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Abstract— This paper proposes a Failure Mode and Effect
Management (FMEM) strategy for constrained systems with
redundant actuators based on the combined use of constraint
admissible and recoverable sets. Several approaches to ensure
reconfiguration of the system without constraint violation in the
event of actuator failures are presented. Numerical simulation
results are reported.

[. INTRODUCTION

The paper presents an approach to the design of a Failure
Mode and Effect Management (FMEM) system based on
constraint admissible and recoverable sets for systems with
redundant actuators and state and control constraints. Multi-
ple actuator failure modes are considered, and an approach
to the design of FMEM system is proposed that ensures
constraints are satisfied when operating in normal and failure
modes and during mode transitions.

There is great demand for systematic approaches to
FMEM system design for industrial systems since the soft-
ware and algorithmic content of diagnostics and FMEM
systems is often larger than what is responsible for the
nominal system function. This is notably the case in the
area of advanced and autonomous vehicles where redundant
actuation (e.g., dual steering motors and multiple brake
actuators) is employed to enable safe reconfiguration and the
implementation of limited operating strategies in the event
of failures. In these applications, a typical requirement for
FMEM strategy is to ensure that, in case of a single point
of failure, the system operation can be reconfigured so that
in the new mode, another single point of failure cannot lead
to safety hazards while maximizing system availability.

Figure 1 illustrates modes in a system with two redun-
dant actuators, where a normal mode corresponds to both
actuators functioning, and three failure modes correspond to
either or both actuators to have failed. Notably the modes
form vertices of a unidirectional graph.

The proposed approach to FMEM design builds on the
idea of using constraint admissible and recoverable sets
proposed in [1] but extends it to multiple failure modes
and reference tracking. In each mode, a reference governor
[2] is applied to enforce the constraints. When an actuator
failure occurs, a recovery sequence is computed by solving
a quadratic programming problem to bring the system tra-
jectory into the constraint admissible set for the reference
governor in the subsequent mode.
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Fig. 1. Possible modes of a system with two actuators labeled by 1 and 2.
The numbers in the boxes are the labels of the actuators that work properly.
M stands for mode.

In this setting, constraint admissible sets are sets of
initial states and constant reference commands for which the
ensuing response satisfies state and control constraints. Re-
coverable sets are sets of initial states that can be steered into
the (state projections of) constraint admissible sets within a
specified number of steps without constraint violations.

To be able to perform a safe reconfiguration, the state of
the system in the preceding mode must be in the recoverable
set for the subsequent mode. In the paper, the implications
of this set membership condition on the design of FMEM
scheme are considered and illustrated with numerical exam-
ples. Under the assumptions of a single point of failure (i.e.,
one actuator failure at a time), instantaneous fault detection
and isolation, and large time between subsequent failures, it
is sufficient to ensure that a set bounding possible states
in the preceding mode is a subset of the interior of the
recoverable set in each of the possible subsequent modes. In
this paper, we examine the implications of this condition and
illustrate three mechanisms by which it can be ensured: (i) by
adding extra state constraints in the preceding mode; (ii) by
adding range and rate limits to the command in the preceding
mode; and (iii) by temporarily relaxing state constraints when
determining the recovery sequence. The latter mechanism is
suitable for systems with soft constraints when a temporary
constraint violation might be permissible.

Systematic recoverability analysis has been addressed in
the fault tolerant control literature [3]; however, the existing
methods typically do not handle state and control constraints.
In a broader sense, this paper compliments set-theoretic
control methods such as in [4], [5], [6], [7], [8] and provides
extensions relevant to handling systems with multiple failure
modes and reconfiguration levels. Set theoretic methods for
handling failure modes in constrained systems have been
considered in [9] and in the reference governor literature
(see [2] and references therein). The present paper is dis-
tinguished by addressing multiple failure modes and failure



paths/scenarios, by combined use of constrained admissible
and recoverable sets and by specific mechanisms used to
enforce the reconfigurability.

The paper is organized as follows. In Section II, the
basic problem setting including models, failure modes and
constraints is introduced. Section III introduces constraint
admissible and recoverable sets that are used in Section IV to
define a system capable of safe operation and reconfiguration
in the event of failures. Two examples in Sections V and VI
are used to highlight and illustrate design steps for a mass-
spring-damper system and for an aircraft longitudinal flight,
respectively. Section VII presents concluding remarks.

II. MODE-DEPENDENT SYSTEM DYNAMICS,
CONSTRAINTS AND PROBLEM FORMULATION

A. System Dynamics

The development of our FMEM system relies on a
discrete-time model of the form,

Tht1 = Apzr + Byuk,  yr = Cyzr, (D

where k € Z>, x}, is the state vector, y;, is the output vector,
uy is the input vector, and M € {0,1,2,---} designates
different operating modes of the system, including normal
modes and failure modes caused by actuator failures when
specific inputs corresponding to the failed actuators equal
Zero.

It is assumed that the number of working actuators/inputs
are greater than the number of outputs that need to be
tracked. Then in each mode, a stabilizing feedback plus
feedforward controller is used of the form,

up = Kyzy + Gyog, 2

where K, is the feedback gain matrix, G is the feed-
forward gain matrix, and vy is the vector of the reference
commands (set-points). Depending on the mode M, appro-
priate rows of K, and G, are zeroed out to represent the
effect of the actuator failures as the inputs corresponding to
the failed actuators are forced to zero.

The closed-loop dynamics in mode M can be represented
by the following discrete-time model,

Tp1 = Ay + Baog, 3)
Ay = Ay + B Ky, By = BuGa,

where A/ is a Schur matrix (where all eigenvalues are inside
the unit disk of the complex plane). Since one of the possible
modes is when all actuators fail, this assumption implies that
the open-loop system must be stable.

B. Constraints

To ensure safe operation, pointwise-in-time state con-
straints are defined by a finite set of inequalities and imposed
of the form,

xp € X(vg) ={z: Axx <bx(vg)}. %)

Since these constraints are imposed on the states of the
closed-loop system with the given controllers, they can also
represent actuator range and rate limits.

Modifications to these constraints are considered to facil-
itate the subsequent design of our failure mode reconfigu-
ration approach. Firstly, to satisfy subsequent conditions for
safe failure mode reconfiguration, it may be necessary to
artificially tighten constraints (4) to

T € XM(Uk) = X(’Uk) N XM(Uk), 5

where the sets Xj/(v) need to be appropriately designed.
Secondly, upon detection and isolation of the failure mode,
a recovery sequence of control inputs is computed and
implemented over a short time horizon before the control
is relinquished to the reference governor. In practical appli-
cations (see e.g., [10]), some of the state constraints could be
imposed conservatively to extend system operating life, and
they may be relaxed temporarily during the reconfiguration
and recovery. Hence during a short period when the recovery
sequence is applied, the constraints can be relaxed to

Tk € XRy (Vk), (6)
where Xg,,(v) 2 X (v), and Xg,, (v) should also be

appropriately designed.

C. Problem Formulation

A Failure Mode and Effect Management (FMEM) system
is to be designed which is capable of ensuring safety despite
failures. Each failure corresponds to a loss of an actuator
and system mode transition. The time between failures is
assumed to be large.

III. CONSTRAINT ADMISSIBLE AND RECOVERABLE SETS

A. Constraint Admissible Sets

Each operating mode M has its corresponding approxi-
mation to the maximum constraint admissible set defined by

Ooo,M = {(’07$0) LTy € X]W(’U) Vt € Zzo,
xss(vaM) @Bé C XM(U)}7 (7)
= {(U7CUO) : AOoc,I\/IxO < bOoo,IW (U)} 3

where z, is the response of (3) to the initial condition zg
and constant command v; = v, T« (v, M) is the steady-state
operating point given by (v, M) = (I — A )~ Byv, and
B, is an open ball of radius ¢ > 0. The reasons for adding
the constraint zg(v, M) ® B, C X (v) in (7) are technical:
They ensure, under mild additional assumptions [11], that
the set Ooo,ps is finitely-determined and can be represented
by a finite set of affine inequalities as in (8).

An important property of Ou as is its invariance under
constant commands, that is, if (vg, %) € Ooo,ar and vy =
v while the system remains operating in mode M, then
(Vkt1, Trg1) € Oco, -

B. Recoverable Sets

The recoverable set for the system in mode M is defined
as

Riﬁw = {LC() . 3{1)0, .
:CtEXRM(Ut) Vt=0,1,--- ,Nyy—1, (9)

TNy € Proj,Oco nr}-

,UNy—1} such that



Any initial condition xy in the recoverable set Révo”}/[ can
be “steered” into Proj,O.c as within Njps steps using the
command sequence {vg,---,vUn,,—1}, and the constraints
xy € Xgy, (), Vt=0,--- ,Nyy—1and 2y, € Proj, O mr
are satisfied.

IV. EMPLOYING ADMISSIBLE AND RECOVERABLE SETS
FOR SAFE OPERATION AND RECONFIGURATION

A. Safe Operation in Each Mode Using Reference Governor

The reference/command governor [2] is used for reference
tracking and to enforce the constraints in each mode except
during the reconfiguration. The reference governor computes
the modified command v;, as a function of the state x; and
original reference command 7 based on the solution of the
following optimization problem,

Minimize |7y — vy |?

subject to (v, k) € Oco, M- (10)

If (v, ) € Ooonr and the mode remains equal to M,
(Vitk, Titk) € Oco,nmr for all k& > 0 and the constraints
(5) remain satisfied.

B. Safe Reconfiguration upon Failure Detection

The failure mode reconfiguration relies on the condition

(an

Proj, Oso,nr C RO, VM € suce(M),
where Rivo%p denotes the set of all states which are recover-
able with command sequences of length N in mode M,
and succ(M) is the set of all successor modes of mode M.

To ensure that (11) is satisfied, the sets X/ (v), Xg,,, (v¢)
and Nj;/ can be varied. One can reduce X/ (v) (i.e., tighten
constraints for the preceding mode M), enlarge Xg, , (vp)
(i.e., relax constraints for the successor mode M’ during the
recovery) and increase Ny (i.e., allow more elements in the
reconfiguration sequence). The last approach has an impact
on online computations as increasing N,/ increases the size
of the optimization problem which needs to be solved online.

With the condition (11) satisfied, if the failure occurs
at the time instant ¢, z; € Rivo%{, for the new mode
M’ € succ(M). Then, a recovery sequence of the com-
mands {v¢,Vsq1,- -, V4N, —1} can be found by solving
a quadratic programming problem of minimizing ||V; —
Ry||* where V; is the vector of the recovery sequence
[/ vl v, 1] and Ry is the vector of the refer-
ence sequence [} ,ry .-+, rl]T, subject to polyhedral con-
straints of the form, x+45 € Xg,, (v¢) Vs =0,1,--+ , Ny —
1, z¢4nN,, € Proj,Os, nv. After the recovery sequence is
applied, 4y n,, € Proj,Ooo n7. Hence at the time instant
t + N the reference governor can be activated to continue
operating the system in mode M’.

C. Command Range and Rate Limiting

An additional mechanism to ensure reconfigurability in the
design of our FMEM system is to impose artificial range and
rate limits on vg. This results in state trajectories converging
to a subset of Proj, O ps when operating in mode M. Since

the time between failures is assumed to be large, Proj, O i
in (11) can be replaced by a smaller subset which ultimately
bounds state trajectories, thereby weakening the requirement
(11). These ancillary constraints on the command range and
rate have the form,

v €V ={v: Ayv <by}, (12)
Avp = vp — Vi1 € AVy = {A’U : AavAv < bAV}~

(13)
Let
zp =xp —Dapvg, Tar= (1 — Ap) " 'Bar,  (14)
then it can be derived that
2kl = Az + T Avg. (15)

With rate limits imposed by (13) and assuming the mode
remains in M, zp — Fy as k — oo, where F); is the
minimum invariant set [11] of the system derived from
(15). This minimum invariant set is defined as an infinite
Minkowski sum

Frv =Ty AV & AuT AV & ATy AV & -

while in the implementation, computable outer approxima-
tions of F, are used.

In addition to the rate limits, if range limits are also
imposed on the command as in (12), then the state trajectory
converges to the set

Sy = Far @ Ty Vs (16)

With the extra range and rate limits on the commands
(12), (13) added to the optimization problem defining the
reference governor (10), the state trajectories in mode M will
be ultimately bounded in the set Sh; N Proj, O« »r. Hence
the condition (11) can be weakened to

Sn NProj, O v C intRiVC%'/I, VM’ € succ(M). (17)

V. MASS-SPRING-DAMPER SYSTEM EXAMPLE
A low order example of a system with redundant actuation
is given by a mass-spring-damper system, where mo = 1 kg
for the mass, kg = 1 N/m for the spring stiffness and ¢y =
0.01 Ns/m for the damping coefficient.

A. System Dynamics, Mode Definitions and Constraints

In the normal operating mode (Mode 0), the continuous-
time system model is given by

&= Ax+ Bu, y=Cxr (18)
where u = [f; fo]7 is the input with f; and f, being the
forces in N, * = [d w|? is the state with d being the

displacement of the mass in m and w being the velocity of
the mass in m/s, y = d is the output, and

A[_(LO _100],3[9 9},0[1 0].
mo mo mo mo

Three failure modes are possible in this system and the
potential failure paths/scenarios are illustrated in Figure 1:



In Mode 1, f; operates normally while fo fails, that is, u =
[f1 0]T; In Mode 2, f, operates normally while f; fails,
that is, u = [0 f2]T; In Mode 3, Both f; and f fail, that
is, u=[0 0]T.

The discrete-time model of the form (1) with M €
{0,1,2,3} is obtained by converting the model (18) to
discrete-time assuming the sampling period of 0.2 sec.

The controller (2) for modes M = 0, 1, 2 is designed using
Linear Quadratic Regulator (LQR) theory to obtain K ;. The
feedforward gain G, is computed so that the steady-state
gain from v to the mass position d is equal to 1. In the
selection of the LQR weights QQ5; and Ry, it is assumed
that the use of f; is more expensive than the use of fs.
The closed-loop system of each mode is design using the
following parameters:

e For Mode 0, 1, and 2,

Qo = {(1) (1)], Q1= Qo, Q2= Qo,

1000 0 10 0 0 0
RO{ 0 250}’]%1{0 0}’R2{0 2.5}

o For Mode 3, since both actuators fail, the system
operates as it is in open-loop, but to keep the consistency
of the notation, let

o[y o f]

The constraints are imposed on the position of the mass
and on the magnitudes of the actuation forces:

|d‘ S Ymax, |f1‘ S Umax,1, |f2| S Umax,2

where ymax = 1 m and Umax,1 = Umax,2 = 1 N. Using (2),
these constraints are converted into the form (4).

B. FMEM Strategy Design

The development of the FMEM strategy based on con-
straint admissible and recoverable sets proceeds backward
beginning from Mode 3 to the predecessor modes.

Since in Mode 3 the system runs in open-loop, the
constraint admissible set in Mode 3 can be computed directly
for the states (compare with (7) ) as

Proj, O3 = {z0 : ¢ € X35(0) Vt € Z>o}

={z0: Ao_,r0<bo.,}, (19)
and the recoverable set of Mode 3 is
Ry =Proj,O3 VN3 >0, (20)

The equation (20) implies that (11) can be satisfied only
if z; € Proj,O 3 is imposed as the state constraint
during the operation in Modes 1 and 2. To demonstrate
using mechanisms in Section IV-B and IV-C to satisfy this
requirement, two case studies are considered.

In the first case, state constraints of Mode 1 and 2 are
tightened while the command range and rate limits are
not used. This can be done by imposing state constrains
of Mode 3 to Mode 1 and 2. Since the number of the

inequalities in the representation of Proj, O 3 can be large,
this can result in highly complex Oo,1 and O 2 and large
computational effort in using them in the implementation
of the reference governor. Consequently, we use a simpler
subset P3 C Proj,Os 3. Such a subset is generated by
removing close to being redundant inequalities from the
representation of Proj, O 3 and a scaling transformation to
ensure that P3 C Proj, O 3. This leads to

P3 = {.TO : Ap3$0 S bpg}.

Now for M € {1,2}, we let X;; = Ps. Then, X/(v) and
O, can be constructed by (5) and (7).

The second case relies on having the command range and
rate limits (12) and (13) of the form |v| < vyax and |Av| <
Avmax. No additional state constraints are added to further
restrict the operation in Mode 1 and 2. That is, for M €
{1,2}, we let Xp(v) = X(v) and construct Oy ps using
.

Finally, for both cases, O, is computed based on (7)
with Xo(v) = X (v).

The value of € = 0.01 was used in computing O, s for
M € {0,1,2}. The projections Proj,Os »s computed using
Bensolve [12] are shown in Figure 2(a) for the first case
and in Figure 3(a) for the second case, with Figures 2(b) and
3(b) showing the zoom-in views.

Recoverable sets in the first case for mode switching
between Mode 0 and Mode 1 or 2 are based on (9) where
Xg,, (v) = Xp(v), and Ny is chosen sufficiently large to
satisfy (11). Figures 2(a) and (b) show the recoverable sets
of Mode 2 as examples. After comparing the admissible and
recoverable sets for both Mode 1 and Mode 2, Nj; should
at least be 3 to satisfy (11). Hence, we set Ny = Ny = 3 to
minimize the length of the recovery sequence. Note that for
transitions to Mode 3, the condition (11) is satisfied as by
construction so both Proj, O 1 and Proj, O 2 are subsets
of Proj, O 3

For the second case, Proj,Ox 2 2 Proj,Os ¢ as shown
in Figure 3(a), and so is for Proj,O 1. Thus, for mode
transitioning from Mode O to Mode 1 or 2, since zj €
Proj,Oco,ps for M € {1,2} is automatically satisfied, a
recovery sequence is not needed. Now, to safely switch from
Mode 1 or 2 to Mode 3, vpyax and Avpax need to be chosen
so that the condition (17) holds. In order to maximize the
size of Sy N Proj,Oc v for M € {1,2} that restrict the
operation of the system in Mode 1 and Mode 2, we set
Umax = 1 and Avpae = 0.007 for Mode 1, and vy = 1
and Avpax = 0.01 for Mode 2.

2n

C. Simulation Results

Results of the two case studies are shown in Figures 2
and 3, where the trajectories are plotted in (a) and (b), and
time-based signals are in (c) and (d).

In both cases, the system begins with operation in the nor-
mal mode (Mode 0), and then sequentially switches to Mode
2 and Mode 3. The reference is set to be switching between
—0.99 m and 0.99 m. The time-based results show that all
state and control input constraints are satisfied throughout
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Fig. 3. Projections of sets and simulation results for the second case.

the simulation. When the system switches to Mode 2, in
comparison with the first case study, the trajectory in the
second case immediately starts approaching S, NProj, O 2
and stays inside it after the state converges. Effects of
command rate limiting are clearly visible from the time-
based signals.

VI. AIRCRAFT LONGITUDINAL FLIGHT CONTROL
EXAMPLE

We now consider a higher order example of aircraft
longitudinal flight control with engine thrust and elevator
actuators.

A. System Dynamics, Mode Definitions and Constraints

The aircraft model represents a Boeing 747-100 aircraft
at steady level flight corresponding to Mach 0.5 cruise at

20,000 feet [13]. The linearized longitudinal flight dynamics
under the normal operating conditions can be represented
by the form (18) where z = [Ap Aw Aq AT,
u = [Aar A6S]T, and y = Ah, p and w, respectively,
are the projection of the velocity vector on the x-axis and
z-axis of the body-fixed frame in m/s, ¢ is the projection
of the angular velocity vector on the y-axis in °/s (degree
per second), 6 is the pitch angle in ° (degree), ar is the
thrust-to-mass ratio in m/ 52, 6. is the elevator deflection in
°, h is the climb rate in m /s, and A denotes the deviation
from the trim value. In this model,

—0.0073  0.0274  —0.0040 —0.1713
4 — |0-1205 —0.4350  2.7645 0
~ | 0.0188  —0.3196 —0.4850 0o |’
0 0 1 0
(22)
1 —0.0053
0 0.1170
B=1y 45 | C=[0 -1 0 2.7645].
0 0

The model is then converted to discrete-time assuming 0.2
sec update period.

The normal and failure modes are defined and the con-
troller for each mode is designed similar to Section V. In
Mode 0, the controller is designed to track a given climb
rate deviation and a zero deviation of the velocity magnitude
from the nominal, that is, to hold \/u2 + w? at constant.
During Modes 2 and 3, Aar = 0 in the linearized model
can represent FADEC maintaining engine availability when
handling an internal engine failure mode but having to restrict
the ability to change engine thrust.

The constraints are imposed on the climb rate and on the
thrust and the elevator inputs as |Ah| < Ymax> |Aar| <
Umax,1 and |A56| < Umax,2» where Ymax = ) m/s, Umax,1 =
5 N/kg and upmax 2 = 5°. These constraints define X (vy)
and can be put into the form (4).

B. FMEM Strategy Design

The design process of admissible and recoverable sets for
this aircraft example is similar to the first case in Section V-
B, except for two main differences. First, in Mode 0, the state
constraints X (v) in (7) had to be tighten. Second, Xg,, (v;)
in (9) exploits the relaxation in Mode 1 and 2.

The rationale for these two steps is illustrated in Figure 4
as an example, showing the projection of O ¢ and Révol,l
on the first two coordinates Ap and Aw. It shows that the
change of IV has little impact on the shape of R(I)Vofl relative
to Ox,0 in the Aw direction. In order to satisty (11), a
large value for N is required, meaning the reconfiguration
will take a long time. Similar situation also occurs in Mode
2. Thus, in order to have a reasonable value of N,; for
M € {1,2}, Xo(v) and Xg,,(v) for M € {1,2} need
to be adjusted.

The first change is to reduce the size of O ¢ by adding
extra state constraints. This is done by having Xy(v) =
X (v) N Xy where

Xo={z: Ap,x <nobp,}. (23)
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Here, no > 1 is a design parameter. Smaller values of 7o
make it more likely that (11) can be satisfied with small Ny
and Ny, but at the same time, O o shrinks, meaning that
the system operation in the normal mode is more restricted.
Thus, the value of 1o needs to be optimized and carefully
chosen.

To avoid the need for over restriction in Mode 0O, the
second change is introduced, that is, to relax state constraints
during the application of the recovery sequence in Mode 1
and 2 based on (9), with

XR]\/I = {JC » Axz < nRMbX}v 24)

where ng,, > 1 is also a design parameter. The “size” of
Révo",/’M increases as the value of ng,, increases, while the
trade-off is that the system could operate far outside from the
normal constraints if the value of ngr,, gets too large. Thus,
the value of ng,, also needs to be optimized and chosen with
care.

Based on optimization over a grid of values, we have 1o =
1.5, and we choose N; = 9, nr, = 8 for Mode 1, and
Ny =10, ng, = 11 for Mode 2.

C. Simulation Results

Figure 5 shows an example of the simulation with mode
switching from Mode 0 to Mode 1 at 72.2 sec and then from
Mode 1 to Mode 3 at 120.2 sec. The time-based signals show
that all input and output constraints are respected through out
the simulation.

VII. CONCLUDING REMARKS

To be able to handle onboard failures safely (i.e., without
violation of constraints), Failure Mode and Effect Manage-
ment (FMEM) systems have to be appropriately designed. In
systems with multiple redundant actuators, system operating
modes can be defined dependent on functioning actuators.
The operation in the preceding mode may have to be
restricted either by imposing extra pointwise-in-time state
constraints or by deliberately slowing down the response in
order to ensure that in the event of a failure there exists a
recovery control sequence that can avoid constraint violation.
The paper illustrated some of the ingredients and approaches
that can be used in a systematic FMEM system design based
on reference governors, and based on recoverable and con-
straint admissible sets. The development of comprehensive
numerical procedures which can be used to guarantee the
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Fig. 5.
Mode 3.

Simulation results with failure path from Mode 0 to Mode 1 to

set inclusion conditions for safe reconfigurability will be
addressed in future publications.
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