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Abstract—The use of one-bit analog-to-digital converters
(ADCs) is a practical solution for reducing cost and power con-
sumption in massive Multiple-Input-Multiple-Output (MIMO)
systems. However, the distortion caused by one-bit ADCs makes
the data detection task much more challenging. In this paper,
we propose a two-stage detection method for massive MIMO
systems with one-bit ADCs. In the first stage, we present several
linear receivers based on the Bussgang decomposition that show
significant performance gains over conventional linear receivers.
Next, we reformulate the maximum-likelihood (ML) detection
problem to address its non-robustness. Based on the reformulated
ML detection problem, we propose a model-driven deep neural
network-based detector, namely OBMNet, whose performance
is comparable with an existing support vector machine-based
receiver, albeit with a much lower computational complexity. A
nearest-neighbor search method is then proposed for the second
stage to refine the first stage solution. Unlike existing search
methods that typically perform the search over a large candidate
set, the proposed search method generates a limited number of
most likely candidates and thus limits the search complexity.
Numerical results confirm the low complexity, efficiency, and
robustness of the proposed two-stage detection method.

Index Terms—Massive MIMO, one-bit ADCs, linear receivers,
deep neural networks, machine learning, data detection.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems,

possessing the capability of boosting the throughput and

energy efficiency by several orders of magnitude over conven-

tional MIMO systems [1], [2], are considered to be a disruptive

solution for 5G-and-beyond networks [3], [4]. However, a mas-

sive MIMO system requires a large number of radio-frequency

(RF) chains, which significantly increases the power consump-

tion and hardware complexity. Among the components of an

RF chain, high-resolution analog-to-digital converters (ADCs)

are power-hungry devices whose power consumption increases

exponentially with the number of bits per sample and linearly

with the sampling rate [5]. A promising solution for reducing

the power consumption and hardware complexity is to use low-

resolution ADCs. The simplest architecture involving one-bit
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ADCs requires only one comparator and does not require an

automatic gain control (AGC). Therefore, the use of one-bit

ADCs can significantly reduce both the power consumption

and hardware complexity. However, the severe nonlinearity

of one-bit ADCs causes significant distortions in the received

signals, since only the sign of the real and imaginary parts of

the received signals is retained.

Due to the severe nonlinearity, data detection in one-bit

massive MIMO systems becomes much more challenging.

Numerous efforts have been made to address this problem,

e.g., [6]–[14]. A one-bit maximum-likelihood (ML) detec-

tor was derived in [6]. For large-scale systems where ML

detection is impractical, the authors of [6] proposed a so-

called near-ML (nML) data detection method. The ML and

nML methods are however non-robust at high signal-to-noise

ratios (SNRs) when the channel state information (CSI) is not

perfectly known. A one-bit sphere decoding (OSD) technique

was proposed in [7]. However, the OSD technique requires

a preprocessing stage whose computational complexity is

exponentially proportional to both the number of receive and

transmit antennas. The exponential computational complexity

of OSD makes it difficult to implement in large-scale MIMO

systems. Generalized approximate message passing (GAMP)

and Bayes inference are exploited in [8], but the resulting

method is sophisticated and expensive to implement. In [9], an

iterative detection method based on the alternating direction

method of multipliers (ADMM) algorithm is proposed that

takes hardware impairments into account. The work in [10]

exploits the forward-backward splitting (FBS) framework to

design an iterative algorithm for one-bit massive MIMO-

OFDM systems. Several other data detection approaches have

also been proposed in [11]–[14], but they are only applicable in

systems where either a cyclic redundancy check (CRC) [11]–

[13] or an error correcting code such as a low-density parity-

check (LDPC) code [14] is available. In this paper, we propose

a two-stage detection method for massive MIMO systems with

one-bit ADCs. The proposed method is efficient and robust

with low complexity, and also applicable to large-scale systems

without the need for CRC or error correcting codes.

In the first stage, we first focus on a class of linear receivers.

Conventional receiver structures in this class has taken one

of the following two strategies: (i) using standard linear

receivers designed for systems with infinite-resolution ADCs,

e.g., [6], [15], [16]; or (ii) using an approximate model for

the one-bit ADC to construct other linear receiver designs,

e.g., [17], [18]. As in our preliminary work discussed in

[19], we exploit the Bussgang decomposition [20] in this

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3082844

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 02,2021 at 18:38:13 UTC from IEEE Xplore.  Restrictions apply.



1536-1276 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3082844, IEEE
Transactions on Wireless Communications

2

paper to examine various linear receiver architectures. Com-

pared to other detection methods such as ML [6], OSD [7],

GAMP [8] or iterative detection algorithms such as nML [6],

or those based on ADMM [9], or FBS [10], the Bussgang-

based linear receivers are easier to implement since they

have simple structures and low complexity. Then, we study a

deep learning-based detector for one-bit massive MIMO sys-

tems. There has been considerable recent interest in learning-

based methods for MIMO data detection [21]–[28]. While

the deep learning-based detectors in [21]–[24] are designed

for MIMO systems with full-resolution ADCs, the learning-

based detectors in [25]–[27] are dedicated to systems with

low-resolution ADCs and are “blind” in the sense that channel

state information (CSI) is not required. However, these blind

detection methods are restricted to MIMO systems with a

small number of transmit antennas and only low-dimensional

constellations. More recently, in [28] a support vector machine

(SVM) was exploited for one-bit MIMO data detection, and

the SVM approach was shown to achieve better performance

than the above linear and learning-based receivers. In this

paper, we propose a new and efficient One-Bit massive MIMO

data detection Network (OBMNet), which is based on the deep

neural network (DNN) architecture.

The contributions of this first stage are as follows: First,

we summarize existing linear receiver structures including

conventional and Bussgang-based approaches. Then we ob-

serve a somewhat suprising result in the numerical examples

indicating that conventional linear receivers with estimated

CSI outperform those with perfect CSI in the presence of one-

bit observations. An explanation for this observation, which is

closely related to the structure of the Bussgang-based linear

receivers, is also provided. Next, we reformulate the ML

detection problem by approximating the cumulative distribu-

tion function of a Gaussian random variable with a Sigmoid

function. We show that the reformulated problem addresses the

non-robustness issue of conventional ML detection. We then

propose a model-driven OBMNet for data detection in one-bit

massive MIMO systems. Unlike the structure of conventional

DNNs where each layer contains a fixed weight matrix and a

fixed bias vector, each layer of the proposed OBMNet has two

adaptive weight matrices and no bias vector. Numerical results

show that OBMNet outperforms the linear receivers and its

performance is also comparable with that of the SVM-based

method in [28]. However, the proposed OBMNet has much

lower computational complexity than the SVM-based method.

In the second stage, we propose a nearest-neighbor (NN)

search method to refine the solution of stage 1. The idea of

using two-stage detection methods has been studied previously

in [6], [28]. However, the search metric used by the second

stage of [6] is susceptible to CSI errors. This issue was

addressed in [28] thanks to a more robust search metric.

Although the second stage in [28] is robust, its complexity can

be very high since the dimension of the search space over the

entire candidate set can be very large. The contribution of the

proposed NN search method is that it generates searches over

a limited number of candidates that are nearest to the solution

of stage 1 and thus helps contain the search complexity. The

main challenge is to obtain the set of nearest candidates effi-

Fig. 1: Block diagram of a massive MIMO system with K single-antenna
users and an N -antenna base station equipped with 2N one-bit ADCs.

ciently and quickly. To overcome this challenge, we propose

a recursive strategy that can obtain this candidate set quickly

so that the proposed NN search method can be implemented

in an efficient manner.

The rest of this paper is organized as follows: Section II

introduces the assumed system model and presents the con-

ventional as well as the Bussgang-based linear receivers. The

reformulated robust ML detection problem and OBMNet are

proposed in Section III. Section IV presents the proposed

NN search method. A computational complexity analysis and

numerical results are given in Section V and Section VI

concludes the paper.

Notation: Upper-case and lower-case boldface letters denote

matrices and column vectors, respectively. E[·] represents

expectation. The operator | · | denotes the absolute value

of a number. ‖ · ‖ denotes the �2-norm of a vector. The

transpose and conjugate transpose are denoted by [·]T and

[·]H , respectively. The notation �{·} and �{·} respectively

denotes the real and imaginary parts of the complex argument.

diag(·) denotes a diagonal matrix. R and C denote the set

of real and complex numbers, respectively, and j is the unit

imaginary number satisfying j2 = −1. CN (0, σ2) denotes

a zero-mean circularly symmetric Gaussian random variable

with variance σ2, Φ(t) =
∫ t
−∞

1√
2π

e−
τ2

2 dτ is the cumulative

distribution function of the standard Gaussian random variable

and σ(t) = 1/(1 + e−t) is the Sigmoid function. If �{·},
�{·}, Φ(·), and σ(·) are applied to a matrix or vector, they

are applied separately to every element of that matrix or vector.

II. LINEAR RECEIVERS FOR FIRST-STAGE DETECTION

This section introduces different types of linear receivers

for massive MIMO systems with one-bit ADCs. We first

present conventional linear receivers and then use the Buss-

gang decomposition to introduce three Bussgang-based linear

receivers including Bussgang-based maximal ratio combining

(BMRC), Bussgang-based zero-forcing (BZF), and Bussgang-

based minimum mean squared error (BMMSE).

A. System Model

We consider an uplink massive MIMO system as illus-

trated in Fig. 1 with K single-antenna users and an N -

antenna base station, where it is assumed that N ≥ K. Let

x̄ = [x̄1, x̄2, . . . , x̄K ]T ∈ C
K denote the transmitted signal

vector, where x̄k is the signal transmitted from the kth user
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under the power constraint E[|x̄k|2] = 1. The signal x̄k

is drawn from a constellation M̄, e.g, QPSK or 16-QAM.

Let H̄ ∈ C
N×K denote the channel, which is assumed to

be block flat fading with elements that are assumed to be

independent and identically distributed (i.i.d.) as CN (0, 1).
Let r̄ = [r̄1, r̄2, . . . , r̄N ]T ∈ C

N be the unquantized received

signal vector at the base station, which is given as

r̄ = H̄x̄+ z̄, (1)

where z̄ = [z̄1, z̄2, . . . , z̄N ]T ∈ C
N is a noise vector whose

elements are assumed to be i.i.d. as CN (0, N0), and N0 is the

noise power. Each analog received signal is then quantized by

a pair of one-bit ADCs. Hence, we have the received signal

ȳ = sign (�{r̄}) + j sign (�{r̄}) (2)

where sign(·) represents the one-bit ADC with sign(r) = +1
if r ≥ 0 and sign(r) = −1 if r < 0. The operator sign(·) of a
matrix or vector is applied separately to every element of that

matrix or vector. The SNR is defined as ρ = 1/N0.

Instead of assuming 1-bit ADCs with ±1 outputs, in some

situations the outputs are scaled to obtain

ȳQ = δȳ = δ
(
sign (�{r̄}) + j sign (�{r̄}) ), (3)

where δ is chosen to minimize the variance of the quantization

error. Due to the scaling assumed in our system model, this re-

sults in δ =
√
(K +N0)/π. Hence, while each real/imaginary

element in ȳ belongs to the set {±1}, each real/imaginary

element in ȳQ belongs to the set {±δ}.
Given a received signal vector ȳ (or ȳQ) and a linear

receiver represented by a combining matrix W ∈ C
K×N , the

demultiplexing task is performed as x́ = Wȳ (or x́ = WȳQ).
The signal x́ is then equalized before symbol-by-symbol

detection is performed. In the following, we present different

structures for the combining matrix W. The discussion in the

following sections assumes that the channel H̄ is available at

the base station, but in practice an estimate of H̄ would be

used instead.

B. Conventional Linear Receivers

Here, we consider the output signal in (3). A straightforward

strategy to obtain linear receivers for one-bit massive MIMO

systems is to simply ignore the non-linear effect of the one-

bit ADCs and use the conventional linear receivers designed

for massive MIMO systems with infinite-resolution ADCs, as

follows:

• MRC receiver

WMRC = diag
(
H̄HH̄

)−1
H̄H ,

• ZF receiver

WZF =
(
H̄HH̄

)−1
H̄H ,

• MMSE receiver

WMMSE =
(
H̄HH̄+N0IK

)−1
H̄H .

In another strategy, the nonlinear effect of the one-bit ADCs

can be linearized by the Additive Quantization Noise Model

(AQNM) [29], [30] as

ȳQ = ηr̄+ d̄ = ηH̄x̄+ ηz̄+ d̄, (4)

where η = 1 − λ and λ is the inverse of the signal-to

quantization-noise ratio, which is given by λ = 1 − 2/π for

one-bit ADCs [30]. The quantization distortion d̄ is treated as

additive Gaussian noise d̄ ∼ CN (0,Σd̄) that is uncorrelated

with r̄, where Σd̄ = λη diag(H̄H̄H + N0IN ). The MMSE

receiver for the model in (4) is given as [17]

WAQNM−MMSE =
1

η
H̄H

(
H̄H̄H +

1

η2
Σd̄ +N0IN

)−1

. (5)

Another approximate MMSE receiver for quantized MIMO

systems, referred to as the “Wiener Filter on Quantized data”

(WFQ), is proposed in [18] as

WWFQ = H̄H
(
ηΣr̄ + λ diag(Σr̄)

)−1

, (6)

where Σr̄ = H̄H̄H + N0IN is the covariance matrix of r̄.
It is interesting to note that the receivers in (5) and (6) are

in fact the same, and will be shown later to yield identical

performance in Section V.

Once a combining matrix W has been computed, the

demultiplexing task can be performed as x́ = WȳQ. Since
‖x́‖2 may not equal K, the signal x́ should be rescaled as [6]

ẋ = [ẋ1, ẋ2, . . . , ẋK ]T =
√
K

x́

‖x́‖2 . (7)

Finally, ẋ can be used for symbol-by-symbol detection as

x̂k = arg max
x̄∈M̄

|x̄− ẋk|. (8)

C. Bussgang-Based Linear Receivers

Here, we exploit the Bussgang decomposition to linearize

the system model in (2) and then use the linearized model

to derive BMRC, BZF, and BMMSE receiver structures.

Following the Bussgang decomposition, the system model

in (2) can be rewritten as ȳ = V̄r̄ + ē [31] where ē is

the quantization distortion, which is uncorrelated with r̄, i.e.,
E
[
r̄ēH
]
= E
[
r̄
]
E
[
ēH
]
, and

V̄ =

√
2

π
diag(Σr̄)

− 1
2 . (9)

Let Ā = V̄H̄ and n̄ = V̄z̄+ ē, so the system model becomes

ȳ = Āx̄+ n̄, (10)

where Ā =
√

2/π diag(Σr̄)
− 1

2 H̄ is the effective channel and

n̄ is the effective noise, which is modeled as Gaussian with

zero mean and covariance matrix [31]:

Σn̄ =
2

π

[
arcsin

(
diag(Σr̄)

− 1
2Σr̄ diag(Σr̄)

− 1
2

)
−

diag(Σr̄)
− 1

2Σr̄ diag(Σr̄)
− 1

2 +N0 diag(Σr̄)
−1
]
.

(11)
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Note that arcsin(C) = arcsin(�{C}) + j arcsin(�{C}) for

any complex matrix C, and the operation arcsin(·) of a real

matrix is applied separately on each element of that matrix.

Based on the effective channel Ā, we can derive a BMRC

receiver as

WBMRC = diag
(
ĀHĀ

)−1
ĀH , (12)

and a BZF receiver as [19], [32]

WBZF =
(
ĀHĀ

)−1
ĀH . (13)

We now derive the BMMSE receiver for this Bussgang-

based system model. The BMMSE receiver can be obtained

by solving the following optimization problem:

minimize
{W}

E
[‖x̄−Wȳ‖22

]
, (14)

whose solution is given in closed form as follows:

WBMMSE = E
[
x̄ȳH
](
E
[
ȳȳH
])−1

. (15)

We can expand E
[
x̄ȳH
]
= E
[
x̄x̄HĀH

]
+ E
[
x̄nH
]
= ĀH

due to E
[
x̄x̄H
]
= IK and E

[
x̄nH
]
= 0. We have E

[
x̄n̄H
]
=

0 since

E
[
x̄n̄H
]
= E
[
x̄(V̄z̄+ ē)H

]
= E
[
x̄z̄H
]
V̄H + E

[
x̄ēH
]
,

where E
[
x̄z̄H
]
= E
[
x̄
]
E
[
z̄H
]
= 0 and E

[
x̄ēH
]
= 0. The

result E
[
x̄ēH
]
= 0 holds because

E
[
r̄ēH
]
= H̄E

[
x̄ēH
]
+ E
[
z̄ēH
]
, (16)

where the left hand side of (16) is E
[
r̄ēH
]
= E
[
r̄
]
E
[
ēH
]
= 0

and the second term on the right hand side of (16) is also zero

(i.e., E
[
z̄ēH
]
= 0). Therefore, the first term on the right hand

side of (16) must also be zero, which implies E
[
x̄ēH
]
= 0.

In addition, E
[
ȳȳH
]
is given by [31]

E
[
ȳȳH
]
=

2

π
arcsin

(
diag(Σr̄)

− 1
2Σr̄ diag(Σr̄)

− 1
2

)
.

Hence, the resulting BMMSE receiver is given as [19], [32]

WBMMSE = ĀH

[
2

π
arcsin

(
diag(Σr̄)

− 1
2Σr̄ diag(Σr̄)

− 1
2

)]−1

= ĀH
(
ĀĀH +Σn̄

)−1
, (17)

where the second equality comes from the equivalent model

in (10) and the expression for Σn̄ in (11). It can be seen that

the structure of the BMMSE receiver is similar to the that of

the MMSE receiver, except that the BMMSE receiver applies

a new effective channel and a new effective noise covariance.

These differences come as the result of linearizing the system

model with the Bussgang decomposition.

Since the Bussgang-based linear receivers are derived for

the 1-bit ADCs whose output is ±1, the demultiplexing task

here is performed as x́ = Wȳ. The rescaling step and symbol-

by-symbol detection are the same as in (7) and (8).

III. OBMNET FOR FIRST-STAGE DETECTION

In this section, we first reformulate the conventional ML

rule for one-bit MIMO systems, which is then exploited to

devise OBMNet. We consider the same system model as

presented in Section II, but for convenience in later derivations,

we convert (1) and (2) into the real domain as follows:

y = sign (Hx+ z) , (18)

where

y =

[�{ȳ}
�{ȳ}

]
∈ R

2N , x =

[�{x̄}
�{x̄}

]
∈ R

2K ,

z =

[�{z̄}
�{z̄}

]
∈ R

2N , and

H =

[�{H̄} −�{H̄}
�{H̄} �{H̄}

]
∈ R

2N×2K .

We also denote y = [y1, . . . , y2N ]T , x = [x1, . . . , x2K ]T ,
z = [z1, . . . , z2N ]T , and H = [h1, . . . ,h2N ]T .
The conventional ML detection problem [6] for one-bit

ADCs is given as

x̂ML = arg max
x̄∈M̄K

2N∏
n=1

Φ(
√

2ρynĥ
T
nx), (19)

which can also be written as

x̂ML = arg max
x̄∈M̄K

2N∑
n=1

log Φ(
√

2ρynĥ
T
nx), (20)

where ĥn is an estimate of hn for n ∈ {1, . . . , 2N}. The
ML detection formulations in (19) and (20) are however non-

robust at high SNRs when ĥn 	= hn, or in other words,

when the CSI is imperfectly known. To see this, assume that

x� is the transmitted data vector, and note that it is quite

possible that sign(ĥT
nx

�) 	= yn for some n, which would

make ynĥ
T
nx

� negative. Since the function Φ(·) approaches

0 exponentially fast, the term log Φ(
√
2ρynĥ

T
nx

�) will tend

to −∞ in such cases even for a moderate SNR value such

as 20 dB. If there exists another data vector x 	= x� that

satisfies ynĥ
T
nx > 0, ∀n, a detection error will surely occur.

If this is not the case, the objective function value in (20) tends

to −∞ for all possible data vectors including the transmitted

data vector. A detection error will almost surely occur since

any data vector can be chosen as a solution to problem (20) .

This non-robustness under imperfect CSI has been numerically

reported in [25], [26] and a detailed explanation of this issue

can be found in [28, Appendix A].

To address the non-robustness of the above ML formulation,

we exploit a result in [33], which shows that the function Φ(t)
can be accurately approximated by the Sigmoid function σ(t),
which is a widely-used activation function in machine learning

research. The approximation of Φ(t) is given as

Φ(t) ≈ σ(ct) =
1

1 + e−ct
, (21)

where c = 1.702 is a constant. It was shown in [33] that

|Φ(t)− σ(ct)| ≤ 0.0095, ∀t ∈ R. Thus, maximizing log Φ(t)
is approximately equivalent to minimizing log(1 + e−ct).
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Fig. 2: Overall structure of the proposed OBMNet.

Applying the approximation in (21) to (20), we obtain the

following ML detection problem:

x̂robust
ML = arg min

x̄∈M̄K

2N∑
n=1

log
(
1 + e−c

√
2ρynĥ

T
nx
)
. (22)

The reformulated ML detection problem (22) does not share

the non-robustness issue of (20), since if
√
2ρynĥ

T
nx

� is

largely negative (due to sign(ĥT
nx

�) 	= yn and large ρ),

we have log(1 + e−c
√
2ρynĥ

T
nx�

) ≈ −c
√
2ρynĥ

T
nx

�. This

approximation holds because log(1+ et) ≈ t for large t. Note
that the value of −c

√
2ρynĥ

T
nx

� is finite for large ρ, and thus

so is the objective function in (22) for all possible data vectors.

Therefore, the reformulated ML detection problem is more ro-

bust and (22) is more likely to yield x� as the optimal solution,

unlike problem (20). It is interesting to note that log(1+et) is
referred to as the SoftPlus activation function in the machine

learning literature. Hence, the proposed robust ML detection

problem in (22) can be interpreted as a minimization problem

whose objective is a sum of SoftPlus activation functions. Note

that we have log(1+et) ≈ t for large t. However, a sequential
computation by first evaluating et then the log function may

result in an infinite value since et grows very rapidly. Hence,

one should use the approximation log(1 + et) ≈ t when t is
large, e.g., t > 100.
Now, we develop the OBMNet detector based on the

proposed robust ML detection problem in (22). We relax the

constraint x̄ ∈ M̄K in (22) to x̄ ∈ C
K and denote the channel

estimate Ĥ = [ĥ1, . . . , ĥ2N ]T . Let G = diag(y1, . . . , y2N )Ĥ
and define the rows of G as G = [g1, . . . ,g2N ]T . Then (22)

can be rewritten as

arg min
x̄∈CK

2N∑
n=1

log
(
1 + e−c

√
2ρgT

nx
)

︸ ︷︷ ︸
P(x)

. (23)

The gradient of P(x) is

∇P(x) =
2N∑
n=1

−c
√
2ρgn

1 + ec
√
2ρ gT

nx

= −c
√
2ρGTσ

(− c
√

2ρGx
)
. (24)

Hence, an iterative gradient descent method can be used to

solve (23) as follows:

x(�) = x(�−1) + α�c
√
2ρGTσ

(
−c
√
2ρGx(�−1)

)
(25)

where � is the iteration index and α� is the step size.

In order to optimize the step sizes {α�}, we use the deep
unfolding technique [34] to unfold each iteration in (25) as a

layer of a deep neural network. The overall structure of the

proposed OBMNet is illustrated in Fig. 2, where there are L
layers and each layer takes a vector of 2K elements as the

input and generates an output vector of the same size. The

specific structure for each layer � is illustrated in Fig. 3.

It can be seen that the proposed layer structure in Fig. 3 is

different from that of conventional DNNs, since it exploits the

specific structure of the ML detection problem. In particular,

each layer of a conventional DNN often contains a weight

matrix and a bias vector to be trained. However, due to the

structure of the ML detection problem, the proposed OBMNet

contains only L+1 trainable parameters including L step sizes

{α1, . . . , αL} and a scaling parameter β inside the Sigmoid

function. The proposed layer structure has two weight matrices

−G and GT and no bias vector, and the weight matrices are

defined by the channel estimate and the received signal.

Since G ∈ R
2N×2K , the learning process of each layer can

be interpreted as first up-converting the signal from dimension

2K to dimension 2N using the weight matrix −G, then ap-

plying nonlinear activation functions before down-converting

the signal back to dimension 2K using the weight matrix GT .

The activation function in OBMNet is the Sigmoid function,

which is also widely used in conventional DNNs. Note that

the use of the Sigmoid activation function in OBMNet is not

arbitrary but results from the use of the approximation in (21)

and the structure of the ML detection problem.

The objective function to be minimized during the training

phase is ‖x̃− x‖2, where

x̃ =

√
K

‖x(L)‖x
(L) (26)

and x is the target signal, i.e., the transmitted signal. It should

also be noted that the layered structure in Fig. 3 does not

contain the coefficient c
√
2ρ. We omit this coefficient because

it is a constant throughout the layers of OBMNet, and the

output of the last layer x(L) needs to be normalized as in (26).

We found by experiments that this omission not only helps

improve the detection performance but also helps the training

process to stably converge.

The training process is accomplished offline. A training

sample can be obtained by randomly generating a channel

matrix H, a transmitted signal x, and a noise vector z. The
received signal y and the channel H are used to build the

weight matrices and the transmitted signal x is used as the

target. After the offline training processing, the trained step

sizes {α�} and the trained scaling parameter β are ready to

be used for the online detection phase. Similar to DetNet

for unquantized MIMO detection [21], OBMNet for one-bit

MIMO detection does not need to be retrained for a new

channel realization H.

IV. NEAREST-NEIGHBOR SEARCH FOR

SECOND-STAGE DETECTION

Given a received signal, as discussed above we can either

use a linear receiver or OBMNet to obtain an estimate x̃ of
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Fig. 3: Specific structure of layer � of OBMNet. The weight matrices are defined by the channel and the received signal. There is no bias vector.

the transmitted signal x. However, these receivers all ignore

the constraint that the transmitted signal x belongs to a known

discrete set of constellation points. Ignoring this constraint can

result in elements of the estimate x̃ that are well removed

from the constellation points, and thus detection errors are

likely to occur once symbol-by-symbol detection is applied.

This motivates us to propose here an NN search method as

a second detection stage in order to fine-tune the solution of

stage 1.

The proposed NN search method first finds a limited set of

symbol vectors that are nearest to x̃ and then searches over

that set for the most likely symbol vector as the final detection

solution. As mentioned in the Introduction section, this idea

has already been used in [6] and [28]. However, the search

space for the methods in [6] and [28] is very large when the

number of users is large, and so they are not efficient in terms

of computational complexity. The contribution of the proposed

NN search method is that it generates searches over a limited

number of symbol vectors that are nearest to the estimate x̃,
and thus significantly reduces the computational load.

We denote M as the constellation in the real domain; for

example,M =
{
± 1√

2

}
for QPSK andM =

{
± 1√

10
,± 3√

10

}
for 16-QAM. Let B be the set of decision boundary points;

i.e., B = {0} for QPSK and B =
{
0,± 2√

10

}
for 16-QAM.

Denote x̃ = [x̃1, . . . , x̃2K ]T and b = [b1, . . . , b2K ]T , where bi
is the decision boundary point that is nearest to x̃i, as follows:

bi = arg min
b∈B

|b− x̃i|, i ∈ {1, 2, . . . , 2K}. (27)

An illustrative example for the relative difference between

x̃i and the constellation points is given in Fig. 4. This example

illustrates the problem that occurs when x̃i is close to a

decision boundary point, where symbol-by-symbol detection

may not be reliable. Here, we use a threshold γ > 0 to classify

whether symbol-by-symbol detection is used or not. More

specifically, if the distance from x̃i to its nearest decision

boundary point bi is greater than γ, i.e., |x̃i − bi| > γ,
then we can use symbol-by-symbol detection for x̃i. When

|x̃i− bi| ≤ γ, symbol-by-symbol detection is not reliable, and

0
1√
2

−1√
2

x̃i

bi

0 2√
10

−2√
10

1√
10

−1√
10

3√
10

−3√
10

x̃i

decision boundary points

bi

QPSK(a)

16-QAM(b)

Fig. 4: An example for the relative difference between x̃i and the constellation
points: (a) the estimate x̃i is far from bi = 0 and close to the constellation
point 1/

√
2, which means there is a high probability that the transmitted signal

xi is 1/
√
2; (b) the estimate x̃i is close to the boundary point bi = −2/

√
10,

thus it is difficult to say if −3/
√
10 or −1/

√
10 was transmitted.

so we list the two nearest constellation points to x̃i as the

candidates for the transmitted signal xi.

Let Ai denote the set of candidates for the transmitted signal

xi. When |x̃i−bi| > γ, we apply symbol-by-symbol detection

and so

Ai =

{
arg min

x∈M
|x− x̃i|

}
.

When |x̃i − bi| ≤ γ, we have Ai =
{
bi ± 1√

2

}
=
{
± 1√

2

}
for QPSK and Ai =

{
bi ± 1√

10

}
for 16-QAM. Hence, Ai

contains only one or two elements. The following example

illustrates the formation of Ai.

Example 1. Suppose that x̃ = [0.1,−0.5,−0.3, 0.8]T and
QPSK modulation is used with γ = 1

2
√
2
≈ 0.35. Note here

that b1 = b2 = b3 = b4 = 0. We have
• A1 = A3 =

{ ± 1√
2

}
because |x̃1 − b1| = 0.1 < γ and

|x̃3 − b3| = 0.3 < γ,
• A2 =

{−1√
2

}
because |x̃2 − b2| = 0.5 > γ and x̃2 is

closer to −1√
2
than 1√

2
, i.e.,

∣∣x̃2 − −1√
2

∣∣ < ∣∣x̃2 − 1√
2

∣∣,
• A4 =

{
1√
2

}
because |x̃4 − b4| = 0.8 > γ and x̃4 is

closer to 1√
2
than −1√

2
, i.e.,

∣∣x̃4 − 1√
2

∣∣ < ∣∣x̃4 − −1√
2

∣∣.
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Fig. 5: Flowchart of the proposed nearest-neighbor search method. A recursive formation of sets is exploited to reduce the computational complexity. A subset
N (xp)\Xm−1 with p ∈ {1, . . . ,m−2} is obtained by removing xm−1 from the subset N (xp)\Xm−2 as given in (32). The last subset N (xm−1)\Xm−1

is obtained by using xm−1 and other nearest symbol vectors. The mth nearest symbol vector xm is then obtained by searching over the m− 1 subsets.

Hence, in this example, A1 and A3 have two elements while
A2 and A4 have only one element.

The complete set of candidates for the transmitted signal

vector is given by the Cartesian product

A = A1 ×A2 × . . .×A2K ,

and so the size of A is |A| =∏2K
i=1 |Ai| = 2A, where A is the

number of sets Ai having two elements. The existing search

methods in [6] and [28] always search over the entire set A.

However, it can be seen that the size of A grows exponentially

with A. In addition, A also grows as the number of users

K increases. Thus, searching over the entire list A as in [6]

and [28] can be prohibitively complex when the number of

users is large.

On the other hand, the proposed NN search method finds

a set of M symbol vectors in A that are nearest to x̃, then
searches over that smaller set for the final solution. In this way,

the NN search method can limit the computational complexity.

Note that a symbol vector in this context is any element of

A. Let XM = {x1,x2, . . . ,xM} denote the set of the M
nearest symbol vectors to x̃. The larger M is, the higher

the probability that the set XM contains the true symbol

vector. However, a large value of M will result in more

computation for the search. Therefore, M should be chosen

to achieve a good trade-off between detection accuracy and

computational complexity. The value of M can be chosen by

empirical evaluations. The main challenge here is how to find

the M nearest symbol vectors to x̃ quickly and efficiently. To

address this problem, we employ the following notation and

definitions.

For any two symbol vectors x ∈ A and x′ ∈ A, let d(x,x′)
denote the number of position indices at which the elements of

x are different from the corresponding elements of x′. Since
each element of x and x′ belongs to a finite set of just one

or two elements, d(x,x′) is actually the Hamming distance

between x and x′.

Definition 1 (Neighbor of a symbol vector). A symbol vector
x is called a neighbor of another symbol vector x′, or vice
versa, when the Hamming distance between them is one, i.e.,
d(x,x′) = 1.

Definition 2 (Neighbor of a set). Given a set of symbol vectors
S and another symbol vector x /∈ S , let

dmin(x,S) = min
x′∈S

d(x,x′). (28)

The symbol vector x is called a neighbor of S if and only
if dmin(x,S) = 1, or in other words, if and only if x is the
neighbor of at least one member of S.
Let N (x) and N (S) denote the set of neighbors of symbol

vector x and set S, respectively. Let XM = {x1,x2, . . . ,xM}
with xm ∈ A and m ∈ {1, 2, . . . ,M} denote the set of the

M nearest symbol vectors to x̃ satisfying

‖x1 − x̃‖2 < ‖x2 − x̃‖2 < . . . < ‖xM − x̃‖2 < ‖xout − x̃‖2
(29)

where xout is any symbol vector in A, but not in XM . Hence,

xm is the mth nearest symbol vector to x̃. Clearly, the nearest
symbol vector x1 is obtained by applying symbol-by-symbol

detection to x̃. The problem now is how to efficiently find x2,

. . . , xM . The following proposition can be exploited to solve

this problem.

Proposition 1. The mth nearest symbol vector xm must be a
neighbor of the set Xm−1 = {x1,x2, . . . ,xm−1}, i.e.,

xm ∈ N (Xm−1).

Proof: Please refer to Appendix A

Proposition 1 indicates that we can find the mth nearest

symbol vector xm from the neighbor set of Xm−1, i.e.,

xm = arg min
x∈N (Xm−1)

‖x− x̃‖2 (30)

where N (Xm−1) is the neighbor set of Xm−1 and is given as

N (Xm−1) =

(m−1⋃
p=1

N (xp)

)
\ Xm−1

=

m−1⋃
p=1

(
N (xp) \ Xm−1

)
. (31)

Hence, in order to find xm, we need to accomplish two

tasks: (i) find m− 1 subsets {N (xp) \ Xm−1}p=1,...,m−1 and

(ii) search for xm within the subsets. The method of directly
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Algorithm 1: Proposed Nearest-Neighbor Search.

Input: x̃, γ, M .
Output: x̂.

1 Find b and A1,A2, . . . ,A2K based on b;

2 Let |A| = ∏2K
i=1 |Ai|;

3 if |A| ≤ M then
4 Let A = A1 ×A2 × . . .×A2K ;
5 x̂ = arg minx∈A P(x);
6 else
7 Find x1 via symbol-by-symbol detection;
8 Let C1 = sort (N (x1));
9 for m = 2 to M do
10 Let Sm = {C1[1], C2[1], . . . , Cm−1[1]};
11 xm = arg minx∈Sm

‖x− x̃‖2;
12 if m < M then
13 for p = 1 to m− 1 do
14 if Cp[1] = xm then
15 Remove Cp[1] from Cp;
16 end
17 end
18 Let Cm = sort (N (xm));
19 for p = 1 to m− 1 do
20 if Cm[1] = xp then
21 Remove Cm[1] from Cm;
22 end
23 end
24 end
25 end
26 x̂ = arg minx∈XM

P(x);
27 end
28 return x̂;

finding the m− 1 subsets and then searching them for xm is

not efficient. In the following, we present a recursive strategy

to obtain xm quickly and efficiently.

Note that the inner term on the right-hand side of (31) can

be written as follows:

N (xp) \ Xm−1 =
(
N (xp) \ Xm−2

)
\ {xm−1}. (32)

Therefore, we can exploit (32) to obtain the first m−2 subsets

{N (xp) \ Xm−1}p=1,...,m−2 by removing xm−1 from m− 2
other subsets {N (xp)\Xm−2}p=1,...,m−2, which were already

obtained previously when we found xm−1. The last subset

N (xm−1) \ Xm−1 is obtained by using xm−1 and the other

nearest symbol vectors. A flowchart illustrating this recursive

strategy is given in Fig. 5.

Remark 1: If the elements of N (xp) \ Xm−2 are already

sorted in ascending order of distance to x̃, then xm−1 can

be removed from N (xp) \Xm−2 by simply checking the first

element of N (xp)\Xm−2. The reason for this is that xm−1 is

the (m−1)th nearest symbol vector, which means the distance

from xm−1 to x̃ cannot be greater than the distance from any

element of N (xp) \ Xm−2 to x̃. In addition, the elements

of N (xp) \ Xm−2 are distinct and already sorted, and so if

xm−1 exists in N (xp) \Xm−2, it must be the first element of

N (xp) \ Xm−2.

Remark 2: If the elements of each subset N (xp) \ Xm−1

are already sorted in ascending order of distance to x̃, then
the search over the m − 1 subsets for xm can be done by

simply searching over a list of m− 1 candidates, where each

candidate is the first element of a subset N (xp) \ Xm−1.

TABLE I: Computational Complexity Comparison: Td is the data block
length, Niter is the number of iterations, κ(N) is a super-linear function
of N , and GNs = 2N .

Method Preprocessing Stage 1
OBMNet – O(KNLTd)

BMRC O(KN)

O(KNTd)BZF [32] O(K2N)

BMMSE [32] O(max{KN2, N2.373})
ADMM [9] O(max{KN2, N2.373}) O(N2NiterTd)

SVM-based [28] – O(KNκ(N)Td)

OSD [7] O(4N/GKN |M̄|K) O(
(N/Ns)KNTd

)

Based on the observations in Remarks 1 and 2, we propose

the nearest-neighbor search method described in Algorithm 1.

The key idea is to use the recursive strategy depicted in

Fig. 5 and to implement the observations made in Remarks 1

and 2. Whenever forming a set N (xm), we sort its elements

in ascending order of distance to x̃ as described in lines 8

and 18 of Algorithm 1. In this way, we only need to sort

M−1 times, and the remainder of the proposed algorithm only

involves comparisons based on checking the first elements of

the subsets. We denote C1, . . . , CM−1 as the subsets corre-

sponding to x1, . . . ,xM−1, respectively, and Cm[1] denotes

the first element of the subset Cm. Lines 10 and 11 implement

Remark 2 to obtain xm. Remark 1 is implemented in lines 13-

17. The last subset is obtained in lines 18-23. Finally, line 26

gives the final solution by searching for the highest-likelihood

symbol vector among the M nearest symbol vectors.

V. COMPUTATIONAL COMPLEXITY ANALYSIS AND

NUMERICAL RESULTS

A. Computational Complexity Analysis

A computational complexity comparison in terms of big-O
notation is provided in Table I. It can be seen that the linear

receivers have the lowest complexity, while the OSD method

in [7] has the highest complexity, which grows exponentially

with K and N . Note that the complexity of the SVM-based

method [28] is due to the decomposition techniques used

to solve the SVM problem, e.g., [35]–[37]. The term κ(N)
is empirically reported to be a super-linear function of N .

The complexity of the proposed OBMNet detector is only

O(KNLTd), which is lower than that of both the ADMM-

based and the SVM-based methods.

The computational complexity of the proposed NN search

method is O(MKmax{M,N}Td) in the worst case. This

complexity is mainly due to the detection step for x̂ and the

for loops as described in Algorithm 1. The complexity of the

full A-space search method is O(|A|KNTd) where |A| can
grow exponentially with K.

B. Numerical Results

This section presents numerical results to show the per-

formance of the proposed two-stage detection method. The

channel elements are assumed to be i.i.d. and each channel

element is generated from the normal distribution CN (0, 1).
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Fig. 6: First stage performance comparison between the conventional and
Bussgang-based linear receivers with QPSK signaling.

First, we evaluate the performance of the conventional

and Bussgang-based linear receivers assuming perfect CSI is

available (examples with estimated CSI will be given next).

Fig. 6 presents BER comparisons for QPSK signaling. Among

the conventional receivers, we see that the ZF and MMSE

receivers obtain the same performance (blue curves with

symbols), as do the AQNM-MMSE [17] and WFQ receivers

[18] (black curves with symbols). The Bussgang-based linear

receivers significantly outperform their conventional coun-

terparts. The high-SNR error floors of the Bussgang-based

linear receivers are much lower than those of the conventional

approaches. These performance improvements are achieved

thanks to the exact linear input-output relationship of massive

MIMO systems with one-bit ADCs obtained by the Bussgang

decomposition. In Fig. 6b, we evaluate the performance as the

number of users K increases. Here, we omit AQNM-MMSE

and WFQ since they are outperformed by ZF and MMSE. It is

observed that the Bussgang-based linear receivers always yield

lower BERs than the standard methods, and the performance

improvement is best seen when the number of users K is not

too large. AsK increases, the gap between the error floors tend

to diminish. This is due to the fact that for large K, we have

H̄H̄H ≈ KIN , which yields Σr̄ ≈ (K +N0)IN , Ā ≈ √
μH̄

and Σn̄ ≈ (1 − μK
)
IN , where μ = 2/(π(K + N0)). These

approximations result in Bussgang-based linear receivers that

are equivalent to the conventional approaches with a scaling

factor:

WBMRC ≈
√

1

μ
diag(H̄HH̄)−1H̄H ,

WBZF ≈
√

1

μ

(
H̄HH̄

)−1

H̄H ,

WBMMSE ≈
√

1

μ
H̄H

(
H̄H̄H +

1− μK

μ
IN

)−1

.

In Fig. 7, we provide BER comparisons between the ZF,

MMSE, BZF, and BMMSE linear receivers with estimated

CSI for a case with K = 2 users and N = 16 antennas.

Figure 7(a) shows results for the Bussgang-based channel esti-

mator in [15], while Fig. 7(b) employs the SVM-based channel

estimator of [28]. It can be seen that the BMMSE receiver

always outperforms the others. An interesting observation here

is that ZF and MMSE with estimated CSI outperform ZF and

MMSE with perfect CSI. There is a reason for this. Recall

that Bussgang-based linear receivers BZF and BMMSE use

the effective channel

Ā =

√
2

π
diag(H̄H̄H +N0IN )−1/2H̄. (33)

Let āTi and h̄T
i denote the ith row of Ā and H̄, respectively,

then we have

āi =

√
2

π

h̄i√
‖h̄i‖2 +N0

, i = 1, 2, . . . , N. (34)

This indicates that the effective channel āi is a normalized

version of the true channel. Note that the instantaneous

magnitude of h̄i is not identifiable in 1-bit quantized MIMO

systems [38], and consequently the SVM-based [28] and

BMMSE [15] channel estimators provide estimates whose

magnitudes are normalized. Therefore, when using a channel

estimator such as [15], [28], ZF with estimated CSI will

give the same performance as BZF with estimated CSI. ZF

with estimated CSI outperforms ZF with perfect CSI since

the channel estimate takes into account the inherent scaling

ambiguity in the observed data. For the same reason, MMSE

and BMMSE with estimated CSI also outperform MMSE

with perfect CSI, but MMSE performs worse than BMMSE

because MMSE still applies the noise covariance matrix N0I,
while BMMSE uses the covariance matrix Σn̄ that includes

information about the quantization noise.

For the first stage, we proposed the OBMNet, which is

devised from a reformulated robust ML detection problem.

In Fig. 8, we verify the robustness of the reformulated ML

detection problem in (22) when implemented with estimated

CSI. We carried out simulations using the BMMSE channel

estimator [15] with different training lengths Tt. It can be

seen from Fig. 8 that when the CSI is perfectly known, both

the conventional and the proposed ML detection algorithms
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Fig. 7: BER comparison between ZF, MMSE, BZF, and BMMSE linear receivers with estimated CSI. The setting is K = 2 users, N = 16 receive antennas,
QPSK signaling, and SNR = 30dB. Tt is the training length.
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Fig. 8: Performance comparison between the conventional and the proposed
ML detection problems with K = 2, N = 16, and QPSK signaling. The
BMMSE channel estimator [15] is used with different training lengths Tt.

yield almost identical performance. However, when the CSI

is imperfectly known, the performance of conventional ML

detection is significantly degraded at high SNR, while the

proposed robust ML detection algorithm remains stable. This

verifies our analysis in Section III.

Fig. 9 provides a performance comparison between the

proposed OBMNet and several existing receivers including

BMMSE [32], BZF [32], ADMM [9], and SVM-based [28].

The performance of OSD is comparable to that of the SVM-

based method but with much higher computational complexity.

Since the SVM-based method also outperforms other prior

methods, we use it as a comparative benchmark in this paper.

To implement the SVM-based receiver, we use the Scikit-learn

machine learning library [39]. For training OBMNet, we use

TensorFlow [40] and the Adam optimizer [41] with a learning

rate of 10−2. The size of each training set is set to 1000.
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Fig. 9: First stage performance comparison between the proposed OBMNet
detector and existing detection methods with perfect CSI.

The input of the first layer x0 is set to a zero vector. For

the case of QPSK, K = 4, and N = 32, OBMNet has 10
layers; and for the case of 16-QAM, K = 8, and N = 128,
OBMNet has 15 layers. During the detection phase, the trained

OBMNet is employed to perform batch detection. Note that

batch detection is an advantage of DNN since it can take a

batch of multiple symbol vectors as its input, which speeds up

the detection process [21]. The effect of batch size on run time

can be seen in Table II. The results in Fig. 9 show that the

proposed OBMNet and the SVM-based method outperform

the Bussgang-based linear receivers as well as the ADMM-

based method. At high SNRs, the BER floor of the OBMNet

detector is slightly lower than that of the SVM-based method.

Note that the ADMM-based method is designed specifically

for QPSK signaling, so Fig. 9 does not show a result for this

method with 16-QAM.

To evaluate the computational complexity of the receivers
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(a) Proposed OBMNet.
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(b) SVM-based [28].
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(c) BZF [32].

Fig. 10: Second stage performance comparison between different receivers with K = 4, N = 32, QPSK signaling, and perfect CSI.
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(b) SVM-based [28].
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(c) BZF [32].

Fig. 11: Second stage performance comparison between different receivers with K = 8, N = 128, 16-QAM signaling, and perfect CSI.

TABLE II: First stage average run time.

QPSK, K = 4, N = 32

batch
size

proposed
OBMNet

BZF
[32]

BMMSE
[32]

SVM-based
[28]

1 2.2×10−4 1.3×10−5 1.5× 10−5 [3.1, 3.8]×10−4

10 5.8×10−5 1.1×10−5 1.1× 10−5 [3.1, 3.8]×10−4

100 4.2×10−5 1.0×10−5 1.0× 10−5 [3.1, 3.8]×10−4

250 3.6×10−5 1.0×10−5 1.0× 10−5 [3.1, 3.8]×10−4

16-QAM, K = 8, N = 128

batch
size

proposed
OBMNet

BZF
[32]

BMMSE
[32]

SVM-based
[28]

1 5.2×10−4 2.8×10−5 3.5× 10−5 [6.4, 9.6]×10−4

5 3.1×10−4 2.5×10−5 3.3× 10−5 [6.4, 9.6]×10−4

10 2.8×10−4 2.4×10−5 3.2× 10−5 [6.4, 9.6]×10−4

25 2.6×10−4 2.4×10−5 3.2× 10−5 [6.4, 9.6]×10−4

used in Fig. 9, average run time is reported in Table II. Since

the run time is largely affected by implementation details and

the associated hardware/platform, to ensure fairness, we imple-

mented all the receivers using the same simulation hardware

with Python 3.7 and the Numpy package. Note that the run

time of the SVM-based method depends on the SNR, and so

we report the resulting range of run times. It can be seen from

Table II that the Bussgang-based linear receivers have lower

complexity than OBMNet and the SVM-based receiver. This is

obvious since the linear receivers only require a matrix-vector

multiplication for detecting each received signal. The run time

of the BZF receiver is smaller than that of BMMSE because

the combining matrix WBZF only involves the inversion of a

K×K matrix while WBMMSE requires the inverse of an N×N
matrix. OBMNet is more computationally expensive than the

linear receivers but its complexity is still much less than that

of the SVM-based method. It can also be seen that the run

time of OBMNet can be significantly reduced by increasing

the batch size. In situations where the added latency is not an

issue, the use of batch detection is an advantage for DNN since

it can speed up the detection process [21]. Note that the run

time of the SVM-based method does not depend on the batch

size since it processes different received signals separately and

each time slot requires the SVM-based method to solve a new

optimization problem.

For the second stage, performance comparisons are given in

Fig. 10 for the case of QPSK with K = 4 and N = 32, and
Fig. 11 for the case of 16-QAM withK = 8 and N = 128. We

set γ = 1
2
√
2
for QPSK and γ = 1

2
√
10

for 16-QAM. Here, we

compare the BZF, OBMNet, and SVM-based receivers and

omit BMMSE since the performance of BZF and BMMSE

are comparable, and the complexity of BZF is lower than

that of BMMSE. The case of M = 1 is equivalent to the

use of symbol-by-symbol detection in the first stage. In this

case, OBMNet provides the best performance, i.e., it yields the

best initial detection results. When increasing M , the proposed

NN search method in the second stage significantly improves

the performance compared to the first stage. In Fig. 10, the

BERs obtained with a small M , e.g., M = 2, are already
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TABLE III: Second stage average run time.

QPSK, K = 4, N = 32, batch size = 250

M
proposed
OBMNet

SVM-based
[28]

BZF
[32]

2 [0.4, 1.0]× 10−4 [0.6, 1.2]× 10−4 [0.5, 1.0]× 10−4

16-QAM, K = 8, N = 128, batch size = 25

M
proposed
OBMNet

SVM-based
[28]

BZF
[32]

2 [1.6, 2.5]× 10−4 [1.9, 3.2]× 10−4 [2.0, 2.5]× 10−4

4 [1.8, 3.7]× 10−4 [2.1, 5.2]× 10−4 [2.8, 3.5]× 10−4

8 [2.0, 6.6]× 10−4 [2.4, 9.6]× 10−4 [3.9, 6.2]× 10−4

16 [2.3, 14.7]×10−4 [3.3, 21.7]×10−4 [5.4, 13.1]× 10−4

32 [3.0, 34.1]×10−4 [4.3, 46.5]×10−4 [8.1, 30.0]× 10−4

close to the BER of the ML detection approach. The results

in Fig. 11 clearly show that the performance can be improved

by increasing M , but this requires more computation resources

as seen in Table III. Thus, one should choose M to balance the

detection accuracy and computational complexity. It should be

noted that |A| is always a power of two, but M can be any

positive integer number.

VI. CONCLUSION

In this paper, we have summarized the literature of linear

receivers for one-bit massive MIMO systems and proposed a

two-stage detection method for massive MIMO systems with

one-bit ADCs. In particular, for the first stage, we proposed

a novel model-driven OBMNet detector, which is constructed

based on a reformulated robust ML detection problem. The

layered structure of OBMNet is simple, unique, and adaptive

to the CSI and received signals. This OBMNet detector

outperforms existing approaches and also has low complexity.

For the second stage, an NN search method was proposed to

further improve the performance of the first stage. This NN

search method allows one to limit the search complexity as

desired.

APPENDIX A

PROOF OF PROPOSITION 1

Since xm is the mth nearest symbol vector, we have the

following condition:

‖x1 − x̃‖2 < . . . < ‖xm−1 − x̃‖2 < ‖xm − x̃‖2 < ‖x− x̃‖2
(35)

for any x /∈ Xm.

We prove the proposition by contradiction. Suppose that

xm is not a neighbor of Xm−1, i.e., xm /∈ N (Xm−1) or

dmin(xm,Xm−1) > 1. For the sake of simplicity, we consider

the case where dmin(xm,Xm−1) = 2. Proof for the other cases
where dmin(xm,Xm−1) > 2 can be accomplished similarly.

Let xp ∈ Xm−1 with p ∈ {1, 2, . . . ,m − 1} be a symbol

vector such that d(xp,xm) = 2. Without loss of generality,

we can always assume that the two position indices at which

the differences occur are 1 and 2, i.e.,⎧⎪⎨
⎪⎩
xm,1 	= xp,1

xm,2 	= xp,2

xm,i = xp,i ∀i ∈ {3, . . . , 2K}.
(36)

Now, we consider two other symbol vectors x′ =
[x′

1, . . . , x
′
2K ]T and x′′ = [x′′

1 , . . . , x
′′
2K ]T such that⎧⎪⎨

⎪⎩
x′
1 = xm,1 	= xp,1 = x′′

1

x′
2 = xp,2 	= xm,2 = x′′

2

x′
i = x′′

i = xp,i = xm,i ∀i ∈ {3, . . . , 2K}.
(37)

Hence, x′ and x′′ are the two symbol vectors satisfying

d(x′,xm) = d(x′′,xm) = 1. In other words, both x′ and

x′′ are neighbors of xm.

If x′ ∈ Xm−1 and/or x′′ ∈ Xm−1, then dmin(xm,Xm−1) =
1 because xm is a neighbor of both x′ and x′′, which is

contradicted by the assumption that dmin(xm,Xm−1) = 2.
Thus, xm is a neighbor of Xm−1, i.e, xm ∈ N (Xm−1).

If x′ /∈ Xm−1 and x′′ /∈ Xm−1, we have

|xm,1 − x̃1|2 = |x′
1 − x̃1|2 > |xp,1 − x̃1|2. (38)

Adding both sides of (38) with |xm,2 − x̃2|2 yields

|xm,1 − x̃1|2 + |xm,2 − x̃2|2 > |xp,1 − x̃1|2 + |xm,2 − x̃2|2,
which can be rewritten as

|xm,1 − x̃1|2 + |xm,2 − x̃2|2 > |x′′
1 − x̃1|2 + |x′′

2 − x̃2|2 (39)

because xp,1 = x′′
1 and xm,2 = x′′

2 . The inequality in (39)

indicates that ‖xm − x̃‖2 > ‖x′′ − x̃‖2, which means x′′ is
closer to x̃ than xm, or in other words, xm is not the mth

nearest symbol vector of x̃. This is contradicted by (35).
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