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LOCKING-FREE ENRICHED GALERKIN METHOD FOR LINEAR
ELASTICITY*
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Abstract. We propose a new locking-free enriched Galerkin method for solving the linear elastic-
ity problem. The method is based on the discontinuous Galerkin formulation, but its approximation
space is a continuous piecewise linear vector-valued function space enriched by some discontinuous
piecewise linear functions. An a priori error estimate of optimal order in the energy norm is proved
and shown to be independent of a Lamé parameter A, hence the proposed method is free of volu-
metric locking when modeling incompressible materials. Moreover, a uniform preconditioner with
respect to the mesh size is established in the operator preconditioning framework. We provide several
numerical examples to confirm the accuracy and the robustness of the new method and demonstrate
a good performance of the preconditioner.
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1. Introduction. Let Q be a bounded, connected, Lipschitz domain in R?, d =
2,3, with boundary 9Q2. Then, the governing equation for linear elasticity reads as
follows: Find the displacement u € R? that satisfies

(1.1a) —V.o(u)=f inQ,
(1.1b) u

up on 082,

where f is an external body force. Here, o is the symmetric d x d stress tensor defined
as
o(u) :=2pue(u) + AV - u)l,

where €(u) = 3 (Vu+ (Vu)T) is the strain tensor, I is the d x d identity tensor, and A
and p are the Lamé parameters such that 0 < A < oo and 0 < u; < p < po for some
positive constants pu; and ps. In the case of plane strain, A and p can be rewritten as

FEv FE

Moo M T ey

where FE is the modulus of elasticity, and v is Poisson’s ratio. In this paper, we will
assume that f € L2(Q)? and up = up|oq for some up € H?*(Q)? and that the true
solution u satisfies the following H2-regularity:

(1.2) Julla + AV - ully < (| fllo + lunll2),
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where C' > 0 is independent of the Lamé constant A. The other notation including the
Sobolev norms will be defined in section 2. The regularity assumption (1.2) is true if
is sufficiently smooth or if  is a convex polygon in two dimensions [41, 10]. In three-
dimensional cases, it is very technical to derive such regularity. See the monograph
[20] for details.

As the Lamé constant A tends to oo (equivalently, when v — 1/2), the material
becomes nearly incompressible. The incompressibility of the material can be described
mathematically by V - u & 0, which can be derived from (1.2) as A — oco. It is well
known that this incompressibility constraint may cause a loss of uniformity (with
respect to A) in the convergence regime of a low-order continuous Galerkin (CG)
method, a phenomenon known as volumetric locking.

There exists an extensive literature that proposed alternative numerical methods
to alleviate locking in linear elasticity. The most popular methods fall into classes
of mixed finite element methods [5, 4, 47, 48, 6], nonconforming finite element meth-
ods [16, 10], and discontinuous Galerkin (DG) methods [34, 42, 43|, among others.
Mixed finite element methods tend to be locking-free and provide accurate stress ap-
proximations; however, the choice of mixed finite element spaces is restricted due to
the well-known inf-sup condition. On the other hand, DG methods employ function
spaces that are only piecewise continuous, and thus often comprise more inclusive
function spaces than traditional CG methods. Moreover, they allow the possibility
of high-order methods on unstructured mesh while maintaining high locality. Never-
theless, DG methods have some disadvantages in efficiency due to the large number
of degrees of freedom, which in turn requires an efficient linear solver. In order to
address such disadvantages of the DG methods, more efficient variants of DG meth-
ods, including the hybridizable DG methods [38, 17] and embedded DG methods [14],
have been proposed.

In this paper, we propose an enriched Galerkin (EG) method for solving the
linear elasticity problem. The original EG method, which we refer to as the locally
conservative EG (LC-EG) method, was introduced by Sun and Liu [39] for solving a
second-order elliptic problem and was tested for a coupled flow and transport problem
in porous media. The crux of their idea was to enrich the approximation space of
the classical CG method with piecewise constant functions and use it in the DG
formulation. Thus, one can achieve the local mass conservation property inherited
from the DG method at a low computational cost comparable to that of the CG
method. Since then, the LC-EG method has been successfully employed to problems
of modeling flow and transport in porous media [28, 29, 30, 35, 27, 3], the shallow
water equations [23], computational poromechanics [12, 18, 25, 26], and the Stokes
equations [11].

The main goal of this paper is to propose and analyze a locking-free EG (LF-
EG) method. Indeed, there was a prior attempt by Mital [33] to utilize the LC-EG
method for solving the linear elasticity problem with a moderate-sized A. As a matter
of fact, the LC-EG space is still not rich enough to approximate the divergence-free
state of the solution when A\ is very large. In light of this observation, we propose
to enrich the linear CG space with some discontinuous piecewise linear vector-valued
functions whose gradient is a constant multiple of the identity tensor in each element.
Indeed, this new enriched function space requires only one additional local degree
of freedom (DoF) in each element compared to the linear CG space. Therefore, it
requires even fewer DoFs than the linear LC-EG space and significantly fewer DoF's
than the linear DG space. Yet, the new space now has nontrivial divergence-free
functions, hence the potential for the locking-free property. To distinguish this new
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EG method from the LC-EG method, we will refer to the new EG method as the
LF-EG method. Besides the aforementioned advantages, one can utilize the existing
CG and DG codes to implement the LF-EG method with some slight modifications.
Among recent work related to ours is work by Harper et al. [22] in that they also
use enriched Lagrangian finite elements but on quadrilateral and hexahedral meshes.
However, their enrichment spaces consist of edge/face-based bubble vector functions,
hence requiring more DoF's than our method. Moreover, their weak formulation is
based on the reduced integration method, unlike our DG-type weak formulation.

In this paper, we prove existence and uniqueness of the solution for our LF-EG
method and establish an optimal-order error estimate in the energy norm in which
the error bound is independent of A. Therefore, our LF-EG method is locking-free
even for a large A. To construct a uniform preconditioner (with respect to the mesh
size), we utilize the operator-preconditioning framework developed by [31] and [32].
In that framework, constructing field-of-values equivalent preconditioners amounts
to the construction of an operator that provides a norm that is equivalent to the
energy norm. Our choice for such construction is the well-known additive Schwarz
preconditioner (see, e.g., [40, 44, 19, 45]) corresponding to an appropriate splitting of
the underlying finite element space.

We provide several numerical experiments in two dimensions to support our the-
oretical results of the optimal convergence rate and the locking-free property of the
LF-EG method. For each example, we solve the problem using both our LF-EG
method and the classical linear CG method for the sake of comparison and demon-
strate the advantage of our new method over the linear CG method when simulating
incompressible materials. We also include some results of numerical experiments il-
lustrating the performance of the proposed additive Schwarz preconditioner.

The rest of this paper is organized as follows. In section 2, some useful nota-
tion and preliminaries are introduced. Then, the new LF-EG method for the linear
elasticity problem is introduced in section 3 and a convergence analysis is presented
in section 4. Then, in section 5, we propose a preconditioner for the linear system
resulting from the LF-EG method. Finally, some numerical results are provided in
section 6.

2. Notation and preliminaries. In this section, we will introduce some nota-
tion and preliminaries that will be useful throughout the rest of the paper. We use the
standard notation for Sobolev spaces [1] and their norms. For example, let E C R¢
be a bounded domain; then the space H*(FE) for integer s is

H*(E) ={ve L*(E) : Y0 < |w| <s, Dv e L*(E)},

where the vector space L?(FE) is the space of square-integrable functions, and for a
multi-index w = (wi, . ..,wq) € N? such that |w| = Zle w;, D*v is the distributional
derivative. The Sobolev norm and seminorm associated with H®(E) are denoted by
I - |ls,z and | - |s,E, respectively. We extend these definitions and notation naturally
to vector functions ¢ : £ — R? and tensor functions 7 : E — R4, When s = 0,
H*(E) coincides with L?(E), and the inner product will be denoted by (-,-) in this
case. For simplicity, the subscript E will be dropped if £ = €.

On the other hand, broken Sobolev spaces are natural spaces to work with the
DG and EG methods, and these spaces depend on the partition of the domain. Let
Tr be the shape-regular triangulation by a family of partitions of {2 into elements T,
where T is a triangle when d = 2 or a tetrahedron when d = 3. We denote by hr
the diameter of T', and we set h = maxrc7, hr. Let ny be the unit outward normal
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vector to OT for T € Tp,. The broken Sobolev space H*(T) for any real number s is
defined by
H(Ty) = {ve L*Q):v|lr € HS(T) VT € Ty, }.

Again, these definitions and notation can be naturally extended to vector and tensor
functions.

In addition, we denote by &, the set of all edges (or faces) and by £ and 5,? the
collections of all interior and boundary edges (faces), respectively. For any e € &,
there are two neighboring elements Tt and 7~ such that e = 9T+t NJT~. We
associate one unit normal vector n. with e, which is assumed to be oriented from 7+
toT~. Ifee 52 , then n, is taken to be the unit outward normal vector to ).

Now, we define the jump and average of functions in H*(7;,)% on e € &,. For
¢ € HY(Tn)4, the trace of ¢ along OT for any element 7" is well defined. If e € &
is shared by two elements T+ and T, there are two traces of ¢ on e, which will be
denoted by (T, respectively. Now, we introduce the so-called average operator {-} on
e € &l as follows:

1 _
Q=)
Also, the jump across interior edges e € £/ will be defined by

[l:=¢" ¢

On the other hand, on the boundary edges e € S,‘?, we set

{d=Kl=¢

We close this section by recalling some important trace inequalities that will
frequently be used in the analysis of our EG method. Let |T| denote the area of T in
two dimensions and the volume of T' in three dimensions. Similarly, for e C 9T, |e]
denotes the length of e in two dimensions and the area of e in three dimensions. Then,
there is a constant C; independent of hp and v such that for any v € H*(T), s > 1,

(2.1) [0llo.e < Cohg([vllo. + hr||Vollor) Ve C OT.

Let Px(T) be the space of polynomials of total degree at most k for a nonnegative
integer k. If v € P (T), then the trace inequality becomes

—1/2

(2.2) Wllo.c < Cehy?vllor e C AT,

where C; is independent of hy and v but depends on the polynomial degree k. Anal-
ogous results to (2.1) and (2.2) still hold for vector- and tensor-valued functions.

3. Locking-free enriched Galerkin method for linear elasticity. In this
section, we will define our LF-EG method and prove its solvability. First, let us
introduce the finite element space. Let Mj be the standard finite element space of
d-vectors whose components are continuous piecewise linear polynomials:

(3.1) My, = {y € H'(Q) ¢|r e P(T)* VT € Tp.} .
Also, let

Dy, = {¢ € LX) ¢lr = cr(x —x1), cr €R, VT € 1.},
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where x = [x1,...,24]" and x7 is the position vector of the center of T' € Ty, that is,
(x — x7,1)r = 0. We note that M, and Dj, are disjoint subspaces of the linear DG
space

{v € LX) Y|r € PL(T) VT € Tp.} .

Then, the LF-EG finite element space V, is defined as a direct sum of these two
spaces:

Vi, = My, & Dy,.

It is worth mentioning that we deliberately chose the space D, instead of the piecewise
constant vector-valued space used in the existing LC-EG method [33]. Recall that
the linear CG space My, suffers from locking because it is not rich enough to have
nontrivial divergence-free vectors.

The LF-EG space requires only N7 more DoFs compared to that of the linear
CG (P,-CG) space method regardless of the dimension d, where Np is the number of
elements T" in 7Tj. This means that the LF-EG method requires fewer DoF's than the
LC-EG method and significantly fewer DoFs than the linear DG (P;-DG) method.
Figure 1 illustrates the DoFs on a coarse two-dimensional Cartesian grid for four
compatible methods employing piecewise linear vector-valued polynomials: P;-CG,
P-DG, LC-EG, and our new LF-EG methods.

Now, we are in a position to present the LF-EG method. Our LF-EG method for
solving the linear elasticity problem (1.1) reads as follows: Find U € V), such that

(3.2) S(U,v) =F(v) YveV,
where § and F are the bilinear form and linear functional, respectively, defined as

SUw):= Y (a(U),e)r = Y {oU)ne}, [v])e

TeT, ec&y,

+ > (U] {o()neh)e + > hﬁ([[U]],[[v]])e,Jr/\Q Y Bhe(IV UL, IV - o])e,

ecéy, ecéy ¢ 665}5

F)y= 3 (foyr+ 3 (up,o@nde + 3 = (un,v)e,

TETh ece? ecef

where o > 0 and 8 > 0 are penalty parameters, and h. is defined by h, = |e|ﬁ.
In general, the penalty parameters may vary over e, but we assume that they are
constants in this paper. Also, notice that the Dirichlet boundary condition (1.1b) is

) ) A A
o o A A
° ° A A
° o A A
(a) P-CG. (c) LC-EG. (d) LF-EG.

Fic. 1. Comparison of DoF's on a two-dimensional Cartesian grid for four methods: (a) P;-
CG, (b) P1-DG , (c) LC-EG, and (d) LF-EG methods. A red circle (o) represents two DoFs and a
blue triangle (A) represents one DoF.
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imposed weakly in this method. The following generalized Korn’s inequality easily
follows from (1.19) in [8]: There is a constant Cgopy > 0 such that

(3.3) Z HVUHOT < Ckorn < Z [le( ||0T + Z ||Oe) Vo € V.

TeTh TeT eEEh

In light of the above Korn’s inequality, we now introduce the following energy norm
for a > 0 in the LF-EG finite element space Vj:

||v||s=<2|| et 3 noe).
TeTh CGgh €

3.1. Consistency.

LEMMA 3.1. Let u be the solution of (1.1) and assume that w € H*(Q)? for
s> 3/2. Then, u satisfies the variational problem (3.2):

(3.4) S(u,v) = F(v) Yo € V.

Proof. Multiply (1.1a) by v € V}, on both sides, then integrate using Green’s
theorem and the symmetry of the stress tensor:

> (Veo@),vr= Y (o(u),e@w)r — Y (o(wnr,v)or

TETh TET TeTh
= > (o) e@)r = Y {o@ne},[v])e = D (lo(une], {v})e
TETh ec&y eeg}IL
(3.5) = > (o)se@)r— Y ({own}, e,
TETh e€&p

where the continuity of the normal stress o (u)n, across the interior edges was used in
the last equality. Also, the jump [u] =0 and [V - u] = 0 across all the interior edges
due to the regularity of u, hence

Sl Ao@ne =0, 3 S(lul [eDe =0, 3 3 (V- ul [V ). =

e
ecel ecgl ec€l

Adding these three terms on the far right-hand side of (3.5), we have

Y (o), e)r = > ({o(ne}, [b]e + Y ([ul {o(v)nc})e

TeTh e€éy, H

(3.6) + Z 1. [0De + A2 Bhe([V-ul , [V -0])e = Y (f.v)r.

ecel e ecel TETh

On the other hand, using the boundary condition (1.1b), we have
(3.7

> (el Ao @nche + 3 -([ul [l = 3 (wp.o(@ne+ 3 1-(up.v)e

ccE? ccE? he cc€? ec€?

Then, we add (3.7) to (3.6) and obtain S(u,v) = F(v). d
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3.2. Coercivity.

LEMMA 3.2. There exists a positive constant Ceoer independent of h and \ such
that

(3.8) S(0,v) > Ceoer|lv]|7 + N2 Z Bhell [V - v] ||g,e Vo € Vi

ec&l

for any penalty parameters o > 0 and > 0.
Proof. 1Tt is straightforward to see that

Sw)=2u Y lle@)lgr+A Y IV v

«
Br+ Y IR

TETh TeTh e€lp
+ A7) Bhel| [V - 0] [[5,e > min(2p, D][v]|2 +A* Y Bhe| [V - o] |5
ec&f ecgl
Therefore, (3.8) holds with Ceper = min(2u, 1). O

3.3. Solvability.
LEMMA 3.3. There exists a unique solution U to problem (3.2).

Proof. Due to the finite-dimensionality, it suffices to prove uniqueness. Let U
and Us be two solutions to the LF-EG scheme (3.2). Then, we have

S(Ul — U27’U) =0 Yv €&V

Taking v = Uy — Us and using (3.8), we have ||[U; — Us|l¢ = 0, hence Uy = Us. O
4. Convergence analysis.

4.1. Interpolation operator. For the convergence analysis, we need to define
an interpolation operator from H 1(Q)d to Vy,. As we want to prove an error estimate
that is independent of the Lamé constant A, the interpolation operator should be
able to preserve the divergence-free vector at least in a weak sense. To this end, let
0§ : H1(Q)? — My, be a Clément-type interpolant satisfying

(41) v -TGoljr < ChYE olmay, 0<j<m<2, Yoe H* Q) VT €T,

where C' is independent of h and T', and At is a macroelement containing T used for
defining II§v. Then, we define II¢ : H*(Q)¢ — Dj, such that

(V -, )y = (V- (v—M50), D)y VT € T

Owing to the fact V - I¢v|r € Po(T), it is easy to see that

V olr = —(V- (v = 150), D) L er VT €T,

1
T

from which we can express Hﬁfv|T explicitly as

(4.2) 0|y = %T(x — x7).

Finally, we define II, : H'(Q)¢ — V), by

I, := 11§ + 11¢.
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LEMMA 4.1. We have the following interpolation error estimates for 11y, :
(4.3a) V- (v —To)|; < ORIV -w]y, 0<5<1, Yo H*(Q)Y
(4.3b) lv — Hpo]; < CR™ ||, 0<j<m<2 Yove H* Q)

Proof. Tt is straightforward to see that
(4.4) (V- -(v=—Tpv),)r = (V- o=V -Ipv,1)r =0 VT € Tp,
which implies that
(4.5) Po(V -v) =V - (IIpv) oneach T € Ty,

where Py is the local L?-projection onto the piecewise-constant space on 7;. There-
fore,

V- (v —=Tu0)|jr = |V -v—=Po(V-0)|jr < Chy?|V-v)17,j=0,1.

After summing the square of both sides over T € 7}, and taking the square root, we
obtain the desired error estimate (4.3a). To prove (4.3b), we first note that the result
is trivial when j = m = 2 since [Iv|r € P1(T)?. In the case of j = 0,1, it suffices to
show that

(4.6) flv]; < CR™" o]y, j<m<2,

thanks to the triangle inequality and (4.1). To this end, we will first provide the
bound for |II¢vl, i.e., j = 0. Using (4.2), the Cauchy—Schwarz inequality, and (4.1),
we have

2

C
S Mmolgr= > d%/T(X’XT)z dx

TEThH TETh
1 1 c 2 2

:Z? ?' V(’U—H;‘l’l})d.ﬁ (X—XT) dx

TeT, | T T

1 C

<y WIIV (0 = T50) 1§ 2 llx = %72 7 |T|

TEThH
<Y LIV - atd < 30 A g
= P2 nUlo, Tt = 2 nll1,T

TET TETh
<C Y Ay < CRPM U]y, m=1,2.

TETh

It remains to prove (4.6) with j = 1 and it can be done similarly by noting from (4.2)
that .
ol 5 = ST 0

4.2. Energy-norm error estimate. In this section, we will prove an a priori
error estimate for the approximate solution in the energy norm. First, let n = u—1Ilxu
and £ = Ilpu — U, then, u — U = n+ &. We will start with the following lemma that
will be useful for our error analysis.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/04/22 to 144.174.212.73 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

60 SON-YOUNG YI, SANGHYUN LEE, AND LUDMIL ZIKATANOV

LEMMA 4.2. There exists a constant C > 0 independent of h and \ such that
(4.7) lo(n)l; < CR (|| fllo + lapll2), 7 =0,1.
Proof. Using the interpolation errors (4.3a) and (4.3b), we obtain
lo(m)]; = [2ue(n) + AV -l < C(Inlj+1 + AV -nl5)
< Ch* I (July + AV - uly), j=0,1
The desired result follows from the regularity of the solution (1.2). |

LEMMA 4.3. We have the following error estimate for the auxiliary variable & =
IIhlt‘* l[:
I€lle < CR(|fllo + llupll2),
where C' > 0 depends on p but is independent of h and X.

Proof. First, we obtain the following consistency equation by subtracting (3.2)
from (3.4),

(4.8) S(u—-U,v)=0 Yv e,

from which we have S(n +&,£) = 0 since £ € V. Hence, S(&,£) = —=S(n,£). On the
other hand, (V -0,V -&)r =0 on each T since V - £ € Po(T'). Therefore, we have

§=-2u Y (), el)r+ > Homne} [E)e— > (I {o(©)ne})e

TeTh eelp eely
-y - ~(0 [EDe = A 3 Bhe(IV -0l [V - ])e
e€5h ecel

= @1 +'©2 +*¢@‘+'@4 +'©5.

First, we will consider S(&, &) on the left-hand side. Using the coercivity result (3.8),
we immediately have

(4.9) CooerlElIE + XY Bhe| [V - €113, < Z@\

ec&l

We will bound each |®;],¢ = 1,...,5, using primarily the Cauchy-Schwarz and
Young’s inequalities, trace inequalities, and interpolation error bounds. First, for
a small §; > 0, we get

1] <210 ) (e |<2u<ZII ||OT> (ZII HOT);

TET; = TETS
< d1[l€(©15 + Clle g < d1lIgNE + Ch?[lull3.

Next, we bound |®5| using the trace inequality (2.1) and (4.7) as follows:

2] < > [({o(mned, [€])e] < <Z —[{en ne}”Oe) ( *H &g
ecly

ecép ecép

1

)

< &EIE+C Y (oo + hrlo(n)r)?
TeTh

< &20l¢llz + CR*(lullz + MV - ull1)?

for a small constant do > 0.
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Let us now turn our attention to the next term |®3|. First, we recall that (V -
1,V -&)r =0 on each T € T;,. Therefore,

0=> (V-n,V-Or= > n-nr,V-&or = Y ([n-ne] . {V-&}e

TETh TETh e€&p
+ > ({n-ne}, [V - €D
ec&f

Then,

@3] = | > (Il {o (E)ne})

ecé,

=|2n Z ([n] . {e(©)ne})e + A Z ([n-ne] AV -€H)e

ec&y ee&y,

20 3 ([l {e(©ne e = A S ({n- e}, [V - €D

ecéy, eESI
<2 Y Il llo.ell {€@me} lloe + A D> IH{n-ne} llo.el [V - €] llo.e

ec&y ecE}
<d3 ) lle(¢ ||0T+725h 1V -¢€] ||Oe+CZ ||77||0T+hT\77|1T)

TeTh 5681 T€7—h

AZ

<o Y l€lE + T > BRI [V - €D 113 + CR2lull3,

TETh ec&}

where J3 > 0 is a small constant and C' > 0 depends on y and the constants C; and
C; from the trace inequalities.
The fourth term |®4| can be bounded in a similar fashion:

INEDY < (Z )i ] ||3,e> (Z i |8,e)
ec&, ¢ ec&, ¢

ecé

< d4llélE +C Z ||77||0 v+ Wl 7) < Sall€llE + Ch?|lull3
T€7}

(Il D

for a small constant d4 > 0.
Let us now consider the last term |®5].

|Bs5] < A° D [Bhe([V -], [V - €])e| < V(Z Bhell [V - 1] ||§,e> (Z Bhe| [V - €] ||3,e)

ecEf ecEf ece}

AQ
<T Y Bhell IV - €113, + O8N Y (IV - allo.r + b ||V - nl|1.7)?

eegé TETh
<A S B[V €] B+ CHNZ
=4 e 0,e 1-
eegi

Combining the above bounds for |®;|,i = 1,...,5, with (4.9) and using the H>-
regularity (1.2), we have

4
A2
(Ceoer = Y OIEIE + 5 D BRIV - €1 1B < CRA(lul} + A2V - ul)
i=1

eefi
< CR3(||fllo + llanll2)?,
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where C' = C(u, Cy, Cy, v, é, 8, %) is independent of A and X. Recall that C,,, is also
independent of h and A. By taking sufficiently small ¢.s, we can make the coefficient
(Ceoer — 221:1 0;) positive on the left-hand side. Then, we arrive at

4
(ccm - 2@) €12 < Ch2(Ifllo + 17D 12)2-
i=1

Finally, we divide both sides by (Ceper — Z?:l ;) to complete the proof. 1]
Now, we are ready to present the main error estimate.

THEOREM 4.4. Let u be the solution of the elasticity problem (1.1) and U be the
solution of our LF-EG method (3.2). Assuming the H?-regularity of the solution in
(1.2), there is a constant C > 0 such that

lu—Ulle < Ch(|| fllo + [[up]l2),

where C' is independent of h and .

Proof. The result is a consequence of the error estimate for £ in Lemma 4.3, the
interpolation error estimate (4.3b), and the triangle inequality. 0

5. Preconditioning. We propose a uniform preconditioner with respect to the
mesh size for our LF-EG method when A is bounded. The construction of the pre-
conditioner is done using the operator preconditioning framework [31, 32].

Consider the operator S : V}, =V}, defined via S(-, -):

(5.1) (Sv,w) :=S(v,w) Yv,w € V.

We also introduce a bilinear form a(-,-) which generates the energy norm:

(5.2) a(v,w) :=ac (v,w) +ay(V,w) Yv,w € Vp,

where

(5.3)  ac(v,w):= Y (e(v),ew))y and ay(v,w):= > %([[v]],[[w]])e.
TET ec&, ¢

By the definition of a(-,-) we have that a(v,v) = ||v]|2.

We say that two symmetric bilinear forms a(-,-) and b(-,) are spectrally equiva-
lent, which is denoted by b(+,-) = a(-,-), if and only if there exist positive constants
co and ¢; such that

(5.4) cob(v,v) < a(v,v) < c1b(v,v).

As a(+, ) defines the energy inner product and norm, any spectrally equivalent bilinear
form b(-, -) defines an inner product on V}, and a corresponding norm || - ||. The Riesz
operator A :V, — V; associated with a(-,-) is defined as

(5.5) (Av,w) = a(v,w) Yv,w € V.

We will use a bilinear form b(-,-) to define a preconditioner B ~ A~!  which is an
approximate inverse of A. Following this convention, we denote the Riesz operator
corresponding to b(-,-) by B~ : V), — V; whose definition is

(5.6) (B~ w) = b(v,w) Yuv,w € V.
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In our presentations, (-,-) may denote the duality pairing V;, x V;, — R, or it may be
another inner product which is a realization of the duality pairing, e.g., the L?(Q)-
inner product. The particular form of the pairing does not affect the considerations
that follow. We also note the following relation:

(5.7) (B~ 'v,v) = (A(BA) 'v,v) = a((BA) " 'v,v).

The use of an inverse operator will be justified when we show later that b(:,-) is
spectrally equivalent to a(-,-), which is coercive on V), and induces the energy norm.

To show that our preconditioner is uniform with respect to the mesh size, we will
utilize the continuity of S: There exists a constant v > 0 such that

(5.8) sup sup Slo,w) <

vEVL WEV), ”w”SHUHS
The existence of such a constant v when the Lamé parameter X is bounded above can
be proved using the trace inequality and the inequality ||V - v|lo < v/d||€(v)||o. Next,
recall that we have already shown the coercivity of S(-,-) on V}, in Lemma 3.2. This
implies the following inf-sup condition:

(5.9) inf sup S(v, w)

— > ( > 0.
veViwey, wllellvlle =

We note that the inequalities (5.8) and (5.9) still hold if the energy norm || - || is
replaced with its equivalent norm. Based on this observation, we will use a bilinear
form b(-,-) that is spectrally equivalent to a(:,-), thus whose induced norm || - || is
equivalent to || - ||¢, to construct a preconditioner.

5.1. Field-of-values equivalent preconditioner. Our LF-EG method results
in a nonsymmetric linear system. Following [31], we utilize field-of-values equivalent
preconditioners to obtain an efficient linear solver.

DEFINITION 5.1 (field-of-values equivalent preconditioner). The operators B and
S are field-of-values equivalent if there are positive constants ci, and cyp, such that
for any v € V}, there holds

b(BSv,v) and b(BSv, BSv)

(5.10) o < =1 bv.v)

= Cup-

Indeed, we can show the field-of-values equivalence of B and S if b(-,-) =~ a(-, ).

LEMMA 5.2. Assume that b(-,-) and a(-,-) are spectrally equivalent, namely, there
exist constants ¢y and c¢i such that (5.4) holds. Then B and S are field-of-values
equivalent.

Proof. To prove the first inequality in (5.10), we use (5.6), (5.4), and (5.9) to see

b(BSv,v)  (Sv,v) S (Sv,v) _ (Sv,v) S

cob(v,v) — cob(v,v) T a(v,v) — oll

which implies the first inequality with ¢, = ¢gCleoer- The second inequality can be
shown in a similar fashion using (5.4), (5.6), and (5.8),

b(BSv, BS
\/b(BSv v) _ 1 sup b(BSv,w) 1 sup (Sv,w) < e sup (Sv,w) < e,
b(v,v) ol wevs, — [lwlls ol wevs, llwlls wevy lvllelwlle
which shows the second inequality with c., = c17. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/04/22 to 144.174.212.73 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

64 SON-YOUNG YI, SANGHYUN LEE, AND LUDMIL ZIKATANOV

We now provide a result on the convergence of the field-of-values preconditioned
GMRES [37, 36] method as stated and proved in [31, Theorem 2.8].

THEOREM 5.3 (convergence of preconditioned GMRES). Assume that b(-,-) and
a(-,-) are spectrally equivalent. If v™ is the mth iteration of the GMRES method, and
U is the exact solution of SU = F, then

IBSW = v™)e _ (1 ) c%o)m”
BS@—)e =\~ &,)

(5.11)

Based on this theorem, we will construct a preconditioner that will result in a
uniformly bounded contraction in every GMRES iteration. In light of Lemma 5.2
and Theorem 5.3, it only remains for us to construct a bilinear form b(-,-) that is
spectrally equivalent to a(-,-) and whose variational problem is easier to solve.

5.2. Construction of b(+,-). In order to define a preconditioning bilinear form
b(-,-), we will employ the standard additive Schwarz preconditioner and show the
spectral equivalence (5.4). The theoretical results that we present here is considered
classical and is found in [40, 44, 45, 19] and other references cited therein. To keep
the presentation self-contained, we provide some details below even though most of
them are available in the aforementioned works. We will explore the idea that the
space complementary to M, contains highly oscillatory functions whose energy norm
behaves like an appropriately scaled L2-norm.

5.2.1. Notation and preliminaries. Before we proceed to define our pre-
conditioner and show spectral equivalence results, which imply uniform bounds on
the condition number of the preconditioned system, we introduce some notation and
summarize a few simple and well-known facts that are needed in the analysis (see,
e.g., [9, 13]).

We denote by n the number of vertices in 75, and let {¢;}7_; be the standard basis
for My,. Since V), = My & Dy, every v € V), can written as a sum of a continuous
piecewise linear function in M}, and a discontinuous function in Dy. Specifically, we
have

(5.12)

n
v =0, +vg € My @Dy, where v, = Zvcyi%—(x), Vg = Z vp(z — xp)Lp.
i=1 TE®,

Here, v.; = ve(x;) € R4, vp € R, and 1p is the characteristic function of 7. Note
that v ; are vectors, whereas the basis functions {¢;(x)} are scalar-valued functions.

With the above notation, we have the following matrix representation of the
bilinear form a(-,-):

n n
a(v,w) = E Ajjve - We; + E E VP AT We i

ij=1 i=1 Tea
(5.13) . <
+ Z ZwTAj7T'Uc7j + Z Z Arrrwrury,
Ted j=1 TETh T'€Th

where Az‘j S RdXd, AT,’L’ S Rd, Aj7T S Rd, AT,T’ ceRfori=1,...,n,j=1,...,n,
T €Ty, T' € Th, and their values are obtained using the definition of a(-,-). Also, we
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denote by A the entire stiffness matrix of a(,-) of size (dn + Nr) x (dn+ Nr), which
is symmetric and positive definite (SPD). Note that the number of nonzero elements
in each row of A is bounded by a constant due to the shape regularity of the mesh,
and that constant will be denoted by ma. Now, let v € V;, and v be the vector of
degrees of freedom of v. Also, let D = diag(A) be the diagonal of A. Then, from the
Cauchy—Schwarz inequality we can see that

A2
[D-Y2AD V73 < A fllm <1, 1<Il,m<(dn+ Nr).

IAmm
This in turn implies that HD‘l/QAD_1/2Hoo < ma, where || - ||cc denotes the matrix
infinity norm. Therefore,

[v]}2 =(Av.v) < p (D72 AD?) (Do, v)ye
(5.14)
SHD_l/ZAD_l/QH <D’U,’U>g2 SmA<D’U7'U>[2.

Here, p(-) denotes the spectral radius and (-, -);2 denotes the discrete £2-inner product.
Recall that any v € V), is multivalued at the vertices of the mesh because of the
discontinuous nature of our EG space. For any i € {1,...,n}, we let

vy = v|r(x;)

for all T' € T}, containing the vertex z;. We also define a jump of v at any vertex x;
on ¢ € &, as follows:

HU]]i e

s

vir, —vir. ife€&l ande=T, NT_,
Vi, T ifec & andeCT.

Using the above notation, we will establish some equivalence relations.
Let K be a simplex in R™, m < d, and v be a piecewise linear function. Then,
we have

(5.15) 1olIF s = 1K1Y o,
€K

where ), ;- denotes the sum over all vertices 2; belonging to K. The constant in the
equivalence depends on the dimension m of the simplex. A proof of this equivalence
is available in many papers, for example, [15, Lemma 3.1]. Using (5.15), we then can
write ay(+,-) in the following equivalent form:

(5.16) ay(v,w) = ay(v,w) = Z a;‘d Z [v];. [w]; .. -

eely € ce

Last, we define two projection operators from V, to My, which will play a critical
role in showing the spectral equivalence of b(,-) to a(-,). Let II;, : V), — M, be the
projection operator defined as

(5.17) v = Z [771 Zvile wi(x) Yv €V,

i=1 YT
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where m; = ) -, 1 and ), denotes the sum over all elements 7" containing the
vertex x;, 1 = 1,...,n. Let us assume that the domain Up-;T is a connected polyhe-
dral domain for any i € {1,...,n} and T € Tp,. Then, for a fixed i € {1,...,n} and
T € Ty, the difference of the pointwise values of v € V}, and Il v € M, at the vertex
x; can be estimated as follows:

1
Ui, T — —— E Ui, T’
ms

v T

~mi Y| [vil, I*.

eD1

(5.18)

Such an equivalence relation follows immediately from the facts that the domain
Ur~;T is connected and that both left- and right-hand sides of (5.18) are then norms
on the finite dimensional space R™: /R. The constants of equivalence depend on the
shape regularity as m; does depend on this as well.

We also introduce an elliptic projection Pp : Vy, — M}, defined via a variational
problem on Mj,:

(5.19) a(Prv,s) = a(v,s), Yv eV, Vs e M,,.

The following identities are obtained directly from the definition and the symmetry
of a(-,-):

(5.20) a(Prv,w) = a(w, Prv) = a(Prv, PLw),

5.2.2. Additive Schwarz preconditioner. As previously stated, we will define
our preconditioner by employing an additive Schwarz preconditioner. Here we point
out that if we specify the action of an invertible preconditioning operator B, we then
define its associated bilinear form b(-,-) via (5.6), and vice versa. Let us now define
the action of our preconditioner B on g € V;.

Algorithm 5.1 Additive Schwarz preconditioner for LF-EG.

function w = B(g) > Input: g € V),
Find vy, € My, such that a(vy,v) = (g,v) for all ¢ € M,,.
Find vy € V), such that aq(vg, x) = (g, x) for all x € V.
return w = vp + vg. > OQutput: Bg € V),
end function

Here, the bilinear form ag : Vi, XV, — R is yet to be specified. Roughly speaking,
aq(+,-) will be chosen to satisfy that (a) it is SPD and (b) its induced norm is equivalent
to a scaled L?(Q)-norm. As we will see later in Lemma 5.6, these two requirements
are sufficient to guarantee that b(-,-) = a(,-). A particular definition of a4(-,-) is
given in (5.22).

Algorithm 5.1 is an instance of a two-level additive Schwarz preconditioner. The
action of such a preconditioner requires the solution of two variational problems: one
on My, with a(-,-) and the other on V, with a4(-,-). We assume that optimal solvers
are known for both of these forms. Indeed, on My, the bilinear form a(, -) is spectrally
equivalent to the vector Laplacian thanks to Korn’s inequality, hence allowing for the
use of standard multilevel solvers.

Let us now specify the bilinear form aq4 : Vi, X Vj, — R whose matrix representation
is an approximate diagonal matrix of the stiffness matrix A. The main role of the
form ay(+, ) is to approximate a(-, -) on the space complementary to My, in V. First,
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we will consider the diagonal of the stiffness matrix A. With the notation introduced
in (5.13), the diagonal of A consists of {[Ai]wk|i = 1,...,n,k = 1,...,d } and
{Arr|T € Tr}. By recalling the definition of the bilinear form a(-,-) in (5.2) and
doing some straightforward calculations, we can estimate the diagonal elements as
follows:

Qe _
[Aiiler = Y ITI(IVeil* + [Veild) + D =lleills. = D> hzITI(1 + ax),
TDi eDi; ecdN ¢ TDi
Qe _
App =d|T|+ ) hj”x — a7l = hp? T (1 +ar) Z |z — 27,
ecoT €T

where ar = ﬁ > ecor e and we used (5.16) in the last equivalence. From these
calculations, we see for any v € V), and its vector of degrees of freedom v that

(5.21) (Dv,v)pe ~ Z h72|T)(1 + ar) ZviT.

TETh €T

We are now ready to introduce aq : Vi X Vi, — R and the corresponding operator
Bd_1 Wy = Vy. For v € V), and w € V,, we let

(5.22) (By v, w) = ag(v,w) = Z h7?|T|(1 + ar) Z'Ui,Twi,T-
TETh €T

Then, the combination of (5.14), (5.21), (5.22) gives us that
(5.23) a(v,v) = (Av, V)2 < ma(Dv,v)pe ~ aq(v,v).

Clearly, aq(-,-) is SPD and induces a norm |||, on Vu. Also, (P + BqA) is
invertible because By and A are both invertible and the positive semidefiniteness of
Py, can be proved by taking w = v in (5.20). Finally, we see that on a mesh with a
characteristic size h, the form aq4(-,-) is spectrally equivalent to a scaled L?(£2)-norm.
The matrix representation B of the preconditioner B can be expressed as

I,

(5.24) B= [0

:| Azl [IL 0] + By,

where Ay is the stiffness matrix of a(:,-) corresponding to the continuous linear
elements, By is the matrix representation of By, and Iy is the dn x dn identity
matrix.

5.2.3. Spectral equivalence and convergence. We begin this section with
the following well-known result, which is found in many references (see [44, 46, 40,
45, 19] and the references therein) and is a main tool in showing the efficiency of the
additive Schwarz preconditioner from Algorithm 5.1.

LEMMA 5.4. The following relation holds for the preconditioner B defined via
Algorithm 5.1:

2 B~lv,v) = inf ( —w? 2) .
(5.25) ( v,0) wLueth lv—well,, + lwclzg) Vv eV

Proof. We set (g,-) = a(v,-) for any v € V), in Algorithm 5.1 and consider the
action of B onto it. From the definitions of the elliptic projection in (5.19) and of the
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bilinear form aq4(-,-) in (5.22), we can see that vy, = Prv and vy = BgAv, hence we
obtain BAv = v, +vg = (Pr, + BgA)v. Then, (5.7) yields

(5.26)  (B7'v,v) = (A(BA)"'v,v) = a ((BA) 'v,v) = a ((Pr + B4A) 'v,v).

Let ¢ = BgA(Pr, + B4A) v and q, = Pp(Pr + BgA)~'v. We note that v = ¢ + g1,
with ¢, € My, and ¢ € Vy,. Also, let v = (P + BgA)~'v. Then, using (5.26), (5.22),
and (5.20), we obtain that
(B~'v,v) = a ((Pr + B4A) 'v,v) = a (v, (PL + B4A)D)
= a (0, B4Av) + a (v, PLv)
(5.27) = a4 (BaAT, B4AT) +a (P, Poo) = |lalz, + llac |2

On the other hand, for any s € My, we have

lg—sl2, +llar + sl12 = aalq — s, — s) + alqr + s,qL + 5)
= llqllz, + llgzllz + lIsll%, + lIsll? — 2aa(q, s) + 2a(qr, s)
= llall2, + llazliz + D12, + lls/2
—2aq(BgA(Pr, + B4A) v, s) + 2a(Pr(BgA + Pp) "', s)
= llall, + llazllz + I, + lls/2
—2a((Pp, + BgA) v, 5) + 2a((Py, 4+ BgA) v, s)
= llgll;, + lacllz + lIsl5, + lIsl?
> Yall, + laz -
The equality holds in the above inequality if and only if s = 0. Therefore, we conclude

that
(5.28)

2 2 . 2 2 . 2 2
lall, + a2 = int (la—sll2, +lla +s2) = inf (o= wel?, +wel?).

To see that the second equality in (5.28) holds, we set w;, = (¢, + s) € My, and
observe that when s ranges over My, so does wy. Further, (v —wr) = (¢ — s) since
(¢ + qr) = v. We complete the proof by combining (5.27) and (5.28). ad

We now prove the approximation and stability results.

LEMMA 5.5. For any v € Vp,, we have the estimates
(5.29) o =Tl < lvlle,  [Mrvle < llvlle,

where the constants of equivalence depend on the shape regularity of the mesh and the
local variations in o.

Proof. Let v € Vj,. To show the first inequality, we use (5.22), (5.17), and (5.18)
to see
2

1
2 -2
lo=Tpoll, S Y arh?| T jvir — oo > v

TETh ieT Yo
S Y arh AT Y (o], 1P
TeTr, i€T eDi
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Since we have LLLQ' ~ |hi| by the shape regularity of the mesh, it follows that
zZ .
2 €] el
v —HLUH% S E ar E E h7| M]i,e |2 S E Qe E h7| [[v]]m |2~
e €

TETH i€T eDi e€Th i€e

Using now the relation (5.16), we arrive at

(5.30) o —TLo)2, S as(v,0) < 2.

ag ~
To show the stability of IT;,, we employ the upper bound (5.23) to obtain

2
lv = Tzv) < llv =Tl ,
which in combination with (5.30) gives rise to the desired result. O

We are now in a position to show the spectral equivalence between a(-,-) and
b(-,-) using the stability results in Lemma 5.5.

LEMMA 5.6. The following spectral equivalence holds:
(5.31) b(v,v) = a(v,v) Vv € V.

Proof. Let v € Vy. First, we will prove that a(v,v) < b(v,v). To do this, take
any wy € My. By the triangle inequality, Young’s inequality, and the upper bound
in (5.23), we have

2
(5.32) a(v,v) = [lvllg <2 (llv — welz + wellg) < v —welly, + llwelz.

By taking the infimum with respect to wy € M, on the right-hand side of (5.32),
then using (5.25) in Lemma 5.4, we have

a(v,v) < (B~ v, v) = b(v,v).
Next, the relation (5.25) in Lemma 5.4 and the estimates in (5.29) lead to
b(v,v) = (B'v,v) = inf [jv—wg|? 2
) = (B w0) = inf o= wgl?, + w2
2
< llv = Tpoll, + [ITzollz < vl = a(v,v).

The proof of the spectral equivalence is complete. 0

THEOREM 5.7. A preconditioned GMRES with the preconditioner B defined by
Algorithm 5.1 is convergent uniformly with respect to the mesh size.

Proof. Since we established that b(-,-) =~ a(+,-) in Lemma 5.6, the field-of-values
equivalence between B and S is an immediate consequence from Lemma 5.2. Then,
the uniform convergence result follows from Theorem 5.3. a0

6. Numerical examples in two dimensions. In this section, we present sev-
eral numerical results in two dimensions to validate the theoretical results presented
in sections 4 and 5 and demonstrate the efficiency and robustness of the proposed
method. In our numerical experiments, the LF-EG and the preconditioned GMRES
methods were implemented using the HAZmath finite element and solver library [24].

Example 1. Optimal convergence for a smooth solution. We test our
proposed method on a smooth solution u to confirm the optimal convergence rate of
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the method proved in section 4. Our computational domain is Q = (—1,1)? and we
choose the body force

f = 2sin(z) sin(y), 2 cos(z) cos(y) |

so that the exact displacement is given by
u = | sinxsiny + Xz,cosxcosy + Xy

We impose a Dirichlet boundary condition v = up, where up is computed from
the exact solution. A simple calculation shows that V -« — 0 as A — oo, hence this
solution is susceptible to volumetric locking for a large A. In order to show the locking-
free property along with the optimal convergence rate of our new method, we solve
the elasticity problem with two different A values (A = 1 and A = 10°), while keeping
p = 1, using our LF-EG method. Moreover, we solve the same problem with the
classical linear CG method and compare the results to demonstrate the superiority
of our new method over the CG method when simulating a nearly incompressible
material.

Since the H'-seminorm is bounded above by a constant multiple of the energy
norm, we measure the error in the H!'-seminorm for both the LF-EG and P;-CG
methods on uniform meshes with various mesh sizes h = 2=% L = 1,...,6. For the
LF-EG method, we set the penalty parameters to (o, 8) = (1,0.001), and the same
parameters are used in all other numerical examples. The results are summarized
in Table 1. In the tables, we observe that the linear CG method yields the optimal
convergence rates in the H'-seminorm when A = 1, but its convergence rate deterio-
rates as h gets smaller when A\ = 10%. In contrast to this, the LF-EG method yields
a first-order convergence in the H!'-seminorm for both A = 1 and A = 10°. This ex-
ample clearly demonstrates that the new LF-EG method can resolve the well-known

TABLE 1
Convergence study for the P1-CG and LF-EG methods for Example 1 with (a) A =1 and (b)
X\ =108, The penalty parameters are set to (o, 8) = (1,0.001).

CcG LF-EG
h DoF lu—Ul1 | Rate DoF lu—Ul1 | Rate
1/2 50 0.628 - 82 0.481 -
1/4 162 0.312 1.19 290 0.241 1.09
1/8 578 0.145 1.19 1090 0.120 1.05

1/16 2178 0.070 1.10 4226 0.059 1.02
1/32 8450 0.034 1.04 16642 0.029 1.01
1/64 33282 0.017 1.01 66050 0.014 1.00

(a) A=1.
CG LF-EG
h DoF lu—Ul1 | Rate DoF lu—U|1 | Rate
1/2 50 0.622 - 82 0.477 -
1/4 162 0.318 1.14 290 0.239 1.09
1/8 578 0.161 1.06 1090 0.119 1.04

1/16 2178 0.083 0.99 4226 0.059 1.02
1/32 8450 0.047 0.81 16642 0.029 1.01
1/64 33282 0.034 0.48 66050 0.014 1.00

(b) A = 10°.
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TABLE 2
Number of iterations for the preconditioned GMRES solver given in section 5 when the LF-EG
method is applied to Example 1 with A =1 on meshes with various mesh sizes.

h 1/2 | 1/4 1/8 1/16 1/32 1/64
DoF 82 | 290 | 1090 | 4226 | 16642 | 66050
[ # of iterations H 38 [ 43 [ 45 [ 46 [ 46 [ 45 ]

volumetric locking issue associated with the linear CG method by adding only one
additional local DoF per element.

Example 2. Preconditioned GMRES solver. In this example, we test the
performance of the GMRES method preconditioned as in section 5. The setup—
exact solution, boundary conditions, and computational domain—is the same as that
in Example 1. Since the theoretical results for the operator preconditioning show
bounds on the condition number depending on the continuity of the bilinear form
S(-,-), we use a fixed value of A = 1. We test the LF-EG method on successively
refined grids with mesh sizes h = 27%, L = 1,...,6. The iterations are terminated
when the norm of the preconditioned relative residual is smaller than 10~%. The results
reported in Table 2 show that the number of GMRES iterations is independent of the
mesh size as predicted by the theory studied in section 5.

Example 3. Alleviated volumetric locking. In a two-dimensional computa-
tional domain 2 = (0, 1)2, we let the body force be f = [0, 0] and employ the following
boundary condition:

up(z,y) = [1—4(x—05)%0] ify=0o0ry=1,
PREY) = [0,0], ifr=0o0rz=1.

This problem has been studied in other references [42, 43, 21] concerning volumetric
locking. Here, we solve this problem with A = 1 or A = 10°® using our LF-EG method
and the P;-CG method on a uniform mesh with a mesh size h = 1/64. The penalty
parameters (a,8) = (1,0.001) are used in the LF-EG method. Figure 2 provides
the resulting solution profiles. We observe that the P;-CG and LF-EG methods
produce nearly identical solutions when A = 1 (top). However, the two methods yield
significantly different solutions when A = 10° (bottom). In this case, we observe a
visible locking phenomenon from the CG method.

Example 4. A solution with a corner singularity and a large A. In this
example, we consider the linear elasticity problem (1.1) in an L-shaped domain as
depicted in Figure 3. This problem has a known analytic solution [2]. The exact
solution is given in polar coordinates (r,8) by

v = iw«k — Q7+ 1)) cos(8) — ycos((v - 2)9)),
Uy = iw((k +Q(v + 1)) sin(v0) +ysin((y — 2)6)),

where k = 3 —4v, v = A/(2(A+ p)) is the Poisson ratio. In addition, v is the solution
of the equation

(6.1) sin (73;) + 7ysin (3;) =0,
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linear elasticity equation (1.1) with the body force f = [0,0]. Here, we set p = 1
and A = 10% and employ the Dirichlet boundary condition. In our calculations, we
numerically solve (6.1) to approximate 7, and the resulting values of v and @ are v =
0.5444837367 and @ = 0.5430755688. Since v < 1, all the components for the stress
tensor have a singularity in a neighborhood of the origin (0, 0), while the displacement
is continuous in the entire domain. Indeed, one can prove that v € H'*7~¢(Q)? and
o € H'75(Q)?*2 for € > 0 as discussed in [7]. Hence, we expect that the convergence
rate of the new LF-EG method in the H'-seminorm is approximately 0.54. This
problem was solved using the LF-EG method with («,5) = (1,0.001) on uniform
meshes. For the sake of comparison, we also solved the problem on the same meshes
using the P;-CG method. The results are summarized in Table 3. It is observed

and @ is given by Q = . Then, the solution u = [ug,ug] satisfies the
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TABLE 3
Convergence study of the P1-CG and LF-EG methods for Example 4.

CG LF-EG
h DoF lu—Uli | Rate DoF lu—Ul1 | Rate
1/2 42 0.597 - 66 0.508 -
1/4 130 0.604 -0.02 226 0.350 0.61
1/8 450 0.660 -0.14 834 0.244 0.55

1/16 1666 0.703 -0.09 3202 0.167 0.57
1/32 6402 0.740 -0.07 12456 0.115 0.54
1/64 25090 0.770 -0.05 49666 0.078 0.56

that the P;-CG locks in the sense that the errors measured in the H'-seminorm
stagnate. On the other hand, our new method converges at the expected rates in the
H'-seminorm.

7. Conclusions and future work. This paper introduced a new finite element
method, called the LF-EG method, to address the well-known volumetric locking in
the linear elasticity problem. The finite element space is obtained by adding only
one additional local DoF per element to the linear CG space and used in the con-
ventional DG formulation. An a priori error estimate in the energy norm was proved
under the assumption of the H2-regularity of the true solution. The resulting er-
ror estimate is of optimal order and independent of the Lamé constant A, which
implies the locking-free property of the method. Our numerical tests confirm the
optimal convergence order for a smooth solution as well as the robustness of our
LF-EG method with respect to the Lamé constant A. They also show the expected
suboptimal convergence order for a low regularity solution with a corner singular-
ity. However, it remains open to prove the robust convergence without assuming
the full H2-regularity. Therefore, our method is a new alternative to other expensive
numerical methods, including mixed finite element methods and DG methods, for sim-
ulating nearly incompressible materials. We also proposed a uniform preconditioner
with respect to the mesh size in the framework of operator preconditioning for linear
elasticity problems with a moderate-sized A. We prove the uniform convergence of
the preconditioned GMRES method and support our theoretical result through some
numerical experiments. A theoretical and computational investigation on a uniform
preconditioner for a large A would require special treatment of the approximations of
the divergence-free fields; hence it falls beyond the scope of this paper and is still an
ongoing work.
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