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Abstract—In this paper, the performance of a secure massive
multiple-input multiple-output (MIMO) system adopting low-
resolution digital-to-analog converters (DACs) is analyzed over
spatially correlated wireless channels. A tight lower bound for
the achievable secrecy rate is derived with artificial noise (AN)
transmitted in the null space of the user channels. Using the
analytical results, the impact of spatial correlation on the secrecy
rate is explicitly evaluated in the presence of low-resolution DACs.
The analytical observations reveal that using low-resolution DACs
can be beneficial to the secrecy performance compared with ideal
DACs, when the channels are strongly correlated and optimal
power allocation is not employed.

Index Terms—Physical layer security, massive MIMO, spatial
correlation, digital-to-analog converters (DACs)

I. INTRODUCTION

PHYSICAL layer security (PLS) has become an emerging

technology for securing wireless communication without

relying upon traditional cryptographic mechanisms. Compared

to conventional upper-layer cryptographic schemes, PLS has

the advantages of low computational complexity and low

resource consumption [1]. Massive multiple-input multiple-

output (MIMO) systems provide another disruptive technol-

ogy for fifth generation (5G) cellular communications, and

have shown great potential in improving spectral and energy

efficiency. The use of large-scale antenna arrays in massive

MIMO provides a large excess of redundant spatial degrees

of freedom (DoF), which can be exploited to achieve secure

physical layer transmission. This idea has been attracting

increasing research interest in the past few years [2], [3].

Massive MIMO transmission requires a very high power

consumption if high-resolution digital-to-analog converters

(DACs) are employed in the RF chains for each antenna.

At the transmitter, power expenditure is dominated by power

amplifiers (PAs), which are usually required to operate within

a high linearity regime to avoid distortion. A practical solution
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to the above challenge is to use low-resolution DACs, which

relaxes the requirement of linearity and allows the amplifiers

to operate closer to saturation, thus increasing the efficiency of

PAs [4], [5]. In [6], both finite-bit DACs at base station (BS)

and finite-bit analog-to-digital converters (ADCs) at user side

were analyzed in the massive MIMO downlink. The work was

then extended in [7] by considering spatially correlated chan-

nels. Further in [8], a constant envelope precoding technique

was devised for the multiuser MIMO with one-bit DACs.

The effect of hardware impairments (HWIs) on spectral effi-

ciency of massive MIMO systems has been studied in [9]. Re-

garding the secrecy performance, the authors in [10] analyzed

the effects of HWIs on secrecy rate, where ideal converters

with infinite resolution were considered. Secure communica-

tion in a massive MIMO system with low-resolution DACs was

investigated in [11], which revealed that low-resolution DACs

can achieve superior secrecy rate under certain conditions, e.g.,

at low SNR or with a large power allocation factor.

Most of the existing works on low-resolution DACs trans-

missions have focused on the assumption of independent

identically distributed (i.i.d.) channels for massive MIMO.

However, in practice, the limited space between the BS anten-

nas as well as the rich scattering propagation environment can

result in spatial correlation. The impact of correlated Rayleigh

fading channels on optimal multiuser loading was analyzed in

[6] by applying asymptotic random matrix theory. How spatial

correlation impacts secure massive MIMO communication

with low-resolution DACs is still an open problem.

In this paper, we focus on secure transmission in the massive

MIMO downlink when low-resolution DACs are employed. A

tight lower bound for the ergodic secrecy rate is derived that

explicitly characterizes the impact of channel correlation on

the secrecy rate for typical correlated channels. An optimal

power allocation strategy is proposed, which suggests that

more power should be allocated to AN when strong channel

correlation is present. It is revealed that using low-resolution

DACs can improve the secrecy performance for a fixed power

allocation factor under strong spatially correlated channels.

Notation: X∗, XT , XH and tr(X) represent the conju-

gate, transpose, conjugate transpose and trace of matrix X,

respectively. E{·} is the expectation operator. diag(·) denotes
a diagonal matrix that retains only the diagonal elements of

the input matrix, and d̃iag(·) represents a diagonal matrix with

the input vector as its diagonal entries.
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II. SYSTEM MODEL

The secure massive MIMO system under investigation

comprises one N -antenna BS, K single-antenna legitimate

users, and one M -antenna passive eavesdropper. The channel

matrices are modeled based on the Kronecker channel model

as shown in [12]. To make the problem more tractable, we con-

sider the system with a common correlation matrix at the BS.

Specifically, the channel between the BS and the users is mod-

eled as H = D
1
2 H̃R

1
2 , where the elements of H̃ ∈ C

K×N

are i.i.d. Gaussian random variables with zero mean and unit

variance, the diagonal matrix D ∈ C
K×K characterizes the

large-scale fading with its kth diagonal element given by βk,

and R ∈ C
N×N is the transmit covariance matrix satisfying

tr(R) = N . Similarly, the channel matrix between the BS and

the eavesdropper is He = D
1
2
e H̃eR

1
2 , where H̃e ∈ C

M×N

contains i.i.d. Rayleigh fading channel coefficients following

CN (0, 1). The diagonal matrix De represents the large-scale

fading at the eavesdropper with identical diagonal entries βe.

The BS desires to transmit the symbols s =
[s1, s2, ..., sK ] ∈ C

K×1 to the legitimate users with

E{ssH} = IK using a linear precoding matrix W ∈ C
N×K .

The eavesdropper’s channel state information (CSI) is assumed

unknown to the BS, and AN is injected to ensure confidential

communication. The AN vector t ∼ CN (0, IN−K) is

precoded by an AN shaping matrix V ∈ C
N×(N−K). Denote

by P the total transmit power. The power allocation factor

ξ ∈ (0, 1] aims to strike a balance between the transmit signal

and the AN. The unquantized downlink transmit signal vector

x is then expressed as

x =
√
μWs+

√
νVt, (1)

where μ � ξP
K and ν � (1−ξ)P

N−K .

The precoded signal is transmitted after DAC quantization,

which is denoted by Q(x). Establishing the non-linear quan-

tization model of a finite-bit DAC is challenging. We follow a

popular way of charactering the quantizer by a linear function

applying the simple additive quantization noise model. The

quantized signal vector can accordingly be decomposed as

z = Q(x) =
√
1− ρx+ q, (2)

where the quantization noise q is assumed to be uncorrelated

with the input signal x, and

Cq = E{qqH} = ρE
{
diag(xxH)

}
. (3)

The value of the distortion factor ρ depends on the DAC

resolution; for example, it can be chosen as in [5] for DAC

resolutions of less than 5 bits, or as ρ =
√
3π
2 · 2−2b for

scenarios with higher precision, where b represents the number

of quantization bits. From (1) and (3), the covariance matrix

of the quantization noise equals

Cq = ρ
[
μdiag(WWH) + νdiag(VVH)

]
. (4)

Given the CSI of the legitimate channels, the matrix V is

designed to lie in the null space of the channel matrix H, i.e.,

HV = 0, which (ideally) makes the AN “invisible” to the

legitimate users [13]. Using (1) and (2), the signals received

at the users and the eavesdropper are expressed as

y =
√
1− ρ(

√
μHWs+

√
νHVt) +Hq+ n (5)

ye =
√
1− ρ(

√
μHeWs+

√
νHeVt) +Heq+ ne, (6)

where n ∼ CN (0, σ2
nIK) and ne ∼ CN (0, σ2

eIM ) respec-

tively represent the additive noise terms at the users and at

the eavesdropper.

III. ACHIEVABLE ERGODIC SECRECY RATE ANALYSIS

In this section, we derive a tight lower bound for the ergodic

secrecy rate of the secure multiuser massive MIMO downlink

and analyze the impact of spatial correlation on the secrecy

rate in the presence of low-resolution DACs.

A. Lower Bound on the Achievable Ergodic Secrecy Rate
We adopt linear matched filter (MF) precoding for data

transmission, i.e., W = H/‖ H ‖. The received signal at the

kth user according to (5) is expressed as

yk =
√
1− ρ

(√
μhT

kWs+
√
νhT

kVt
)
+ hT

k q+ nk. (7)

Then, under the assumption of Gaussian distributed interfer-
ence, a lower bound on the ergodic rate for the kth user can
be calculated as

Rk = E
{
log2(1 + γk)

}
, (8)

γk =
(1− ρ)μ

∣∣hT
k wk

∣∣2
�+ hT

k Cqh∗
k + (1− ρ)νhT

k VVHh∗
k + σ2

n

, (9)

where � = (1 − ρ)μ
∑
j �=k

∣∣hT
k wj

∣∣2, hT
k denotes the kth row of

H, and wk is the kth column of W. Note that the numerator

of γk is the power of the desired signal component for the kth
user, and the denominator represents the power from inter-

user interference, quantization noise from the low-resolution

DACs, AN leakage, and thermal noise.
Lemma 1: A lower bound on the achievable rate (8) of user

k is given by

Rk = log2

(
1 +

(1− ρ)β2
kγ0ξN/

∑K
i=1 βi

�′ + ρβkγ0 + 1

)
, (10)

where �′ = (1 − ρ)ξγ0βktr(R
2)

∑
j �=k

βj/(N
∑K

i=1 βi), and γ0 =

P
σ2
n
is the average SNR.

Proof: Please refer to Appendix A. �
To guarantee secure communication in the worst case, we

assume that the eavesdropper has perfect CSI of all legitimate

users and can remove all the interference from the legitimate

users [2], [3], [10], [11]. According to (6), the ergodic rate of

the eavesdropper is expressed as

C = E

{
log2

(
1 + (1− ρ)μwH

k HH
e X−1Hewk

)}
, (11)

where X is defined as

X = (1− ρ)νHeVVHHH
e +HeCqH

H
e . (12)

Furthermore, we assume that σ2
e is negligibly small corre-

sponding to the worst case, and consequently, C is independent

of the path-loss of the eavesdropper βe [2], [3], [10], [11]. A

tight upper bound for C is derived in the following lemma.
Lemma 2: For N → ∞, an upper bound on the eavesdrop-

ping rate is given by

C = log2

(
1 +

φMξκβk/
∑K

i=1 βi

φκ2
(

N
tr(R2)

− a
)−�

)
, (13)

where a = M
N
, b = K

N
, ρ′ = ρ

1−ρ
, φ = 1− b, κ = 1− ξ + ρ′, and

� = ab(1− ξ)2.

Proof: Please refer to Appendix B. �
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Applying Lemma 1 and Lemma 2, a lower bound on the

ergodic secrecy rate of the kth user is obtained in Theorem 1.
Theorem 1: For N → ∞, the achievable ergodic secrecy

rate for the kth user is lower bounded by

Rsec � [Rk − C]+, (14)

where [x]+ = max{0, x}, and Rk and C are given in (10)

and (13), respectively.
If no spatial correlation is present, i.e., R = I, then (14)

reduces to

Rsec =

[
log2

(
1 +

(1− ρ)β2
kγ0ξN/

∑K
i=1 βi

(1− ρ)γ0βkξ
∑
j �=k

βj/
∑K

i=1 βi + ρβkγ0 + 1

)

− log2

(
1 +

φMξκβk/
∑K

i=1 βi

φκ2(1− a)−�

)]+
.

(15)

As expected, Rsec increases with N and γ0.

B. Optimal Power Allocation Strategy for AN
Here we investigate the impact of the power allocation factor

on the ergodic secrecy rate in (14) under spatially correlated
channels. Assume ab � 1 in (13), which is reasonable in
massive MIMO equipped with a large number of antennas.
The derivative of Rsec w.r.t. ξ is calculated as

∂Rsec

∂ξ
=

L1L2

ln2(L3ξ + L2)[L2 + ξ(L1 + L3)]

− Mtr(R2)(1 + ρ′)βk

ln2
[∑K

i=1 βi

(
N − tr(R2)a

)
κ2 +Mξβktr(R2)κ

] , (16)

where L1 = (1 − ρ)β2
kγ0N/

∑K
i=1 βi, L2 = ρβkγ0 + 1, and

L3 = (1 − ρ)γ0βktr(R
2)

∑
j �=k

βj/(N
∑K

i=1 βi). Since
∂Rsec
∂ξ

> 0

for small ξ and
∂Rsec
∂ξ

< 0 for large ξ, the optimal power
allocation factor ξ∗ that achieves the highest secrecy rate is
obtained by setting

∂Rsec
∂ξ

= 0. A closed-form expression for
ξ∗ can be founded as follows:

ξ∗ =
−B −√

B2 − 4AC

2A
, (17)

where the parameters A, B, and C are given by

A = L1L2G2 − L1L2G3 −G1L3(L1 + L3), (18)

B = (1 + ρ′)L1L2(G3 − 2G2)−G1L2(L1 + 2L3), (19)

C = G2L1L2(1 + ρ′)2 −G1L
2
2, (20)

and G1 = Mtr(R2)(1 + ρ′)βk, G2 =
∑K

i=1 βi

(
N − tr(R2)a

)
,

and G3 = Mβktr(R
2).

Assuming βk = 1, 1 ≤ k ≤ K, we can simplify the above

expressions to evaluate the impact of spatial correlation on

ξ∗ for different DAC resolutions. Comparing the value of ξ∗

for the special case of an i.i.d. channel, i.e.,tr(R2) = N
with a fully correlated channel, i.e., tr(R2) = N2 for a

Hermitian Toeplitz correlation matrix, we can easily observe

that ξ∗ decreases when tr(R2) increases from N to N2. The

relationship between ξ∗ and the design parameters, including

the DAC resolution and channel correlation coefficient, is

verified in Section IV through numerical results.

C. Impact of Spatial Correlation
We first analyze the impact of the antenna ratio a under

the correlated channel condition when AN is injected. In (14),

Rsec decreases with respect to a. Considering the special case

of βk = β, 1 ≤ k ≤ K, and ξ → 0, by setting Rsec = 0, the
maximum number of eavesdropper antennas that still allows

for a positive secrecy rate can be obtained from the following

proposition.
Proposition 1: If a positive secrecy rate can be achieved,

then the maximum antenna ratio a is obtained as

asec =
(1− b)Nγ0

tr(R2)
[
γ0ρb(ρ− β − 2) + γ0(1 + βρ) + 1− b

] . (21)

Remark 1: By direct inspection of (21), the maximum

number of eavesdropper antennas that can be tolerated for

secure transmission decreases with ρ and the spatial correlation
level because Eve can wiretap more information under strongly

correlated channels. For the special case of ρ → 0 and

tr(R2) = N2, we have asec = (1−b)γ0

N(1−b+γ0)
, which indicates

that asec is independent of the large-scale fading factor with

infinite-resolution DACs.

To extract clear insights, we further consider a representative

exponential correlation model [14]

Rij = ζ |i−j|, (22)

where ζ denotes the correlation coefficient. The exponential

model is widely adopted in literature and is applicable to

analysis for a massive MIMO system with uniform planar

array (UPA) scenarios [15].

Proposition 2: The secrecy rate gap for different DAC

resolutions decreases with the correlation coefficient ζ.

Proof: lim
N→∞

tr(R2)
N = 1+ζ2

1−ζ2 exists under the exponential

correlation model in (22). From (14), we have
∂Rsec
∂ρ

=
∂Rk
∂ρ

−
∂C
∂ρ

. The first term
∂Rk
∂ρ

is given by

∂Rk

∂ρ
= − β2

kγ0ξN(1 + βkγ0)
∑K

i=1 βi

ln2(Υβkγ0 +
∑K

i=1 βi)(Ψβkγ0 +
∑K

i=1 βi)
, (23)

where Υ = (1 − ρ)(Nβk + ζ̃
∑

j �=k βj)ξ + ρ
∑K

i=1 βi, Ψ =

ρ
∑K

i=1 βi + (1 − ρ)ξζ̃
∑

j �=k βj , and ζ̃ = 1+ζ2

1−ζ2
. The expression

of ∂C
∂ρ

is shown in (24), on the top of the next page. Assuming
ab � 1 for typical massive MIMO systems, (24) can be
simplified as

∂C

∂ρ
= − Mξφβk ζ̃/

∑K
i=1 βi

ln2(1− ρ)2
{[

κ− (Mξβk/
∑K

i=1 βi − aκ)ζ̃
]
κφ

} . (25)

Focusing on the impact of ζ, we observe that ∂C
∂ρ

< 0

and decreases with ζ, while
∂Rk
∂ρ

< 0 and increases with

ζ. Therefore,
∂Rsec
∂ρ

is an increasing function of ζ, which

completes the proof. �
Remark 2: From (23) and (25), it shows that

∂Rsec
∂ρ

< 0 and
∂Rsec
∂ρ

is a monotonically increasing function in terms of the

level of spatial correlation ζ. It implies that the eavesdropper’s

capacity C degrades faster than Rk does at large ζ. Thus, we
conclude that there exists a threshold of correlation coefficient,

i.e., ζ, where lower-resolution DACs achieve a higher secrecy

rate for ζ ∈ (ζ, 1). The value of ζ is obtained from the solution

of
∂Rsec
∂ρ

= 0 by focusing on the impact of spatial correlation.

Note that the higher the correlation the lower the effective

dimension (d.o.f.), in the extreme case of ζ = 1, the users and
Eve are separated only in the angle of arrival domain, which

only has dimension 1 instead of N . Therefore, quantization

noise from lower-resolution DACs could compensate for AN

to improve secrecy rate under spatially correlated channel.

IV. NUMERICAL RESULTS

In this section, the analytical results are validated through

Monte-Carlo simulation. We consider a system with N = 256,
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∂C

∂ρ
= − Mξφβk ζ̃[(1− aζ̃)φκ2 +�ζ̃]/

∑K
i=1 βi

ln2(1− ρ)2
[
(aζ̃ − 1)φκ2 +�ζ̃

]{[
(aκ2 −Mξκβk/

∑K
i=1 βi)ζ̃ − κ2

]
φ+�ζ̃

} (24)

K = 16, and M = 4 in all simulations. The large-scale fading

is modeled as βk = (dref/dk)
η , where η = 3.8 denotes the

path loss exponent, dref = 300 (m) and dk ≤ 500 (m) are,

respectively, the reference distance and the distance between

the BS and the kth user. The expected values in (14) were

evaluated by averaging over 1000 random channel realizations.
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Fig. 1. Ergodic secrecy rate and analytical lower bound versus SNR for
different spatial correlation coefficient ζ (ξ = 0.7)

Fig. 1 shows the ergodic secrecy rate versus the average

SNR γ0 under different DAC resolutions and spatial correla-

tions. The derived lower bound on the secrecy rate is fairly

accurate and tight for the entire range of SNR. In addition, it

is observed that the secrecy rate is decreasing as ζ increases.

Fig. 2 plots the ergodic secrecy rate as a function of the

power allocation factor ξ. The optimal power allocation factor

ξ∗ largely depends on ζ. Specifically, It is observed that ξ∗

decreases with ζ. The information signal leakage grows when

the spatial correlation is strong. Thus, more power should be

allocated for AN to ensure secure communication.

In Fig. 3 (a) we show the ergodic secrecy rate versus ζ with

different DAC resolutions for γ0 = 10 dB. We choose a fixed

power allocation factor ξ due to the difficulties in optimizing

ξ theoretically. The secrecy rate loss due to low-resolution

DACs decreases with ζ as predicted in Remark 2. Interestingly,
although the channel correlation has a detrimental effect on the

secrecy rate, the use of 1-bit DACs can improve the secrecy

rate when the spatial correlation coefficient is large. This is

because the additional quantization noise serves to increase the

level of AN, which is beneficial for spatially colored channels

if the AN level has not already been optimized. Finally, Fig.

3 (b) presents the secrecy rate versus ζ assuming the optimal

power allocation ξ∗ in (17) is chosen. The secrecy rate gaps

are ΔRsec = 0.697 bit/s/Hz at ζ = 0 and ΔRsec = 0.434
bit/s/Hz at ζ = 0.8, respectively. If optimal power allocation

is adopted, then using infinite-resolution DACs can always

achieve a higher secrecy rate. In this case, quantization noise

from lower-resolution DACs does not compensate for the AN

anymore. However, we observe that the secrecy rate loss due

to low-resolution DACs decreases with channel correlation

coefficient, regardless of the value of ξ.
For comparison, Fig. 4 plots the Monte-Carlo simulation by

using the spatial correlation model in [9], denoted by [R]s,m =
β
L

∑L
l=1 e

jπ(s−m) sin(ϕl)e−
Δ2

2

(
π(s−m) cos(ϕl)

)2

, where β is the

large scale fading coefficient, ϕ is the actual angle-of-arrival

and Δ is the azimuth angular spread. We consider L = 10
scattering clusters and ϕ ∼ [−Δ

2 , Δ
2 ]. It is observed that

transitioning from larger to smaller angular spread (Δ = 50o

to Δ = 12o) significantly reduces the secrecy rate of the

kth user for different DAC resolutions. However, the lower

resolution DAC is always beneficial for secrecy rate with a

fixed ξ under highly correlated channels as expected.
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Fig. 2. Achievable ergodic secrecy rate versus the power allocation factor ξ
for different DAC resolutions (γ0 = 10 dB)
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Fig. 3. Achievable ergodic secrecy rate versus ζ for different DAC resolutions
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Fig. 4. Ergodic secrecy rate versus SNR (ξ = 0.7)

V. CONCLUSION

This paper has characterized the performance of AN-based

secure transmission in a massive MIMO downlink system with

low-resolution DACs under spatially correlated channels. In

particular, it is shown that optimal secrecy performance can

be obtained by increasing the amount of power dedicated

to artificial noise when the channel correlation increases.

Furthermore, the use of low-resolution DACs has been shown

to be beneficial to the secrecy performance for a fixed power

allocation factor when the channels possess strong spatial

correlation. Interesting future extension of this paper includes
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studying the impact of different spatial correlation matrices at

both transmitter and the eavesdropper.

APPENDIX A

Consider MF precoding satisfying tr(WWH) = K, which

leads to W =
√

K
N

∑K
i=1 βi

H. First, we directly obtain

∣∣hT
k wk

∣∣2 =
K

N
∑K

i=1 βi

∣∣hT
k hk

∣∣2
=

Kβ2
k

N
∑K

i=1 βi

[
tr(R)

]2 a.s.−−→ KNβ2
k∑K

i=1 βi

,

(26)

where we have used 1√
N
h̃T
k R

1√
N
h̃∗
k − 1

N
tr(R)

a.s.−−→ 0 in [16,
Lemma 4]. Then, the inter-user interference is calculated as

� = (1− ρ)μ
∑
j �=k

K

N
∑K

i=1 βi

∣∣hT
k hj

∣∣2
a.s.−−→ (1− ρ)μKβktr(R

2)
∑
j �=k

βj

/(
N

K∑
i=1

βi

)
.

(27)

For large N and K, Cq converges to

Cq
a.s.−−→ ρ

P

N
IN , (28)

where we use the definition of μ and ν, and the fact that
diag(WWH)

a.s.−−→ K
N
IN and diag(VVH)

a.s.−−→ N−K
N

IN due
to the strong law of large numbers. Further, we obtain the
component of the quantization noise as

hT
k Cqh

∗
k

a.s.−−→ ρ
P

N
βktr(R) = ρPβk. (29)

Regarding the AN power, it follows that

hT
k VVHh∗

k = 0, (30)

since HV = 0. Finally, by substituting (26), (27), (29), (30)

and the definition of μ and ν into (8), and according to the

Continuous Mapping Theorem, we complete the proof.

APPENDIX B

By applying Jensen’s inequality, the capacity of the eaves-

dropper can be upper bounded as

C ≤ log2
[
1 + (1− ρ)μE

{
wH

k HH
e X−1Hewk

}]
. (31)

Let us first focus on the term X and by substituting (28) into
(12) yields

X
a.s.−−→

[
(1− ρ)ν + ρ

P

N

]
X1 + ρ

P

N
X2, (32)

where X1 = HeVVHHH
e and X2 = HeV0V

H
0 HH

e . It is
obvious that [V V0][V V0]

H = IM , because [V V0] forms
a complete orthogonal basis. Eigendecompose R such that
R = UΛUH to decorrelate matrix He as Z = HeΛ

− 1
2UH ,

where Λ = d̃iag(λ1, ..., λN ) is the diagonal matrix of the
eigenvalues of R and the columns of U consist of the
corresponding eigenvectors. Since U is unitary, the statistics
of ZU are identical to those of Z. Thereby, the distributions
of X1 and X2 are the same as

N∑
i=1

N∑
j=1

λ
1
2
i λ

1
2
j ziviv

H
j zHj (33)

and
N∑
i=1

N∑
j=1

λ
1
2
i λ

1
2
j ziv0,iv

H
0,jz

H
j , (34)

where zi is the ith row of Z, vi and v0,i are ith column of
V and V0, respectively. Following the same approach in [17],
Y =

[
(1 − ρ)ν + ρ P

N

]
Y1 + ρ P

N
Y2 may be accurately approx-

imated as a single scaled Wishart matrix Y ∼ WM (η, ϕIM ),

where we define Y1 =
∑N

m=1 λmzmvmvH
mzHm and Y2 =

∑N
n=1 λnznv0,nv

H
0,nz

H
n . Equating the first two moments of

those matrices with Y1 ∼ ∑N
m=1 λmWM (N − K, 1

N
IM ) and

Y2 ∼ ∑N
n=1 λnWM (K, 1

N
IM ) leads to

ηϕ =

[
(1− ρ)ν + ρ

P

N

]
(N −K) + ρ

P

N
K (35)

and

ηϕ2 =
tr(R2)

N

{[
(1−ρ)ν+ρ

P

N

]2

(N−K)+

(
ρ
P

N

)2

K

}
, (36)

where we use
∑N

i=1 λi = tr(R) and
∑N

i=1 λ
2
i = tr(R2). By

exploiting the independence of the elements in H̃e, we can

further obtain X−1 a.s.−−→ 1/(ϕ(η −M))IM with η > M , where

we use the property A−1 a.s.−−→ 1/(n − m)Im for a Wishart

matrix A ∼ Wm(n, Im) with n > m [4]. Substituting this result

and E
[
wH

k HH
e Hewk

]
= MKβk

N
∑K

i=1 βi
tr(R2) into (31) completes

the proof.
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