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Abstract—In many multiple-input multiple-output (MIMO)
communication applications, two-dimensional (2D) rectangular
arrays are used and the angular field of interest is different in the
azimuth and elevation angle domains. In this paper, we show how
to exploit scenarios with users confined to narrow elevation angles
by means of 2D rectangular arrays with low-resolution spatial
Σ∆ sampling in only one (i.e., the vertical) dimension. We analyze
the 2D directions-of-arrival (DoA) estimation performance of
MUSIC for such arrays, and illustrate the resulting advantage
of the Σ∆ approach over standard one-bit receivers.

I. INTRODUCTION

At millimeter-wave and higher frequencies, wireless chan-
nels become highly specular and thus sparse in the angular
domain, and channel estimation can be achieved by deter-
mining the directions-of-arrival (DoAs) of the users’ signals
[1]. Most research on DoA estimation has focused on one-
dimensional (1D) angle scenarios with linear arrays, but many
wireless communication applications employ two-dimensional
(2D) arrays where both azimuth and elevation angles are of
interest. Although 1D techniques can be easily extended to
the generic 2D case, typical 2D scenarios in wireless systems
do not have uniform requirements for the angular dimensions.
For example, in a classical cellular setup with arrays mounted
on a tower or the top of a building, the cell is divided in three
azimuthal sectors, and three separate arrays are used to cover
each sector. While the desired field of view of each array is
relatively wide in azimuth (e.g., 120◦), it is relatively narrow
in elevation since the most users are on the ground and the
strongest gain is needed for distant users at angles near the
horizon (see Fig. 1). The same would be true for a 2D array
mounted on a wall in a large hall, since most large rooms are
much wider/longer than they are tall.

This observation has important consequences in the design
of the 2D array, particularly for the case we consider in
this paper, where low-resolution spatial Sigma-Delta (Σ∆)
analog-to-digital converters (ADCs) are used to quantize the
received signals. Low-resolution ADCs have been the subject
of considerable work recently for massive MIMO scenarios,
with the goal of reducing the cost and complexity of the
RF hardware [2]-[6]. Low-resolution spatial Σ∆ sampling
provides performance superior to standard quantization in
situations where the array is oversampled in space (antennas
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Fig. 1. Angular fields of view in typical wireless cells.

closer than half-wavelength) or where the DoAs are confined
to narrow angular regions, since the quantization noise can be
shaped away from the signals of interest [7]-[10].

The case we consider in this paper is the one described
above, where the range of elevation angles is limited, but the
azimuth angles are not. This suggests a 2D array architecture
in which the Σ∆ processing occurs only along the vertical
columns of the array, which has an added advantage in that
it limits the inherent delay due to daisy-chaining the RF
signal between adjacent antennas. Prior work has empirically
investigated the 1D DOA estimation performance of a Σ∆-
sampled linear array [11], but we derive the analytical 2D
DOA performance of this special 2D Σ∆ architecture as-
suming the DOAs are estimated with the MUSIC [12], [13]
algorithm, and we further take into account the effects of
mutual coupling.

II. SYSTEM MODEL

A. Channel Model

Consider the uplink of a single-cell multi-user MIMO
system where a basestation (BS) equipped with a rectangular
array (RA) receives signals from K different directions. Fig. 2
shows the RA oriented to lie in the yz-plane with columns
parallel to the z-axis. We assume that the RA has N antennas
separated by dz in each column, and M antennas in each row
separated by dy = λ/2, where λ is the signal wavelength.
We will assume dz ≤ λ/2 in this work since we will be using
Σ∆ sampling along the columns of the array. The origin of the
coordinate system coincides with the bottom left antenna of
the array. Denote the signal received at the BS by X ∈ CN×M
whose mth column is given by

xm = Gms+ nm, (1)
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Fig. 2. Rectangular array lying in the yz-plane.

where Gm = [gm (θ1, φ1) , · · · , gm (θK , φK)] ∈ CN×K
contains the steering vectors of the K sources for the mth
column of the RA. The elements of the K × 1 signal
vector s are assumed to be uncorrelated zero-mean Gaus-
sian random variables with diagonal covariance E

{
ssH

}
=

diag (p1, · · · , pK), and pk represents the power of the k-th
signal arrival. The received noise nm is also complex zero-
mean and Gaussian but with a covariance matrix Rnm that is
spatially correlated due to the mutual coupling (MC).

The steering vectors of the array are modeled as

gm (θk, φk) = Tam (θk, φk) , k = 1, · · · ,K, (2)

where T models the MC and am (θk, φk) is the nominal MC-
free steering vector assuming an azimuth and elevation DoA
of φk and θk, respectively, whose nth element is denoted by

[am (θk, φk)]n = e
−j2π

[
(m−1)

dy
λ sin(φk)sin(θk)+(n−1) dzλ cos(θk)

]
,

for m ∈ {1, · · · ,M}, n ∈ {1, · · · , N}. Since we only
consider spatial oversampling along the vertical dimension of
the array, we assume that the MC is confined to the antennas
in each RA column and not across columns. Our assumed MC
model is based on a detailed multiport circuit characterization
involving thin dipole antennas [14]. The choice of the circuit
parameters that specify T and the noise covariance Rnm can
be found in [15], [16], [17].

B. Σ∆ Quantization

In a standard implementation with one-bit quantization, each
antenna at the BS is connected to a one-bit ADC. In such
systems, the baseband signal at the nm-th antenna becomes

ynm = Qnm (xnm) , (3)

where Qnm (.) denotes the one-bit quantization operation
applied separately to the real and imaginary parts as

Qnm (xnm) = αnmsign (Re (xnm))+jαnmsign (Im (xnm)) .
(4)

The output voltage level of the one-bit quantizers are rep-
resented by αnm. While these voltage levels are irrelevant
for standard one-bit quantization, in the case of one-bit Σ∆
quantization the selection of appropriate values for αnm is

of critical importance, as discussed in [8]. Furthermore, we
allow these voltage levels to be a function of the antenna index
nm, although once chosen, they remain fixed and independent
of the user scenario or channel realization provided that
appropriate power control is applied.

As discussed above, in this paper we assume that spatial
Σ∆ sampling is only applied in the vertical direction along
the index n in each column of the RA. This is because we
assume the users are confined to a narrow range of elevation
angles (e.g., typically no more than 40◦ in practice), while
the azimuth range is much wider. Thus, we can achieve
the benefits of Σ∆ quantization noise shaping without any
reduction in antenna spacing in the horizontal dimension, and
only a slight reduction in element spacing in the vertical
dimension due to the narrow elevation range.

By appropriately designing the output voltages of the ADCs
(see [8] for details), the received baseband signal at the BS
after column-wise Σ∆ quantization can be represented as

Y = X +U−1Q , (5)

in which

U =


1

e−jψ 1
...

. . . . . .
e−j(M−1)ψ · · · e−jψ 1

 , (6)

where ψ is used to steer the shaped quantization noise region
to the desired DoA, and Q = [q1, · · · , qM ] represents the
effective quantization noise. Following the same reasoning as
in [8], the covariance matrix of each column of quantization
noise can be approximated as

Rqm ' diag
(
pqm

)
, (7)

where

pqm =
(π

2
ζ − 1

)
Πpxm (8)

Π =

1 0(
π
2 ζ − 1

)
1

...
. . . 1(

π
2 ζ − 1

)n . . . . . . . . .
...

. . . . . . . . . . . .(
π
2 ζ − 1

)N−1 · · ·
(
π
2 ζ − 1

)n · · ·
(
π
2 ζ − 1

)
1



pxm =
[
E
[
|x1m|2

]
,E
[
|x2m|2

]
, · · · ,E

[
|xNm|2

]]T
,

and ζ is a correction factor [17].
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III. QUANTIZATION NOISE POWER DENSITY

To evaluate the noise shaping characteristic of the column-
wise Σ∆ architecture, we define the quantization noise power
density as [8]

ρq (θ, φ) ,
1

NM
E
[∣∣∣a (θ, φ)

H
q
∣∣∣2] , (9)

where
a (θ, φ) = vec ([a1, · · · ,aM ]) (10)

q = vec
(
U−1Q

)
. (11)

To simplify the calculation of the quantization noise power
density, we assume without loss of generality that the Σ∆
array is steered to broadside (θ = 90◦). With some algebraic
manipulation, ρq (θ, φ) can be calculated as (12) shown at
the top of the next page where z , ej2π

dz
λ cos(θ). For the

sake of analysis, we assume that the elements of the effective
quantization noise matrix are uncorrelated. Thus,

ρq (θ, φ) =
1

NM
×

M∑
m=1

(
4Tr

[
Rqm

]
− σ2

qNm

)
sin2

(
π
dz
λ

cos(θ)

)
+ σ2

qNm .

(13)

Eq. (13) demonstrates the noise-shaping capability of column-
wise Σ∆ processing on the quantization noise in the elevation
angle domain. We can see that for angles near θ = 90◦, the first
term in (13) is reduced to near zero. In addition, decreasing
the antenna spacing dz/λ also helps to extend the range of
θ for which the quantization noise is small. In the following,
we study the impact of the quantization noise shaping on DoA
estimation performance.

IV. DOA ESTIMATION PERFORMANCE ANALYSIS

In this section, we investigate the impact of quantization
noise on the performance of the MUSIC DoA estimation
method. To do so, we re-write the received signal as

y = G (θ,φ) s+ n+ q, (14)

where θ = [θ1, · · · , θK ]
T , φ = [φ1, · · · , φK ]

T , the kth
column of G (θ,φ) is defined as

gk = vec (Ta1 (θk, φk) , · · · ,TaM (θk, φk)) ,

n = vec (n1, · · · ,nM ) ,

and q is defined in (11). Since the aggregate noise, qa = n+q,
is not spatially white, we prewhiten the noise using the matrix
W [13]. Hence, the MUSIC cost function becomes

f (θ, φ) = Tr
(
P ḡ (θ, φ) ÊnÊ

H

n

)
, (15)

where ÊnÊ
H

n represents the estimated noise subspace. In
(15), P ḡ = ḡḡ†, ḡ = Wg, and ḡ† =

(
ḡH ḡ

)−1
ḡH is the

pseudoinverse of ḡ. Denote the sample covariance matrix of
vectors x and y by

R̂xy =
1

T

T∑
t=1

xty
H
t , (16)

where T denotes the number of snapshots. The matrices
Ês ∈ CMN×K and Ên ∈ CMN×(MN−K) define the signal
and noise subspaces, respectively, and are determined by the
eigenvectors of WR̂yyW

H . The MUSIC estimate of (θ,φ)
is obtained by finding the K local minima of (15). In the next
section, we derive an analytical expression for the performance
of this estimator for a rectangular array with the column-wise
Σ∆ architecture.

A. Estimation Error

To find the covariance matrix of the estimation error, we
follow the general approach of [12], [18]. The MUSIC DoA
estimate can be obtained by finding the local minima of
f (θ, φ) in (15) where

∇f
(
θ̂, φ̂
)

= 0. (17)

Writing the Taylor series expansion of the left-hand side of
(17) around the true value (θ, φ), we have

∇f
(
θ̂, φ̂
)

= ∇f (θ, φ) +H (θ, φ)

([
θ̂ − θ
φ̂− φ

])
= 0, (18)

where H (θ, φ) denotes the Hessian matrix. Hence[
θ̂ − θ
φ̂− φ

]
= −H−1 (θ, φ)∇f (θ, φ) . (19)

Some algebraic manipulation yields the estimation error shown
in (20) at the top of the next page, where fx , ∂f/∂x, fxx ,
∂2f/∂x2, and fxy , ∂2f/∂x∂y. Note that replacing θ with

φ in (20) results in the expression for E
[(
φ̂− φ

)2
]

.

From [20] Eq. (B.3) and (B.5), we have

fη = Tr

[
∂P ḡ

∂η
ÊnÊ

H

n

]
= 2Re

(
Tr
[
P ḡḡηḡ

†ÊnÊ
H

n

])
(21)

fηξ = Tr

[
∂2P ḡ

∂η∂ξ
ÊnÊ

H

n

]
≈ Tr

[
∂2P ḡ

∂η∂ξ
EnE

H
n

]
=

− 2Re

(
Tr

[(
P⊥ḡ ḡξḡ

†ḡηḡ
† + ḡ†

H

ḡHξ P
⊥
ḡ ḡηḡ

† − P⊥ḡ ḡηξḡ†

− P⊥ḡ ḡη
(
ḡH ḡ

)−1
ḡHξ P

⊥
ḡ + P⊥ḡ ḡηḡ

†ḡξḡ
†
)
EnE

H
n

])
(22)

where η, ξ ∈ {θ, φ}, ḡη = ∂ḡ/∂η, ḡηξ = ∂2ḡ/∂η∂ξ, P⊥ḡ =
I − P ḡ , and En denotes the noise subspace eigenvectors of
WRyyW

H . To find an expression for the expected values in
(20), we can re-write (21) as

fη = 2Re
(
ḡ†ÊnÊ

H

nP ḡḡη

)
. (23)
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ρq (θ, φ) =
1

NM
E

∣∣∣∣∣
M∑
m=1

e−j2π(m−1)
dy
λ sin(φ)sin(θ)

[(
1− z−1

)N−1∑
n=1

qnmz
−(n−1) + qNmz

−(N−1)

]∣∣∣∣∣
2
 (12)

E
[(
θ̂ − θ

)2
]

=
|fφφ|2 E

[
|fθ|2

]
− 2Re

(
fφφE

[
fθf
∗
φ

]
f∗φθ

)
+ |fθφ|2 E

[
|fφ|2

]
|fθθfφφ − fθφfφθ|2

(20)

In (23), for T � 1, asymptotic arguments can be used to show
that

fη = 2Re
(
ḡ†ÊnE

H
nP ḡḡη

)
(24)

= 2Re

(
MN−K∑
`=1

(
ḡ†EsE

H
s ê`

) (
eH` P ḡḡη

))
, (25)

where ê` and e` denote the `th column of Ên and En,
respectively. Using (24) and the fact that Re (u) Re (v) =
1/2 [Re (uv) + Re (uv∗)] for complex numbers u and v, we
arrive at (26) at the top of the next page. Following the same
approach as in [12], it can be shown that

ḡ†kE
[
EsE

H
s ê`

(
EsE

H
s êr

)T ]
ḡ†Tk = 0 ∀`, r, (27)

ḡ†kE
[
EsE

H
s ê`

(
EsE

H
s êr

)H]
ḡ†Hk =(

ḡH ḡ
)−2

T

(
1

pk
+

1

p2
k

[(
Ḡ
H
Ḡ
)−1

]
kk

)
δ`r, (28)

ḡHξ P ḡEnE
H
nP ḡḡη =

ḡHξ P ḡ

(
I − Ḡ

(
Ḡ
H
Ḡ
)−1

Ḡ
H
)
P ḡḡη, (29)

where Ḡ = WG and δ`r is the delta function. Plugging (27)-
(29) into (26) leads to (30) at the top of the next page. In
the next section, we evaluate the accuracy of this expression
and compare the performance of the MUSIC algorithm in the
column-wise Σ∆ architecture with that of standard one-bit
quantization and infinite resolution ADCs.

V. NUMERICAL RESULTS

We assume static power control [19] so that pk = p0 ∀k.
Thus, the signal-to-noise ratio (SNR) is defined as

SNR = p0

Tr
[
GGH

]
Tr [Rn]

. (31)

The circuit parameters that define the MC were chosen to be
the same as in [15], [16]. We first illustrate how the column-
wise Σ∆ architecture is beneficial in shaping the quantization
noise. For this experiment, we assume a single source with
DoA (θ, φ) = (140◦,−30◦). Therefore, the center angle of

the Σ∆ array is steered towards ψ = 2π dzλ cos (140◦). We
consider a 10×10 RA with dz = λ/4, dy = λ/2, and SNR =
0 dB. Fig. 3 shows that the column-wise Σ∆ architecture can
significantly alleviate the adverse effect of quantization in both
the elevation and azimuth directions compared with standard
one-bit quantization. This experiment shows that with only 10
antennas in the vertical direction, the Σ∆ architecture is able
to provide considerable quantization noise shaping. This is a
promising result since it shows that the benefit of the Σ∆
architecture can be achieved without requiring a long end-
to-end delay as the RF signal feedback propagates from one
antenna to the next. Moreover, it is consistent with practical
implementations where more antenna elements are placed in
the horizontal direction for increased azimuth angle resolution.

In the second experiment, we investigate to what extent the
column-wise Σ∆ architecture can improve the performance
of MUSIC DoA estimates. We assume K = 5 sources whose
elevation DoA is equal to θ0, and whose azimuth DoAs are set
to [−10◦,−30◦,−70◦, 40◦, 10◦]. The center angle of the Σ∆
array is steered towards ψ = 2π dzλ cos (θ0). In the simulations,
we set θ0 = 120◦, dz = λ/4, dy = λ/2, and the correction fac-
tor is ζ = 1.13. We further assume T = 1000 snapshots, and
103 Monte Carlo trials for the simulations. In Fig. 4, the DoA
estimation error is compared for cases with high-resolution
ADCs (no quantization), standard one-bit quantization, and
using column-wise Σ∆ architecture with one-bit ADCs. It can
be seen that the Σ∆ architecture outperforms the standard one-
bit architecture for both elevation, θ, and azimuth, φ, DoA
estimation. In addition, the simulation results closely match
the theoretical expressions derived in Section IV-A.

VI. CONCLUSIPON

We have studied the benefit of the spatial Σ∆ architecture
for DoA estimation with 2D arrays. We showed that by
implementing the Σ∆ approach only in the vertical dimension
for limited elevation angle ranges, not only we can avoid the
inherent delay due to daisy-chaining the RF signal between
adjacent antennas, we can also exploit the Σ∆ noise shaping
characteristic in both the azimuth and elevation directions. By
taking into account the effect of mutual coupling, we showed
that with only 10 antennas in the vertical dimension, we can
improve the DoA estimation for both elevation and azimuth
DoAs. We also quantified the performance of the MUSIC DoA
estimator by deriving analytical expressions for the estimation
error and verified its accuracy via simulation.
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E [fηkfξk ] = 2Re

(
MN−K∑
`=1

MN−K∑
r=1

(
eH` P ḡḡη

) (
eHr P ḡḡξ

)(
ḡ†E

[
EsE

H
s ê`

(
EsE

H
s êr

)T ]
ḡ†T
))

+

2Re

(
MN−K∑
`=1

MN−K∑
r=1

(
eH` P ḡḡη

) (
ḡHξ P ḡer

)(
ḡ†E

[
EsE

H
s ê`

(
EsE

H
s êr

)H]
ḡ†

H

))
(26)

E [fηkfξk ] =
2
(
ḡH ḡ

)−2

T
Re

(
ḡHξ P ḡ

(
I − Ḡ

(
Ḡ
H
Ḡ
)−1

Ḡ
H
)
P ḡḡη

(
1

pk
+

1

p2
k

[(
Ḡ
H
Ḡ
)−1

]
kk

))
(30)
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Fig. 3. Aggregate noise power density. N = 10, M = 10, dz = λ/4,
SNR = 0 dB.
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Fig. 4. Estimation error versus SNR. N = 10, M = 10, dz = λ/4,
dy = λ/2.
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