(\{ \bfitsigma (u)ne\} , [[v]])e  - 
\sum 
e\in \scrE I

h

([[\bfitsigma (u)ne]] , \{ v\} )e

=
\sum 
T\in \scrT h

(\bfitsigma (u), \bfitepsilon (v))T  - 
\sum 
e\in \scrE h

(\{ \bfitsigma (u)ne\} , [[v]])e,(3.5)

where the continuity of the normal stress \bfitsigma (u)ne across the interior edges was used in
the last equality. Also, the jump [[u]] = 0 and [[\nabla \cdot u]] = 0 across all the interior edges
due to the regularity of u, hence\sum 

e\in \scrE I
h

([[u]] , \{ \bfitsigma (v)ne\} )e = 0,
\sum 
e\in \scrE I

h

\alpha 

he
([[u]] , [[v]])e = 0, \lambda 2

\sum 
e\in \scrE I

h

\beta he([[\nabla \cdot u]] , [[\nabla \cdot v]])e = 0.

Adding these three terms on the far right-hand side of (3.5), we have\sum 
T\in \scrT h

(\bfitsigma (u), \bfitepsilon (v))T  - 
\sum 
e\in \scrE h

(\{ \bfitsigma (u)ne\} , [[v]])e +
\sum 
e\in \scrE I

h

([[u]] , \{ \bfitsigma (v)ne\} )e

+
\sum 
e\in \scrE I

h

\alpha 

he
([[u]] , [[v]])e + \lambda 2

\sum 
e\in \scrE I

h

\beta he([[\nabla \cdot u]] , [[\nabla \cdot v]])e =
\sum 
T\in \scrT h

(f, v)T .(3.6)

On the other hand, using the boundary condition (1.1b), we have
(3.7)\sum 

e\in \scrE \partial 
h

([[u]] , \{ \bfitsigma (v)ne\} )e +
\sum 
e\in \scrE \partial 

h

\alpha 

he
([[u]] , [[v]])e =

\sum 
e\in \scrE \partial 

h

(uD,\bfitsigma (v)ne)e +
\sum 
e\in \scrE \partial 

h

\alpha 

he
(uD, v)e.

Then, we add (3.7) to (3.6) and obtain \scrS (u, v) = \scrF (v).
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3.2. Coercivity.

Lemma 3.2. There exists a positive constant Ccoer independent of h and \lambda such
that

(3.8) \scrS (v, v) \geq Ccoer\| v\| 2\scrE + \lambda 2
\sum 
e\in \scrE I

h

\beta he\| [[\nabla \cdot v]] \| 20,e \forall v \in \scrV h

for any penalty parameters \alpha > 0 and \beta > 0.

Proof. It is straightforward to see that

\scrS (v, v) = 2\mu 
\sum 
T\in \scrT h

\| \bfitepsilon (v)\| 20,T + \lambda 
\sum 
T\in \scrT h

\| \nabla \cdot v\| 20,T +
\sum 
e\in \scrE h

\alpha 

he
\| [[v]] \| 20,e

+ \lambda 2
\sum 
e\in \scrE I

h

\beta he\| [[\nabla \cdot v]] \| 20,e \geq min(2\mu , 1)\| v\| 2\scrE + \lambda 2
\sum 
e\in \scrE I

h

\beta he\| [[\nabla \cdot v]] \| 20,e.

Therefore, (3.8) holds with Ccoer = min(2\mu , 1).

3.3. Solvability.

Lemma 3.3. There exists a unique solution U to problem (3.2).

Proof. Due to the finite-dimensionality, it suffices to prove uniqueness. Let U1

and U2 be two solutions to the LF-EG scheme (3.2). Then, we have

\scrS (U1  - U2, v) = 0 \forall v \in \scrV h.

Taking v = U1  - U2 and using (3.8), we have \| U1  - U2\| \scrE = 0, hence U1 = U2.

4. Convergence analysis.

4.1. Interpolation operator. For the convergence analysis, we need to define
an interpolation operator from H1(\Omega )d to \scrV h. As we want to prove an error estimate
that is independent of the Lam\'e constant \lambda , the interpolation operator should be
able to preserve the divergence-free vector at least in a weak sense. To this end, let
\Pi c

h : H1(\Omega )d \rightarrow \scrM h be a Cl\'ement-type interpolant satisfying

(4.1) | v  - \Pi c
hv| j,T \leq Chm - j

T | v| m,\Delta T
, 0 \leq j \leq m \leq 2, \forall v \in H2(\Omega )d, \forall T \in \scrT h,

where C is independent of h and T , and \Delta T is a macroelement containing T used for
defining \Pi c

hv. Then, we define \Pi d
h : H1(\Omega )d \rightarrow \scrD h such that

(\nabla \cdot \Pi d
hv, 1)T = (\nabla \cdot (v  - \Pi c

hv), 1)T \forall T \in \scrT h.

Owing to the fact \nabla \cdot \Pi d
hv| T \in \BbbP 0(T ), it is easy to see that

\nabla \cdot \Pi d
hv| T =

1

| T | 
(\nabla \cdot (v  - \Pi c

hv), 1)T
def
= cT \forall T \in \scrT h,

from which we can express \Pi d
hv| T explicitly as

(4.2) \Pi d
hv| T =

cT
d
(x - xT ).

Finally, we define \Pi h : H1(\Omega )d \rightarrow \scrV h by

\Pi h := \Pi c
h +\Pi d

h.
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Lemma 4.1. We have the following interpolation error estimates for \Pi h:

| \nabla \cdot (v  - \Pi hv)| j \leq Ch1 - j | \nabla \cdot v| 1, 0 \leq j \leq 1, \forall v \in H2(\Omega )d,(4.3a)

| v  - \Pi hv| j \leq Chm - j | v| m, 0 \leq j \leq m \leq 2, \forall v \in H2(\Omega )d.(4.3b)

Proof. It is straightforward to see that

(4.4) (\nabla \cdot (v  - \Pi hv), 1)T = (\nabla \cdot v  - \nabla \cdot \Pi hv, 1)T = 0 \forall T \in \scrT h,

which implies that

(4.5) \scrP 0(\nabla \cdot v) = \nabla \cdot (\Pi hv) on each T \in \scrT h,

where \scrP 0 is the local L2-projection onto the piecewise-constant space on \scrT h. There-
fore,

| \nabla \cdot (v  - \Pi hv)| j,T = | \nabla \cdot v  - \scrP 0(\nabla \cdot v)| j,T \leq Ch1 - j
T | \nabla \cdot v| 1,T , j = 0, 1.

After summing the square of both sides over T \in \scrT h and taking the square root, we
obtain the desired error estimate (4.3a). To prove (4.3b), we first note that the result
is trivial when j = m = 2 since \Pi hv| T \in \BbbP 1(T )

d. In the case of j = 0, 1, it suffices to
show that

(4.6) | \Pi d
hv| j \leq Chm - j | v| m, j \leq m \leq 2,

thanks to the triangle inequality and (4.1). To this end, we will first provide the
bound for | \Pi d

hv| 0, i.e., j = 0. Using (4.2), the Cauchy--Schwarz inequality, and (4.1),
we have\sum 

T\in \scrT h

| \Pi d
hv| 20,T =

\sum 
T\in \scrT h

c2T
d2

\int 
T

(x - xT )
2 dx

=
\sum 
T\in \scrT h

1

d2

\biggl( 
1

| T | 

\int 
T

\nabla \cdot (v  - \Pi c
hv) dx

\biggr) 2 \int 
T

(x - xT )
2 dx

\leq 
\sum 
T\in \scrT h

1

d2| T | 
\| \nabla \cdot (v  - \Pi c

hv)\| 20,T \| x - xT \| 2\infty ,T | T | 

\leq 
\sum 
T\in \scrT h

1

d2
\| \nabla \cdot (v  - \Pi c

hv)\| 20,Th2T \leq 
\sum 
T\in \scrT h

h2T
d2

| v  - \Pi c
hv| 21,T

\leq C
\sum 
T\in \scrT h

h2mT | v| 2m,\Delta T
\leq Ch2m| v| m, m = 1, 2.

It remains to prove (4.6) with j = 1 and it can be done similarly by noting from (4.2)
that

| \Pi d
hv| 21,T =

1

d
c2T | T | .

4.2. Energy-norm error estimate. In this section, we will prove an a priori
error estimate for the approximate solution in the energy norm. First, let \eta = u - \Pi hu
and \xi = \Pi hu - U , then, u - U = \eta + \xi . We will start with the following lemma that
will be useful for our error analysis.
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Lemma 4.2. There exists a constant C > 0 independent of h and \lambda such that

(4.7) | \bfitsigma (\eta )| j \leq Ch1 - j(\| f\| 0 + \| \widetilde uD\| 2), j = 0, 1.

Proof. Using the interpolation errors (4.3a) and (4.3b), we obtain

| \bfitsigma (\eta )| j = | 2\mu \bfitepsilon (\eta ) + \lambda (\nabla \cdot \eta )I| j \leq C(| \eta | j+1 + \lambda | \nabla \cdot \eta | j)
\leq Ch1 - j(| u| 2 + \lambda | \nabla \cdot u| 1), j = 0, 1.

The desired result follows from the regularity of the solution (1.2).

Lemma 4.3. We have the following error estimate for the auxiliary variable \xi =
\Pi hu - U :

\| \xi \| \scrE \leq Ch(\| f\| 0 + \| \widetilde uD\| 2),
where C > 0 depends on \mu but is independent of h and \lambda .

Proof. First, we obtain the following consistency equation by subtracting (3.2)
from (3.4),

(4.8) \scrS (u - U, v) = 0 \forall v \in \scrV h,

from which we have \scrS (\eta + \xi , \xi ) = 0 since \xi \in \scrV h. Hence, \scrS (\xi , \xi ) =  - \scrS (\eta , \xi ). On the
other hand, (\nabla \cdot \eta ,\nabla \cdot \xi )T = 0 on each T since \nabla \cdot \xi \in \BbbP 0(T ). Therefore, we have

\scrS (\xi , \xi ) =  - 2\mu 
\sum 
T\in \scrT h

(\bfitepsilon (\eta ), \bfitepsilon (\xi ))T +
\sum 
e\in \scrE h

(\{ \bfitsigma (\eta )ne\} , [[\xi ]])e  - 
\sum 
e\in \scrE h

([[\eta ]] , \{ \bfitsigma (\xi )ne\} )e

 - 
\sum 
e\in \scrE h

\alpha 

he
([[\eta ]] , [[\xi ]])e  - \lambda 2

\sum 
e\in \scrE I

h

\beta he([[\nabla \cdot \eta ]] , [[\nabla \cdot v]])e

:= \Phi 1 +\Phi 2 +\Phi 3 +\Phi 4 +\Phi 5.

First, we will consider \scrS (\xi , \xi ) on the left-hand side. Using the coercivity result (3.8),
we immediately have

(4.9) Ccoer\| \xi \| 2\scrE + \lambda 2
\sum 
e\in \scrE I

h

\beta he\| [[\nabla \cdot \xi ]] \| 20,e \leq 
5\sum 

i=1

| \Phi i| .

We will bound each | \Phi i| , i = 1, . . . , 5, using primarily the Cauchy--Schwarz and
Young's inequalities, trace inequalities, and interpolation error bounds. First, for
a small \delta 1 > 0, we get

| \Phi 1| \leq 2\mu 
\sum 
T\in \scrT h

| (\bfitepsilon (\eta ), \bfitepsilon (\xi ))T | \leq 2\mu 

\Biggl( \sum 
T\in \scrT h

\| \bfitepsilon (\eta )\| 20,T

\Biggr) 1
2
\Biggl( \sum 

T\in \scrT h

\| \bfitepsilon (\xi )\| 20,T

\Biggr) 1
2

\leq \delta 1\| \bfitepsilon (\xi )\| 20 + C\| \bfitepsilon (\eta )\| 20 \leq \delta 1\| \xi \| 2\scrE + Ch2\| u\| 22.
Next, we bound | \Phi 2| using the trace inequality (2.1) and (4.7) as follows:

| \Phi 2| \leq 
\sum 
e\in \scrE h

| (\{ \bfitsigma (\eta )ne\} , [[\xi ]])e| \leq 

\Biggl( \sum 
e\in \scrE h

he
\alpha 
\| \{ \bfitsigma (\eta )ne\} \| 20,e

\Biggr) 1
2
\Biggl( \sum 

e\in \scrE h

\alpha 

he
\| [[\xi ]] \| 20,e

\Biggr) 1
2

\leq \delta 2\| \xi \| 2\scrE + C
\sum 
T\in \scrT h

(\| \sigma (\eta )\| 0,T + hT | \sigma (\eta )| 1,T )2

\leq \delta 2\| \xi \| 2\scrE + Ch2(\| u\| 2 + \lambda \| \nabla \cdot u\| 1)2

for a small constant \delta 2 > 0.
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Let us now turn our attention to the next term | \Phi 3| . First, we recall that (\nabla \cdot 
\eta ,\nabla \cdot \xi )T = 0 on each T \in \scrT h. Therefore,

0 =
\sum 
T\in \scrT h

(\nabla \cdot \eta ,\nabla \cdot \xi )T =
\sum 
T\in \scrT h

(\eta \cdot nT ,\nabla \cdot \xi )\partial T =
\sum 
e\in \scrE h

([[\eta \cdot ne]] , \{ \nabla \cdot \xi \} )e

+
\sum 
e\in \scrE I

h

(\{ \eta \cdot ne\} , [[\nabla \cdot \xi ]])e.

Then,

| \Phi 3| =

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
e\in \scrE h

([[\eta ]] , \{ \bfitsigma (\xi )ne\} )e

\bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 2\mu \sum 

e\in \scrE h

([[\eta ]] , \{ \bfitepsilon (\xi )ne\} )e + \lambda 
\sum 
e\in \scrE h

([[\eta \cdot ne]] , \{ \nabla \cdot \xi \} )e

\bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2\mu 
\sum 
e\in \scrE h

([[\eta ]] , \{ \bfitepsilon (\xi )ne\} )e  - \lambda 
\sum 
e\in \scrE I

h

(\{ \eta \cdot ne\} , [[\nabla \cdot \xi ]])e

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 2\mu 

\sum 
e\in \scrE h

\| [[\eta ]] \| 0,e\| \{ \bfitepsilon (\xi )ne\} \| 0,e + \lambda 
\sum 
e\in \scrE I

h

\| \{ \eta \cdot ne\} \| 0,e\| [[\nabla \cdot \xi ]] \| 0,e

\leq \delta 3
\sum 
T\in \scrT h

\| \bfitepsilon (\xi )\| 20,T +
\lambda 2

4

\sum 
e\in \scrE I

h

\beta he\| [[\nabla \cdot \xi ]] \| 20,e + C
\sum 
T\in \scrT h

1

h2T
(\| \eta \| 0,T + hT | \eta | 1,T )2

\leq \delta 3
\sum 
T\in \scrT h

\| \xi \| 2\scrE +
\lambda 2

4

\sum 
e\in \scrE I

h

\beta he\| [[\nabla \cdot \xi ]] \| 20,e + Ch2\| u\| 22,

where \delta 3 > 0 is a small constant and C > 0 depends on \mu and the constants Ct and
\~Ct from the trace inequalities.

The fourth term | \Phi 4| can be bounded in a similar fashion:

| \Phi 4| \leq 
\sum 
e\in \scrE h

\bigm| \bigm| \bigm| \bigm| \alpha he ([[\eta ]] , [[\xi ]])e
\bigm| \bigm| \bigm| \bigm| \leq 

\Biggl( \sum 
e\in \scrE h

\alpha 

he
\| [[\eta ]] \| 20,e

\Biggr) 1
2
\Biggl( \sum 

e\in \scrE h

\alpha 

he
\| [[\xi ]] \| 20,e

\Biggr) 1
2

\leq \delta 4\| \xi \| 2\scrE + C
\sum 
T\in \scrT h

\alpha 

h2T
(\| \eta \| 20,T + h2T | \eta | 21,T ) \leq \delta 4\| \xi \| 2\scrE + Ch2\| u\| 22

for a small constant \delta 4 > 0.
Let us now consider the last term | \Phi 5| .

| \Phi 5| \leq \lambda 2
\sum 
e\in \scrE I

h

| \beta he([[\nabla \cdot \eta ]] , [[\nabla \cdot \xi ]])e| \leq \lambda 2

\left(  \sum 
e\in \scrE I

h

\beta he\| [[\nabla \cdot \eta ]] \| 20,e

\right)  1
2
\left(  \sum 

e\in \scrE I
h

\beta he\| [[\nabla \cdot \xi ]] \| 20,e

\right)  1
2

\leq \lambda 2

4

\sum 
e\in \scrE I

h

\beta he\| [[\nabla \cdot \xi ]] \| 20,e + C\beta \lambda 2
\sum 
T\in \scrT h

(\| \nabla \cdot \eta \| 0,T + hT \| \nabla \cdot \eta \| 1,T )2

\leq \lambda 2

4

\sum 
e\in \scrE I

h

\beta he\| [[\nabla \cdot \xi ]] \| 20,e + Ch2\lambda 2\| \nabla \cdot u\| 21.

Combining the above bounds for | \Phi i| , i = 1, . . . , 5, with (4.9) and using the H2-
regularity (1.2), we have

(Ccoer  - 
4\sum 

i=1

\delta i)\| \xi \| 2\scrE +
\lambda 2

2

\sum 
e\in \scrE I

h

\beta he\| [[\nabla \cdot \xi ]] \| 20,e \leq Ch2(\| u\| 22 + \lambda 2\| \nabla \cdot u\| 21)

\leq Ch2(\| f\| 0 + \| \widetilde uD\| 2)2,
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where C = C(\mu ,Ct, \~Ct, \alpha ,
1
\alpha , \beta ,

1
\beta ) is independent of h and \lambda . Recall that Ccoer is also

independent of h and \lambda . By taking sufficiently small \delta \prime is, we can make the coefficient

(Ccoer  - 
\sum 4

i=1 \delta i) positive on the left-hand side. Then, we arrive at\Biggl( 
Ccoer  - 

4\sum 
i=1

\delta i

\Biggr) 
\| \xi \| 2\scrE \leq Ch2(\| f\| 0 + \| \widetilde uD\| 2)2.

Finally, we divide both sides by (Ccoer  - 
\sum 4

i=1 \delta i) to complete the proof.

Now, we are ready to present the main error estimate.

Theorem 4.4. Let u be the solution of the elasticity problem (1.1) and U be the
solution of our LF-EG method (3.2). Assuming the H2-regularity of the solution in
(1.2), there is a constant C > 0 such that

\| u - U\| \scrE \leq Ch(\| f\| 0 + \| \widetilde uD\| 2),

where C is independent of h and \lambda .

Proof. The result is a consequence of the error estimate for \xi in Lemma 4.3, the
interpolation error estimate (4.3b), and the triangle inequality.

5. Preconditioning. We propose a uniform preconditioner with respect to the
mesh size for our LF-EG method when \lambda is bounded. The construction of the pre-
conditioner is done using the operator preconditioning framework [31, 32].

Consider the operator S : \scrV h \rightarrow \scrV \prime 
h defined via \scrS (\cdot , \cdot ):

(5.1) (Sv,w) := \scrS (v, w) \forall v, w \in \scrV h.

We also introduce a bilinear form a(\cdot , \cdot ) which generates the energy norm:

(5.2) a(v, w) := aC (v, w) + aJ (v, w) \forall v, w \in \scrV h,

where

(5.3) aC (v, w) :=
\sum 
T\in \scrT h

(\bfitepsilon (v), \bfitepsilon (w))T and aJ (v, w) :=
\sum 
e\in \scrE h

\alpha e

he
([[v]] , [[w]])e .

By the definition of a(\cdot , \cdot ) we have that a(v, v) = \| v\| 2\scrE .
We say that two symmetric bilinear forms a(\cdot , \cdot ) and b(\cdot , \cdot ) are spectrally equiva-

lent, which is denoted by b(\cdot , \cdot ) \eqsim a(\cdot , \cdot ), if and only if there exist positive constants
c0 and c1 such that

(5.4) c0b(v, v) \leq a(v, v) \leq c1b(v, v).

As a(\cdot , \cdot ) defines the energy inner product and norm, any spectrally equivalent bilinear
form b(\cdot , \cdot ) defines an inner product on \scrV h and a corresponding norm \| \cdot \| b. The Riesz
operator A : \scrV h \rightarrow \scrV \prime 

h associated with a(\cdot , \cdot ) is defined as

(5.5) (Av,w) = a(v, w) \forall v, w \in \scrV h.

We will use a bilinear form b(\cdot , \cdot ) to define a preconditioner B \approx A - 1, which is an
approximate inverse of A. Following this convention, we denote the Riesz operator
corresponding to b(\cdot , \cdot ) by B - 1 : \scrV h \rightarrow \scrV \prime 

h whose definition is

(5.6) (B - 1v, w) = b(v, w) \forall v, w \in \scrV h.
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In our presentations, (\cdot , \cdot ) may denote the duality pairing \scrV \prime 
h \times \scrV h \rightarrow \BbbR , or it may be

another inner product which is a realization of the duality pairing, e.g., the L2(\Omega )-
inner product. The particular form of the pairing does not affect the considerations
that follow. We also note the following relation:

(5.7) (B - 1v, v) = (A(BA) - 1v, v) = a((BA) - 1v, v).

The use of an inverse operator will be justified when we show later that b(\cdot , \cdot ) is
spectrally equivalent to a(\cdot , \cdot ), which is coercive on \scrV h and induces the energy norm.

To show that our preconditioner is uniform with respect to the mesh size, we will
utilize the continuity of \scrS : There exists a constant \gamma > 0 such that

(5.8) sup
v\in \scrV h

sup
w\in \scrV h

\scrS (v, w)
\| w\| \scrE \| v\| \scrE 

\leq \gamma .

The existence of such a constant \gamma when the Lam\'e parameter \lambda is bounded above can
be proved using the trace inequality and the inequality \| \nabla \cdot v\| 0 \leq 

\surd 
d\| \bfitepsilon (v)\| 0. Next,

recall that we have already shown the coercivity of \scrS (\cdot , \cdot ) on \scrV h in Lemma 3.2. This
implies the following inf-sup condition:

(5.9) inf
v\in \scrV h

sup
w\in \scrV h

\scrS (v, w)
\| w\| \scrE \| v\| \scrE 

\geq Ccoer > 0.

We note that the inequalities (5.8) and (5.9) still hold if the energy norm \| \cdot \| \scrE is
replaced with its equivalent norm. Based on this observation, we will use a bilinear
form b(\cdot , \cdot ) that is spectrally equivalent to a(\cdot , \cdot ), thus whose induced norm \| \cdot \| b is
equivalent to \| \cdot \| \scrE , to construct a preconditioner.

5.1. Field-of-values equivalent preconditioner. Our LF-EG method results
in a nonsymmetric linear system. Following [31], we utilize field-of-values equivalent
preconditioners to obtain an efficient linear solver.

Definition 5.1 (field-of-values equivalent preconditioner). The operators B and
S are field-of-values equivalent if there are positive constants clo and cup such that
for any v \in \scrV h there holds

(5.10) clo \leq b(BSv, v)

b(v, v)
and

\sqrt{} 
b(BSv,BSv)\sqrt{} 

b(v, v)
\leq cup.

Indeed, we can show the field-of-values equivalence of B and S if b(\cdot , \cdot ) \eqsim a(\cdot , \cdot ).
Lemma 5.2. Assume that b(\cdot , \cdot ) and a(\cdot , \cdot ) are spectrally equivalent, namely, there

exist constants c0 and c1 such that (5.4) holds. Then B and S are field-of-values
equivalent.

Proof. To prove the first inequality in (5.10), we use (5.6), (5.4), and (5.9) to see

b(BSv, v)

c0b(v, v)
=

(Sv, v)

c0b(v, v)
\geq (Sv, v)

a(v, v)
=

(Sv, v)

\| v\| 2\scrE 
\geq Ccoer,

which implies the first inequality with clo = c0Ccoer. The second inequality can be
shown in a similar fashion using (5.4), (5.6), and (5.8),\sqrt{} 

b(BSv,BSv)\sqrt{} 
b(v, v)

=
1

\| v\| b
sup
w\in \scrV h

b(BSv,w)

\| w\| b
=

1

\| v\| b
sup
w\in \scrV h

(Sv,w)

\| w\| b
\leq c1 sup

w\in \scrV h

(Sv,w)

\| v\| \scrE \| w\| \scrE 
\leq c1\gamma ,

which shows the second inequality with cup = c1\gamma .
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We now provide a result on the convergence of the field-of-values preconditioned
GMRES [37, 36] method as stated and proved in [31, Theorem 2.8].

Theorem 5.3 (convergence of preconditioned GMRES). Assume that b(\cdot , \cdot ) and
a(\cdot , \cdot ) are spectrally equivalent. If vm is the mth iteration of the GMRES method, and
U is the exact solution of SU = F , then

(5.11)
\| BS(U  - vm)\| \scrE 
\| BS(U  - v0)\| \scrE 

\leq 
\biggl( 
1 - c2lo

c2up

\biggr) m/2

.

Based on this theorem, we will construct a preconditioner that will result in a
uniformly bounded contraction in every GMRES iteration. In light of Lemma 5.2
and Theorem 5.3, it only remains for us to construct a bilinear form b(\cdot , \cdot ) that is
spectrally equivalent to a(\cdot , \cdot ) and whose variational problem is easier to solve.

5.2. Construction of \bfitb (\cdot , \cdot ). In order to define a preconditioning bilinear form
b(\cdot , \cdot ), we will employ the standard additive Schwarz preconditioner and show the
spectral equivalence (5.4). The theoretical results that we present here is considered
classical and is found in [40, 44, 45, 19] and other references cited therein. To keep
the presentation self-contained, we provide some details below even though most of
them are available in the aforementioned works. We will explore the idea that the
space complementary to \scrM h contains highly oscillatory functions whose energy norm
behaves like an appropriately scaled L2-norm.

5.2.1. Notation and preliminaries. Before we proceed to define our pre-
conditioner and show spectral equivalence results, which imply uniform bounds on
the condition number of the preconditioned system, we introduce some notation and
summarize a few simple and well-known facts that are needed in the analysis (see,
e.g., [9, 13]).

We denote by n the number of vertices in \scrT h and let \{ \varphi i\} ni=1 be the standard basis
for \scrM h. Since \scrV h = \scrM h \oplus \scrD h, every v \in \scrV h can written as a sum of a continuous
piecewise linear function in \scrM h and a discontinuous function in \scrD h. Specifically, we
have

v = vc + vd \in \scrM h \oplus \scrD h, where vc =
n\sum 

i=1

vc,i\varphi i(x), vd =
\sum 
T\in \oplus \langle 

vT (x - xT )1T .

(5.12)

Here, vc,i = vc(xi) \in \BbbR d, vT \in \BbbR , and 1T is the characteristic function of T . Note
that vc,i are vectors, whereas the basis functions \{ \varphi i(x)\} are scalar-valued functions.

With the above notation, we have the following matrix representation of the
bilinear form a(\cdot , \cdot ):

(5.13)

a(v, w) =
n\sum 

i,j=1

\bfitA ijvc,j \cdot wc,i +
n\sum 

i=1

\sum 
T\in \oplus \langle 

vT\bfitA T,i \cdot wc,i

+
\sum 
T\in \oplus \langle 

n\sum 
j=1

wT\bfitA j,T \cdot vc,j +
\sum 
T\in \scrT h

\sum 
T \prime \in \scrT h

\bfitA TT \prime wT vT \prime ,

where \bfitA ij \in \BbbR d\times d, \bfitA T,i \in \BbbR d, \bfitA j,T \in \BbbR d, \bfitA T,T \prime \in \BbbR for i = 1, . . . , n, j = 1, . . . , n,
T \in \scrT h, T \prime \in \scrT h, and their values are obtained using the definition of a(\cdot , \cdot ). Also, we
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denote by \bfitA the entire stiffness matrix of a(\cdot , \cdot ) of size (dn+NT )\times (dn+NT ), which
is symmetric and positive definite (SPD). Note that the number of nonzero elements
in each row of \bfitA is bounded by a constant due to the shape regularity of the mesh,
and that constant will be denoted by m\bfitA . Now, let v \in \scrV h and v be the vector of
degrees of freedom of v. Also, let \bfitD = diag(\bfitA ) be the diagonal of \bfitA . Then, from the
Cauchy--Schwarz inequality we can see that

[\bfitD  - 1/2\bfitA \bfitD  - 1/2]2lm \leq \bfitA 2
lm

\bfitA ll\bfitA mm
\leq 1, 1 \leq l,m \leq (dn+NT ).

This in turn implies that
\bigm\| \bigm\| \bfitD  - 1/2\bfitA \bfitD  - 1/2

\bigm\| \bigm\| 
\infty \leq m\bfitA , where \| \cdot \| \infty denotes the matrix

infinity norm. Therefore,

(5.14)
\| v\| 2\scrE =\langle \bfitA \bfitv ,\bfitv \rangle \ell 2 \leq \rho 

\Bigl( 
\bfitD  - 1/2\bfitA \bfitD  - 1/2

\Bigr) 
\langle \bfitD \bfitv ,\bfitv \rangle \ell 2

\leq 
\bigm\| \bigm\| \bigm\| \bfitD  - 1/2\bfitA \bfitD  - 1/2

\bigm\| \bigm\| \bigm\| 
\infty 

\langle \bfitD \bfitv ,\bfitv \rangle \ell 2 \leq m\bfitA \langle \bfitD \bfitv ,\bfitv \rangle \ell 2 .

Here, \rho (\cdot ) denotes the spectral radius and \langle \cdot , \cdot \rangle \ell 2 denotes the discrete \ell 2-inner product.
Recall that any v \in \scrV h is multivalued at the vertices of the mesh because of the

discontinuous nature of our EG space. For any i \in \{ 1, . . . , n\} , we let

vi,T = v| T (xi)

for all T \in \scrT h containing the vertex xi. We also define a jump of v at any vertex xi
on e \in \scrE h as follows:

[[v]]i,e =

\Biggl\{ 
vi,T+  - vi,T - if e \in \scrE I

h and e = T+ \cap T - ,
vi,T if e \in \scrE \partial 

h and e \subset T.

Using the above notation, we will establish some equivalence relations.
Let K be a simplex in \BbbR m, m \leq d, and v be a piecewise linear function. Then,

we have

(5.15) \| v\| 20,K \eqsim | K| 
\sum 
i\in K

| vi,K | 2,

where
\sum 

i\in K denotes the sum over all vertices xi belonging to K. The constant in the
equivalence depends on the dimension m of the simplex. A proof of this equivalence
is available in many papers, for example, [15, Lemma 3.1]. Using (5.15), we then can
write aJ(\cdot , \cdot ) in the following equivalent form:

(5.16) aJ(v, w) \eqsim \widetilde aJ(v, w) := \sum 
e\in \scrE h

\alpha e| e| 
he

\sum 
i\in e

[[v]]i,e [[w]]i,e .

Last, we define two projection operators from \scrV h to \scrM h, which will play a critical
role in showing the spectral equivalence of b(\cdot , \cdot ) to a(\cdot , \cdot ). Let \Pi L : \scrV h \rightarrow \scrM h be the
projection operator defined as

(5.17) \Pi Lv =
n\sum 

i=1

\Biggl[ 
1

mi

\sum 
T\supset i

vi,T

\Biggr] 
\varphi i(x) \forall v \in \scrV h,
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where mi =
\sum 

T\supset i 1 and
\sum 

T\supset i denotes the sum over all elements T containing the
vertex xi, i = 1, . . . , n. Let us assume that the domain \cup T\supset iT is a connected polyhe-
dral domain for any i \in \{ 1, . . . , n\} and T \in \scrT h. Then, for a fixed i \in \{ 1, . . . , n\} and
T \in \scrT h, the difference of the pointwise values of v \in \scrV h and \Pi Lv \in \scrM h at the vertex
xi can be estimated as follows:

(5.18)

\bigm| \bigm| \bigm| \bigm| \bigm| vi,T  - 1

mi

\sum 
T \prime \supset i

vi,T \prime 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

\eqsim mi

\sum 
e\supset i

| [[vi]]e | 
2.

Such an equivalence relation follows immediately from the facts that the domain
\cup T\supset iT is connected and that both left- and right-hand sides of (5.18) are then norms
on the finite dimensional space \BbbR mi/\BbbR . The constants of equivalence depend on the
shape regularity as mi does depend on this as well.

We also introduce an elliptic projection PL : \scrV h \rightarrow \scrM h defined via a variational
problem on \scrM h:

(5.19) a(PLv, s) = a(v, s), \forall v \in \scrV h \forall s \in \scrM h.

The following identities are obtained directly from the definition and the symmetry
of a(\cdot , \cdot ):

(5.20) a(PLv, w) = a(w,PLv) = a(PLv, PLw),

5.2.2. Additive Schwarz preconditioner. As previously stated, we will define
our preconditioner by employing an additive Schwarz preconditioner. Here we point
out that if we specify the action of an invertible preconditioning operator B, we then
define its associated bilinear form b(\cdot , \cdot ) via (5.6), and vice versa. Let us now define
the action of our preconditioner B on g \in \scrV \prime 

h.

Algorithm 5.1 Additive Schwarz preconditioner for LF-EG.

function w = B(g)  \triangleleft Input: g \in \scrV \prime 
h

Find vL \in \scrM h such that a(vL, \psi ) = (g, \psi ) for all \psi \in \scrM h.
Find vd \in \scrV h such that ad(vd, \chi ) = (g, \chi ) for all \chi \in \scrV h.
return w = vL + vd.  \triangleleft Output: Bg \in \scrV h

end function

Here, the bilinear form ad : \scrV h\times \scrV h \mapsto \rightarrow \BbbR is yet to be specified. Roughly speaking,
ad(\cdot , \cdot ) will be chosen to satisfy that (a) it is SPD and (b) its induced norm is equivalent
to a scaled L2(\Omega )-norm. As we will see later in Lemma 5.6, these two requirements
are sufficient to guarantee that b(\cdot , \cdot ) \eqsim a(\cdot , \cdot ). A particular definition of ad(\cdot , \cdot ) is
given in (5.22).

Algorithm 5.1 is an instance of a two-level additive Schwarz preconditioner. The
action of such a preconditioner requires the solution of two variational problems: one
on \scrM h with a(\cdot , \cdot ) and the other on \scrV h with ad(\cdot , \cdot ). We assume that optimal solvers
are known for both of these forms. Indeed, on\scrM h, the bilinear form a(\cdot , \cdot ) is spectrally
equivalent to the vector Laplacian thanks to Korn's inequality, hence allowing for the
use of standard multilevel solvers.

Let us now specify the bilinear form ad : \scrV h\times \scrV h \mapsto \rightarrow \BbbR whose matrix representation
is an approximate diagonal matrix of the stiffness matrix \bfitA . The main role of the
form ad(\cdot , \cdot ) is to approximate a(\cdot , \cdot ) on the space complementary to \scrM h in \scrV h. First,
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we will consider the diagonal of the stiffness matrix \bfitA . With the notation introduced
in (5.13), the diagonal of \bfitA consists of \{ [\bfitA ii]kk| i = 1, . . . , n, k = 1, . . . , d \} and
\{ \bfitA TT | T \in \scrT h\} . By recalling the definition of the bilinear form a(\cdot , \cdot ) in (5.2) and
doing some straightforward calculations, we can estimate the diagonal elements as
follows:

[\bfitA ii]kk \eqsim 
\sum 
T\supset i

| T | 
\bigl( 
| \nabla \varphi i| 2 + [\nabla \varphi i]

2
k

\bigr) 
+

\sum 
e\supset i; e\in \partial \Omega 

\alpha e

he
\| \varphi i\| 20,e \eqsim 

\sum 
T\supset i

h - 2
T | T | (1 + \alpha T ),

\bfitA TT = d| T | +
\sum 
e\in \partial T

\alpha e

he
\| x - xT \| 20,e \eqsim h - 2

T | T | (1 + \alpha T )
\sum 
i\in T

| xi  - xT | 2,

where \alpha T = 1
d+1

\sum 
e\in \partial T \alpha e and we used (5.16) in the last equivalence. From these

calculations, we see for any v \in \scrV h and its vector of degrees of freedom \bfitv that

(5.21) \langle \bfitD \bfitv ,\bfitv \rangle \ell 2 \eqsim 
\sum 
T\in \scrT h

h - 2
T | T | (1 + \alpha T )

\sum 
i\in T

v2i,T .

We are now ready to introduce ad : \scrV h \times \scrV h \mapsto \rightarrow \BbbR and the corresponding operator
B - 1

d : \scrV h \mapsto \rightarrow \scrV \prime 
h. For v \in \scrV h and w \in \scrV h, we let

(5.22) (B - 1
d v, w) = ad(v, w) =

\sum 
T\in \scrT h

h - 2
T | T | (1 + \alpha T )

\sum 
i\in T

vi,Twi,T .

Then, the combination of (5.14), (5.21), (5.22) gives us that

(5.23) a(v, v) = \langle \bfitA \bfitv ,\bfitv \rangle \ell 2 \leq m\bfitA \langle \bfitD \bfitv ,\bfitv \rangle \ell 2 \eqsim ad(v, v).

Clearly, ad(\cdot , \cdot ) is SPD and induces a norm \| \cdot \| ad
on \scrV h. Also, (PL + BdA) is

invertible because Bd and A are both invertible and the positive semidefiniteness of
PL can be proved by taking w = v in (5.20). Finally, we see that on a mesh with a
characteristic size h, the form ad(\cdot , \cdot ) is spectrally equivalent to a scaled L2(\Omega )-norm.
The matrix representation \bfitB of the preconditioner B can be expressed as

(5.24) \bfitB =

\biggl[ 
\bfitI L
0

\biggr] 
\bfitA  - 1

L

\bigl[ 
\bfitI L 0

\bigr] 
+\bfitB d,

where \bfitA L is the stiffness matrix of a(\cdot , \cdot ) corresponding to the continuous linear
elements, \bfitB d is the matrix representation of Bd, and \bfitI L is the dn \times dn identity
matrix.

5.2.3. Spectral equivalence and convergence. We begin this section with
the following well-known result, which is found in many references (see [44, 46, 40,
45, 19] and the references therein) and is a main tool in showing the efficiency of the
additive Schwarz preconditioner from Algorithm 5.1.

Lemma 5.4. The following relation holds for the preconditioner B defined via
Algorithm 5.1:

(5.25) (B - 1v, v) = inf
wL\in \scrM h

\Bigl( 
\| v  - wL\| 2ad

+ \| wL\| 2\scrE 
\Bigr) 

\forall v \in \scrV h.

Proof. We set (g, \cdot ) = a(v, \cdot ) for any v \in \scrV h in Algorithm 5.1 and consider the
action of B onto it. From the definitions of the elliptic projection in (5.19) and of the
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bilinear form ad(\cdot , \cdot ) in (5.22), we can see that vL = PLv and vd = BdAv, hence we
obtain BAv = vL + vd = (PL +BdA)v. Then, (5.7) yields

(5.26) (B - 1v, v) =
\bigl( 
A(BA) - 1v, v

\bigr) 
= a

\bigl( 
(BA) - 1v, v

\bigr) 
= a

\bigl( 
(PL +BdA)

 - 1v, v
\bigr) 
.

Let q = BdA(PL + BdA)
 - 1v and qL = PL(PL + BdA)

 - 1v. We note that v = q + qL
with qL \in \scrM h and q \in \scrV h. Also, let \widetilde v = (PL +BdA)

 - 1v. Then, using (5.26), (5.22),
and (5.20), we obtain that

(B - 1v, v) = a
\bigl( 
(PL +BdA)

 - 1v, v
\bigr) 
= a (\widetilde v, (PL +BdA)\widetilde v)

= a (\widetilde v,BdA\widetilde v) + a (\widetilde v, PL\widetilde v)
= ad (BdA\widetilde v,BdA\widetilde v) + a (PL\widetilde v, PL\widetilde v) = \| q\| 2ad

+ \| qL\| 2\scrE .(5.27)

On the other hand, for any s \in \scrM h, we have

\| q  - s\| 2ad
+ \| qL + s\| 2\scrE = ad(q  - s, q  - s) + a(qL + s, qL + s)

= \| q\| 2ad
+ \| qL\| 2\scrE + \| s\| 2ad

+ \| s\| 2\scrE  - 2ad(q, s) + 2a(qL, s)

= \| q\| 2ad
+ \| qL\| 2\scrE + \| s\| 2ad

+ \| s\| 2\scrE 
 - 2ad(BdA(PL +BdA)

 - 1v, s) + 2a(PL(BdA+ PL)
 - 1v, s)

= \| q\| 2ad
+ \| qL\| 2\scrE + \| s\| 2ad

+ \| s\| 2\scrE 
 - 2a((PL +BdA)

 - 1v, s) + 2a((PL +BdA)
 - 1v, s)

= \| q\| 2ad
+ \| qL\| 2\scrE + \| s\| 2ad

+ \| s\| 2\scrE 
\geq \| q\| 2ad

+ \| qL\| 2\scrE .

The equality holds in the above inequality if and only if s = 0. Therefore, we conclude
that
(5.28)

\| q\| 2ad
+ \| qL\| 2\scrE = inf

s\in \scrM h

\Bigl( 
\| q  - s\| 2ad

+ \| qL + s\| 2\scrE 
\Bigr) 
= inf

wL\in \scrM h

\Bigl( 
\| v  - wL\| 2ad

+ \| wL\| 2\scrE 
\Bigr) 
.

To see that the second equality in (5.28) holds, we set wL = (qL + s) \in \scrM h and
observe that when s ranges over \scrM h, so does wL. Further, (v  - wL) = (q  - s) since
(q + qL) = v. We complete the proof by combining (5.27) and (5.28).

We now prove the approximation and stability results.

Lemma 5.5. For any v \in \scrV h, we have the estimates

(5.29) \| v  - \Pi Lv\| ad
\lesssim \| v\| \scrE , \| \Pi Lv\| \scrE \lesssim \| v\| \scrE ,

where the constants of equivalence depend on the shape regularity of the mesh and the
local variations in \alpha e.

Proof. Let v \in \scrV h. To show the first inequality, we use (5.22), (5.17), and (5.18)
to see

\| v  - \Pi Lv\| 2ad
\lesssim 
\sum 
T\in \scrT h

\alpha Th
 - 2
T | T | 

\sum 
i\in T

\bigm| \bigm| \bigm| \bigm| \bigm| vi,T  - 1

mi

\sum 
T \prime \supset i

vi,T \prime 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

\lesssim 
\sum 
T\in \scrT h

\alpha Th
 - 2
T | T | 

\sum 
i\in T

\sum 
e\supset i

| [[v]]i,e | 
2.
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Since we have | T | 
h2
T
\eqsim | e| 

he
by the shape regularity of the mesh, it follows that

\| v  - \Pi Lv\| 2ad
\lesssim 
\sum 
T\in \scrT h

\alpha T

\sum 
i\in T

\sum 
e\supset i

| e| 
he

| [[v]]i,e | 
2 \lesssim 

\sum 
e\in \scrT h

\alpha e

\sum 
i\in e

| e| 
he

| [[v]]i,e | 
2.

Using now the relation (5.16), we arrive at

\| v  - \Pi Lv\| 2ad
\lesssim \widetilde aJ(v, v) \lesssim \| v\| 2\scrE .(5.30)

To show the stability of \Pi L, we employ the upper bound (5.23) to obtain

\| v  - \Pi Lv\| 2\scrE \lesssim \| v  - \Pi Lv\| 2ad
,

which in combination with (5.30) gives rise to the desired result.

We are now in a position to show the spectral equivalence between a(\cdot , \cdot ) and
b(\cdot , \cdot ) using the stability results in Lemma 5.5.

Lemma 5.6. The following spectral equivalence holds:

(5.31) b(v, v) \eqsim a(v, v) \forall v \in \scrV h.

Proof. Let v \in \scrV h. First, we will prove that a(v, v) \lesssim b(v, v). To do this, take
any wL \in \scrM h. By the triangle inequality, Young's inequality, and the upper bound
in (5.23), we have

(5.32) a(v, v) = \| v\| 2\scrE \leq 2
\bigl( 
\| v  - wL\| 2\scrE + \| wL\| 2\scrE 

\bigr) 
\lesssim \| v  - wL\| 2ad

+ \| wL\| 2\scrE .

By taking the infimum with respect to wL \in \scrM h on the right-hand side of (5.32),
then using (5.25) in Lemma 5.4, we have

a(v, v) \lesssim (B - 1v, v) = b(v, v).

Next, the relation (5.25) in Lemma 5.4 and the estimates in (5.29) lead to

b(v, v) = (B - 1v, v) = inf
wL\in \scrM h

\| v  - wL\| 2ad
+ \| wL\| 2\scrE 

\lesssim \| v  - \Pi Lv\| 2ad
+ \| \Pi Lv\| 2\scrE \lesssim \| v\| 2\scrE = a(v, v).

The proof of the spectral equivalence is complete.

Theorem 5.7. A preconditioned GMRES with the preconditioner B defined by
Algorithm 5.1 is convergent uniformly with respect to the mesh size.

Proof. Since we established that b(\cdot , \cdot ) \eqsim a(\cdot , \cdot ) in Lemma 5.6, the field-of-values
equivalence between B and S is an immediate consequence from Lemma 5.2. Then,
the uniform convergence result follows from Theorem 5.3.

6. Numerical examples in two dimensions. In this section, we present sev-
eral numerical results in two dimensions to validate the theoretical results presented
in sections 4 and 5 and demonstrate the efficiency and robustness of the proposed
method. In our numerical experiments, the LF-EG and the preconditioned GMRES
methods were implemented using the HAZmath finite element and solver library [24].

Example 1. Optimal convergence for a smooth solution. We test our
proposed method on a smooth solution u to confirm the optimal convergence rate of
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the method proved in section 4. Our computational domain is \Omega = ( - 1, 1)2 and we
choose the body force

f = [ 2 sin(x) sin(y), 2 cos(x) cos(y) ]

so that the exact displacement is given by

u =

\biggl[ 
sinx sin y +

1

\lambda 
x, cosx cos y +

1

\lambda 
y

\biggr] 
.

We impose a Dirichlet boundary condition u = uD, where uD is computed from
the exact solution. A simple calculation shows that \nabla \cdot u \rightarrow 0 as \lambda \rightarrow \infty , hence this
solution is susceptible to volumetric locking for a large \lambda . In order to show the locking-
free property along with the optimal convergence rate of our new method, we solve
the elasticity problem with two different \lambda values (\lambda = 1 and \lambda = 106), while keeping
\mu = 1, using our LF-EG method. Moreover, we solve the same problem with the
classical linear CG method and compare the results to demonstrate the superiority
of our new method over the CG method when simulating a nearly incompressible
material.

Since the H1-seminorm is bounded above by a constant multiple of the energy
norm, we measure the error in the H1-seminorm for both the LF-EG and P1-CG
methods on uniform meshes with various mesh sizes h = 2 - L, L = 1, . . . , 6. For the
LF-EG method, we set the penalty parameters to (\alpha , \beta ) = (1, 0.001), and the same
parameters are used in all other numerical examples. The results are summarized
in Table 1. In the tables, we observe that the linear CG method yields the optimal
convergence rates in the H1-seminorm when \lambda = 1, but its convergence rate deterio-
rates as h gets smaller when \lambda = 106. In contrast to this, the LF-EG method yields
a first-order convergence in the H1-seminorm for both \lambda = 1 and \lambda = 106. This ex-
ample clearly demonstrates that the new LF-EG method can resolve the well-known

Table 1
Convergence study for the P1-CG and LF-EG methods for Example 1 with (a) \lambda = 1 and (b)

\lambda = 106. The penalty parameters are set to (\alpha , \beta ) = (1, 0.001).

CG LF-EG
h DoF | u - U | 1 Rate DoF | u - U | 1 Rate
1/2 50 0.628 - 82 0.481 -
1/4 162 0.312 1.19 290 0.241 1.09
1/8 578 0.145 1.19 1090 0.120 1.05
1/16 2178 0.070 1.10 4226 0.059 1.02
1/32 8450 0.034 1.04 16642 0.029 1.01
1/64 33282 0.017 1.01 66050 0.014 1.00

(a) \lambda = 1.

CG LF-EG
h DoF | u - U | 1 Rate DoF | u - U | 1 Rate
1/2 50 0.622 - 82 0.477 -
1/4 162 0.318 1.14 290 0.239 1.09
1/8 578 0.161 1.06 1090 0.119 1.04
1/16 2178 0.083 0.99 4226 0.059 1.02
1/32 8450 0.047 0.81 16642 0.029 1.01
1/64 33282 0.034 0.48 66050 0.014 1.00

(b) \lambda = 106.
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Table 2
Number of iterations for the preconditioned GMRES solver given in section 5 when the LF-EG

method is applied to Example 1 with \lambda = 1 on meshes with various mesh sizes.

h 1/2 1/4 1/8 1/16 1/32 1/64
DoF 82 290 1090 4226 16642 66050

\# of iterations 38 43 45 46 46 45

volumetric locking issue associated with the linear CG method by adding only one
additional local DoF per element.

Example 2. Preconditioned GMRES solver. In this example, we test the
performance of the GMRES method preconditioned as in section 5. The setup---
exact solution, boundary conditions, and computational domain---is the same as that
in Example 1. Since the theoretical results for the operator preconditioning show
bounds on the condition number depending on the continuity of the bilinear form
\scrS (\cdot , \cdot ), we use a fixed value of \lambda = 1. We test the LF-EG method on successively
refined grids with mesh sizes h = 2 - L, L = 1, . . . , 6. The iterations are terminated
when the norm of the preconditioned relative residual is smaller than 10 - 9. The results
reported in Table 2 show that the number of GMRES iterations is independent of the
mesh size as predicted by the theory studied in section 5.

Example 3. Alleviated volumetric locking. In a two-dimensional computa-
tional domain \Omega = (0, 1)2, we let the body force be f = [0, 0] and employ the following
boundary condition:

uD(x, y) =

\Biggl\{ 
[1 - 4(x - 0.5)2, 0] if y = 0 or y = 1,

[0, 0], if x = 0 or x = 1.

This problem has been studied in other references [42, 43, 21] concerning volumetric
locking. Here, we solve this problem with \lambda = 1 or \lambda = 106 using our LF-EG method
and the P1-CG method on a uniform mesh with a mesh size h = 1/64. The penalty
parameters (\alpha , \beta ) = (1, 0.001) are used in the LF-EG method. Figure 2 provides
the resulting solution profiles. We observe that the P1-CG and LF-EG methods
produce nearly identical solutions when \lambda = 1 (top). However, the two methods yield
significantly different solutions when \lambda = 106 (bottom). In this case, we observe a
visible locking phenomenon from the CG method.

Example 4. A solution with a corner singularity and a large \bfitlambda . In this
example, we consider the linear elasticity problem (1.1) in an L-shaped domain as
depicted in Figure 3. This problem has a known analytic solution [2]. The exact
solution is given in polar coordinates (r, \theta ) by

u1 =
1

2\mu 
r\gamma 
\bigl( 
(k  - Q(\gamma + 1)) cos(\gamma \theta ) - \gamma cos((\gamma  - 2)\theta )

\bigr) 
,

u2 =
1

2\mu 
r\gamma 
\bigl( 
(k +Q(\gamma + 1)) sin(\gamma \theta ) + \gamma sin((\gamma  - 2)\theta )

\bigr) 
,

where k = 3 - 4\nu , \nu = \lambda /(2(\lambda +\mu )) is the Poisson ratio. In addition, \gamma is the solution
of the equation

(6.1) sin

\biggl( 
\gamma 
3\pi 

2

\biggr) 
+ \gamma sin

\biggl( 
3\pi 

2

\biggr) 
= 0,
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(a) P1-CG (\lambda = 1). (b) LF-EG (\lambda = 1).

(c) P1-CG (\lambda = 106). (d) LF-EG (\lambda = 106).

Fig. 2. Comparison of the displacement profiles for Example 3 with \lambda = 1 (top) and \lambda = 106

(bottom) produced by P1-CG and LF-EG methods.

Fig. 3. L-shaped domain.

and Q is given by Q =  - cos((\gamma  - 1) 3\pi 
4 )

cos((\gamma +1) 3\pi 
4 )
. Then, the solution u = [u1, u2] satisfies the

linear elasticity equation (1.1) with the body force f = [0, 0]. Here, we set \mu = 1
and \lambda = 106 and employ the Dirichlet boundary condition. In our calculations, we
numerically solve (6.1) to approximate \gamma , and the resulting values of \gamma and Q are \gamma =
0.5444837367 and Q = 0.5430755688. Since \gamma < 1, all the components for the stress
tensor have a singularity in a neighborhood of the origin (0, 0), while the displacement
is continuous in the entire domain. Indeed, one can prove that u \in H1+\gamma  - \varepsilon (\Omega )2 and
\sigma \in H\gamma  - \varepsilon (\Omega )2\times 2 for \varepsilon > 0 as discussed in [7]. Hence, we expect that the convergence
rate of the new LF-EG method in the H1-seminorm is approximately 0.54. This
problem was solved using the LF-EG method with (\alpha , \beta ) = (1, 0.001) on uniform
meshes. For the sake of comparison, we also solved the problem on the same meshes
using the P1-CG method. The results are summarized in Table 3. It is observed
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Table 3
Convergence study of the P1-CG and LF-EG methods for Example 4.

CG LF-EG
h DoF | u - U | 1 Rate DoF | u - U | 1 Rate
1/2 42 0.597 - 66 0.508 -
1/4 130 0.604 -0.02 226 0.350 0.61
1/8 450 0.660 -0.14 834 0.244 0.55
1/16 1666 0.703 -0.09 3202 0.167 0.57
1/32 6402 0.740 -0.07 12456 0.115 0.54
1/64 25090 0.770 -0.05 49666 0.078 0.56

that the P1-CG locks in the sense that the errors measured in the H1-seminorm
stagnate. On the other hand, our new method converges at the expected rates in the
H1-seminorm.

7. Conclusions and future work. This paper introduced a new finite element
method, called the LF-EG method, to address the well-known volumetric locking in
the linear elasticity problem. The finite element space is obtained by adding only
one additional local DoF per element to the linear CG space and used in the con-
ventional DG formulation. An a priori error estimate in the energy norm was proved
under the assumption of the H2-regularity of the true solution. The resulting er-
ror estimate is of optimal order and independent of the Lam\'e constant \lambda , which
implies the locking-free property of the method. Our numerical tests confirm the
optimal convergence order for a smooth solution as well as the robustness of our
LF-EG method with respect to the Lam\'e constant \lambda . They also show the expected
suboptimal convergence order for a low regularity solution with a corner singular-
ity. However, it remains open to prove the robust convergence without assuming
the full H2-regularity. Therefore, our method is a new alternative to other expensive
numerical methods, including mixed finite element methods and DG methods, for sim-
ulating nearly incompressible materials. We also proposed a uniform preconditioner
with respect to the mesh size in the framework of operator preconditioning for linear
elasticity problems with a moderate-sized \lambda . We prove the uniform convergence of
the preconditioned GMRES method and support our theoretical result through some
numerical experiments. A theoretical and computational investigation on a uniform
preconditioner for a large \lambda would require special treatment of the approximations of
the divergence-free fields; hence it falls beyond the scope of this paper and is still an
ongoing work.
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