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ABSTRACT. Following closely the classical works [5]-[7] by Glassey, Strauss,
and Schaeffer, we present a version of the Glassey-Strauss representation for
the Vlasov-Maxwell systems in a 3D half space when the boundary is the
perfect conductor.

1. Vlasov-Maxwell systems. Consider the plasma particles of several species
with masses mg and charges eg for § =1,2,---, N, which occupy the half space

Q=R = {(21,22,23) € R* : 23 > 0} 3 z. (1)
The relativistic velocity for each particle is, for the speed of light c,
bg= ——— for v e RS, (2)

\/ Mm%+ [v]?/c?

Denote by fa(t,z,v) the particle densities of the species. The total electric charge
density (total charge per unit volume) p and the total electric current density (total
current per unit area) J are given by

pltoa) = [ Dol znnldn (3)
J(t,x) = /]RS %:@geﬁfg(t,x,v)dv. (4)
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The relativistic Vlasov-Maxwell system governs the evolution of fz(t,z,v) (see
page 140 of the Glassey’s book [5]): for (¢,z,v) € [0,T] x Q x R3,

A {0
Orfp+ 05 Vafs+ (esE +es~> x B—mpges) - Vufs =0, (5)

where g is the gravitational constant (we can easily treat a general given external
field). The electromagnetic fields (E, B) is determined by the Maxwell’s equations
in a vacuum (in Gaussian units)

Vg E =4mp,
1
Vz XE:—*atB,
C
V- -B=0,

4 1
V, X B=-LJ+=0,E.
C C

2. Boundaries. Plasma particles can face various forms of boundaries in different
scales from the astronomic one to the laboratory (]2, 1]). In particular, we are inter-
ested in the plasma inside the fusion reactors in this paper. So-called plasma-facing
materials, the materials that line the vacuum vessel of the fusion reactors, experi-
ence violent conditions as they are subjected to high-speed particle and neutron flux
and high heat loads. These require several challenging conditions for the bound-
ary materials, namely high thermal conductivity for efficient heat transport, high
cohesive energy for low erosion by particle bombardment, and low atomic number
to minimize plasma cooling. Traditionally sturdy metals and alloys such as stain-
less steel, tungsten, titanium, beryllium, and molybdenum have been used for the
boundary material [4]. As these metals have very high electric conductivity, we can
regard them as the perfect conductor. This boundary condition is the major interest
of the paper (see Section 2.1).

On the other hand, carbon/carbon composites such as refined graphite have
excellent thermal and mechanical properties: eroded carbon atoms are fully stripped
in the plasma core, thus reducing core radiation. In addition, the surface does not
melt but simply sublimes if overheated. For this reason, the majority of the latest
machines have expanded graphite coverage tile to include all of the vacuum vessel
walls [4]. Graphite is an allotrope of carbon, existing as the collection of thin
layers of a giant carbon atoms’ covalent lattice. As there is one delocalized electron
per carbon atom, graphite does conduct electricity throughout each layer of the
graphite lattice but poorly across different layers. Due to the anisotropic electric
conductivity of graphite, one has to employ different boundary conditions from one
for the metal boundary.

2.1. Perfect conductor boundary. In this section, we consider the boundary
conditions of (E, B) at the boundary 99 := {(x1, 72, 73) € R? : 23 = 0}. For that,
actually we consider more general situation: two different media occupy Ri and
R3 = {(z1,72,73) € R? : 23 < 0} separately. In case that media are subject to
electric and magnetic polarization, it is much more convenient to write the Maxwell’s
equations only for the free charges and free currents in terms of SI units (see Chapter
7 in [10]):

VgD = Pfree (10)
V. xE=-0;B, (11)
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V. B=0, (12)
Vo X H = Jyee + 04D, (13)

where € is the permittivity of free space and pg is the permeability of free space

(note that the speed of light ¢ = \/E(:LJW) Here, D = ¢gF + P and H = LTloB - M,

while an electric polarization P and a magnetic polarization M are determined
by appropriate constitutive relations in terms of F and B. For example, a linear
medium has

P=cox.E, M =xnH. (14)

Here, x. and yx,, are called the electric susceptibility and magnetic susceptibility,
respectively. In a vacuum, as x. = 0 = X, and p = pgee and J = Jgee (all plasma
particles/charges are free to move), we recover (6)-(9).

Denote by n the outward unit normal of € (which is n = —e3 for our case); [V]
the jump of V' across 0Q: [V](z1,x2) = limg, 0 V (21, T2, 3) —limg, 10 V (21, 22, z3).
Then from (11) and (12) we derive the jump conditions

nx[E]=0, n-[B]=0. (15)

In other words, the tangential electric fields F;, E5, and the normal magnetic field
Bs are continuous across the interface 9€2. We note that (15) hold in general, no
matter what constitutive relations hold ([3, 11]). (In special circumstances (e.g.
electromagnetic band gap structures), one has to consider a non-zero surface mag-
netic charge and current, in which (15) should be replaced by discontinuous jump
conditions [14]. Such cases are out of our interest in the paper.)

Now we come back to the original situation that the plasma particles stay in a
vacuum of the upper half space €2 = Ri, while some matter fills the lower half space
R3 . We assume that the current follows the Ohm’s law in the matter:

Jiree = o{Lorentz force}, (16)

where Lorentz force equals eg E+-€3 %‘* X B as the gravitation effect is negligible inside
the matter. Here, o is the conductivity of the matter, which equals the reciprocal
of the resistivity. The perfect conductors have o = co and the dielectrics get o = 0,
while most of real matter is between them. As the drift speed of electrons/ions in
the matter is slow (typical drift speed of electrons is few millimeters per second), we
ignore the magnetic effect in the Lorentz force to derive that V- Jpee = oV, - E.
We assume that the matter is the linear medium (14) and hence D = €y(1 + x.)E.
We derive that, from the continuity equation and (10),

g g

0 ree:_va:'Jree:_VI'E:_ivx'D:
tPf fi o o1+ xo)

60(1 +Xe)pfree'
Hence the charge density pgee vanishes in the time scale of 1/0, which implies
Prree = 0 inside the perfect conductor (6 = o00). As a consequence, the charge
density and current density accumulate only on the surface/boundary/interface
(“Skin effect” [13]). Moreover, (13) and (16) formally imply that £ = 0, and
then (11) forces 9; B = 0 inside the perfect conductor. Therefore by assuming the
initial datum of B vanishes in R2, we have B = 0 in R2. On the other hand,
the superconductor has B = 0 no matter what initial datum of B is (the Meissner
effect).

We summarize the above discussion about E7, Fa, B3 in (17) and will derive the
boundary conditions for F3 and Bi, By using the equations.
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Definition 2.1 (Perfect conductor (or superconductor) boundary condition). As-
sume the lower half space R? consists of a linear medium (14) of the perfect con-
ductor o = oo satisfying the Ohm’s law (16). We further assume either the initial
magnetic field B totally vanishes or the matter of R3 is the superconductor. Then
E =0 = B in R3. Therefore, from (15) we derive boundary conditions of the
solutions (E, B) to (6)-(9):

E,=0=F,, B3=0 on 0N. (17)

Moreover,
OsFEs =4mp on 09, (18)
03By = 4nJy, 03By = —4wJ; on 9ON. (19)

We only need to derive the boundary conditions for Fs3, By, and Bs. We achieve
them by using the equations (6) and (9). From (6), we have 03 E3 = —01 E1 —02Ex+
47p. Then (17) formally implies (18).

Now from (9), we have, for n = —eg3,

1 4
EnxatE—&—%nxJ—nx(waB):O.

From (17), on 092 we deduce that n x 9;F = 0 and hence

Jo 0 3233 — 63B2 Jo (9331
0=dr |-J1| — 0 X —(8133 - 8331) =dr |=J1| — (9332
0 -1 01B2 — 02 B, 0 0

Therefore, we conclude (19).

2.2. Surface charge and surface current. To consider general jump conditions
across the interface (20), we need to count a surface charge with density ogee and
a surface current with density Kpee which are “concentrated” on the interface OS2
(see [13, 10]). Physically, a non-zero surface charge and current exist on the surface
of the perfect conductor as the interior electric field is zero (see a survey on the
concept of the “perfect” conductor and the surface charge and current in history
[16]). Then from (9) and (6), we formally get

n X [H] =n X Ktee, 1 [D] = Otree- (20)
For example, if both media are linear (14) then (20) implies that
1 1
n X (7B+ — 737) =n X Kfree; n- (6+E+ — EfEf) — Ofree; (21)
s H—

where ex = €(1 + Xe,+) and pt = po(1 + xm, +) are the permittivity and perme-
ability for the upper and lower media. In the case of Definition 2.1, the upper half is
the vacuum and the lower half is a perfect conductor with B = 0, then (20) implies
that

1
Kfrcc” = ;BH |8§2; Ofree = E0-E13|8Q- (22)
0

We note that (22) is not the boundary condition, but one can measure the surface
charge and surface current on the surface of the perfect conductor by evaluating £
and B.

On the other hand, unless the dielectric media can be polarized on the interface,
both surface charge and current vanish on the interface. This results in the dielectric
boundary condition, which is (20) with Kgee = 0 = Ofee ([3]). When the media
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have anisotropic conductivities as graphite, the surface charge and current would
not be prescribed simply but determined by PDEs.

3. The Glassey-Strauss representation in R? ([8]). In the whole space, E and
B solve
0?E — A E = —47V,p — 410, J, (23)
9?B — A,B =47V, x J, (24)
with the initial data
Eli—o = Eg, 0iE|t=0 = 0:Fo := V, x By — 4nJ |0, (25)
Bli—o = By, 9;Bli—o = 0;By := —V, x Ey.

Obviously the wave equations suffer from the “loss of derivatives” of (E, B) with
respect to the regularity of the source terms p and J. As Glassey mentions in
his book [5], the key idea of the Glassey-Strauss representation is replacing the
derivatives d, V, by a geometric operator T in (27) and a kinetic transport operator
S in (28):

while, for w = w(z,y) = |§:§w
T, == 0; — w;0t, (27)
S:=0,+1v-V,. (28)
Note that
Tif(t = ly — x| y,v) = Oy, [f(t = ly — x|y, v)], (29)

which is a tangential derivative along the surface of a backward light cone [5]. On
the other hand, the Vlasov equation (5) implies that

Sf ==V, -[(E+x B - ges) ). (30)

Therefore, in [8, 5], they can take off the derivatives Tj, S from f using the inte-
gration by parts within the Green’s formula of (23)-(24) by connecting the source
terms to f via (3)-(4). We refer to [15] for the recent development in the whole
space case.

4. Derivation of the representations in a half space. In this section we review
the original Glassey-Strauss representation of (E, B) in a whole space and then
generalize the representation to the half space problem when the perfect conductor
boundary condition (17)-(19) of Definition 2.1 holds at the boundary 9. For the
sake of simplicity, we may assume a single species case {8} = {1} and mg =eg =
¢ = 1 by the renormalization.

Consider the perfect conductor boundary condition of Definition 2.1. We derive
the representation of E and B satisfying the perfect conductor boundary condition
at the boundary 9§2. We adopt convenient notations: E = (E), E3) = (E1, E2, E3),
B = (BH,Bg) = (B1’327B3), V= (Vu,ag) = (81,82,83), and

T = (x),—x3) for x= (x,23) = (71,22, 73). (31)

We refere to [12] for previous study on Vlasov equations in half space. We also refer
to [6, 7, 17] for the lower dimensional cases.
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4.1. Tangential components of the electronic field in a half space. From

(23), (17), and (25), we recall that, in €,
8t EH - AmEH = GH = 747TVHp - 47T8tJH, (32)
Eyli=0 = Ey)|, 0:E)||t=0 = 0:Ey|,

and
EH =0 on 0N. (33)
To solve the Dirichlet boundary condition, we employ the odd extension of the
data: for i = 1,2, and = € R3,

Gi(t, ), 73) =Lluy>0Gi(t, ) — 1uy<0Gi(t, T),
EOZ(IH,Ig) 7«3>0E01( )* m3<0EOi(:f)a (34)
OLEoi (), 23) =Luy>001Eoi(2) — Loy<00iEoi(Z).

Then the weak solution of Ej(t,z) to (32) with data (34) in the whole space R?
takes a form of, for i =1, 2,

1
Ei(t,x) = —— / (tOeE0i(y) + Eoi(y) + VEoi(y) - (y — z)) dSy
4mt OB(z;t)N{ys>0}
1
+ 72/ (—t0:E0i(9) — Eoi(9) — VEui(9) - (§ — 7)) dS,

4mt OB (z;t)N{y3<0}

1 i t— - 9

1 Gilt —ly —al.y) ;. (35)
AT JB(2it)n{ys>0} ly — 2]

1 —Gy t - - 9 y
1 Gi(t — |y —z,9) dy, (36)
4m B(z;t)N{ys<0} |y n Jf|

where B(z,t) = {y € R® : |z —y| < t} and OB(x,t) = {y € R® : |z — y| = t}.
Clearly the above form satisfies the zero Dirichlet boundary condition (33) at 3 =0
formally. From now one we regard the above form as the weak solution of (32)-(33).
The rest of task is to express (35) and (36).

Ezpression of (35): We follow the idea of the Glassey-Strauss (Section 3). From

(3)-(4) and (26),

B(xz;t)N{ys>0} ly — 2|
R d
:—/ / (Oif +0:0:f)(t = |y — z|,y,v)dv y
B(z;t)n{y3>0} JR3 |y - SU|
w; + 0; dy
=— 75]“ t— |y —z|,y,v)dv 37
/B(:z:t ﬂ{y3>0}/R~" 1+0- (SO~ | ) ly — | 37)
wl —i—vl) dy
N{ys >0}

Here, we followed the Einstein convention (when an index variable appears twice,
it implies summation of that term over all the values of the index) and will do
throughout the paper.

For (37), we replace Sf with (30) and apply the integration by parts in v to
derive that (37) equals

N d
/ / 0P (0,0) - (E 10 x B — ges) f(t — |y — 2], 5, v)do— 22—, (39)
B(xz;t)N{y3z>0} JR3 |y - $|
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where

aiE(v,w) —V, wz—i:ﬁl _ (el—ﬁzﬁ)(l—l—f;w)—(cj)z-i-ﬁl)(w—(w17)17) (40)
1+%-w (W) (149 w)?
For (38), we replace Tj f with (29) and apply the integration by parts to get (38)

equals

i + 0;)0; ds
- / Wy (61.7 - (w +A,U )U]> f(O,y,v)dU z
dB(z;t)N{y3>0} 1+0-w ly — z|
(wi + ;)03 dy
+/ / <5i3_A f(t—y—x,y,O,v)dv
B(z;t)N{ys=0} 1+0-w | 9 ly — x| (41)

v2—1 )(0; 4 w; dy
o [N
B(z3t)  fpa (1+9-w) ly — z|

N{ys>0}

where we have used that, from [8, 5],

9 { 1 (5,, B (wi+@i)@j)] ~ (0P = D)0 + wi)

ly — | 1+0-w Cly— 2149 w)?

Ezpression of (36): In order to study the expression in the lower half space we
modify the idea of Glassey-Strauss slightly. Define
w = [Wl ) —(.U3] (42)
We use the same S of (28) but
stf = =0y, [f(t — |y — @,y —y3,v)] = Oy, f — W30 f, (43)
Tif = 0y, [f(t =y — x|, y), —y3,v)] = Oy, f — @0 f for i=1,2.

Then we get
S—v-T

O = , 44
T ltow (44)

_ S—o-T w;S = 0-T
-_Tz W - — = ZA — i — Wi P 45
Dy +w1—|—v~w 149 w+ wl+vw (45)

Therefore, we derive

w; + 05 @05 4+ 005\ =
; + 0; - v 51.._M - 46
%00 =550 (J 1+@w>J (46)

Now we consider (36). From (46),
. N d
(0= [ [ @+ 00t~y —al.goyto 2y
B(z;t)N{y3<0} |y - !L‘|

w; + 0, i dy

= 7(Sf)(t —ly —z|,g,v)dv—— (47)
/B(zt )N {ys<0} /]R3 1+70- ly — |

Wi + 0;0; )T' My — 250V dy 48
/Bm) L, (0o = S D = =l oo

N{ys<

As getting (39), we derive that, with aZ of (40), (47) equals

d
/ / aF(0,0) - (E+0x B ges) f(t—ly -zl 7.v)dv— 2 (49)
B(z;t)N{y3<0} |y - $|
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For (48), applying (43) and the integration by parts, we derive that (48) equals

0;U; + 0;0; B ds,
/ / w; (%‘ - LT fv_vj)f((),yw)dv 5
OB(x5t)N{ys <0} JR3 1+9-w ly — |
(IJﬂAJg =+ f/i’[lg dy
+/ / 53(5'3_f)f(t_|y_m|ayaoav)dv 50
Blat)n{ys=0} Jrs N I+o-w ” ly — = (50)

(|f)|2 B 1)(62 “F(DZ) B dy
_ N o
/B(w;t)ﬂ{y3<0} /R3 ft =1y - 2|5 v)dv

(1419 w)? ly —af*’
where we have utilized the notation
;=41 for i=1,2, 13=-1, (51)
and the direct computation
g (z.j_ B ) - e R (52)
vi ||y — x| 1+9-@ ly — z|2(1 4 0 - @)

4.2. Normal components of the Electronic field in a half space. From (23),

(18) and (25), we have
8?E3 — Ang = G3 = —47T83p — 47r8tJ3, (53)
E3li—0 = Eo3, 0¢E3|t=0 = 01 Fo3,

and

O3E3 =4mp on 0N (54)
It is convenient to decompose the solution into two parts: one with the Neumann
boundary condition of (53) and the zero forcing term and initial data

OPw—NAzw=0 in €
wlt=o = 0, Oywli—o =0 in Q, (55)
Jzw=4mp on O,
and the other part F5 with the initial data of (53) and the zero Neumann boundary

condition. We achieve it by the even extension trick. Recall z in (31). For z € R?,
define

Gs(t,2) =14,50G3(t, @) + 1oy <0Gs(, @),
Eo3(z) =14,>0E03(2) + Loy<0Eo3(Z), (56)
01 Eo3(2) =145500tE03(2) + 1ag <001 Eo3(Z).
The weak solution Es3 to (53) with the data (56) in the whole space R? take a form
of

1
Bo(t.) = 15 [ ooy (0En(v) + Ena(9) + VEoa(y) - (y ) dS,

N{ys>0}
1 _ _ N
t e /SB(:r;t) (t0:Eo3(9) + Eo3(y) + VEos(7) - (§ — 7))dS,
N{ys<0}
1 Gs(t — |y — x|, y)
* 4 /B(x;t) ly — x| dy (57)
N{ys>0}
1 G3(t—‘y—1'|,ﬂ)
+ E B(xit) |y — $| dy (58)

N{y3<0}
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Following the same argument to expand (35) into (37)-(41) and (36) into (47)-(50),
we derive that

(57)
E ~ dy
= | s . az' (v,w) - (E4+0x B —ges)f(t—|y— x|,y,v)dvH
N{y3>0} R
(10f? = 1)(55 + ws) ay
+/ / ~ f(t—|y—$|,y,’l})d1}7
Bi)n{ys>0) Jr2 (1 +0-w)? ly — |2 (59)
-/ o (- Y iy 05
OB (w;t)N{ys>0} AN 1+9-w e ly — |
03)0 d
+ / <1W> f(t*|y*1|,y\|7ovv)dvi,
B(z;t)N{ys=0} JR3 1479w ly — |
(58)
E( - A _ dy
== | sy ., (v,w) - (E+9x B—ges)f(t—|y— x|,y,v)dv‘y 2
n{ys<0} * &
([0 = 1)(23 + @3) _ dy
+/ / — ft=ly -zl g,0)dv——m7
Bstn{ys<oy Jes (1 +70-0)? ly — a2 (60)
_ @3’[}]‘ + 1A)3’Dj B dSy
- w35 — ———=— ) f(0,y,v)dv
0B (z;t)N{y3<0} /RB ]< / 1+9-w ) ly — x|

o3 + 03)0 d
+/ / (liw%‘,(t*|y*$|7y\|,0,v)dv7y.
B(z;t)n{ys=0} JR3 1+0-@ v — 7|

Note that the weak derivative 93 to the form of Fj solves the linear wave equa-
tion (53) with oddly extended forcing term and the initial data in the sense of
distributions. From the argument of Section 4.1, we conclude that

d3E3=0 on 0Q. (61)

4.2.1. Wave equation with the Neumann boundary condition. Now we consider (55).
We assume p(t,z) for all ¢ < 0, which implies w(t,z) = 0 for all ¢ < 0. Define the
Laplace transformation:

oo

W(p,z) = /OO e Plw(t,r)dt, R(p,z)= / e Plo(t,z)dt. (62)

— 0 —00

Then W solves the Helmholtz equation with the same Neumann boundary condition:

P’W —A,W =0 in Q,

63
oW =47R on 0N. (63)
The solution for (p?> — A;)®(z) = §(z) in R? is known as 4= eiljlm‘ . We choose
1 e Pl=l
(0] = — 64
@)= 3 (64)

We have the following identities:
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Lemma 4.1. Suppose u € C?(Q) is an arbitrary function. For a fived x € Q and
® in (64), we have

u(z) = / By — o) (0 — As)uly)dy
! (65)
T /a 18— 2)0huly) — u(y)o,0(y — )] dS,.

Proof. The proof is rather standard. Fix z € Q. Let 0 < ¢ < 1, and B(z,¢) be a
ball centered at = with radius € such that B(z,e) C Q. Let V. = Q— B(z,¢). Then,
by the integration by parts,

- / Dy — x)(Ay — p*)uly)dy
Ve

- / w(y)On By — 2)dS, + / u(y)Pn®(y — 2)dS,
o0 OB(x,e)

- / O(y — x)Onhu(y)dS, — / O(y — z)0pu(y)dS,.
0N 0B(z,¢)

Iple

From (64), f(’?B(z,e) ®(y — x)dpu(y)dS, < 4me*$— — 0, as e — 0. And by direct
computation,

[ to.et s, = [ u() "= ey - )ds,
OB(z,e)

IB(x,¢) ly — x|

1 —(y—= ) ely=zl(y — g
=— u(y M-(—wly—fcI —1)#6@;

am OB(z,e) ‘y7$| |y7.70|

: (~aly o102 utyas
= —(=ply — 2| — uty

am OB(z,e) ‘:l/ - $|2 Y

_ 1
=((1 = (-pe)e ™) (47r52 /33(m,s) u(y)dSy> — u(x), ase — 0.
Combining all together, and letting e — 0 we get (65). O

Next for z € Q, let ¢*(y) be the function such that
(A~ D)d(y) =0 in 9,
OndN(y) = 0n®(y —xz) on 0N,
The integration by parts implies

0= / (Ay — P26k (y)uly)dy

(66)

- / (A, — pP)uly) 6% (v)dy + / 000% (0)uly) — &% (9)Owu()dS,  (67)
Q o0

- / (B — p)uly) b (4)dy + / 0.8y — 2)uly) — 6% (4)0wu(y))dS,.

o0
By adding (67) to (65), we derive that

u(z) = — / (B(y — ) — %)) (Ay — p)uly)dy
Q (68)
+ /8 (@ =) = 6} ()0 u(1)ds,.
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For the half space Q = R3 | we have, with Z in (31),

Pn(y) = -2y — 7). (69)
Finally, we derive that, from (68) and (69):

Lemma 4.2. For Q =R3, and ® in (64),

ulz) = - /Q (B(y — 2) + By — 2) (Ay — p)uly)dy

(70)
+ [ (@ 2)+ By —)0,u()ds,.
By applying (69) to (63), we derive that
Wip.)= [ (@y-2)+ 8y - 2)inR()dS,
oQ 71)
e—P((?h—w1)2+(y2—932)2+w§)1/2 (
= R(y1,y2)dy1dys.
/]R2 (y1 — 1) + ((y2 — 32)2 +x§)1/2 (Y1, y2)dy1dy2
Using the inverse Laplace transform, we derive that
1 [ -
w(t,z) = 2—/ eI () 4 iy, x)dpo
a — 00
L% 0 et [ gy g e~ (Pr+ip2) (11=21)*+(va—2)*+25) /2 (72)
— — e 1Tp2
™ /700 P2 e Y ) 1 (g2 - w22 )12

x/ ds ef(’”“pz)s(*P(svylal&))'

— 00

Finally, we derive that, using the identity [*_e™2'dp, = 2m6 (%),

p(s,y))dpadsdyj

-1 oPr+ip2) s/~ )
w(t,x):7 R2 JR JR

lyy — 2] + 23

ePrt=s=Vl=aPed g — s — Jly — 2|2 + 22)
= —2/ / - p(s,y))dsdyy (73)
R R V0 — 2P+ 3
p(t — /Iy — =* + 23, y))

Vivg—zP+a3<t lyy — 2y 1? + 23

4.3. Summary. Collecting the terms, we conclude the following formula:

Proposition 1.

Ei(t,z) = (t0:Eoi(y) + Eoi(y) + VEoi(y) - (y — x)) dSy

W OB(z;t)N{ys>0}
: i ) o
vi( = t0Eoi(y) — Eoi(y) — VEw(Y) - (j — ©))dS,

_
4Amt2 OB(z;t)N{ys<0}
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~12 ~
0% — 1)(0; + w;
+/ / (‘ | 2 )( lA Z)Qf(ti‘ythyav)dvdy
Blat)n{ys>0} Jre [y — 22 (L+ 0 - w)

(|9]* = 1) (0 + @) )
L —— = f(t — |y — x|, y,v)dvdy
/B(x t)N{ys<0} / ly —z[2(1+9-w)? = | )

d
+ [, B 0) (B 4+ % B = gea) = ly = ol . )
B(z;t)N{y3>0} |y—$|
d
/ / Lza E+U><B ge?)) (t—|y—x|,g,v)d1)7y
B(z;t)n{y3<0} JR3 |y - 1‘|
w; + ;)0 dy
+/ / (13_ o ) 3) (t_ly_x‘7y\|707v)dv H
B(z;t)n{y3=0} JR3 |y - I|
w0; 03 + 0;0 dy
/ / 1/1(13 3 3)f(t—y—x|,y|,07v)dv H
B(x;t)N{ys=0} JR3 1+90 ly — x|
i +0:)0; ds
_ / / Wi (61] - (w +AU )U]) f(07 y,’l})dU ‘
OB (z;t)N{ys>0} JR3 140w |y - .’E|
0;0j + 0;0; _ d
+/ / Li"‘_}j (52J - w)f(07yav)dv Sy
dB(z;t)N{ys <0} JR? I1+v-w ly — |
2f(t — - 9 703
—51-3/ / A=l =2y 00) 4 g
B(z;t)n{ys=0} JR3 ly — |
(74)

4.4. Representation of the magnetic field in a half space. Next, we solve for
B. For By, By we have, for i = 1,2,
0?B; — ApB; =4n(V, x J); := H; in Q,
833331 :47TJ2, 893332 = 47TJ1 on 89, (75)
Bl(O,x) ZBOi,atBi(O,x) = atBOi in Q.
To solve (75) we write B; = B; + By; with B; satisfies the wave equation in
(0,00) x R3 with even extension in w3:
02B; — Ay B; =1,,50H(t,z) + 1,,<0H;(t, Z),
B;(0,2) =14,0B0i(x) + Ly, <0Boi (), (76)
9 B;(0,2) =14,500; Boi (z) + 145<00:Bo; (Z).
And By,; satisfies
8§Bbi - Aszi =0in Q,
Byi(0,2) = 0,0,By; = 0 in Q, (77)
81331,1 = 47TJ2, 81331,2 = —47TJ1 on (.
Then from (76),

Bi(ta 35)
1

— | (190 Box(y) + Bosly) + VBos(y) - (y — 2)) S,
0 OB(z;t)N{ys>0}
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1
+— / (t0:Boi(y) + Boi(§) + VBoi(y) - (§ — &))dS,
ATt? J 9B (a5t)n{ys <0}
1 Hi(t— |y — 1 Hi(t—|y—z|.7
L1 it—ly—aly) , +7/ i(t—ly x\,y)dy_
4m B(z;t)N{ys>0} ly — z| 4m B(z;t)N{y3<0} ly — x|

Applying (73) to (77),

Bu(t.) = (-1)'2

B(=z;t)n{ys=0}

2, ifi=1,
1=
ST, ifi=2

Ai, t— - ) 707
/ o f(t—ly — x|y v)dvdSy, (78)
R3

ly — |

where we define

Thus,
B;(t, )
1
At /aB(x;tm{ySw}
1
e ~/6B(gc;t)r‘1{y3<0}
L1 Hi(t — |y —z|,y) +7/ Hi(t — |y — | 9)
AT J B(z:t)n{ys>0} ly — x| AT JB(z:it)n{ys <0} ly — x|

; Ai t— — 4 707
+(—1)12/ / St =y = ey, 00) e
B(z;t)n{y3=0} JR3 |y - I|

On the other hand, Bs(t,x) satisfies

(t0:Boi(y) + Boi(y) + VBoi(y) - (y — x)) dS,,

(0, Boi () + Boi(§) + VBoi(3) - (5 — 7))dsS,

dy

0?B3 — A, Bs =47(V, x j)3 := Hz in Q,
B3(0,2) =Bos, 9:Bs(0,x) = 0; Bys in Q,
B3 =0 on 09.
Using the odd extension in x3:
Hj(t, ) =1lu,50H3(t, ) — Lay<oHs(t, 2),
Boz (%) =145>0B03(7) — Luz<0Bo3(7),
0:Bo3(0,2) =1,,00;Bo3 () — 125<00:Bo3(T),
we get the expression for Bs:
Bs(t, x)
1
7@ /é)B(m;t)m{y3>0}
T o o (0B )+ Busi) Vs 0)- (- 2)dS,
L1 Hs(t — |y — |, y)
AT ) B(ast)N{ys >0} ly — x|
1 Ha(t — |y — 1, 7)
AT ) B(ast)N{ys <0} ly — x|

(t0: Boz(y) + Bso(y) + VBos(y) - (y — x)) dS,

dy

dy.



398 YUNBAI CAO AND CHANWOO KIM

Combining (79) and (80), we get for ¢ = 1,2,3,

Bi(t, z) 272/ (t0:Boi(y) + Boi(y) + VBoi(y) - (y — x)) dS,,
drt OB (z;t)N{y3>0}
Li _ _ _ o

+— / (t0:Boi(9) + Boi(y) + VBoi(y) - (4 — ©))dS,

4t OB (z;t)N{y3<0}

am B(z;t)n{ys>0} |y - J}|

am B(z;t)N{ys<0} ly — |

i Ai t— - B} 707
—%(—1y2(1-5ﬁ)Jf L/‘q)f( v = 91,00) )
B(z;t)N{yz=0} JR3 ly — |

Using (26), we have

0 i t— - I
(s1) :/ / (Vof x0)it = ly —2l.9,v)
B(z;t)N{ys>0} JR3 ly — |

(w x D); dy
= ——=Sf(t — |y —z|,y,v)dv (83)
/B(:z:;t)ﬂ{y3>0} /]R3 1+v-w ly — x|
5) - T d
- / <<Tx@>i<“”?” )f(tyx,y,v>dv v_
B(z;t)n{ys>0} JR3 l+0-w |y - .1?‘
(84)

For (83), we replace Sf with (30) and apply the integration by parts in v to
derive that (83) equals

. d
/ /a?<v,w>-<E+vxB—ge3>f<t—|y—x|,y,v>dv Y (s5)
B(z;t)N{y3>0} JR3

ly — |’
where
B . (wx0);) Vol(w x v);] (w X v);(0+w)
a; (v,w) =V, (1+@~w>_ /71+\v|2(1+13~w) ( 1+U2(1+ﬁ-w))2(' )
86

For (84), we replace Tj f with (29) and apply the integration by parts to get (84)
equals

b - ds
/ /WXMQ—”?ﬂmmmy
8B (z;t)N{ys>0} JR? 1+90-w t
. (wx D). dyj
+f / <<e w0t Do) Ft— ly— . 0, v)do
B(zst)n{ys=0} JR3 ’ 1+9-w 3 I v — 2|

+/ / (w > 0); (1 1o]? Ft— ly— o], 0)dvd
- — Yy =, y,v)avay.
B(ait)n{ys>0} Jrs (140 w)?y —z|?
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where we have used that, from [8, 5],

(w x D)0,

o (ol =)
:w><A)(—w~ﬁ)(1+w-ﬁ)—(w-@)(1+w-@)—|f)|2+(w-f))2)
(149 -w)?y— x|?

:(w x 0) (=2(w - 9) — |8]* = (w- 9)?)
140 -w)?ly —z|?

)

and
_ - ¥ (wx{j){]j
Vil =) *ayj<<1+@~w>|y—w>
(@ x9) (L0 w)?2 2w )~ o — (- 0)?) _ (wx5) (1[0
T+ 0 w)2ly— 2P 0 t0-wlly—af

Now we consider (82). From (46),

B(x3t)n{y3 <0} Iy -z
dy

(@ x 9); _
=l ~ Sf(t7|y l‘|,y,U)d’U (88)
Z/B(x )N {ys <0} /R3 1+v- ly — x|

(5 T)@x ) gy

s / ((Txv»-A O it — |y — al, g, 0)do
B(z;t)n{yz<0} JR3 1+v-w ‘y—l‘|
(80)

As getting (85), we derive that, with a? of (86), (88) equals

d
o f [ B @@ (B+0x B - genprie—ly — sl.5. ) (90
B(z;t)n{ys<0} ly — 2|

For (89), applying (43) and the integration by parts, we derive that (89) equals

Li/ / (@ x D), (1 - vw_) f(O@,v)dv@
OB(z;t)N{ys<0} JR3 + w t
0)i

1
0 t—|y—x|,y,0,v
+Li/ / (-(63 X ’U) + — (w P (’U . 63)) f( |y | | )dvdyH
B(z5t)n{ys=0} /R I+9-w ly — |

(@ x 0); (1—[0f) )
+Li/ / ~ ( |y .’L'|7y,’l))d’l}dy7
B(z;t)n{y3<0} JR3 <(1 +v- ) ‘y - l‘|2

where we have used the direct computation

() 20t

(91)
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and

- X U)0;
-ty ()

( x|
@x0) (1+0-@)2—206-a) — 8> - (0-@)?)  (@xd)(1-[0)

€l

- (1+0-w)2y — T t0-w)2y—af

Collecting the terms, we conclude the following formula:

Proposition 2.
1

4mt2 JoB(wit)n{ys >0}

(0, Boi () + Boi(§) + VBoi(3) - (5 — 7))dS,

Bi(t,z) = (t0: Boi(y) + Boi(y) + VBoi(y) - (y — z)) dS,

Ly

4Amt2 \/aB(a:;t)ﬂ{y3<0}

(w x D); (1 — |®|2)
+/ / ~ f(t—|y— x|, y,v)dvdy
setnisss0y Jus 0+ -y — ! O W= 2hve)
(@ x D), (1 — |@\2) B
+/ Li ~  _ ft_ y_$|ayav)dvdy
B(z;t)N{ys<0} JR3 (1+0-w)?ly —xf? ( |
/B(a: it)N{y3>0}
/B(a: t)N{y3<0}
/B(x;t)ﬁ{ys—O}
R ((D X @){f)g) dy”
ti | —(es3 x0); + ————=) f(t — |y — z|,y;,0,v)dv
/B(m-t)ﬂ{ys—O} /RS ( ’ ) I+o-w ( | | | ) ly — x|
/ (“"”) 10, ,0)dv
OB (z;t)N{ys>0} JR3 149w t
dsS

Li M /Uiy
+»/8B:vtﬁ{y3<()}/ z(l_’_{)w f(O % )d ;

B(z;t)N{y3=0} |y - J?‘

alB(v,w)~(E+f[)><Bfgeg)f(tf|y7x|,y,v)dv|y .17‘
3 _

+

L’ia’iB(U7a)) : (E+’IA) x B _ge3)f(t_ ‘y_x‘7gav)dv

+

+

— T

R (w X ’IA})lfjg dyH
- Z - . ~ t_ - ) 7O’ d
3( (e x 0)i + 1+90-w ft=ly==ly,0,0) v|yf:c|

_|_

+

dvdS,.
(92)
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